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Abstract
Question: What are the effects of the number of
presences on models generated with multivariate
adaptive regression splines (MARS)? Do these ef-
fects vary with data quality and quantity and species
ecology?
Location: Spain and Ecuador.
Methods: We used two data sets: (1) two trees from
Spain, representing high-occurrence number data
sets with real absences and unbalanced prevalence;
(2) two herbs from Ecuador, representing low-
occurrence number data sets without real absences
and balanced prevalence. For model quality, we
used two different measures: reliability and stability.
For each sample size, different replicates were
generated at random and then used to generate a
consensus model.
Results:Model reliability and stability decrease with
sample size. Optimal minimum sample size varies
depending on many factors, many of which are
unknown. Regional niche variation and ecological
heterogeneity are critical.
Conclusions: (1) Model predictive power improves
greatly with more than 18-20 presences. (2) Model
reliability depends on data quantity and quality as
well as species ecological characteristics. (3) De-
pending on the number of presences in the data set,
investigators must carefully distinguish between
models that should be treated with skepticism and
those whose predictions can be applied with reason-
able confidence. (4) For species combining few
initial presences and wide environmental range var-
iation, it is advisable to generate several replicate
models that partition the initial data and generate a

consensus model. (5) Models of species with a
narrow environmental range variation can be highly
stable and reliable, even when generated with few
presences.

Keywords:AUC; Consensus model;MARS; Pearson
correlation coefficient; Regional niche variation;
Sample size.

Abbreviations: SDM5 Species distribution model;
MARS5Multivariate adaptive regression splines;
NHC5Natural history collections.

Introduction

Predictive modelling is a powerful tool in many
fields where direct observation or experimentation is
not easy. Species distribution models (SDM) have
increased in importance in recent years (Guisan &
Zimmermann 2000; Araújo & Guisan 2006). These
models have wide relevance in conservation biology
(Araújo et al. 2005b; Rissler et al. 2006), biogeo-
graphy (Lobo et al. 2001; Luoto et al. 2006;
Richards et al. 2007), reserves design (Araújo &
Williams 2000; Margules & Pressey 2000; Ortega-
Huerta & Peterson 2004) and climate change (Iver-
son 2004; Araújo et al. 2006; Botkin et al. 2007;
Pearman et al. 2008). Depending on the target spe-
cies to be modelled, the number of presences used in
published papers ranges from a few – occasionally
just one in rare organism modelling (Pearson et al.
2007) or risk assessment (Beguerı́a 2006) – to (very)
a high number (Zaniewski et al. 2002).

The total amount of information available in
natural history collections (NHC) is enormous, but
very few taxa occurrences can be counted in the
hundreds (Loiselle et al. 2008). In fact, most taxa
have rarely been collected and their full distribution
areas are highly hypothetical, which makes them
prime targets for conservation biology and ecologi-
cal modelling (Graham et al. 2004).

Some review papers have paved the way with
regard to modelling methods, model parameteriza-
tion or selection, and comparative accuracy of the
available methods (e.g. Guisan & Zimmermann
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2000; Guisan & Thuiller 2005; Araújo & Guisan
2006; Elith et al. 2006); others have dealt with the
fact that for most organisms there are data only on
presence but not on absence (e.g. Zaniewski et al.
2002; Brotons et al. 2004; Pearce & Boyce 2006;
Mateo et al. 2010); and others have also studied
why widespread species are usually harder to model
than narrowly distributed organisms (Manel et al.
2001; Luoto et al. 2005; Elith et al. 2006; McPherson
& Jetz 2007). However, there are issues remaining
on the modelling processes that have mostly been
obviated in many works, such as the influence of
sample size (total number of data points, presence
plus absence) and prevalence (proportion of pre-
sences in the data set) in the generated models.

Although there is a consensus that sample size
affects the modelling outcome, most authors have
ignored this issue, and a number of SDMs have even
been generated using an extremely low sample size
without considering the potential consequences
(model accuracy and reliability). For example, the
two presences used by Ortega-Huerta & Peterson
(2004) and byMcClean et al. (2005), four by Loiselle
et al. (2003) and by Cuesta-Camacho et al. (2006), or
the seven to 12 presences used by Anderson &
Martinez-Meyer (2004). Others have merely men-
tioned the potential drawbacks of small data sets
(Stockwell & Peters 1999; Reese et al. 2005), while
some, whose research aims were different, expressed
concern about minimum sample size (Cumming
2000b; Pearce & Ferrier 2000; Drake et al. 2006;
Guisan et al. 2007). Several papers have dealt in
depth with these topics, e.g. the study of sample size
effects on results given by three different methods,
logistic regression, GARP and Bioclim (Stockwell &
Peterson 2002); the exploration of prevalence effects
on SDM accuracy (McPherson et al. 2004); the
study of Hernandez et al. (2006) of sample size
effects on rare species modelled using four common
methods (Bioclim, Domain, GARP andMaxent); or
the comparison between GARP and Maxent (Papeş
& Gaubert 2007; Pearson et al. 2007); and finally
comparison of 12 different methods realized byWisz
et al. (2008). Some of these works documented a
minimum sample size required to generate reliable
SDMs, although the results, even for the same
method, are very variable: five using Maxent
(Hernandez et al. 2006; Pearson et al. 2007), ten
using GARP (Stockwell & Peterson 2002), 15 using
GARP and Maxent (Papeş & Gaubert 2007), 20
using logistic multiple regression (Stockwell &
Peterson 2002), 40 using support vector machines
(Drake et al. 2006), more than 30 using 12 different
methods included GARP and Maxent (Wisz et al.

2008), between 50 and 75 using Bioclim (Kadmon
et al. 2003), and 300 using logistic multiple regres-
sion (Cumming 2000a).

According to Stockwell & Peterson (2002), pre-
dictive power of models generally improves with
additional information; although ‘‘plateaus’’ com-
monly exist and then any additional data adds little
to model performance. Moreover, an increase in the
number of observations may even reduce model ac-
curacy due to over-fitting (Verbyla 1986; Verbyla &
Litvaitis 1989). Therefore, sample size has a poten-
tial influence on model accuracy, reliability and
stability (Hernandez et al. 2006), which combined
with sometimes extreme differences in outcomes
predicted by different methods (Loiselle et al. 2003;
Elith et al. 2006), becomes an interesting avenue of
research. In theory, model stability (the extent to
which a model yields the same results on repeated
trials), accuracy (quality and predictive ability of a
model) and reliability (capacity of the model to be
credible, not spurious) should decrease as sample
size decreases (Stockwell & Peterson 2002; McPher-
son et al. 2004; Hernandez et al. 2006; Wisz et al.
2008), and therefore a minimum number of pre-
sences is needed to generate a robust model. On the
other hand, to limit sampling effort to a minimum
size would allow generation of accurate SMDs
without wasting valuable resources, as data on spe-
cies distribution can be extremely difficult or
expensive to obtain, particularly in tropical areas
(Raven & Wilson 1992; Cayuela et al. 2009). More-
over, several studies have shown that beyond a
threshold – dependent on the organism being mod-
elled – the predictive accuracy of models may
remain constant (Pearce & Ferrier 2000; Hjort &
Marmion 2008).

Following the above line of research, this paper
is focused on how the number of presences affects
SDM reliability and stability on multivariate adap-
tive regression spline (MARS) models, a method not
previously tested on these grounds. Here, we are not
interested in validation of the accuracy of SDMs.
Most published studies refer to model accuracy, but
here we use reliability and stability to measure
model performance for several reasons: (1) data on
NHCs are usually (very) scarce and do not allow
splitting the data set into training and testing por-
tions without losing precious information, and
also cannot be considered as fully independent
data sets (Araújo et al. 2005a; McPherson & Jetz
2007); (2) they lack data on absences, which pre-
cludes most orthodox validation techniques; (3) the
AUC (area under the ROC curve) value is the only
measure of SDM accuracy that is prevalence- and
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threshold-independent and therefore appropriate in
this exercise, but requires amounts of data not al-
ways available, as in this study; (4) model
verification offers no information in this study, as
sample size is very small (Mateo 2008); (5) models
idealize prediction of ecological niche, but their ac-
curacy can only be measured using data on actual
distribution ranges, which are also shaped by biolo-
gical interactions not considered when generating
the potential environmental model (Kadmon et al.
2003); (6) performance values (AUC, kappa, etc.)
can be highly dependent on the random split of the
original data set (Phillips et al. 2006; Raes & Steege
2007); (7) accuracy assessment of presence-only
SDMs cannot alone be sufficient without testing
them against a null model (Anderson et al. 2002;
Raes & Steege 2007); and finally, (8) model relia-
bility must be used in similar studies with
satisfactory results (Hernandez et al. 2006).

Model reliability depends on numerous issues,
as well as methodological aspects, such as the meth-
od used (Thuiller 2003; Segurado & Araújo 2004)
and diverse aspects of data accessible for model
training (Kadmon et al. 2003; McPherson et al.
2004). According to Kadmon et al. (2003), reliability
mainly depends on (a) properties of the data and (b)
properties of the organism being modelled.

Regarding properties of the data, the present
study focuses on the number of available presences,
and we therefore replicate the analyses by varying
the number of presences. We also deal with data
quality, in the sense that the Anthurium data do not
cover the full distribution area of the species, while
the Spanish tree data set does represent the real dis-
tribution of both species in that area.

Regarding properties of the species, ecological
characteristics are potentially important, since they
can affect the reliability of SDMs. We therefore se-
lect, within each of the two data sets, species with
different ecological requirements (see species data).
For widely distributed species, ecological conditions
may vary significantly between diverse areas inside
the range (Murphy & Lovett-Doust 2007) and so it
is reasonable to suppose that the most accurate pre-
dictions would be achieved for narrowly distributed
species, characterized by well-defined niches (Kad-
mon et al. 2003; Papeş & Gaubert 2007; Pearson
et al. 2007).

In short, in this work, we test the influence of
quality and quantity of input data on the output
models using the same method and independent
variables. To do so, we use two different data sets
that represent the two principal options of data
available for ecological modelling: (1) natural his-

tory collections without real absences and (2)
massive data sets with real presences and absences.
These data sets were prepared with the aim of cov-
ering, as much as possible, the different quality and
quantity data sets that are usually available: (1)
presence-only data and randomly generated pseudo-
absences versus real presence–absence data; (2)
balanced versus unbalanced prevalence; and (3) low
versus high number of presences. The main aims
were to evaluate: (1) if models generated with in-
complete information from a region are a fair
representation of the model generated with all
available data from the same region; (2) the influ-
ence of quality and quantity of input data on model
reliability and stability; (3) if low-number data in
NHCs allow generation of stable and robust MARS
models; (4) the likely combined influence of regional
niche variability and sample size on reliability and
stability of the models; and (5) if a consensus model
can recover information from individual models to
become more stable and robust.

Methods

Species data

As dependent variables, we selected four plant
species, grouped into two types of data set that differ
sufficiently to cover as much as possible the difficul-
ties faced by modellers, and also to represent very
different biogeographic and climatic areas (tropical,
Eurosiberian and Mediterranean) and highly un-
equal sampling efforts. The four species analysed
present a relatively wide ecological niche and a
widespread distribution. For all variables, both tar-
get and environmental, pixel size was 0.00833
degrees.

Large data sets with real absences and
unbalanced prevalence

We used presence/absence of European beech
(Fagus sylvatica L.) and Pyrenean oak (Quercus
pyrenaica Wild.) in Spain (Fig. 1). The former spe-
cies grows in the mountains of northern Spain and
in a disjunct locality in the Central Range. Its dis-
tribution covers Central and Western Europe, from
the Iberian Peninsula to Poland and from Scandi-
navia to Sicily. The latter species grows in central
and northern Spain; its distribution spans western
and southwestern France, northern Morocco and
the Iberian Peninsula.

Both taxa show regional niche differences. In
the core of its European distribution, including
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northernmost Spain, Fagus sylvatica grows in a wide
spectrum of ecological conditions, both edaphic and
climatic. However, at its southern Iberian Peninsula
limit, it grows exclusively in mountain areas on si-
liceous substrates (Costa Tenorio et al. 1998). In
contrast,Quercus pyrenaica can be considered a sub-
mediterranean species, growing in more humid and
less hot areas in the central Iberian Peninsula than
other strictly Mediterranean members of Quercus
(e.g. Q. rotundifolia). Its presence in cool and very
humid Eurosiberian areas next to the sea in northern
Spain is considered to be a consequence of inter-
glacial occupation of suitable areas, followed by
extinction in less sheltered areas (Costa Tenorio
et al. 1998).

Table 1 presents details of stratified sampling
done on a digital version of the Forest Map of Spain
(Ceballos 1966). For the two study species, we sam-
pled this digital map to generate 20 replicates per
sample size (15%, 5%, 1%, 0.1% and 0.05% of the
total cover of each of these forest formations).
Twenty-five per cent (3734 presences for F. sylvatica
and 14 661 for Q. pyrenaica) of the original data was
enough to be considered as a fair representation of
the ‘‘true’’ distribution of these taxa; it should be
noted that most modelling exercises barely use more
than a handful of presences, and very few count
presences by the thousand, as used here. As in other
published studies, the selection of this number of
sites is somewhat arbitrary, but is more than enough
to fit models (Elith & Graham 2009). Following
Hernandez et al. (2006), downsized replicate models
were compared with this reference model, con-
sidered to be ‘‘. . . the most representative of the true
distribution of the species given the limitations of
the modelling method, the species occurrence and
environmental data available.’’

In order to obtain real absences, absence data
were extracted from mature forests other than the F.
sylvatica or Q. pyrenaica formations, so as to pre-
vent false negative records (i.e. no sampling was
done on crop or deforested areas that could con-
stitute part of the potential distribution area). Table
1 also presents the number of pixels sampled for
each sample size down-sized category.

Small data sets without real absences and
balanced prevalence

We used presence data from the TROPICOS
database (Missouri Botanical Garden; http://
mobot.mobot.org/W3T/Search/vast.htlm) for two
endemic species from Ecuador: Anthurium dolichos-
tachyum and A. mindense. The former has a western
distribution area, while the latter grows on both
slopes of the Andean range (Fig. 2). This genus has

Fig. 1. Original data set (presence data) for Fagus sylvatica (right) and Quercus pyrenaica (left) (Ceballos 1966). WGS84
projection.

Table 1. Sampling details for Fagus sylvatica (Fs) and
Quercus pyrenaica (Qp). Average number of presences
and absences data per replicate and number of replicates
per sample size.

Presences Absences Replicates

Fs
25% 3734 106 330 1
15% 2240 63 780 20
5% 744 21 275 20
1% 149 4250 20
0.1% 15 430 20
0.05% 8 215 20

Qp
25% 14 661 132 000 1
15% 8800 79 200 20
5% 3090 27 800 20
1% 590 5300 20
0.1% 84 770 20
0.05% 29 260 20
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been thoroughly studied and collected in Ecuador
by its specialist, Thomas B. Croat (783 collections
and 236 localities in TROPICOS; see Croat 1992,
1999). All the specimens used in this study have been
checked both for taxonomic identification and spa-
tial accuracy (Mateo 2008).

Lacking real absences, we generated random
pseudo-absences in an approximately equal number
to the presences to avoid problems associated with
unbalanced prevalence (Titeux 2006). To reduce the
number of false negatives, we imposed the spatial
restriction of a minimum distance of 30 km between
the generated pseudo-absences and any of the
known presences (Mateo et al. 2010). This distance
could be arbitrarily set, or could be established ac-
cording to a particular characteristic of the species,
such as dispersion capacity (Graham & Hijmans
2006). In our case, 30 km is the maximum pixel size
containing the same information as a pixel of size
1 km, calculated according to the Shannon entropy
formula. This radius was calculated by doubling the
pixel size from the original map (1 km pixel spatial
resolution) and calculating the information con-
tained in both the original pixel size map and the
doubled pixel size map. Models of 1, 2, 4, 8, 16 and
32 km pixel size basically contain the same informa-
tion per pixel, and so we decided to set the buffer size
to 30 km (Mateo et al. 2010).

Both Anthurium species full-size data sets have
72 pixel presences. They were sampled at random to
generate ten replicates, each of size 60, 50, 40, 30, 25,
18 and nine presences. The reference model to com-
pare with these replicates (see above) was generated
using the 72 presences.

Environmental variables

We used the 19 WorldClim 1.3 bioclimatic
variables to build the models. These are described in
Hijmans et al. (2005) and are freely available on the
web (http://www.worldclim.org). There are 19 vari-
ables: annual mean temperature, mean diurnal
range, isothermality, temperature seasonality, max-
imum temperature of warmest month, minimum
temperature of coldest month, temperature annual
range, mean temperature of wettest quarter, mean
temperature of driest quarter, mean temperature of
warmest quarter, mean temperature of coldest
quarter, annual precipitation, precipitation of wet-
test month, precipitation of driest month,
precipitation seasonality, precipitation of wettest
quarter, precipitation of driest quarter, precipitation
of warmest quarter, and precipitation of coldest
quarter.

Modelling technique

Multivariate adaptive regression splines –
MARS – (Friedman 1991; Hastie et al. 2001) have
been applied in previous ecological modelling ex-
ercises (Muñoz & Felicı́simo 2004; Leathwick et al.
2006; Elith & Leathwick 2007). MARS combine
classical linear regression, mathematical construc-
tion of splines and binary recursive partitioning to
produce a local model in which relationships be-
tween responses and predictors are either linear or
not linear. MARS approximate the underlying
function through a set of adaptive piece-wise linear
regressions, termed basis functions, the slope of

Fig. 2. Original data set (presences in TROPICOS database) for Anthurium mindense (left) and Anthurium dolichostachyum
(right). WGS84 projection.
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which changes at points called knots. The regression
line is thus allowed to bend at the knots, which mark
the end of one region of data and the beginning of
another with different behaviour of the function.
Knots are established in a forward/backward step-
wise way. A model that clearly over-fits the data is
produced first. In subsequent steps, knots that con-
tribute least to the efficiency of the model are
discarded by backward pruning steps. The best
model is selected via cross-validation, a process that
applies a penalty to each term (knot) added to the
model to keep low complexity values.

We ran all the models using MARS 2.0 software
(http://www.salford-systems.com). For each re-
plicate, we ran 30 models using different parameters,
mainly (1) maximum number of basic functions
(15, 20, 25, 26, 27, 28, 29, 30, 45); (2) interactions
(to allow or prevent interactions between basic
functions); and (3) independent variables (to include
all the variables or to eliminate mean annual tem-
perature and mean annual precipitation, to reduce
multicollinearity). Given the small sample sizes of
the Anthurium data sets and because we were not
interested in evaluating the individual models, we
measured AUC using the same data set from which
the models had been generated.

Model comparison

In total, 101 models for each species of tree (one
reference model, 20 replicates� five sample sizes) and
71models for each species ofAnthurium (one reference
model, ten replicates � seven sample sizes) were built.
To explore if the models generated with few presences
were stable and reliable, they were compared to the
reference model (full occurrence model in the Anthur-
ium species, and the 25% total occurrencemodel in the
tree species) using the Pearson product-moment cor-
relation coefficient (r) in two ways: (1) for each sample
size, each individual model (10 or 20 replicates, see
above) was compared to the referencemodel, and then
the average Pearson correlation coefficient was esti-
mated for that particular sample size; and (2) for each
sample size, an average model of the replicates was
generated (here named consensus model), and corre-
lated to the reference model. Following Hernandez et
al. (2006), we consider that the reference model is the
closest to the potential distribution of the species for
the given modelling method.

In addition, we evaluated model stability. We
calculated the correlation between all pairs of re-
plicates per sample size. The inverse of the standard
deviation of the average of r was considered to be
the stability indicator.

Results

Reliability

The AUC values obtained ranged from 0.941 to
1.000, which are well within what is considered a
good measure of accuracy (Swets 1988).

When the downsized data sets are compared to
the reference model using the Pearson correlation
coefficient, three main results were highlighted (Fig.
3): (1) r values decreased as number of presences de-
creased; (2) in all four species the correlation
coefficient of the consensus model (average model for
each sample size) was greater than the mean Pearson
correlation coefficient (Fig. 3); and (3) the correlation
coefficient of the consensus model was more stable in
the two species with the greater sample size (Fig. 3).

In the two species of tree (European beech and
Pyrenean oak) a tendency was observed towards a de-
crease of the mean correlation coefficient of the
responses when sample size was decreased (Fig. 3).
This value was much smaller (0.34) in the case of Eur-
opean beech, where the sample size was smaller (eight
presences). For Pyrenean oak, with a sample size of 29
presences (0.01% of total occurrences data set), a cor-
relation coefficient of 0.62 was obtained. In the case of
European beech, 15 presences seem to be sufficient to
obtain a model comparable to the reference model,
since a correlation coefficient of 0.70 was obtained.

On the other hand, in both Anthurium species
(Fig. 3), for which the original amount of data was
quite limited compared to data for the tree species,
the effect of the number of presences on the final
models was much more dramatic. In every case, the
mean correlation was much lower, even for a num-
ber of presences similar to that of the trees; for
Pyrenean oak a value of 0.62 was obtained with 29
presences (0.01% of the total occurrences data set),
while for the two Anthurium species values of 0.34
and 0.27 were obtained with 30 presences. For Eur-
opean beech a value of 0.70 was obtained with 15
presences (0.05% of the total occurrences data set),
but for the two species of Anthurium the values were
0.31 and 0.22 with 18 presences.

Stability

SDM stability decreased as sample size
decreased (Table 2). The models of the two species
of Anthurim were more unstable and showed more
erratic behaviour than those of the two trees.
Figures 4 and 5 show how the ten models of An-
thurium mindense obtained with nine presences are
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much more unstable than models obtained with
18 presences.

Discussion

Comparison between data sets (small data sets without
real absences and balanced prevalence versus large data
sets with real absences and unbalanced prevalence)

The models generated with data from the genus
Anthurium were less reliable and less stable than

models generated with data from European beech
and Pyrenean oak. This effect was mainly related to
five factors: (1) The quantity and quality of data on
the initial presences. (2) Lower reliability of the
pseudo-absences with respect to real absences used
in the case of the two tree species. (3) The precise
knowledge of distribution of the species in the
case of the two tree species. (4) The larger number
of precise absences used in the tree species provided
extra information for the models, which helped
to delimit areas not really suitable for develop-
ment of these species. (5) Ecology of the species
(range size and regional niche variation). Therefore,
the important conclusion that can be drawn
from this analysis is that the minimum sample size
is closely linked to the ecology and distribution
area of a species, as well as the quality of the
initial data, both for presences as well as
absences. We will now discuss some of these aspects
further.

Reliability

The two species of tree, with a large starting
sample size, showed similar modelling behaviour.
The slope of the graph remained relatively constant
until it reached the minimum sample size (0.01%),
where an important drop in the correlation coeffi-
cient occurred. However, it is notable that for Fagus
sylvatica a relatively reliable model was obtained
with a smaller sample size (15 presences) than for
Quercus pyrenaica (29 presences). This was likely
due to the ecological requirements of Fagus sylvati-
ca, which, despite its broad distribution, is
characterized by a more sharply delimited ecological
range, making it easier to model its distribution
from smaller sample sizes.

Regarding the two Anthurium species, the effect
of sample size was much more dramatic. In every
case, the mean correlation values were lower, even
for similar numbers of presences, compared to the
two trees. At the beginning of this study, an opposite
effect was expected, because, in the case of the trees,
the reference models were generated with a much
larger amount of data, and consequently the differ-
ence between reference model and downscaled
models was expected to be larger. We consider that
this unexpected result is mostly due to errors that
occurred when geolocating specimens in natural
history collections without full locality information
(Margules & Pressey 2000; Soberon & Peterson
2004; Rowe 2005; Edwards et al. 2006; Papeş &
Gaubert 2007), and also perhaps to uncertainty as-
sociated with using pseudo-absences (Mateo 2008).

Fig. 3. Relation between the r Pearson coefficient and
number of presences for the four species (Fagus sylvatica,
Quercus pyrenaica, Anthurium dolichostachyum and An-
thurium mindense). The continuous line with black squares
represents the consensus model of the replicates (10 or 20)
for each different sample size. The discontinuous line with
a white circumference represents the mean Pearson corre-
lation coefficient for each sample size.
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False presences and false absences have a negative
effect on the reliability of models, an effect that in-
creases as sample size decreases (Carroll & Pearson
1998). If we start from a large number of presences
and absences, the bias introduced by inaccurate
(taxonomically or spatially) data will be compen-
sated by the information contributed from the
correct data. On the other hand, a single inaccurate
data point in a small data set will have a dramatic
effect on the resulting model.

Stability

There were two quite different patterns of sta-
bility for the two groups of data used. For the two
tree species, the stability decreased as sample size
decreased (Table 2), while in the two Anthurium
species this relation is not that clear for the stability,
which behaves in a much more irregular manner
(Table 2). In the case of the two Anthurium species,
the stability values are relatively low at all sample
sizes and, although stability values also behave irre-
gularly for these two species, they increase as sample
size decreases, in contrast to what happens in the
case of the trees. We interpret this behaviour as a
consequence of a likely collection bias in the An-
thurium data, which seem to be spatially and,
consequently, ecologically biased (Reddy &Dávalos
2003; Kadmon et al. 2004; Hortal et al. 2007). Such
collection bias might thus result in certain localities
being systematically under-represented by the SDM,
which can only be resolved by additional collections
(Raes & Steege 2007).

Consensus model

The consensus model (mean of replicates per
sample size) was shown to be more reliable in the two
tree species than in the two Anthurium species (Fig.
3). The tree data sets had reliable information about
the real distribution of the species, and we also gen-
erated a larger number of responses for each sample
size than for the Anthurium data sets, which have a
considerably smaller number of presences. As in the
case of the tree species, Anthurium consensus models
always showed a higher correlation with the reference
model, although they were less stable than those of
tree consensus models. In species poorly represented
in NHCs, such as the Anthurium species, collection
data likely offer highly biased information of the
niche of the species, and therefore the consensus
models cannot reconstruct their complete niche, un-
like the case with the consensus models generated for
well-collected organisms (see above for the trees).
This becomes evident from a visual inspection of the
maps (Figs. 4 and 5), which show that inclusion or
not of certain presence data has a dramatic effect on
the final results of the SDMs. Random selection of
the presences from which the SDMs are generated
leads to large variations in the final result of the
model (Pearson et al. 2007), with more striking effects
for decreases in sample size (Fig. 4).

Minimum number of presences

The construction of reliable and stable SDMs
depends on many factors, some of which are well
known. Sample size is one element that can drama-

Table 2. Comparison between all pairs of replicates per number of presences; r (mean): average correlation coefficient;
standard deviation: standard deviation of the average of r (stability indicator); stability: 1/standard deviation.

Fagus sylvatica
Number of presences 2240 (15%) 745 (5%) 150 (1%) 15 (0.05%) 8 (0.01%)
r (mean) 0.821 0.825 0.674 0.588 0.145
Standard deviation 0.105 0.072 0.122 0.153 0.255
Stability (1/SD) 9.524 13.888 8.197 6.536 3.922

Quercus pyrenaica
Number of presences 8800 (15%) 3090 (5%) 590 (1%) 85 (0.05%) 30 (0.01%)
r (mean) 0.917 0.811 0.714 0.664 0.413
Standard deviation 0.043 0.114 0.162 0.219 0.205
Stability (1/SD) 23.256 8.772 6.173 4.566 4.878

Anthurium mindense
Number of presences 60 50 40 30 25 18 9
r (mean) 0.441 0.426 0.667 0.457 0.706 0.706 0.192
Standard deviation 0.190 0.233 0.156 0.269 0.131 0.125 0.340
Stability (1/SD) 5.263 4.292 6.411 3.717 7.633 8.000 2.941

Anthurium dolichostachyum
Number of presences 60 50 40 30 25 18 9
r (mean) 0.463 0.394 0.270 0.271 0.304 0.251 0.209
Standard deviation 0.191 0.255 0.233 0.228 0.203 0.237 0.311
Stability (1/SD) 5.236 3.922 4.292 4.386 4.926 4.219 3.215
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tically affect the results of any study of ecological
modelling. Several authors have documented a
minimum sample size required to generate reliable
SDMs. The results, even for the same method, are
very variable (see Introduction), and according to
results obtained in this study, we believe that a gen-
eral rule regarding the minimum number of
presences cannot be provided.

This minimum sample size can vary depending
on many factors, such as the quality of the original
data, method of ecological modelling, independent
variables, pixel size, area being studied and ecology
of the species (widespread or narrow distribution).
Furthermore, the appropriate sample size depends
on the objectives of each project, since, for example,
in studies of very rare species there is no other op-

Fig. 4. The ten models generated with nine presences for Anthurium mindense. The consensus model of these ten
models (map with the scale bars in the middle of the last line). All presences available forA. mindense (map on the right in last
line).
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tion except to create the SDMs with very few pre-
sence data. In this situation where a species is closely
associated with a particular habitat or geographical
area, the SDMs may be precise, even with a very
small sample size, as these few presences reliably re-
present the ecological variability in which the species
grows and, therefore, generate reliable SDMs (Her-

nandez et al. 2006; Pearson et al. 2007). But this
cannot be considered as a general rule, and we can-
not apply this minimum sample size to species with a
wider ecological niche. In this study, the four species
analysed represent a relatively wide ecological niche
and a widespread distribution, and therefore can be
considered a more general application study.

Fig. 5. The ten models generated with 18 presences for Anthurium mindense. The consensus model of these ten models (map
with the scale bars in the middle of the last line). All the presences available for A. mindense (map on the right in the last line).
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Although, as already stated, a minimum sample
size valid for all studies could not be established, we
can evaluate the general trends and draw conclu-
sions applicable to specific cases. In the first place,
we can confirm that the number of presences used to
generate SDMs with MARS dramatically affects
their reliability and stability. This is consistent with
previous studies using others methods. We observed
a similar trend for all four species, but the effect is
much more striking in the case of the two Anthurium
species.

In general, the two Anthurium species show a
decrease in mean correlation coefficient; in models
created with 60, 50 and 40 presences this decrease is
noticeable, although the correlation coefficient sta-
bilizes in models with 30, 25 and 18 presences.
Finally, there was an important drop for models
obtained using nine presences. For both Anthurium
species, very similar values were obtained in all of
the sample sizes. These results indicate that there
was practically no difference between using 40 and
18 presences, and also that it seems senseless to use
less than around 18 presences to create an SDM, as
this is the value after which the correlation coeffi-
cient drops significantly, which would indicate that
the reliability of the generated models would also
drop radically. In natural history collections, the
number of presences for many species is usually less
than 20 (Stockwell & Peterson 2002; Loiselle et al.
2008; Mateo 2008), and our results show that col-
lecting more than around this number will have
hardly any effect on the reliability of SDMs gener-
ated with MARS, except at levels exceeding 70
presences distributed more or less uniformly
throughout the study area, which in most cases
would imply an exceedingly high cost that is gen-
erally unaffordable.

Quality or quantity of data?

In most cases, the ‘‘quality’’ (ecological in-
formation) of the presence/absence data is by far
more important than the ‘‘number’’. Indeed, model
predictions are influenced by the properties of the
data, both quality and quantity, and distribution
properties of the modelled species (Kadmon et al.
2003).

In the case of widely distributed species, the
potential distribution for species may be difficult to
model due to factors such as: (1) identification of
important niche dimensions (Anderson et al. 2002);
(2) ecological adaptation for subpopulations (Pe-
terson & Holt 2003); (3) training data, source/sink
dynamics (Pulliam 2000), or (4) ranges that might

only be incompletely represented in the present da-
tabases. Additionally, spatially biased presence-only
data sets could represent regional niche variation or
only part of the ecological heterogeneity of the spe-
cies. The fewer the number of presence data used to
generate the model, the smaller the environmental
universe sampled, and therefore the more difficult it
becomes to capture the total niche dimensions of the
species, which in turn implies that reliability and
stability of the models will decrease. This problem
can be partially solved by generating a consensus
model among the different responses of a given
sample size, combining information from various
partial models (Araújo & New 2007; Marmion et al.
2008), which could generate even better results than
a single model generated with all the available pre-
sences. Spatial partitioning of the data is necessary
to improve predictions of models where regional
niche variation occurs (Osborne & Suárez-Seoane
2002), and here consensus models may play a crucial
role. However, this approach is not without risk, as
regional portioning of the data may not necessarily
be the most appropriate approach in all circum-
stances (Murphy & Lovett-Doust 2007). In the case
of narrowly distributed species, there is no such
niche variation, or it is weak, and as a consequence
stable and reliable models can be generated from
data sets with few presences (McPherson & Jetz
2007; Pearson et al. 2007).

Multivariate adaptive regression splines

MARS, like other algorithms that create models
of complex relationships and interactions between
variables, require a large number of presences to
generate optimal results (Guisan & Thuiller 2005;
Wisz et al. 2008). If working with a limited number
of presences, other methods, especially Maxent, can
generate better models (Hernandez et al. 2006; Phil-
lips et al. 2006; Papeş & Gaubert 2007; Pearson et al.
2007; Wisz et al. 2008). The results obtained in this
study suggest that in order to generate optimal
models, MARS need to be trained with at least 15
presences, although the results are not equally reli-
able in all cases. For example, European beech
models generated with 15 presences are more stable
and reliable than Anthurium species models gener-
ated with 18 presences. The obvious conclusion,
indeed applicable to all ecological modelling meth-
ods, is that we cannot establish a valid criterion for
all options; this will depend on initial data and the
objectives of the study.
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Temperate versus tropical areas

Most methodological ecological modelling stu-
dies are performed with data from temperate areas,
from where more good quality data are available.
However, most studies related to prioritization of
areas for conservation and many studies on biodi-
versity patterns are focused on tropical areas, where
data are generally scarce and highly biased. As a
consequence, it is highly risky to extrapolate conclu-
sions of a methodological study performed in
temperate areas to tropical areas. The present study
also shows that it is necessary to continue collecting
data from areas with few samples obtained from
natural history collections, like most tropical areas,
which are indeed priority areas for biodiversity con-
servation (Myers et al. 2000; Deutsch et al. 2008).
This implies that the current trend of decreasing the
number of collecting expeditions should be reversed,
as well as continuing to create or reinforce existing
biodiversity information systems (Bisby 2000; So-
beron & Peterson 2004; Guralnick et al. 2007). As
already pointed out by Lobo (2008), we think that
adding new data will be far more beneficial than de-
veloping more complex techniques (Lobo 2008).

Conclusions

At present, many conservation strategies, re-
serve designs and studies on the effects of climatic
change are based on results generated through eco-
logical modelling. However, in some of these studies
the consequences of sample size on resulting models
are not taken into consideration, which can lead to
conclusions that are weakly supported.

An obvious use of SDMs generated with few
presences is to direct fieldwork that aims to collect
more data, which can be used to generate better,
more reliable and stable SDMs (Pearson et al. 2007).
However, this strategy is not always possible due to
the usually very high associated costs, both in terms
of time and money, of collecting new data, especially
in tropical areas. Other uses of models generated
with few presences or with collection-biased data
must be used with caution, and always in association
with species characteristics that help in the inter-
pretation of such models.

This study is based on four species, which argu-
ably could limit the generalization of the results, but
still allows generation of a number of conclusions.
(1) In general, model predictive power improves
greatly when sample size exceeds 18-20 unique pre-
sences. (2) The reliability of models depends on the
properties of the data, both the quantity and qual-

ity, as well as species ecological characteristics. (3)
Depending on the number of unique presences in the
initial data set, investigators must carefully distin-
guish between models that should be treated with
skepticism and those whose predictions can be ap-
plied with reasonable confidence. (4) For species
combining few initial presences and having wide en-
vironmental range variation, it is advisable to
generate several replicate models that partition
the initial data and generate a consensus model,
as indicated in Araújo & New (2007). (5) Models
of species with a narrow environmental range var-
iation can be highly accurate in terms of stability
and reliability, even when generated with few
presences.
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