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ABSTRACT 1 

An extracellular β-fructofuranosidase from the yeast Xanthophyllomyces dendrorhous 2 

was characterized biochemically, molecularly and phylogenetically. This enzyme is a 3 

glycoprotein with an estimated molecular mass of 160 kDa, of which the N-linked 4 

carbohydrate accounts for 60 % of the total mass. It displays optimum activity at pH 5 

5.0-6.5, and its thermophilicity (with maximum activity at 65-70 ºC) and thermostability 6 

(with a T50 in the range 66-71ºC) is higher than that exhibited by most yeast invertases. 7 

The enzyme was able to hydrolyze fructosyl-β-(2→1)-linked carbohydrates such as 8 

sucrose, 1-kestose or nystose, although its catalytic efficiency, defined by the kcat/Km 9 

ratio, indicates that it hydrolyzes sucrose approximately 4.2 times more efficiently than 10 

1-kestose. Unlike other microbial β-fructofuranosidases, the enzyme from X. 11 

dendrorhous produces neokestose as the main transglycosylation product, a potentially 12 

novel bifidogenic trisaccharide. Using a 41% (w/v) sucrose solution, the maximum FOS 13 

concentration reached was 65.9 g l
-1

. In addition, we isolated and sequenced the X. 14 

dendrorhous β-fructofuranosidase gene (Xd-INV), showing that it encodes a putative 15 

mature polypeptide of 595 amino acids and that it shares significant identity with other 16 

fungal, yeast, and plant β-fructofuranosidases, all members of family 32 of the glycosyl-17 

hydrolases. We demonstrate that the Xd-INV could functionally complement the suc2 18 

mutation of Saccharomyces cerevisiae and finally, a structural model of the new 19 

enzyme based on the homologous invertase from Arabidopsis thaliana has also been 20 

obtained. 21 
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INTRODUCTION 1 

The basidiomycetous yeast Xanthophyllomyces dendrorhous (formerly Phaffia 2 

rhodozyma) produces astaxanthin (3-3’-dihydroxy-β, β carotene-4,4 dione; 17, 25). 3 

Different industries have displayed great interest in this carotenoid pigment due to its 4 

attractive red-orange colour and antioxidant properties, which has intensified the 5 

molecular and genetic study of this yeast. As a result, several genes involved in the 6 

astaxanthin biosynthetic pathway have been cloned and/or characterized, as well as 7 

some other genes such as those encoding actin (60), glyceraldehyde-3-phosphate 8 

dehydrogenase (56), endo-β-1,3 glucanase and aspartic protease (4). In terms of the use 9 

of carbon sources, a β-amylase (9) and an α-glucosidase (33) with glucosyltransferase 10 

activity (12), as well as a yeast cell-associated invertase (41) have also been reported.  11 

Invertases or β-fructofuranosidases (EC 3.2.1.26) catalyse the release of β-fructose from 12 

the non-reducing termini of various β-D-fructofuranoside substrates. Yeast β-13 

fructofuranosidases have been widely studied, including that of Saccharomyces 14 

cerevisiae (11, 14, 45, 46), Schizosaccharomyces pombe (36), Pichia anomala (40, 49), 15 

Candida utilis (5, 8) or Schwanniomyces occidentalis (2). They generally exhibit strong 16 

similarities where sequences are available, and they have been classified within family 17 

32 of the glycosyl-hydrolases (GH) on the basis of their amino acid sequences. The 18 

catalytic mechanism proposed for the Saccharomyces cerevisiae enzyme implies that an 19 

aspartate close to the N terminus (Asp-23) acts as a nucleophile, and a glutamate (Glu-20 

204) acts as the acid/base catalyst (46). In addition, the three-dimensional structure of 21 

some enzymes in this family have been resolved, such as that of an exoinulinase from 22 

Aspergillus niger (var. awamori; 37) and the invertase from Arabidopsis thaliana (55). 23 

As well as hydrolysing of sucrose, β-fructofuranosidases from microorganisms may 24 

also catalyze the synthesis of short-chain fructooligosaccharides (FOS), in which one to 25 

ACCEPTED



three fructosyl moieties are linked to the sucrose skeleton by different glycosidic bonds 1 

depending on the source of the enzyme (3, 52). FOS are one of the most promising 2 

ingredients for functional foods since they act as prebiotics (44), and they exert a 3 

beneficial effect on human health, participating in the prevention of cardiovascular 4 

diseases, colon cancer or osteoporosis (28). Currently, Aspergillus fructosyltransferase 5 

is the main industrial producer of FOS (15, 52), producing a mixture of FOS with an 6 

inulin-type structure, containing β-(2→1)-linked fructose-oligomers (
1
F-FOS: 1-7 

kestose, nystose or 
1
F- fructofuranosylnystose). However, there is certain interest in the 8 

development of novel molecules that may have better prebiotic and physiological 9 

properties. In this context, β-(2→6)-linked FOS, where this link exits between two 10 

fructose units (
6
F-FOS: 6-kestose) or between fructose and the glucosyl moiety (

6
G-11 

FOS: neokestose, neonystose, neofructofuranosylnystose), may have enhanced prebiotic 12 

properties when compared with commercial FOS (29, 34, 54). The enzymatic synthesis 13 

of 6-kestose and other related β-(2→6)-linked fructosyl oligomers has already been 14 

reported in yeasts such as S. cerevisiae (11) or Schwanniomyces occidentalis (2), and in 15 

fungi such as Thermoascus aurantiacus (26) or Sporotrichum thermophile (27). 16 

However, the production of FOS included in the 
6
G-FOS series has not been widely 17 

reported in microorganisms, probably as they are not generally produced (2, 15) or 18 

because they represent only a minor biosynthetic product (e.g. with baker’s yeast 19 

invertase; 11). Most research into neo-FOS production has been carried out with 20 

Penicillium citrinum cells (19, 31, 32, 39). In this context, neokestose is the main 21 

transglycosylation product accumulated by whole X. dendrorhous cells from sucrose 22 

(30), although the enzyme responsible for this reaction remained uncharacterized. 23 

Here, we describe the molecular, phylogenetic and biochemical characterization of 24 

an extracellular β-fructofuranosidase from X. dendrorhous. Kinetic studies of its 25 
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hydrolytic activity were performed using different substrates, and investigated its 1 

fructosyltransferase capacity. The functionality of the gene analysed was verified 2 

through its heterologous expression and a structural model of this enzyme based on the 3 

homologous invertase from A. thaliana has also been obtained. 4 

 5 

MATERIALS AND METHODS 6 

Organisms, transformations and culture conditions. The Xanthophyllomyces 7 

dendrorhous strains ATCC MYA-131, ATCC24202 and ATCC24230 were grown at 8 

23ºC on MM medium (0.7% yeast nitrogen base; Difco) supplemented with 2% (w/v) 9 

maltose (MMM), glucose (MMG) or sucrose (MMS). Growth was monitored 10 

spectrophotometrically at a wavelength of 660 nm (A660nm). Escherichia coli DH5α 11 

competent cells were prepared, stored and transformed by standard techniques (51). E. 12 

coli XL10-Gold ultracompetent cells
®
 (Stratagene) were used to obtain the cDNA 13 

library. Invertase-deficient Saccharomyces cerevisiae SEY 2101 (MATα ura3-52 leu2-14 

3 leu2-112 ade2-101 suc2-∆9) was transformed by the lithium acetate method (24). 15 

Protein purification and quantification. The invertase activity secreted (2.5 U ml
-

16 

1
) by X. dendrorhous ATCC MYA-131 (1 L of MMM during 60 h, A660=4) was 17 

concentrated through 30000MWCO PES using a VivaFlow 50 system 18 

(VIVASCIENCE). The active fraction (150 ml) was dialyzed in 20 mM sodium 19 

phosphate pH 7 (buffer A) and it was applied to DEAE-Sephacel chromatography 20 

column (20 ml) equilibrated with buffer A. The protein was eluted with a 0 to 0.2 M 21 

NaCl gradient at a flow rate of 1 ml min-1. The fractions showing invertase activity 22 

were eluted with 0.05 M and 0.1 M NaCl. The 0.1 M fractions (3 ml) were pooled, 23 

dialyzed in 20 mM sodium acetate pH 5 (buffer B) and they were applied to a DEAE-24 

Sephacel column equilibrated with buffer B. The proteins were eluted as above and the 25 
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fractions (2 ml) showing invertase activity were pooled, dialyzed and stored at -70ºC 1 

(70 U ml
-1

; 12 µg ml
-1

). All procedures were carried out at 4ºC. The protein profiles 2 

were determined by column chromatography, measuring the absorbance of the eluates 3 

at 280 nm. Silver stained (PlusOne
TM

, Amersham Biosciences) SDS-PAGE (8% 4 

polyacrylamide) gels of the samples confirmed the purity of the invertase. Broad range 5 

protein markers (prestained-BioLabs or Bio-Rad) were used as a control. When 6 

required, the samples were concentrated to the desired volume using the Microcon YM-7 

10 (Amicon) system. Peptide-N-glycosidase F (PNGase F; New England Biolabs) 8 

treatment was performed according to the manufacturer's protocol. Invertase activity 9 

was detected from native preparations by electrophoresis on 7% polyacrylamide gels 10 

that were subsequently stained with 1% (w/v) 2,3,5-triphenyltetrazolium chloride in 11 

0.25 M NaOH as described previously (47). Invertase activity from S. cerevisiae 12 

(Novozymes) was used as a control in this test. The protein concentration was 13 

determined using the Bio-Rad microprotein determination assay according to the 14 

manufacturer's specifications and with bovine serum albumin as a standard. 15 

For the N-terminal amino acid sequencing, the purified protein (500 ng) was 16 

subjected to SDS-PAGE (8 %), and blotted onto polyvinylidene difluoride membranes 17 

(Millipore). The membranes were stained with Coomassie Brilliant Blue R250 and the 18 

band obtained was excised and processed for N-terminal amino acid sequencing (HZY, 19 

Germany).  20 

Enzyme and kinetic analysis. Unless otherwise indicated, β-fructofuranosidase 21 

activity was determined by measuring the amount of glucose liberated from different 22 

substrates (0.5% (w/v) in 50 mM sodium phosphate buffer, pH 5.5) over 10-20 min at 23 

42ºC. The mixture was boiled for 5 min and the glucose was measured using a glucose 24 

oxidase-peroxidase assay (Sigma Technical Bulletin nº 510). A calibration curve was 25 
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established with a 2 mg ml
-1

 glucose solution. One unit of activity (U) was defined as 1 

that corresponding to the release of 1µmol of glucose per min under the conditions 2 

described above. The enzyme associated to the cellular fractions was assayed after 3 

addition of pearl glass and following five cycles of agitation in a Vortex for one-minute 4 

as indicated previously (41). 5 

 The Michaelis-Menten kinetic constants were determined using sucrose (MERCK; 0-6 

60 mM) or 1-kestose (TCI Europe; 0-12 mM) and 0.5 U of pure enzyme (about 10 µl 7 

conveniently diluted to fit the calibration curve). The plotting and analysis of the curves 8 

was carried out using SigmaPlot software (version 7.101) and the kinetic parameters 9 

were calculated by fitting the initial rate values to the Michaelis-Menten equation. 10 

 The estimation of hydrolase activity at different pH and temperatures was carried out 11 

under the aforementioned conditions using sucrose as the substrate. The buffers used 12 

were citric acid/sodium citrate (pH 3-4), Na2HPO4/NaH2PO4 (pH 4-7) and Tris/HCl (pH 13 

7-8), all at 100 mM. Thermostability was determined by incubating 0.3 U of the pure 14 

enzyme at different temperatures, removing the samples at regular intervals and 15 

estimating the residual activity as described previously.  16 

Production of fructooligosaccharides. The invertase was added to a sucrose 17 

solution (410 g l
-1

) in 0.2 M sodium acetate buffer (pH 5.6) and in a total reaction 18 

volume of 2 ml. The activity in the mixture was adjusted to 0.5 U ml
-1

 and the mixture 19 

was incubated at 50 °C in an orbital shaker (Vortemp) at 200 rpm. At different times, 40 20 

µl aliquots were withdrawn, diluted with 160 µl water and incubated for 10 min at 90 21 

°C to inactivate the enzyme. The samples were then centrifuged for 5 min at 6000 rpm 22 

in an eppendorf with a 0.45 µm Durapore
®
 membrane (Millipore), and they were 23 

analysed by HPLC with a quaternary pump (Delta 600, Waters) coupled to a 5 µm 24 

Lichrosorb-NH2 column (4.6 x 250 mm; Merck) as indicated  previously (2). 25 
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DNA techniques, cDNA library construction and cloning of the X. dendrorhous 1 

invertase. Routine recombinant DNA techniques were used throughout (51). The X. 2 

dendrorhous ATCC MYA-131 strain was grown in 100 ml MMM at 24ºC in an orbital 3 

shaker (A660=1.8). The cells were frozen in liquid nitrogen, total RNA was isolated 4 

using TRIREAGENT (Molecular Research Centre), and polyadenylated mRNA was 5 

enriched using Oligo-dT cellulose chromatography (Amersham Biosciences) in 6 

accordance with the manufacturer’s instructions. The X. dendrorhous cDNA library was 7 

generated with the pBluescript
®
 II XR cDNA Library Construction Kit (Stratagene) and 8 

it contained 3.3x10
5
 clones with an average insert size of 1.3 kb and it was stored as 9 

individual pools (1500-6000 colony-forming units/pool) in 43% glycerol at -80ºC. 10 

The coding sequence of the extracellular invertase from X. dendrorhous was 11 

amplified by PCR using the cDNA library as the template and the universal T7 12 

(Stratagene) and INV-Nter primers (Table 1), the latter directed against part of the N-13 

terminal amino acid sequence (EGWMNDPMG) of the protein. The fragments were 14 

amplified with the Pwo DNA polymerase (Roche Diagnostics, Germany) under the 15 

following conditions of amplification: i) 94ºC for 120 s; ii) 10 cycles of 94ºC for 10 s, 16 

50ºC for 30 s, and 68ºC for 300 s; iii) 30 cycles of 94ºC for 10 s, 50ºC for 30 s, and 17 

finally 68ºC for 300 s in the first cycle, which gradually increased by 12 s per cycle up 18 

to 660 s in the last one. The PCR fragment amplified (1.8 kb) was purified by agarose 19 

gel electrophoresis, it was then recovered with the QiaExII gel extraction kit (Qiagen), 20 

cloned into the pST-Blue1 vector (Invitrogene) as recommended by the supplier, and 21 

sequenced (SIDI, Universidad Autónoma de Madrid, Spain). The GWMN, RDP and 22 

FIN primers (Table 1) were used to complete the sequencing of the 1.8 kb fragment. 23 

The cDNA library and the T3 (Stratagene) and GWMN(-) primers (Table 1) were used 24 
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to amplify and analyse the region that putatively lies upstream of the GWMN amino 1 

acid sequence. 2 

To characterize the genomic DNA encoding the invertase from X. dendrorhous, total 3 

DNA from this yeast was isolated as described previously (7), and it was used as the 4 

template in PCR amplifications. The GWMN and FVK primers (Table 1) were used to 5 

amplify a 1.9 kb fragment that included most of this gene. Inverse PCR was used to 6 

analyse the flanking sequences of this DNA fragment (38). Briefly, genomic DNA from 7 

the yeast was digested with XhoI (an enzyme that has no restriction sites in the 1.9 kb 8 

amplified fragment), it was incubated with T4 DNA ligase (Roche Diagnostics, 9 

Germany), and then treated with BamHI (which has a single cleavage site within the 1.9 10 

kb fragment at nucleotide 291). The digested product was used as a template in PCR 11 

reactions with the GWMN(-) and FIN primers (Table 1). All the PCR products amplified 12 

were introduced into the pST-Blue1 vector and sequenced.  13 

To express the hypothetical invertase from X. dendrorhous in a heterologous system, 14 

the 1788 nucleotide fragment was amplified from the cDNA library using the INVHindIII 15 

and INVXhoI primers (Table 1). This fragment started at the TTC codon and it 16 

terminated at the TAA stop codon, and it was introduced into the Bluescript Sk(+) 17 

plasmid (Stratagene). The resulting INV-BS construct was then used as a template to fuse 18 

an ATG codon followed by the MFα1 spacer region (KREAEA) using the INVBamHI 19 

and INVXbaI(MF1α) primers (Table 1), thereby generating a sequence encoding the 20 

putative extracellular protein. The INVBS-MF construct generated was verified by 21 

sequencing, digested with XbaI and XhoI, and the 1809 nucleotide fragment obtained was 22 

introduced into the pVT103-L plasmid (57) under the control of the ADH1 promoter. The 23 

resulting pINV-PVT plasmid was used to transform S. cerevisiae SEY 2101. 24 
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Phylogenetic analysis and molecular modelling. The amino acid sequence of the β-1 

fructofuranosidase gene from X. dendrorhous (the Gene Bank accession number will be 2 

available on acceotance of the manuscript for publication) was blasted against the 3 

protein database at SwissProt (http://www.expasy.org/tools/blast/), and the sequences 4 

were aligned with the CLUSTALW interface in MEGA4.0 5 

[http://www.megasoftware.net/] (pair wise alignment gap opening penalty, 10; gap 6 

extension penalty, 0.1; multiple alignment gap opening penalty, 10; gap extension 7 

penalty 0.2). The bootstrap test of phylogeny was used with the tree obtained. 8 

A structure-based alignment of X. dendrorhous invertase and Arabidopsis thaliana 9 

invertase (PDB identifier 2ac1) was performed with MUSCLE (10) and the resulting 10 

alignment was further refined manually. This alignment was used to build a structural 11 

model with MODELLER9v4 (50).  12 

Nucleotide sequence accession numbers. The sequences encoding the invertase 13 

from X. dendrorhous have been assigned the EMBL accession nº (they will be 14 

submitted on acceptance of the manuscript).  15 

 16 

RESULTS 17 

Biochemical characterization of a ββββ-fructofuranosidase activity from 18 

Xanthophyllomyces dendrorhous. The yeast X. dendrorhous is able to consume sucrose 19 

(17), and a cell-associated invertase activity has already been reported in this organism 20 

(41). In an attempt to characterize this enzyme, the yeast was grown in liquid media 21 

(33) and the invertase activity was determined from samples taken at different growth 22 

times. In these conditions, maximum levels of activity (approximately 2-4 U ml
-1

) were 23 

detected in the culture filtrates at the beginning of the stationary phase (A660nm = 4) and 24 

they were maintained for at least 80 h of growth (Figure 1). However, and contrary to 25 
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previous reports (41), only low levels of activity (≤0.8 U ml
-1

) were found in the cell-1 

associated fraction during this period. In addition, no activity was detected when 2 

glucose was used as a carbon source (data not shown), pointing to the catabolic 3 

repression of the enzyme analyzed. It was notable that similar activity levels and 4 

profiles were obtained using three strains of this particular yeast (ATCC MYA-131, 5 

ATCC24202 and ATCC24230; data not shown). 6 

To purify the invertase activity from X. dendrorhous, the culture was collected and 7 

processed as described in the Materials and Methods. The overall yield of the 8 

purification was 30% (data not shown) and an only one band of about 160 kDa was 9 

evident when assayed by SDS-PAGE (Figure 2A). Treatment with PNGase F resulted in 10 

a shift in the apparent molecular mass of this protein to about 66 kDa (Figure 2B). Thus, 11 

presuming that the glycosylated and unglycosylated forms behave similarly in the gel, 12 

N-linked oligosaccharides appear to represent about 60% (94 kDa) of the total protein 13 

mass. 14 

The purified enzyme yielded a smeared band above 200 kDa in activity-staining gels 15 

(Figure 2C). In this assay the invertase from S. cerevisiae was used as a control, and it 16 

also produced a smeared band with a molecular mass above 200 kDa (Figure 2C), 17 

which probably corresponded to the 270 kDa glycosylated, functionally-active 18 

homodimer described previously (14). This correlation suggested that the active enzyme 19 

from X. dendrorhous was also likely to function as a dimmer. 20 

The biochemical properties of the enzyme purified from X. dendrorhous were 21 

characterized, including the active pH range, optimal temperatures as well as its 22 

thermostability and substrate specificity. This enzyme displayed maximum activity at 23 

pH 5.0-6.5 (Figure 3A) and temperature of 65-70ºC, with almost 90% of its activity 24 

maintained in the range of 60-75ºC (Figure 3B). In general, two properties should be 25 
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considered in association with high temperature adaptation: the thermophilicity, the 1 

ability of an enzyme to exhibit activity at high temperatures; and the thermostability, the 2 

ability to remain stable /active after storage at high temperature. To determine the 3 

thermostability of the X. dendrorhous invertase, the purified enzyme was pre-incubated 4 

for different periods of time prior to substrate addition at temperatures in the range of 5 

40-85ºC. Only minor inactivation of the enzyme (<10%) was detected after 4 days at 6 

40-50ºC, whereas incubation for 24 hours at 60ºC decreased its activity by 50% and it 7 

was completely inactivated within 10 min at 85ºC (data not shown). Then, the enzyme 8 

was pre-incubated at temperatures in the range of 60-85ºC and for 10-120 min. Under 9 

these conditions, a 50% loss of activity (T50) was produced in the 66-71ºC range (Figure 10 

3C). 11 

Substrate specificity of the enzyme and kinetic properties. The enzyme purified 12 

from X. dendrorhous was able to liberate glucose from fructosyl-β−(2→1)-linked non-13 

reducing carbohydrates such as sucrose [α-D-glucopyranosyl-(1→2)-β-D-14 

fructofuranose], 1-kestose [α-D-glucopyranosyl-(1→2)-β-D-fructofuranosyl-(1→2)-β-15 

D-fructofuranose] or nystose [α-D-glucopyranosyl-(1→2)-β-D-fructofuranosyl-(1→2)-16 

β-D-fructofuranosyl-(1→2)-β-D-fructofuranose], as well as from palatinose [α-D-17 

glucopyranosyl-(1→6)-D-fructofuranose]. However, while a specific activity of about 18 

5200 mU µg
-1

 was quantified for sucrose, only 1200 mU µg
-1

 was measured for 1-19 

kestose, and very weak activity was observed for nystose (220 mU µg
-1

) and palatinose 20 

(90 mU µg
-1

). The enzyme was not active on maltose [α-D-glucopyranosyl-(1→4)-D-21 

glucopyranose], lactose [β-D-galactopyranosyl-(1→4)-D-glucopyranose], or leucrose 22 

[α-D-glucopyranosyl-(1→5)-D-fructofuranose], indicating that it only recognizes 23 

carbohydrates containing fructosyl-β-(2-1) or -(6-1)-linked bonds. This enzyme 24 

displayed Michaelis kinetics towards sucrose and 1-kestose (results not shown) and the 25 
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kinetic parameters obtained are presented in Table 2. The Km value of 4 mM sucrose 1 

was similar to that obtained with the Sw. occidentalis enzyme (4.9 mM; 2), about two-2 

fold that found for the C. utilis enzyme (1-2 mM; 5) and less than that measured for the 3 

invertase from P. anomala (16 mM; 49) or S. cerevisiae (26.1 mM; 45). In addition, the 4 

catalytic efficiency defined by the kcat/Km ratio showed that the X. dendrorhous 5 

fructofuranosidase hydrolyzes sucrose approximately 4.2 times more efficiently than 1-6 

kestose. 7 

Transfructosylating activity. The transfructosylating activity of the X. dendrorhous 8 

enzyme was assayed with sucrose under the conditions indicated in the Materials and 9 

Methods, and the analysis of the reaction products showed that the enzyme possessed 10 

this activity (Figure 4A). The amount of fructose detected was slightly less than that 11 

detected for glucose, indicative of the fructosyltransferase activity of the enzyme at high 12 

sucrose concentrations. A blank reaction in the absence of enzyme was also assessed 13 

and peaks 4 and 5 were not evident (data not shown). 14 

Based on their chromatographic mobility, the compounds corresponding to peak 15 

number 4 and 5 were identified as neokestose (
6
G-FOS series) and 1-kestose (

1
F-FOS 16 

series), respectively. Figure 5 shows the reaction profile using a 410 g l
-1

 (41% w/v) 17 

sucrose solution. The neokestose/1-kestose ratio varied during the reaction, with values 18 

between 2/1 and 3/1. At the point of maximum FOS production (48 h), the reaction 19 

mixture contained 132 g l
-1

 fructose, 179 g l
-1

 glucose, 49 g l
-1

 sucrose, 40 g l
-1

 20 

neokestose, 18 g l
-1

 1-kestose and 8 g l
-1

 tetrasaccharides (mainly nystose). The total 21 

FOS production is shown in Figure 5B. Maximum FOS concentration achieved was 22 

65.9 g l
-1

, which corresponded to 15.8% FOS percentage referred to the total amount of 23 

sugars in the mixture. 24 

ACCEPTED



Molecular characterization of the fructofuranosidase from X. dendrorhous. To 1 

isolate the gene encoding the β-fructofuranosidase from X. dendrorhous, the enzyme 2 

was initially processed for amino acid sequencing as indicated in the Materials and 3 

Methods. The N-terminus of the extracellular mature protein was determined to be 4 

FIAPEGWMNDPMGL, which already included part of the β-fructosidase NDPN motif 5 

and it aligned with part of the amino acid sequences from yeast and fungal invertases in 6 

BLAST searches. A cDNA library of this yeast was constructed and used as the 7 

template for PCR reactions including an oligonucleotide targeted to the N-terminal 8 

amino acid sequence of this protein (for details see Materials and Methods). In this way, 9 

an open reading frame (ORF) of 1788 bp was identified (Xd-INV), corresponding to a 10 

595 amino acid polypeptide. A molecular mass of 64.62 kDa was calculated for the 11 

polypeptide derived from this sequence, with no signal peptide, and this was in 12 

accordance with the apparent molecular mass of the 66 kDa for the purified 13 

unglycosylated enzyme. The analysis of the sequences flanking the 1788 bp ORF 14 

showed that the first in-frame ATG codon was located at position 210 upstream of the 15 

TTC codon that encodes the initial Phe of the mature protein. This suggests the presence 16 

of a putative signal peptide of 70 amino acids that will not be present in the mature 17 

protein. In silico analysis of this putative peptide provided evidence of a potential 18 

secretion signal (6) and a predicted cleavage site between position 17 and 18 (AYA-19 

AEL). In addition, the sequence of the mature protein had a predicted pI of 4.4 and it 20 

contained 17 putative N-linked glycosylation sites (N-X-S/T), as well as another 4 such 21 

sites located between the amino acids 24 and 57 of the presumptive signal peptide. 22 

Comparing the cDNA sequence with that of the genomic DNA identified three introns 23 

of 92, 95 and 117 bp, all located in the first third of the sequence encoding the protein 24 

analysed. 25 
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The deduced protein sequence of Xd-INV was very similar to that of the β-1 

fructofuranosidases from basidiomyceta yeasts and Aspergillus spp. Indeed, it was most 2 

similar to invertases from Uromyces fabae (41% identity over a 295 amino acids 3 

overlap), A. niger 20611 (later reclassified as A. japonicus ATCC 20611; fopA: 33 % 4 

over a 223 amino acids overlap), A. niger (SucA: 33 % over a 211 amino acids overlap) 5 

and A. sydowii (31 % over a 175 amino acids overlap). Lower similarities were 6 

observed for proteins from the yeasts S. cerevisiae or C. utilis, as well as for other 7 

bacteria and plant proteins (Figure 6A). Xd-INV contained most of the elements 8 

characteristic of β-fructofuranosidases and indeed, the six domains that are well 9 

conserved among the microbial β-fructofuranosidases (A-F; 8) were all essentially 10 

present in the X. dendrorhous protein (data not shown). Multiple-sequence alignment of 11 

the glycosyl-hydrolase (GH) families 32, 43, 62, and 68 revealed the presence of three 12 

conserved domains (A, D and E), each containing a key acidic residue that is implicated 13 

in substrate binding and hydrolysis (43), and these residues were also present in the 14 

enzyme isolated from X. dendrorhous (Figure 6B). 15 

To prove the functionality of the Xd-INV gene isolated, we fused the 1788 bp ORF to 16 

the ATG codon and a S. cerevisiae MFα1 spacer region in the pVT103-L expression 17 

vector. The pINV-PVT plasmid generated was used to transform a S. cerevisiae strain 18 

unable to ferment sucrose as a sole carbon source. The growth of transformants (leu+) 19 

carrying either the pVT103-L vector or the pINV-PVT plasmid was no different on a 20 

glucose-based medium (MMG). However, only the pINV-PVT was able to complement 21 

the invertase negative phenotype of the S. cerevisiae strain on a sucrose-based medium 22 

(MMS). Invertase activity was detected in positive transformants, but only weak activity 23 

(10 mU ml
-1

) was quantified from the cellular fraction. Together, theses data provide 24 

direct evidence that Xd-INV gene truly acts as an invertase.  25 
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 1 

DISCUSSION 2 

In contrast to previous studies that indicated the presence of an invertase exclusively 3 

associated to the cell fraction of X. dendrorhous (41), we have purified an extracellular 4 

activity from this yeast that is able to liberate glucose from sucrose. The enzyme was 5 

glycosylated, and it presented a molecular mass of 160 kDa that was derived from a 66 6 

kDa unglycosylated monomer. Its active form probably represents a homooligomeric 7 

protein with an apparent molecular mass above 200 kDa as judged from its mobility in 8 

seminative acrylamide gels. Similarly, invertases described in a number of yeasts are 9 

also dimeric or multimeric enzymes generated from unglycosylated-monomeric 10 

peptides with an average molecular mass of 60-65 kDa, including that of S. cerevisiae, 11 

S. pombe, P. anomala or C. utilis (Table 3). The maximum activity of the enzyme from 12 

X. dendrorhous reached at pH 5.0-6.5, which is also in accordance with the data for 13 

other yeast invertases such as that of P. anomala, and it is only a slightly higher range 14 

than that found for S. cerevisiae or C. utilis (Table 3). However, the thermophilicity 15 

(maximum activity at 65-70 ºC) and thermostability (T50 in the range 66-71ºC) of this 16 

enzyme were above that exhibited by most yeast invertases, the optimal temperatures of 17 

which are generally around 40-50 ºC and that are rather unstable at higher values (Table 18 

3). Nevertheless, an invertase from Rhodotorula sp. that is very stable at temperatures 19 

just below 66 ºC was recently described (20), and another from C. utilis has an optimum 20 

temperature of 70 ºC, but its thermostability remains to be defined (5).  21 

The enzyme purified from X. dendrorhous is a β-fructofuranosidase that can 22 

hydrolyze fructosyl-β(2→1)-linked carbohydrates (sucrose, 1-kestose and nystose) and 23 

palatinose [α-D-Glc-(1→6)-D-Fru]. The enzyme hydrolyzes sucrose very efficiently 24 

and it has transfructosylating activity. In contrast to other microbial β-25 

ACCEPTED



fructofuranosidases that produce mainly 
1
F-FOS and little or no 

6
G-FOS (Table 3, and 1 

19, 52), the main transglycosylation product of the X. dendrorhous enzyme is 2 

neokestose (
6
G-FOS) followed by 1-kestose. The maximum FOS concentration of 65.9 3 

g l
-1

 from a concentration of 410 g l
-1

 sucrose corresponded to 15.8% (w/w) of the total 4 

sugar composition in the mixture. This yield could be improved by increasing the initial 5 

sucrose concentration favouring the transglycosylation activity (42). In this context, 6 

49.4 g l
-1

 neo-FOS (8.2% w/w in the sugar composition) was obtained with intact 7 

immobilized P. citrinum cells and a 600 g l
-1

 sucrose solution (31) and the neo-FOS 8 

production increased to 108.4 g l
-1

 (18% w/w of the total sugar composition) by co-9 

immobilization of P. citrinum cells and their neofructosyltransferase (32). Neokestose is 10 

a bifidogenic substance with prebiotic effects that may surpass those of commercial 11 

FOS (29, 34, 54). In addition, the branched structure of the neo-FOS confers enhanced 12 

chemical stability in comparison to conventional FOS (32), and for this reason the new 13 

enzyme characterized here could be of considerable biotechnological value. 14 

Plants contain different forms of invertases that can be distinguished by their 15 

subcellular localization as well as through their biochemical characteristics. Formation 16 

of neokestose by plant fructosyltransferases (6G-FFT) that catalyze the transfer of a 17 

fructose residue from 1-kestose to the C6 of the glucose moiety of sucrose has been well 18 

studied in Liliaceous species such as onion and asparagus (13, 53, 58). In this context, a 19 

comparative amino acid sequence analysis of theses proteins might help to clarify their 20 

different properties (thermostabilities, specificities, regioselectivities, etc) and to 21 

understand the unusual behaviour of the X. dendrorhous enzyme. 22 

We have isolated and characterized the Xd-INV gene that encodes the invertase from 23 

X. dendrorhous after determining the 14 N terminal amino acids of the purified protein. 24 

This sequence was also found in the deduced amino acid sequence of the cloned gene 25 
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and furthermore, this Xd-INV encoded an invertase when it was expressed in an 1 

invertase-deficient yeast strain. This provides convincing evidence that the gene 2 

analyzed encodes the enzyme characterized from X. dendrorhous. The amino acid 3 

sequence of the protein encoded by Xd-INV revealed close similarity to other β-4 

fructofuranosidases within the GH32 enzyme family, which includes invertases, 5 

inulinases, levanases and fructosyltransferases. Indeed, a structural model of this 6 

enzyme based on the homologous invertase from A. thaliana (55) has been obtained 7 

(Figure 7). These two proteins only share 19% sequence identity but nevertheless, the 8 

enzyme from X. dendrorhous has the five-fold propeller and β-sandwich motifs 9 

characteristic of many family 32 glycoside hydrolases. The complete β-fructosidase 10 

motif, also known as NDPN box (16), was reduced to NDP in this new protein. A 11 

similar change was also found in the enzyme from U. fabae (59), as well as in the 12 

putative enzyme from U. maydis and in other related fungal β-fructofuranosidases. 13 

Similarly, the entire ECP/V box (16) could not be identified in any of these proteins, 14 

including Xd-INV. Nevertheless, all the proteins analysed share a common acidic 15 

residue in these two boxes, which has been previously identified experimentally in S. 16 

cerevisiae invertase (46), A. awamori exoinulinase (37) or T. maritima β-fructosidase 17 

(1). This residue appears to form part of the catalytic machinery responsible for the 18 

cleavage of glycosidic bonds. On the basis of our multiple sequence alignment and our 19 

structural model, we propose Asp80 and Glu303 (Asp10 and Glu233 in the mature 20 

protein) to be the two presumptive catalytic residues in the X. dendrorhous enzyme. The 21 

predicted Xd-INV sequence also contains the conserved RDP motif and we speculate 22 

that as in the A. awamori enzyme (37), Arg220 and Asp221 (Arg150 and Asp151 in the 23 

mature protein) within this motif could also participate in substrate recognition. 24 
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The main industrial FOS producers are currently enzymes from Aspergillus, which 1 

generally provide a mixture of molecules of the inulin-type β (2→1) structure
 1

F-FOS. 2 

Despite the fact that catalytic specificity may be dependent on experimental 3 

conditions, β-fructofuranosidase SucB of A. niger and FopA of A. japonicus 4 

ATCC20611 (previously A. niger ATCC20611) produce 1-kestose and nystose, whereas 5 

that of A. sydowii IAM 2544 produces some high molecular weight polymers (21 and 6 

Table 3). In addition, the fructosyltransferase from A. foetidus, which clusters in a 7 

separate branch of the phylogenetic tree (Figure 5A) to the other fungal proteins, 8 

produces 1-kestose (Table 3). None of these enzymes produces 
6
G-FOS (neokestose), 9 

such as the X. dendrorhous enzyme (Table 3). Furthermore, and as far as we know, no 10 

transferase activity has been reported for the β-fructofuranosidase SucA of A. niger, A. 11 

oryzae, U. fabae, U. maydis, P. anomala, C. utilis and S. pombe (Table 3). Remarkably, 12 

although the enzyme from X. dendrorhous and those of A. niger and A. sydowii cluster 13 

in the same branch of the phylogenetic tree, their enzymatic activities appear to be fairly 14 

different. However, the invertase from S. cerevisiae clusters in a different branch even 15 

though it produces FOS with a levan-type β (2→6) structure, mainly 6-kestose (
6
F-16 

FOS), with neokestose (
6
G-FOS) being a side product of the reaction (11). Penicillium 17 

citrinum cells also produced some neokestose was also from sucrose (19) but 18 

unfortunately, no protein responsible for this biosynthetic reaction has yet been 19 

identified and characterized. 20 

The overall amino acid sequence similarity between the enzyme from X. 21 

dendrorhous and that of the plant fructosyltransferases that produce neokestose or 22 

fructans with a higher degree of polymerization (13, 53, 58) was low (<26% over an 23 

approximate 100 amino acids overlap). Indeed, all of these proteins cluster as a distinct 24 

group in the phylogenetic tree. Based on the sequence comparisons and enzymatic 25 
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properties, fructosyltransferases from plants are thought to evolve from vacuolar 1 

invertases that lack transferase activity. In this context, replacing 33 amino acids that 2 

correspond to the N-terminus of the mature onion vacuolar invertase with the 3 

corresponding region of onion 6G-FFT led to a shift in activity from the hydrolysis of 4 

sucrose towards a transferase reaction (48). In addition, site-directed mutagenesis 5 

studies have revealed that positions relatively far from the N-terminus are involved in 6 

fructosyl transfer reactions of levansucrases (GH68) from Zymomonas mobilis (61) or 7 

Bacillus subtilis (35). In general, the structural motives required for transferase activity 8 

of the β-fructofuranosidases are poorly defined. Further research into these structure-9 

specificity relationships should shed additional light on the determinants responsible for 10 

fructosyltransferase activity within the GH32 enzyme family.  11 
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FIGURE LEGENDS 1 

FIG 1. Extracellular invertase activity. Inocula from X. dendrorhous ATCC MYA-2 

131 were grown (empty squares) in 250 ml flaks containing 50 ml of MMM. The 3 

invertase activity was measured in 0.01 ml of culture filtrates at the times indicated 4 

using sucrose (triangles) as the substrate. Each point represents the average of three 5 

independent measurements with a standard deviation of ± 5%. Similar results were 6 

obtained for two other different cultures (data not shown). 7 

 8 

FIG 2. SDS/PAGE analysis of the purified invertase and PNGase F treatment. (A) 9 

Purification: the concentrated culture filtrate from X. dendrorhous ATCC MYA-131 10 

expressing the invertase activity was subjected to SDS/PAGE before (lane 2) or after 11 

DEAE-Sephacel column chromatography pH 7 (lane 3) and pH 5 (lane 4). Lane 1, 12 

protein standards. (B) Purified invertase digested (5 µg lane +) with 0.2 unit of PNGase 13 

F for 90 min at 37ºC or undigested (10 µg, lane -). (C) Purified invertase activity was 14 

revealed in situ (lane 2) and the S. cerevisiae enzyme was used as a control (lane 3). 15 

Lane 1, protein standards. The positions of the molecular mass markers are indicated (in 16 

kDa) at the left of (A) and (C). 17 

 18 

FIG 3. Temperature, pH dependence and thermostability profiles. The effect of pH 19 

(A) and temperature (B) on the X. dendrorhous invertase activity was evaluated at 42ºC 20 

and at pH 5.5, respectively. (C) The purified invertase was incubated for 10 (circles), 20 21 

(rhombus), 60 (squares) and 120 min (triangles) at temperatures in the range of 60-85ºC 22 

in 50 mM sodium phosphate buffer, pH 5.5 prior to the addition of the substrate. The 23 

remaining activity was determined at 42ºC as described in the Materials and Methods. 24 

Each point represents the mean of four independent measurements with a standard 25 

deviation of ±4%. 26 

 27 

FIG 4. (A) HPLC chromatogram corresponding to the reaction of sucrose with the β-28 

fructofuranosidase from X. dendrorhous. (1) Fructose; (2) Glucose; (3) Sucrose; (4) 29 

Neokestose; (5) 1-kestose; (6-8) Tetrasaccharides. (B) Schematic view of the 30 

transfructosylation reactions. 31 

 32 
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FIG 5. (A) Time-course of neo-FOS and FOS production catalyzed by the β-1 

fructofuranosidase from X. dendrorhous. Experimental conditions: 410 g/l sucrose, 0.5 2 

U ml
-1

, 0.2 M sodium acetate buffer (pH 5.6), 50 °C (B) Formation of total FOS.  3 

 4 

FIG 6. Phylogenetic analysis of the fructofuranosidase from X. dendrorhous and a 5 

comparison of the catalytic residues. A. The radical tree was constructed from the 6 

alignment of the amino acid sequences using the CLUSTALW programme. The 7 

GeneBank accession numbers are indicated. B. Alignment of conserved sequences 8 

including the A, D, and E domains of fructosylhydrolases. The residues underlined 9 

indicate the positions of the acidic residues implicated in substrate binding and 10 

hydrolysis. The sequence identifiers are in accordance with the nomenclature in 11 

SwissProt. 12 

 13 

FIG 7. Molecular model of X. dendrorhous fructofuranosidase. Ribbon 14 

representation of the overall structure showing the catalytic residues: D10 (nucleophile) 15 

and E233 (catalytic acid/base) catalytic residues. The profile-profile derived alignment 16 

of X. dendrorhous fructofuranosidase (INV-Xd) and A. thaliana invertase (2ac1) is 17 

presented in the supplemental data. 18 
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TABLE 1. Primers used 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 

The MFα1 spacer region coding sequence is underlined and the  25 

restriction sites are indicated in bold. The restriction site in INVBamHI  26 

was not included artificially. 27 

Primer Sequence  

INV-Nter  GA(R)GG(N)TGGATGAA(Y)GA(Y)CC(N)ATGGG 

GWMN GCTGGATGAACGACCCTATGGGGTTGT 

RDP GAGCCCAACTTGATCGGTTTTCGAGAT 

FIN GCTGGCTTCCGAGTGCTTGCGTCCGA 

FVK GGGCGAGACGTTCTCGACGACCTT 

GWMN(-) CGCTGGTACAACCCCATAGGGTCGTTC 

INVXhoI GGGAACTCGAGAGAAACACAAACAGATGGACA 

INVHindIII GCGTACGCAAAGCTTCTCGACCTTCCTAATT 

INVBamHI GGCGTGGATGGATCCA 

INVXbaI(MF1α) CCCTATCTAGATGAAGAGAGAAGCTGAAGCTTTC

ATTGCACCTGAAGGCTGGATGAACGACCCTATG 

ACCEPTED



 1 
 2 

TABLE 2. Kinetic analysis of the β-fructofuranosidase  3 
from X. dendrorhous. 4 

 5 
 6 

 7 
 8 
 9 
 10 
 11 
 12 

 13 
Reaction rate measurements were performed in triplicate. Values of kcat were 14 

calculated from the Vmax considering a protein molecular mass of 64.63 kDa. 15 

The kcat/Km standard errors were obtained by fitting the normalized Michaelis-16 

Menten equation as: (((( ))))[[[[ ]]]] [[[[ ]]]](((( ))))KmSSKkv mcat /1// ++++====  17 

 18 

Substrate kcat 

(min-1) 

Km 

(mM) 

kcat/Km 

(min-1 mM-1) 

Sucrose  341 ± 14 4.0 ± 0.5 85.3 ± 6.8 

1-Kestose 90.8 ±±±± 7.3 4.5 ± 0.7 20.2 ± 2.3 
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Table 3. Properties of β-fructofuranosidases from different sources 

Source 

Glycosylated 

monomer 

MW (kDa)a 

Native 

MW (kDa) 

Optimum 

pH 

Optimum 

temperature 

Transglycosylation 

main product 

Ref. 

Aspergillus aculeatus 65 134 5.0-7.0 60°C 1-kestose (15) 

Aspergillus foetidus 90 180 n.r. n.r 1-kestose (47) 

Aspergillus niger (SucB) 75 n.r. 5.0 40°C 1-kestose, nystose (18) 

Aspergillus japonicus ATCC 20611 100 340 5.0 50 1-kestose, nystose (22, 23) 

Candida utilis 150 300 4.4 70 °C n.r. (5) 

Pichia anomala 86 254 4.0-6.5 38 °C n.r. (49) 

Saccharomyces cerevisiae 135 270 3.5-5.5 50ºC 6-kestose, 6β-

fructofuranosylglucose 

(11,14, 36) 

Schizosaccharomyces pombe 205 1070 n.r. n.r.  n.r. (36) 

Schwanniomyces occidentalis 85 85, 175 5.5 45-55 °C 6-kestose (2) 

Uromyces fabae 118 n.r. 4.6 40°C n.r. (59) 

Xanthophyllomyces dendrorhous 160 >200 5.0-6.5 65-70 °C neokestose This work 

a
 Approx. molecular weight obtained from SDS-PAGE. n.r., not reported. 
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