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We have evaluated the possible association of polycystic ovary
syndrome (PCOS) with 15 genomic variants previously de-
scribed to influence insulin resistance, obesity, and/or type 2
diabetes mellitus.

Seventy-two PCOS patients and 42 healthy controls were
genotyped for 15 variants in the genes encoding for paraoxo-
nase (three variants), plasma cell differentiation antigen
glycoprotein, human sorbin and SH3 domain containing 1,
plasminogen activator inhibitor-1, peroxisome proliferator-
activated receptor-�2, protein tyrosine phosphatase 1B (two
variants), adiponectin (two variants), IGF1, IGF2, IGF1 recep-
tor, and IGF2 receptor.

Compared with controls, PCOS patients were more fre-

quently homozygous for the –108T variant in paraoxonase
(36.6% vs. 9.5%; P � 0.002) and homozygous for G alleles of the
ApaI variant in IGF2 (62.9% vs. 38.1%; P � 0.018). Paraoxonase
is a serum antioxidant enzyme and, because –108T alleles re-
sult in decreased paraoxonase expression, this increase in
oxidative stress might result in insulin resistance. G alleles of
the ApaI variant in IGF2 may increase IGF2 expression, and
IGF2 stimulates adrenal and ovarian androgen secretion.

In conclusion, the paraoxonase –108 C3T variant and the
ApaI polymorphism in the IGF2 gene are associated with
PCOS and might contribute to increased oxidative stress, in-
sulin resistance, and hyperandrogenism in this prevalent
disorder. (J Clin Endocrinol Metab 89: 2640–2646, 2004)

THE POLYCYSTIC OVARY syndrome (PCOS) is one of
the most common endocrine disorders in women of

fertile age (1). As defined by endocrine criteria, PCOS is
present in approximately 6.5% of women from Spain (2).
Although hyperandrogenism and chronic anovulation are
the key findings in PCOS patients, insulin resistance (3) and
obesity (4) are frequently found in these patients.

The increase in serum insulin levels resulting from insulin
resistance facilitates androgen secretion from the ovaries and
the adrenals in PCOS patients (3), and obesity worsens the
insulin resistance of these women. In conceptual agreement,
amelioration of insulin resistance by weight loss (4) or by
insulin-lowering drugs (5) improves hyperandrogenism in
PCOS women.

Familial aggregation provides evidence supporting a ge-
netic basis for PCOS (6), but the precise genetic mechanisms
remain unknown despite significant efforts. Of note, hy-
perandrogenism and insulin resistance cosegregate in fam-
ilies of PCOS patients (7, 8), suggesting a common genetic
origin of these disorders.

Considering the frequent association of PCOS with insulin

resistance and obesity, in the present case-control study we
have conducted a systematic evaluation of the possible role
in the pathogenesis of PCOS of 15 genomic variants located
in 11 candidate genes, previously reported to influence the
pathogenesis of insulin resistance, type 2 diabetes mellitus,
and/or obesity. Specifically, we have studied genomic vari-
ants in the following genes: plasma cell differentiation an-
tigen (PC-1) glycoprotein (9), human sorbin and SH3 domain
containing 1 (SORBS1) (10), plasminogen activator inhibi-
tor-1 (PAI-1) (11), peroxisome proliferator-activated recep-
tor-�2 (PPAR-�2) (12, 13), paraoxonase (PON1) (14, 15), pro-
tein tyrosine phosphatase 1B (PTP1B) (16), adiponectin (17,
18), IFG1 (19), IGF2 (20), IGF1 receptor (IGF1R), and IGF2
receptor (IGF2R) (21).

Subjects and Methods
Subjects

Seventy-two PCOS patients [age, 24.6 � 6.9 yr (mean � sd; range,
14–42 yr); body mass index (BMI), 29.9 � 8.6 kg/m2 (range, 16.3–57.5
kg/m2)] and 42 healthy nonhyperandrogenic women [age, 31.1 � 8.0 yr
(range, 16–47 yr); BMI, 28.1 � 7.8 kg/m2 (range, 16.2–44.9 kg/m2)] were
studied. PCOS was defined by oligo-ovulation, clinical and/or biochem-
ical hyperandrogenism, and exclusion of hyperprolactinemia (serum
prolactin �24 ng/ml), nonclassic congenital adrenal hyperplasia
[ACTH-stimulated 17-hydroxyprogesterone levels �10 ng/ml (22)], and
androgen-secreting tumors (23). In these patients, evidence for oligo-
ovulation was provided by chronic oligomenorrhea, by luteal phase
progesterone less than 4 ng/ml, or by basal body temperature charts.

The control group was composed of lean female volunteers and
consecutive patients referred to one of the authors (H.F.E.-M.) for dietary
treatment of obesity. The controls were carefully evaluated to avoid any
selection bias. None of the controls, either lean or obese, had signs or
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symptoms of hyperandrogenism, menstrual dysfunction, or history of
infertility before or after clinical and biochemical evaluation. All the
controls presented with fasting glucose concentrations less than 110
mg/dl, and all had blood pressure less than 140/90 mm Hg.

The patients and controls had not taken hormonal medications, in-
cluding contraceptive pills and antiobesity drugs, for the last 6 months.
All the subjects were Caucasian. The ethics committee of the Hospital
Ramón y Cajal approved the study, and informed consent was obtained
from each patient and control or from the legal representatives in minors.

Protocol

Studies were performed between d 5 and 10 of the menstrual cycle
or during amenorrhea after excluding pregnancy by proper testing.
Hirsutism was quantified by a modified Ferriman-Gallwey score (24).
Between 0800 and 0900 h after a 12-h overnight fast, an indwelling iv line
was placed in a forearm vein, and after 15–30 min, basal blood samples
were obtained for the measurement of total testosterone, dehydroepi-
androsterone sulfate, sex hormone-binding globulin, glucose, and in-
sulin. Samples were immediately centrifuged, and serum was separated
and frozen at 20 C until assayed.

The technical characteristics of the assays used for hormone mea-
surements have been reported elsewhere (2, 25, 26). The free testosterone
concentration was calculated from total testosterone and sex hormone-
binding globulin concentrations, assuming a serum albumin concen-
tration of 43 g/liter and taking a value of 1 � 109 liters/mol for the
association constant of sex hormone-binding globulin for total testos-
terone and a value of 3.6 � 104 liters/mol for that of albumin for total
testosterone (27). Insulin resistance in the fasting state was estimated
from glucose and insulin levels using the fasting insulin resistance index
[glucose (mmol/liter) � insulin (mU/liter)/25 (28)].

DNA extraction and genotype analyses

Genomic DNA from peripheral blood mononuclear cells was ex-
tracted using commercial DNA purification kits (Wizard genomic DNA
purification kit, Promega, Madison, WI, and Nucleon BAC C3, Amer-
sham Pharmacia, Buckinghamshire, UK). After DNA extraction, patients
and controls were genotyped as follows: Genotyping of a dinucleotide
repeat on IGF1 (19) and of a trinucleotide repeat on IGF1R gene (29) were
performed by PCR using fluorescent dye-labeled forward primers, fol-
lowed by use of an ABI310 automated sequencer (Applied Biosystems,
Foster City, CA). Primer sequences and allele sizes were described
previously (19, 29). The PCR fragments were sized with an internal size
standard using the GeneScan analysis software (Applied Biosystems).
The dinucleotide repeat polymorphism in IGF1 resulted in six different
alleles, sized 188, 190, 192, 194, 196, or 198 bp. This method was also used
for genotyping of the ACAA-insertion/deletion polymorphism at the 3�
nontranslated region (3�-UTR) of IGF2R gene, which results in alleles
sized 140 or 144 bp (30).

Several variants were analyzed by PCR restriction fragment length
polymorphism as previously described: ApaI polymorphism in the 3�-
UTR of the IGF2 (31); variant Lys121Gln in exon 4 of PC-1 gene (9);
polymorphism Thr228Ala in exon 7 of SORBS1 (10); variant Pro12Ala in
exon 2 of PPAR-�2 gene (32); variants 981 C3T in exon 8 (33) and 1484

insG (16) in the 3�-UTR of PTP1B; polymorphism –675 4G/5G in the 5�
regulatory region of PAI-1 gene (34); and polymorphisms –108 C3T
(35), Leu55Met, and Gln192Arg (36) in the PON1 gene.

Genotyping of polymorphisms 45 T3G and 276 G3T in the adi-
ponectin gene (17) was performed by PCR restriction fragment length
polymorphism using endonucleases AvaI and BsmI, respectively. Prim-
ers were designed from contig NT005962 (www.ncbi.nlm.nih.gov) for
amplifying a 439-bp fragment (from nucleotide 2,301,053 to nucleotide
2,301,491) that includes both polymorphisms.

Statistical analysis

Results are expressed as means � sd unless otherwise stated. The
Kolmogorov-Smirnov statistic was applied to continuous variables. Log-
arithmic transformation was applied as needed to ensure normal dis-
tribution of the variables. Analysis of covariance was used to compare
patients and controls, allowing correction for the difference in age be-
tween both groups.

To evaluate the association between discontinuous variables we used
the �2 test and Fisher’s exact test as appropriate. A priori power analysis
of the differences in frequencies between PCOS patients and controls
was conducted. Our sample size permitted the detection of effect sizes
for the difference between frequencies (w) of 0.26 for the �2 test with one
degree of freedom, and 0.29 for the �2 test with two degrees of freedom,
used here. By convention, effects sizes for the differences between fre-
quencies are considered very small or trivial when less than 0.10, small
from 0.10–0.30, moderate from 0.30–0.50, and large when greater than
0.50 (37). Consequently, our sample size permitted the detection of small
differences between the differences in PCOS patients and controls. On
the contrary, very small and minor differences between frequencies in
both groups of subjects may not have been detected in our study because
of the relatively small sample size. Therefore, our study does not have
the power to detect associations comparable to those already published
for at least some variants (i.e. PPAR-�2).

Logistic regression was used to analyze the role of the genomic
variants studied here as predictive factors for PCOS in our model. The
backward likelihood-ratio test was used as the method for variable
selection (38). Finally, the influence of the different genotypes on clinical
and biochemical variables related to hyperandrogenism and to insulin
resistance was analyzed by one-way ANOVA followed by the least-
significant differences test for post hoc comparisons. Analyses were per-
formed using SPSS 10 for the Macintosh (SPSS Inc., Chicago, IL) with the
exception of power analysis, which was performed using the G*Power
software (39). P � 0.05 was considered statistically significant.

Results

The comparison of clinical, biochemical, and hormonal
variables between PCOS patients and controls is shown in
Table 1. Compared with controls, PCOS patients presented
with increased hirsutism scores, total and calculated free
testosterone levels, androstenedione, and fasting insulin lev-
els; an increased fasting insulin resistance index; and de-
creased sex hormone-binding globulin concentrations.

TABLE 1. Clinical and biochemical variables in PCOS patients and healthy controls

PCOS (n � 72) Controls (n � 42) P

Hirsutism score 13.2 � 6.6 1.6 � 1.4 �0.001
Total testosterone (ng/dl) 70 � 31 42 � 10 �0.001
Free testosterone (ng/dl) 1.3 � 0.9 0.6 � 0.3 �0.001
SHBG (�g/dl) 314 � 174 545 � 242 �0.001
Dehydroepiandrosterone sulfate (ng/ml) 2686 � 1408 1833 � 897 0.058
Basal androstenedione (ng/ml) 3.9 � 1.4 2.6 � 0.9 �0.001
Fasting glucose (mg/dl) 86 � 9 87 � 10 0.385
Fasting insulin (�U/ml) 16 � 10 11 � 7 �0.010
Fasting insulin resistance index (mmol/mU�liter2) 3.2 � 2.2 2.2 � 1.4 �0.010

Data are means � SD. The mean values were compared by analysis of covariance to correct for the difference in age between patients and
controls. Normality was ensured by logarithmic transformation as needed. To convert to SI units, multiply total testosterone by 0.03467 (result
in nmol/liter), free testosterone by 34.67 (result in pmol/liter), sex hormone-binding globulin by 0.111 (result in nmol/liter), dehydroepiandro-
sterone sulfate by 0.002714 (result in �mol/liter), glucose by 0.0555 (result in mmol/liter), and insulin by 6.945 (result in pmol/liter).
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The distribution of the different genotypes according to
the 15 variants studied here, in PCOS patients compared with
controls, are shown in Table 2. Only the –108 C3T poly-
morphism in PON1 and the ApaI variant in IGF2 were dis-
tributed differently in PCOS patients compared with con-
trols. However, and although the distribution of the
remaining variants was not statistically different between
PCOS patients and controls, it should be noted that the rel-
atively limited sample size of our study precludes ruling out
very small and minor differences in the distribution of these
variants between PCOS patients and control, especially in the
distribution of PPAR-�2 and PAI-1 genotypes which showed
P values close to 0.1.

In agreement with the different distribution of the PON1
and IGF2 genotypes cited above, PCOS patients were more
frequently homozygous for the –108T variant in PON1

(PCOS, 36.6% vs. controls, 9.5%; �2 � 9.9; P � 0.002) and
homozygous for G alleles of the ApaI IGF2 variant (PCOS,
62.9% vs. controls, 38.1%; �2 � 6.5; P � 0.018), compared with
healthy controls. Of note, the association of PCOS with ho-
mozygosity for the –108T variant in PON1 retained statistical
significance even after applying an a priori Bonferroni cor-
rection to the level of significance, which was reset from P �
0.05 to P � 0.0034 considering the 15 variants tested in this
study.

To evaluate the contribution of the genomic variants stud-
ied here to PCOS, a logistic regression model was used. The
dependent variable of the model was coded 1 for PCOS
patients and 0 for healthy controls. All the genomic variables
studied here were introduced as independent variables.

The model only retained homozygosity for the –108T vari-
ant in PON1 (odds ratio � 7.09; 95% CI � 2.08–23.81; P �

TABLE 2. Frequencies of the genotypes according to the 15 variants included in the study in PCOS patients compared with healthy
controls

Gene Genotype Healthy women
(n � 42)

PCOS patients
(n � 72) �2 P value

PON1 �108 TT 0.095 0.366 10.996 0.004
�108 TC 0.619 0.366
�108 CC 0.286 0.268

PON1 Leu55Leu 0.333 0.362 1.370 0.504
Leu55Met 0.452 0.348
Met55Met 0.214 0.290

PON1 Gln192Gln 0.571 0.580 0.946 0.623
Gln192Arg 0.286 0.333
Arg192Arg 0.143 0.087

IGF2 ApaI AA 0.095 0.114 8.320 0.016
ApaI GA 0.524 0.257
ApaI GG 0.381 0.629

IGF2R Homozygous 140-bp allele 0.071 0.072 0.553 0.758
Heterozygous 140/144-bp alleles 0.476 0.406
Homozygous 144-bp allele 0.452 0.522

IGF1a Homozygous 192-bp allele 0.452 0.394 0.368 0.832
Heterozygous 192-bp allele 0.405 0.451
Noncarrier 192-bp allele 0.143 0.155

IGF1R Homozygous 90-bp allele 0.143 0.088 0.935 0.626
Heterozygous 90/93-bp alleles 0.571 0.574
Homozygous 93-bp allele 0.286 0.338

SORBS1 Thr228Thr 0.857 0.871 0.046 1.000
Thr228Ala 0.143 0.129

Adiponectin T45T 0.690 0.667 0.114 0.945
T45G 0.286 0.300
G45G 0.024 0.033

Adiponectin G276G 0.429 0.387 0.610 0.737
G276T 0.476 0.468
T276T 0.095 0.145

PPAR�-2 Pro12Pro 0.786 0.900 4.240 0.120b

Pro12Ala 0.214 0.086
Ala12Ala 0.000 0.014

PTP1B Wild-type/wild-type 0.929 0.898 0.277 0.732
Wild-type/Ins1484G 0.071 0.102

PTP1B C981C 0.833 0.881 0.474 0.565
C981T 0.167 0.119

PC-1 Lys121Lys 0.619 0.714 1.958 0.376
Lys121Gln 0.381 0.271
Gln121Gln 0.000 0.014

PAI-1 �675 4G/4G 0.190 0.254 3.442 0.179b

�675 4G/5G 0.405 0.507
�675 5G/5G 0.405 0.239

Data are frequencies.
a The IGF1 polymorphism was coded depending on the presence or absence of the common 192-bp allele (19).
b Because of the small sample size, these nonsignificant results lack the statistical power to definitely rule out the small differences found

between the frequencies of these genomic variants in PCOS patients and controls.
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0.002) and homozygosity for G alleles of the ApaI variant in
IGF2 (odds ratio � 3.10; 95% CI � 1.25–7.64; P � 0.014) for
the prediction of PCOS (Nagelkerke’s R2 � 0.214).

Finally, we studied the influence of the genomic variants
on clinical and biochemical markers of hyperandrogenism,
BMI, and insulin resistance, including PCOS patients and
healthy controls as a whole. As expected from its association
with PCOS, and compared with carriers of –108C alleles,
subjects homozygous for –108T alleles of the –108 C3T
polymorphism in PON1 presented with increased hirsutism
scores (12.8 � 8.6 vs. 8.1 � 7.1; P � 0.005) and total testos-
terone (73 � 37 vs. 55 � 25 ng/dl; P � 0.003), free testosterone
(1.5 � 1.2 vs. 0.9 � 0.5 ng/dl; P � 0.001), and androstenedione
(4.3 � 1.4 vs. 3.1 � 1.3 ng/ml; P � 0.001) concentrations.

Of the variants not associated with PCOS, only the PON1
Leu55Met, IGF1R, and SORBS1 polymorphisms resulted in
differences in some of the clinical and biochemical variables
studied here.

Compared with carriers of the common 55L allele in
PON1, subjects homozygous for 55M alleles presented with
increased BMI (31.9 � 9.5 vs. 28.3 � 7.7 kg/m2; P � 0.045),
fasting insulin (17 � 9 vs. 13 � 9 �U/ml; P � 0.033), and
glucose concentrations (90 � 10 vs. 85 � 9 mg/dl; P � 0.029)
and increased fasting insulin resistance index (3.5 � 2.1 vs.
2.6 � 1.9; P � 0.022). Subjects homozygous for 90-bp alleles
of IGF1R presented with increased fasting glucose levels
(93 � 8 vs. 86 � 10 mg/dl; P � 0.015), increased fasting
insulin resistance index (3.81 � 1.70 vs. 2.69 � 2.01; P �
0.030), and an almost significant increase in fasting insulin
concentrations (18 � 8 vs. 14 � 9 �U/ml; P � 0.05) compared
with carriers of 93-bp alleles. Also, carriers of Ala228 alleles
of SORBS1 presented with increased BMI compared with
subjects homozygous for 228T alleles (34.5 � 7.9 vs. 28.4 �
8.1 kg/m2; P � 0.008). Finally, no other variant included in
the study influenced any phenotypic trait characteristic of
PCOS, obesity, or insulin resistance (data not shown).

Discussion

Initial studies regarding the genetics of PCOS suggested a
model in which a few genes played a major effect on its
inheritance (40). However, the number of genomic variants
associated with PCOS is growing rapidly, suggesting that
PCOS may result from the interaction of multiple genomic
variants with environmental factors such as obesity and a
sedentary lifestyle.

Certain genomic variants associated with components of
the metabolic syndrome might have provided a survival
advantage during the process of natural selection (41). Hy-
perandrogenism may have also favored survival during evo-
lution, as proposed by Witchel et al. (42) for carriers of 21-
hydroxylase deficiency. Considering the frequent association
of PCOS with components of the metabolic syndrome, such
as insulin resistance (3) and obesity (4), genomic variants
associated with the metabolic syndrome should be consid-
ered candidate genes to explain PCOS inheritance, even more
so when hyperandrogenemia cosegregates with insulin re-
sistance within families of PCOS probands (7, 8), irrespective
of the presence or absence of menstrual irregularity (7).

Of the 15 variants studied here, we have been able to

demonstrate the association of PCOS with the –108 C3T
variant in PON1 and with the ApaI variant in IGF2. More-
over, the association of PCOS with homozygosity for T alleles
of the –108 C3T variant in PON1 persisted even after cor-
recting for multiple testing, further suggesting that this as-
sociation did not result merely from chance.

Regarding the association of homozygosity for –108T al-
leles of PON1 with PCOS, our present results are in concep-
tual agreement with previous reports, considering that PCOS
is associated with insulin resistance (3), and homozygosity
for –108T alleles is more frequent in nondiabetic subjects
showing abnormal fasting glucose concentrations, and there-
fore suspected to have insulin resistance, compared with
subjects with normal serum glucose concentrations (15).

The PON1 gene is expressed mainly in the liver and en-
codes for serum paraoxonase, which is an antioxidant high-
density lipoprotein-associated enzyme. Liver PON1 mRNA
expression is influenced by genetic and environmental fac-
tors, and both androgens and proinflammatory mediators
decrease liver PON1 expression (43). Interestingly, both an-
drogen excess and proinflammatory genotypes contribute to
the pathogenesis of PCOS (44–46). The –108 C3T polymor-
phism is responsible of approximately 23% of PON1 expres-
sion levels in some cell systems, in which –108TT constructs
showed reduced PON1 expression compared with –108CC
constructs (35). Therefore, we speculate that homozygosity
for –108T alleles, hyperandrogenism, and proinflammatory
genotypes might contribute to reduced PON1 expression,
resulting in a higher oxidative stress in these women.

Because oxidative stress may impair insulin action (47),
reduced serum paraoxonase activity may contribute to in-
sulin resistance. This hypothesis is supported by the finding
of reduced serum paraoxonase activity in insulin-resistant
disorders such as type 2 diabetes mellitus (48, 49) and car-
diovascular atherosclerotic disease (50, 51). If confirmed in
future studies, the association of homozygosity for –108T
alleles of PON1 with PCOS might contribute to explain the
insulin resistance and the increased risk for atherosclerosis
associated with this syndrome (52).

In our series, the Leu55Met and Gln192Arg polymor-
phisms in PON1 were not associated with PCOS, but subjects
homozygous for Met55 alleles presented with a higher BMI
and increased indexes of insulin resistance, as previously
suggested by others (14, 53).

G alleles of the ApaI polymorphism in the IGF2 gene in-
crease IGF2 mRNA in leukocytes compared with A alleles
(54) and possibly result in increased liver IGF2 expression
and secretion (55). IGF2 stimulates adrenal (56, 57) and ovar-
ian (58) androgen secretion and, together with IGF1 and IGF
binding proteins, has been suggested to play a role in the
pathogenesis of PCOS (56, 58, 59). Therefore, increased IGF2
levels resulting from G alleles of the ApaI polymorphism in
the IGF2 gene might contribute to hyperandrogenism and
may explain the association with PCOS.

Moreover, our findings regarding the ApaI polymorphism
in the IGF2 gene are in conceptual agreement with previous
reports in different populations. In a large series of middle-
aged males, BMI was increased in subjects homozygous for
the common G allele compared with those homozygous for
A alleles of the ApaI polymorphism in the IGF2 gene (55), and
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obesity is a common finding in PCOS women (4). However,
we have not found a direct influence of the ApaI polymor-
phism in the IGF2 gene on BMI, but we included only women
in our study.

Other genomic variants, which were not associated with
PCOS, influenced phenotypic traits associated with obesity
and insulin resistance. In addition to the effects of the
Leu55Met polymorphism in PON1 on BMI and indexes of
insulin resistance described above, carriers of Ala228 alleles
of SORBS1 presented with increased BMI when compared
with subjects homozygous for Thr228 alleles, in conceptual
agreement with a large study conducted in Europe (60). In
the latter, the Thr228Ala polymorphism in SORBS1 was
equally distributed among obese and lean subjects, but sub-
jects homozygous for Ala228 alleles were found only in obese
patients (60).

In our series, women homozygous for 90-bp alleles of
IGF1R had increased indexes of insulin resistance compared
with carriers of 93-bp alleles. In conceptual agreement, the
IGF1R gene has been proposed as a candidate for insulin
resistance-associated traits, although conflicting reports have
been observed depending on the population studied (61).

On the contrary, we have not been able to confirm previous
reports regarding the influence of other genomic variants on
phenotypic traits associated with the metabolic syndrome.
However, because of the relatively small sample size of our
study, these negative findings lack the statistical power
needed to rule out a minor role for these genomic variants on
PCOS or on other insulin resistance-associated traits. There-
fore, our present data must not be considered as definite
evidence against the involvement of these variants in PCOS
and in insulin resistance. This consideration is especially
important for variants such as the Pro12Ala polymorphism
in the PPAR-�2 gene and the –675 4G/5G polymorphism in
PAI-1, which showed small but considerable differences in
the frequencies in PCOS patients compared with controls
between 0.10 and 0.17, with P values that were close to 0.1.

The differences in the distribution of these variants might
have reached statistical significance if analyzed in larger
series, explaining the conflicting results with previous stud-
ies by others; Ala12 alleles of the PPAR-�2 gene have been
shown to favor weight gain in obese adults (62) and in obese
hyperandrogenic girls and adolescents (32) and also to pre-
serve insulin sensitivity in Caucasian men (12) and in Cau-
casian women presenting with PCOS (13). However, the later
study did not include healthy women (13), and therefore no
differences between PCOS patients and controls in the allele
frequencies of the Pro12Ala variant in the PPAR-�2 gene has
been reported to date. Also, an increased frequency of 4G
alleles of the –675 4G/5G polymorphism in PAI-1 has been
reported in PCOS patients (63).

On the contrary, the differences between the frequencies
in PCOS patients and controls of the other variants not as-
sociated with PCOS in our study were less than 0.10. These
differences should be considered very small (37) had the
differences between frequencies reached statistical signifi-
cance if a larger sample size was used, and therefore unlikely
to play an important role for the pathogenesis of PCOS.

The IGF2R polymorphism was not associated with PCOS
in our series, despite the evidence for linkage found in non-

diabetic Mexican-Americans between insulin-resistant phe-
notypes and the D6S264 marker close to the IGF2R gene (21).
We did not find any association of polymorphisms in the
adiponectin gene with PCOS, in contrast with the increased
risk for type 2 diabetes in subjects homozygous for 45G in the
Japanese (17). And also, none of the polymorphisms in the
PTP1B gene was associated with PCOS or influenced insulin
resistance indexes, in contrast to the higher values of insulin
resistance measured by the homeostasis model assessment
observed in men carrying the 1484ins allele (16), or the re-
duction of the risk for type 2 diabetes in the Oji-Cree subjects
carrying 981T alleles (33).

We have also not found any association of the Lys121Gln
variant in PC-1 with PCOS. PC-1 inhibits tyrosine kinase
activity of the insulin receptor, and increases in the PC-1
content in fibroblasts from normal glucose-tolerant subjects
are related to decreased insulin action in vivo and in vitro (64).
Subsequently, Gln121 alleles of PC-1 have been proposed to
increase insulin resistance (9, 65), although conflicting results
have been found in different populations (66). Finally, the
IGF-1 variant was not associated with PCOS or insulin
resistance-associated traits in our study, even considering
that noncarriers of 192-bp alleles have an increased risk for
type 2 diabetes mellitus, and myocardial infarction, in the
Dutch population (19).

In summary, our results suggest that genomic variants in
the genes encoding PON1 and IGF2 are associated with
PCOS. Also, some of these variants (and others in the
SORBS1 and IGF1R genes) influence clinical and biochemical
variables related to hyperandrogenism, obesity, and insulin
resistance.

Considering that to date a large number of genomic vari-
ants has been found to be associated with PCOS, and that
many of these associations have not been replicated when
studied in different populations, the emerging picture is that
of a multigenic etiology for this disorder, in which nonge-
netic factors also have a strong influence on its development.

The pathogenesis of PCOS may be influenced by complex
interactions between predisposing and protective genomic
variants with environmental factors, such as diet and exer-
cise. And because the latter are subject of considerable ethnic,
geographic, and even familial variability, the genomic vari-
ants resulting in PCOS may also be different depending on
these factors. Additional studies in large populations of
PCOS patients, in which these environmental factors are
clearly defined, will undoubtedly help in the identification of
the genes involved in the pathogenesis of this prevalent
disorder.
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