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The zebrafish genome encodes the largest
vertebrate repertoire of functional aquaporins
with dual paralogy and substrate specificities
similar to mammals
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Abstract

Background: Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes
across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals,
thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity,
structure and substrate specificity of these membrane channel proteins are largely unknown.

Results: The screening and isolation of transcripts from the zebrafish (Danio rerio) genome revealed eighteen
sequences structurally related to the four subfamilies of tetrapod aquaporins, i.e., aquaporins (AQPO, -1 and -4),
water and glycerol transporters or aquaglyceroporins (Glps; AQP3 and AQP7-10), a water and urea transporter
(AQP8), and two unorthodox aquaporins (AQP11 and -12). Phylogenetic analyses of nucleotide and deduced amino
acid sequences demonstrated dual paralogy between teleost and human aquaporins. Three of the duplicated
zebrafish isoforms have unlinked loci, two have linked loci, while DrAgp8 was found in triplicate across two
chromosomes. Genomic sequencing, structural analysis, and maximum likelihood reconstruction, further revealed
the presence of a putative pseudogene that displays hybrid exons similar to tetrapod AQP5 and -1. Ectopic
expression of the cloned transcripts in Xenopus laevis oocytes demonstrated that zebrafish aquaporins and Glps
transport water or water, glycerol and urea, respectively, whereas DrAgp11b and -12 were not functional in
oocytes. Contrary to humans and some rodents, intrachromosomal duplicates of zebrafish AQP8 were water and
urea permeable, while the genomic duplicate only transported water. All aquaporin transcripts were expressed in
adult tissues and found to have divergent expression patterns. In some tissues, however, redundant expression of
transcripts encoding two duplicated paralogs seems to occur.

Conclusion: The zebrafish genome encodes the largest repertoire of functional vertebrate aquaporins with dual
paralogy to human isoforms. Our data reveal an early and specific diversification of these integral membrane
proteins at the root of the crown-clade of Teleostei. Despite the increase in gene copy number, zebrafish
aquaporins mostly retain the substrate specificity characteristic of the tetrapod counterparts. Based upon the
integration of phylogenetic, genomic and functional data we propose a new classification for the piscine
aquaporin superfamily.
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Background

Aquaporins constitute a superfamily of major intrinsic
proteins (MIPs) that facilitate passive, yet remarkably
efficient permeation of water molecules across cellular
membranes [1,2]. Some aquaporins can also permeate
non-ionic compounds, such as glycerol and urea, and
are termed glycerol facilitators (Glps) or aquaglyceropor-
ins. The first water channel was isolated from human
red blood cell membranes as a novel integral membrane
protein of 28 kDa (CHIP28). This channel is now
termed aquaporin-1 (AQP1) [3]. Subsequently, thirteen
aquaporin paralogs (AQP0-12) have been identified in
mammals [1], and up to 38 MIP-related sequences,
divided into four types, plasma membrane intrinsic pro-
teins (PIPs), tonoplast intrinsic proteins (TIPs), small
and basic intrinsic proteins (SIPs) and nodulin 26-like
intrinsic proteins (NIPs), have been documented in
plants [4-6]. Each form is composed of a single polypep-
tide chain varying in length from ~270-350 amino acids
that spans the lipid bilayer six times with three extracel-
lular loops (loop A, C and E) and two intracellular loops
(loop B and D), which have their N- and C-termini
located intracellularly. The loops B and E fold and
extend intramembranous hemi-helices that bear the
highly conserved amino acid motifs Asn-Pro-Ala (NPA),
which are involved in the formation of the water pore.
When translocated to the cell membrane, most aquapor-
ins form homotetramers [7-9], in which one or two
monomers may be glycosylated, but each monomer
functions as an independent water channel [10,11].

The maintenance of body fluid homeostasis is essen-
tial for the survival of any living organism. Aquatic ani-
mals also face the problem of direct interaction with
their aqueous environment. Depending upon the life
history of the species, the osmolarity of the saline or
freshwater medium differs manifold from their internal
body fluids, and therefore an important physiological
role of aquaporins would be expected. Accordingly,
some studies in teleosts have reported differential
mRNA and protein expression of specific aquaporin iso-
forms in osmoregulatory organs in response to changes
in environmental salinity [12-16]. Moreover, recent stu-
dies of neofunctionalized vitellogenins and the essential
role of an AQP1-related channel have revealed the evo-
lutionary importance of oocyte hydration in marine tele-
osts as a pre-adaptation to spawning in the hyper-
osmotic oceanic environment [17-24]. To date, however,
the genomic repertoire of aquaporin isoforms present in
teleosts, as well as the permeability properties of the
encoded proteins, remains largely unknown.

During the last decades, the zebrafish (Danio rerio)
has become a powerful model organism in comparative
genomics and developmental biology. This species is
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amenable for genetic analysis in which large-scale muta-
genesis screens have been successfully performed, and a
large amount of genomic and expressed sequence tags
(ESTs) data, BAC libraries and fine genetic linkage maps
have been accumulated [25]. Work with zebrafish has
also extended its application to a wide variety of experi-
mental studies relevant to human disease, such as cardi-
ovascular disorders, angiogenesis and neurological and
renal diseases [26,27]. Aquaporins have been shown to
play important roles in some of these alterations [28],
and therefore the diversity and functional properties of
zebrafish aquaporins need to be determined prior to
using this species as a suitable experimental model in
biomedical research and comparative physiology.

With the sequence of the zebrafish genome com-
pleted, the complexity of the teleost aquaporin gene
family can be assessed. In the present study, we
screened the zebrafish genome for aquaporin-related
sequences and determined their phylogenetic relation-
ships, permeability properties, and the pattern of mRNA
expression in adult tissues. We found a high number of
functional aquaporins in this species, and based upon
the data obtained we propose a new classification of the
piscine aquaporin superfamily.

Results and Discussion
The zebrafish aquaporin gene family
The screening of the zebrafish genome revealed the pre-
sence of 18 putative members of the aquaporin super-
family, most of them existing as duplicate or triplicate
genes, ranging in size from 2.2 to 18 kb that encode
proteins between 255-320 amino acids long (Figure 1).
We successfully cloned and characterized 17 of these
transcripts. The nomenclature of these genes was cho-
sen based on their phylogenetic position and chromoso-
mal locus, their identity to human orthologs, as well as
on their structural and functional features (see below),
in accordance with the recommended guidelines for
Human Genome Nomenclature [29] and the Zebrafish
Information Network [30]. Thus, zebrafish aquaporin-4,
-7, -11b and -12 (draqp4, -7, -11b and -12, respectively)
are present as single copy genes, whereas aquaporin-0,
-1, -3, -9 and -10 genes (draqpOa, -0b, -1a, -1b, -3a, -3D,
-9a, -9b, -10a and -10b, respectively) are duplicates. For
the dragp8 gene, three copies were found (dragp8aa,
-8ab and -8b). Unlike the other aquaporin isoforms, we
found that Aqp8 has both tandem and genomic dupli-
cates encoded within the genomes of zebrafish and
stickleback (Gasterosteus aculeatus) (see below for an
explanation of the nomenclature).

The deduced amino acid sequences of zebrafish aqua-
porins contain six predicted transmembrane helices and
two NPA boxes that are the hallmark of the MIP
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Figure 1 Amino acid sequence alignment of zebrafish aquaporins. (A) The consensus sequence logo is scaled according to amino acid
conservation. Highest residue similarity (blue: 100%, green: 80-100% or sand; 60-80%) is found within the a-helical regions (H1-8). The
transmembrane domains (TMD1-6) are annotated for DrAgpOa based upon a molecular sequence wrap to the crystallographically resolved
structure of Bos taurus AQPO (B). The structure wrap consists of the complete peptides (263 amino acids) with a gapless identity/similarity of
70.3/85.9%. The render shows identical residues in red, non-identical in blue. The hemi-helices H3 and H7 (yellow) on loops B and E, respectively,
fold such that the opposing NPA motifs (pink in the alignment) interact to present the arginine constriction (DrAqpOa R'®” green ball and stick,
and arrow in alignment). The C-terminal domain is shown with a grey a-helix.
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superfamily [31]. The only exception was DrAqp8b in
which only five transmembrane domains could be deter-
mined in silico, despite the equality in sequence length.
Analysis of the primary structures of the zebrafish aqua-
porins indicated that they could be classified into two
paralogous subgroups and two more divergent sub-
groups (Figure 2). The first subgroup includes DrAqpOa,
-0b, -1a, -1b and -4, which share 35-85% amino acid
identity (Additional file 1) and clustered with the Escher-
ichia coli aquaporin-Z (EcAqpZ), thus suggesting that
these aquaporins belong to the water-specific aquaporin
subfamily [31]. The identity of the duplicated isoforms
present in this group varied, since DrAqp0Oa and -0Ob
were 85% identical, whereas DrAqpla and -1b share
only 61% identity (Additional file 1). The second group
includes DrAqp3a, -3b, -7, -9a, -9b, -10a and -10b,
which were 40-73% identical and clustered together
with the E. coli glycerol facilitator (EcGIpF), suggesting
that they belong to the aquaglyceroporin (Glp) subfam-
ily. In this group, the identity between DrAqp3a and
-3b, DrAqp9a and -9b, and DrAqpl0a and -10b, was 73,
61 and 45%, respectively. The percent identity between
the aquaporin and Glp groups was as low as 19-28%.
The most divergent paralogs were those including the
AQP8-like (DrAqp8aa, -8ab and -8b), and DrAqpl1b
and -12 sequences, which share 23-28% and 13-25%
identity, and 20-14% and 4-22% identity with aquaporins
and Glps, respectively. DrAqp8aa, -8ab and -8b share
43-60% identity between them, and DrAqpllb and -12
were 27% identical. These observations indicate that
zebrafish harbours the largest complement of aquaporin
genes of any vertebrate studied to date, which can be
classified into four tetrapod-like subfamilies [2]: classical
water-selective aquaporins (AQP0, AQPI and AQP4), a
water and urea transporter (AQPS8), classical Glps
(AQP3 and AQP7-10), and two unorthodox aquaporins
(AQPI11b and -12).

Genomic organization

The division of the zebrafish aquaporin superfamily into
four subfamilies inferred from comparison of the
deduced protein sequences is mirrored in the intron-
exon structures (Figure 3). Most classical aquaporins
include four exons, dragp4 being an exception with five
exons, whereas the Glp genes are characterized by six
exons, with the exception of dragp3b, which is encoded
by five exons. The dragp8aa, draqp8ab and draqp8b
transcripts are invariably coded by five exons, whereas
the unorthodox dragpl2 showed four exons as the
aquaporin subfamily. In dragp11b, three exons were
observed although in this case the intron-exon bound-
aries were not well defined and therefore the number of
exons could not be determined with certainty. In the
majority of zebrafish aquaporin genes the intron lengths
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were <5 kb, although the last intron of dragp4 was of
9.7 kb, whereas the second intron of draqp9b and dragq-
p8aa, and the first intron of dragp12, were of 8.2, 6.3
and 6.6 kb in length. In the case of dragp9a, the quality
of the genomic sequences available did not allow assess-
ment of intron length.

Examination of the zebrafish aquaporin gene struc-
tures in relation to orthologs in other metazoan organ-
isms revealed a generally well-conserved exon-intron
organization (Additional file 2). Classical aquaporins
(agp0, -1, -2, -5 and -6) are encoded by 4 exons, with
Xenopus tropicalis aqpl as an apparent exception with 2
exons. Metazoan agp4 is encoded by 5 exons, although
Drosophila melanogaster aqp4 shows some variability.
aqp8 is a polymorphic gene encoded by 6 exons in tet-
rapods, 5 exons in teleosts, 2-3 exons in Diptera and 6-7
exons in Nematoda. Classical Glps are highly conserved
with 5-6 exons in metazoa, while the vertebrate-specific
unorthodox agpll has 3 exons, but the more ancestral
unorthodox agpl2 retains 3-4 exons in vertebrates, but
4-7 exons in invertebrates.

In silico genomic screening using ensembl v56 [32]
also revealed the presence of an 18th gene in zebrafish
(ENSDARGO00000038202) with an anomalous structure
showing 8 exons (Figure 3). The inferred exon structure
of this gene is different to that of other metazoan aqua-
porins and the gene appears to be a hybrid with exons
1-3 more related to AQP2 and -5, but exons 4-8 show-
ing higher nucleotide sequence identity to AQP1 and -6
(Additional file 3). Using BLAST we noted that it was
related to tetrapod AQPS. To validate the existence of
this gene, we isolated genomic DNA based upon the
predicted ensembl sequence. Using PCR and subsequent
sequencing, we found that exons 1-3 are 100% identical
to the predicted sequence, and the gene was therefore

DrAgpla DrAqp4
Aquaporins

DrAqpOb

DrAgpOa

DrAqplb
AqpZ

DrAqpl2
Unorthodox
Aquaporins
iy DrAqpiib
Aquaglyceroporins
DrAgp9a
DrAqp9b

DrAqpl0a
DrAqp7

DrAqpl10b
Figure 2 Phylogenetic relationships among zebrafish
aquaporins. The unrooted phylogenetic tree was constructed using
the NJ method. The Escherichia coli homologs (EcAqpZ and EcGIpF)
cluster as aquaporins and aquaglyceroporins, respectively. The bar
indicates the mean distance of 0.2 changes per amino acid residue.
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Figure 3 Genomic organization of zebrafish aquaporins. Schematic representation of zebrafish aquaporin gene structures and chromosomal
loci. The boxes indicate exons with coding regions only. Distances are in kb or in Mb when indicated. In the case of dragp9a, the quality of the
genomic sequence available was insufficient to establish the size of the introns.
A\

named draqp5/1 in accordance with its hybrid status.
Maximum likelihood analysis of the codons of draqp5/1
confirmed that exons 1-3 encode a putative protein that
is structurally related to tetrapod AQP5 and -2, while
exons 4-8 encode a putative protein that is more related
to AQP1 (Additional file 4). Bayesian analysis of the
codons placed exon 1-3 basal to AQPO, but the protein
product as a polytomy between AQP5 and AQP2 (data
not shown). It therefore appears that despite retaining a
large aquaporin repertoire of which ~40% are duplicate

isoforms specific to the teleost crown-clade, the zebra-
fish lacks functional orthologs of tetrapod AQP2, -5 or
-6 genes.

Phylogenetic analysis of zebrafish aquaporins

To validate the orthology of the zebrafish aquaporins,
we investigated the molecular phylogeny of 233 piscine
nucleotide and amino acid sequences in relation to 14
human orthologs (Figures 4 and 5). These analyses cor-
roborated the structural homologies outlined above and
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consistently demonstrated a dual- or in the case of
AqpS8 a tri-paralogous clustering of piscine isoforms as
sister branches to human orthologs. Two mutually
exclusive clades are observed within the superfamily, a
vertebrate aquaporin clade containing nine subfamilies
(Agp8, -12, 11, -4, -1, -0, 2, -5 and -6) stemming from
EcAqpZ (Figure 4), and a Glp clade containing four ver-
tebrate subfamilies (Aqp9, -3, -7 and -10) that stem
from EcGIpF (Figure 5). The elasmobranch aquaporins
are represented by single-copy variants, of which all but
Aqp7, -11, -8, -2, -5 and -6 were found. Each clustered
basal to Teleostei or together with the human tran-
scripts indicating that the encoded proteins have differ-
entially evolved functions specific to the actinopterygian
or sarcopterygian lineages, respectively. The internal dis-
tribution of teleost isoforms within each subfamily was
consistent with a whole genome duplication (WGD)
event at the root of the crown-clade [20,33-36]. The
topology within each teleost subcluster was fully congru-
ent with phylogenetic rank and encompasses members
of the Elopomorpha (e.g. eels), Ostariophysi (e.g. zebra-
fish and carps), Protacanthopterygii (e.g. salmonids) and
Acanthomorpha (e.g Gadiformes and Perciformes). We
therefore annotated each of the teleost paralogs with the
postscript “a” or “b” to reflect the genomic duplicate.

By including genomic variants together with tran-
scripts available from GenBank [37], and by investigat-
ing the syntenic relationships of each ortholog (Finn
and Cerda, unpublished data), we were able to validate
whether a duplicated gene arose through WGD or
resulted from intrachromosomal duplication. Despite
the observation that dragpla and -1b, draqpOa and -0b,
and draqp?7 and -3b are linked (Figure 3), we only find
strong evidence of one tandem duplicate within the
crown-clade: agp8aa (ENSDARG00000045141) and
aqp8ab (ENSDARGO00000071592) in zebrafish, and
aqp8aa (ENSGACGO00000009127) and agp8ab
(ENSGACG00000014505) in stickleback. One lineage-
specific tandem duplicate of agplOa (aqplOaa:
ENSTNIG00000018340 and agplOab: ENSTNI
G00000018339) was also noted in green-spotted puffer-
fish (Tetraodon mnigroviridis). Both aqp8aa, -8ab and
agplOaa, -10ab genes are immediately juxtaposed in the
genomes of zebrafish (linkage group [LG] 12) and
green-spotted pufferfish (LG8), while the WGD products
aqp8b and aqpl0b are each located on separate chro-
mosomes, LG3 and LG3, respectively. Unfortunately, it
was not possible to characterize the complete agp8 loci
in other teleosts due to the current location of stickle-
back agp8ab on scaffold 211, and the absence of
aqp8aa, -8ab in green-sptotted pufferfish, and agp8aa
and -8b in medaka (Oryzias latipes). For medaka, only
the aqp8ab gene was found on LG19. However, by com-
paring our data with the earlier study of Kasahara and
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colleagues [38], we were able to trace the ancestral chro-
mosome that gave rise to agp8 genes in humans and
teleosts. Despite multiple rearrangement, fusion and fis-
sion events, the major portions of all descendent LGs
that harbour vertebrate agp8 genes can be traced to
protochromsome e. For humans this entails LG16, while
for Teleostei, the descendent chromosomes are LG2
(predicted locus of agp8aa, -8ab) and LG3 (agp8b) for
green-spotted pufferfish, LG19 (agp8ab) and LG1 or
LG8 (predicted locus of agp8b) for medaka. The chro-
mosomal loci of agp8 genes in stickleback and zebrafish
further support this ancient origin. Moreover, the early
divergence of teleost agp8aa, -8ab and -8b is clearly evi-
dent in the trichotomous clustering of these transcripts
among diverse taxa (Figure 4), and further confirmed
through functional and expression analyses in zebrafish
(see below).

Similar ancestral reconstructions can be made for the
other linked aquaporins, wherein agpl genes descend
from protochromosome m, agp0 originated on prototo-
chromosome 1, and agp? and -3 derive from protochro-
mosomes | and i, respectively. In this latter instance,
aqp7 and -3 have remained linked in all vertebrata,
except the opossum (Monodelphis domestica), and thus
likely became colocalized prior to the separation of Sar-
copterygii from Actinopterygii. The evidence supporting
this latter proposal lies in the observation that zebrafish
has maintained the linkage between agp3b and -7 on
LG21, while agp3a is located on LG5. Zebrafish LG5 is
the orthologon of stickleback LGXIII and medaka LG9,
both of which harbour the agp3a orthologs. Hence the
single agp7 gene found in teleost genomes is the surviv-
ing agp7b product of WGD. The close linkage of teleost
agpla and -1b genes, suggests that they could have
arisen through tandem duplication. However, the fact
that all teleost genomes, except medaka, retain both iso-
forms, and that each shows dichotomous clustering in
the phylogenetic trees (Figure 4), their origin must be
close to, or coincident with the WGD event at the root
of the crown-clade. Hence, although we cannot exclude
a tandem duplication scenario suggested earlier [22], a
parsimonious explanation for the appearance or agpla
and -1b would seem to be WGD with subsequent colo-
calization, rather than local duplication and loss of
WGD paralogs. The divergence of these isoforms is
clearly evident in the phylogenetic trees, where agplb
transcripts display significantly longer branch lengths
compared to the agpla paralogs. This latter feature is
consistent with our earlier findings wherein Aqplb is a
rapidly evolving channel protein with novel functions
specifically associated with oocyte hydration [17-22] and
osmoregulatory processes [16].

In a separate analysis of metazoan aquaporins (Finn
and Cerda, unpublished data) we confirmed that agp7,
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-12 and -4 have remained single-copy genes in non-
human vertebrates while the present data show that
Agp11 duplicated at the root of the teleost crown-clade.
With the exception of torafugu (Takifugu rubripes),
which retains both agplla and -11b, Teleostei, includ-
ing zebrafish, appear to have differentially retained alter-
nate isoforms. This is clearly shown in the phylogenetic
tree (Figure 4), with closely related Protacanthopterygii
and Acanthomorpha harbouring opposite isoforms.
Based upon the more ancestral ostariophysan position
of zebrafish and the fathead minnow (Pimephales pro-
melas), we arbitrarily assigned the zebrafish cluster as
the “b” variant.

Although zebrafish retains two isoforms of agp3, these
genes proved the most difficult class of Glp to resolve
(Figure 5). Here we show the codon topology, which
also includes variants obtained from EST databases. By
specifically increasing the taxon sampling of these Glps,
we were able to resolve a branch topology that matched
the chromosomal loci of the teleost genes. As a result,
the genomic duplicates are annotated as “a” or “b”
accordingly. However, the protein trees did not always
corroborate the codon topology and therefore these
Glps will require further validation with the advent of
new sequence data. The placement of dragp5/1 as an
outgroup between agp0 and -1 was consistent with its
hybrid status, while the AQP2, -5 and -6 genes are spe-
cific to the sarcopterygian lineage.

Molecular features of zebrafish aquaporins and functional
implications

The characteristic residues in a water channel that dis-
tinguish a true water facilitator from a Glp have pre-
viously been analyzed by comparing sequences of
aquaporins with known functions [39]. That comparison
resulted in the identification of five invariant or nearly
invariant residues (P1 to P5) in aquaporins and Glps on
the basis of 153 sequences ranging from bacteria to
humans (Figure 6A,B,D,E). However, structural and
functional studies of AQP1 and GIpF suggest the pre-
sence of two constriction sites in the water pore, in
addition to the P1-P5 residues, that underlie their high
selectivity and efficiency with regard to water or glycerol
transport [9,40-43] (Figure 1).

The first constriction is formed by the opposing NPA
motifs located at each positive end of a-helices 3 and 7
(on loops B and E; Figure 6A,B,D,E), such that the Asn
creates an electrostatic barrier in this region [44].
Together with desolvation, these regions are essential
for water transport specificity while excluding proton
transport [44]. Accordingly, Asn is the least variable in
aquaporin sequences whereas Pro and Ala are more
exchangeable [2,45]. The primary structure of zebrafish
aquaporins and Glps confirm these observations since
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Asn was conserved in both NPA boxes of all paralogs,
whereas Pro is substituted by Ala in the first box of
DrAqp7 as observed in human and rat AQP7 (Figure
6F). The third residue of the NPA boxes shows more
variation as previously found in over 450 aquaporin-
encoding genes [2]. In zebrafish, Ala is substituted by
Pro (first box of DrAqp8ab), Ser (first box in DrAqp8b),
Val (second box in DrAqp8b), or Thr (first and second
box in DrAqp3b, and DrAqp7 and -11b, respectively).

The second significant energy-barrier in aquaporins is
located close to the extracellular exit of the channel
forming the narrowest region of the pore and is referred
to as the aromatic/arginine (ar/R) constriction [46,47].
This region in water-selective aquaporins is formed by
four amino acids (Phe®®, His'®°, Cys'®® and Arg'® in
human AQPI; Figure 6B,C,EF) that create the hydro-
phobic and size filter [48]. The site sensitive to mercur-
ial inhibition (Cys'®® in AQP1) [11] is less conserved. In
contrast, in GIpF, and essentially in all other Glps, the
ar/R region is wider and more hydrophobic due to the
lack of His and substitution of the Cys by a second aro-
matic residue, which allows the passage of polyols and
urea, and possibly of other small solutes such as NHj,
CO, or O, [48].

The present data show that zebrafish aquaporins pre-
viously inferred to be water-selective or Glps after
amino acid sequence analysis retain the respective three
amino acid consensus in the ar/R constriction, and
show the P1-P5 residues conserved in each sub-family
(Figure 6 C,F). However, the Cys residue just prior to
the second NPA box, which is potentially mercury-sen-
sitive, is maintained in DrAqpla and -1b. Similarly,
DrAqp8aa, -8ab, -8b, -9a, -9b and -10a also show a Cys
upstream of the second NPA motif in loop B but at
slightly different positions. Despite these minor differ-
ences, the structural features of zebrafish aquaporins
strongly suggest that they encode functional channels. A
slightly different situation is found in DrAqp8aa, -8ab
and -8b, which despite having the conserved P1-P5 resi-
dues of the aquaporin subfamily, contain His instead of
Phe®®, and Val or Ile instead of His'®, in the ar/R con-
striction (Figure 6C). As for their mammalian counter-
parts, DrAqpl1lb and -12 appear to be more divergent
since they did not show any of the typical residues in
the ar/R constriction and only three aquaporin-con-
served amino acids (P2, P4 and P5) (data not shown).

Water and solute permeability of zebrafish aquaporins

Typically, aquaporin water-channel activity is tested by
the oocyte-swelling assay [3], in which Xenopus laevis
oocytes expressing aquaporins are exposed to hypo-
osmotic shock and the subsequent water influx is mea-
sured by determining volume changes over time. Solute
permeability can also be determined volumetrically in



Tingaud-Sequeira et al. BMC Evolutionary Biology 2010, 10:38
http://www.biomedcentral.com/1471-2148/10/38

Page 10 of 18

HsAQP1 56
pragp0a 48
DragpOb 48
DrAgpla 51
DrAgplb 52
Dragp4 79

HSAQp8 72
Dragp8aa 73
DrAgp8ab 70
DrAgp8h 67

HsAQP1 106
DrAgp0a 108
pragpOb 108
pragpla 110
DrAgplb 111
DrAqp4 139
HSAQp8 132
DrAgp8aa 133
DrAgp8ab 130
DrAgp8b 127

HsAQP1 180
DrAgpOa 172
pragp0b 172
pDragpla 171
Dragplb 174
DrAqp4 20
HsAgp8 198
DrAagp8aa 199
DrAgp8ab 196
DrAgqp8b 193

@

HsAQP1 205
prAgpOa 197
DragpOb 197
DrAgpla 196
DrAgplb 199
Dragp4 228
HSAQp8 223
DrAgp8aa 224
DrAgp8ab 221
Dragp8b 218

ISGSHF[NdSF

XTIEE

HGLALAVVIGCMVE

% .

P Loop C

SSL---TGNSLGRNDLADGVNSG
MRGNLALNTLQPGISMG
MRGTMALNTLQPGMSLG
--DALGLNQIHTDISAG
D-TTLGLNMLGNGVKVG
PAS---VRGGMGVTSVNEEISAG
PEERFWNASGAAFVTVQEQGQVA
NDAFSNATGAAFNAIPSSDGIG
SDENYANATGAAFAVLKSDEQLG
SSEKYAQAQGAAFTVLQADDHIM

¥ LoopEVP2  P3

Loop E P4/P5 H6

HNFSNHWI GPFIGGALAVLIY
RNFINHWV GPMIGAAMGALLY
RNFINHWV GPMIGAAMGAIFY
LDFANHWV GPMCGGVAAALIY
ESFKNHWI IAPMCGGVAAALTIY
VKWQDHWV GPLIGGILAAAVY
GP

GP

GP

GP

*

NHWNFHWI L LLAGLLVGLLI

GHWTHHWI LTGALVTVSIV

NHWTYHWV LGGGLVAAALM

NYWTHHWI ITGGLIAAALV
A PRI

248
245
242

ECGIpF
HsAQP3
Dragp3a
DrAgp3b
Drqu;
Dragp9a
Draqp9b
DrAgpl0a
DragplOb

ECG1pF
HsSAQP3
DrAgp3a
Draqp3b
DrAqp7
Dragp9a
Dragp9b
DrAgpl0a
DrAgplOb

ECG1pF
HsSAQP3
Dragp3a
Draqp3b
DrAqp7
Dragp9a
Dragp9b
Dragpl0a
DrAgplOb

ECG1pF
HSAQP3
Dragp3a
Dragp3b
Dragp7
DrAqp9a
Dragp9b
DragplOa
Dragpl0b

WGLGVAMAIYLTAGVSGAHL Y
FGFAVTLGILIAGQVSGAHL[ NN
FGFGATLGILVCGQVSGGHL RN
FGFAATLGILVCGQVSGGHIE4TV
FGLAVAMGVHVGGKVSGAHM[JAR
FSTGLMMGVYVSGGVSGGH L JRN
FTLGVMLAVYMAGGVSGGH VRN
FSVGVMSAMYLCRAVSGAHL RN
FALGTTFGIYIAKGVSGAHLIEN
: 5 S - ARE FE %
H3 P1
LVYGL
IVFGL
IIFAE
IIFGM
TIFSL
AVFGL
AVYCL
LVYLT
TVALQ
. *

Loop C

NLFFDFEQTH--HIVRG
DAIWHFADNQ--LFVSG
HDAIYDYAGESNELLVLG
FDAIWKFGQGS--LDVDG
DAINHFCGGN--LTVSG
DAFMEFTSGI--LSVTG
DAFTEFANGE--LAVTG
HDAIMEFSGGV--LTVFG
DAIMDFTGGH--LTVSG

. . %

V¥ H5 V Loop E VP2 P3

GASMGPLTGFAMNINRBIFGP[FVFA
GTSMGFNSGYAVRFNRBIFGP[JL FT
GLSMGFNSGYAV(EFNR MAFGP[4L FT
GLSMGFNSGYAV (YR Il GP|4T FT
GISMGSNSGYAINRATRAL GP[HLFT
SVSMGLNCGYPL|RFNRDBILGP[JL FT
GVSMALNCGYPINEFNR GP[4L FT
SISMSANCGAATEFNR Il GP4lL FT
GISMGSNSGYATI[LFNRPIFGP[ILFS

wew B e kR L w R Lok s
Loop E P4/P5 H6

FTGGRDIPYFLV[JMFGPIVGAIVG
FTTGQ--HWWWV[BRVSPLLGSIAG
FTARD--YWFLV[@IFAPFIGAVIG
FSAES--YWSFV[AUFAPFIGAVFG
FRAGN--CWWWV[JRVAPFIGGVLG
FSTAD--YWWWI[BMAGPLVGGVVG
FSAGN--GWWWV[MAVGPMVGGVVG
FTCYD--YFFWI[JMVAPMVGGVLG
FRAGH--GWWWV[B§TVTCVGALLG

Figure 6 Structural features of zebrafish aquaporins. (A-C) Water-selective aquaporins and aquaglyceroporins (Glps; D-F). (A and D) Three-
dimensional reconstruction of DrAgp4 wrapped to the crystallographically resolved structure of Escherichia coli AgpZ (1RC2 chain B), and
DrAqp3a wrapped to the crystallographically resolved structure of E. coli GIpF (1LDI chain A). Molecules are mirror tube-worm renders rotated to
show identical (red) and non-identical (blue) residues and the annotated features including the blue space-filled conserved sites (P1-P5) and the
opposing yellow ball and stick Asn-Pro-Ala (NPA) motifs between hemi-helices H3 and H7. Despite low primary identity/similarity (21.1/36.6% for
DrAqp4; 34.1/53.0% for DrAgp3a) the secondary and tertiary structures appear conserved. (B and E) Schematic diagram of aquaporin monomers
showing the 6 transmembrane helices (H), the two NPA motifs, the amino acids forming the aromatic/arginine (ar/R) constriction, and the five
residues (P1-P5) conserved in water-selective (B) and Glps (E). In each position the conserved residues are indicated. (C) Amino acid sequence
alignment of human AQP1 and AQP8 (HsAQP1 and HsAQPS8), mouse AQP8 (MmMAQPS), DrAgp0a, -Ob, -1a, -1b, -4, and zebrafish AQP8-related
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shaded in blue. The asterisks indicate identical residues, whereas conserved amino acid substitutions and substitutions with similar amino acids
are indicated by a double or single dot, respectively. The potential mercury-sensitive Cys site before the second NPA motif is underlined. (F)
Amino acid sequence alignment of EcGIpF, human AQP3 (HsAQP3) and zebrafish Glps. Symbols and notes as in C.
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isotonic solutions, or by employing radiolabeled com-
pounds [49,50]. Therefore, to determine experimentally
the substrate specificity of the zebrafish aquaporins, the
cloned cDNAs were expressed in X. laevis oocytes.

Expression of all of the aquaporin isoforms, except
dragpllb and -12, induced a three- to twenty-fold
increase in oocyte water permeability (Figure 7). Inter-
estingly, however, water permeability of oocytes expres-
sing dragp3a and -3b was reduced by acidic pH, as
found for mammalian AQP3 [51] and European eel
(Anguilla anguilla) Aqp3 [52], with maximum perme-
ability occurring at pH 8.5. Swelling (data not shown)
and isotope-labeled solute uptake assays demonstrated
that oocytes injected with dragp3a, -3b, -7, -9a, -9b,
-10a and -10b were also permeable to glycerol and urea,
although in the case of dragpl0b urea permeability was
low (Figure 7). Oocytes expressing draqp8aa or -8ab
were permeable to water and urea, but not glycerol. In
contrast, oocytes expressing draqpOa, -0b, -1a, -1b and
-4, as well as draqp8b, were not permeable to either of
these solutes.

Water and glycerol transport through most aquaporins
was significantly (p < 0.01) blocked by 0.3 mM HgCl,
even in the absence of Cys'®” in their deduced amino
acid sequences (Figure 6C,F). Such inhibition was not
always reversed with the reducing agent B-mercap-
toethanol. However, DrAqp4 (as in mammalian AQP4)
and DrAqp8b were mercury-insensitive, even though
DrAqp8b has a potential mercury-sensitive Cys
upstream of the second NPA box (Figure 6C). It thus
appears that water and solute flux through zebrafish
aquaporins can be blocked by mercurial compounds
regardless of the presence or absence of Cys'®®. These
observations have also been noted for rat AQP3 [53,54]
and plant aquaporins [55,56]. The present findings sug-
gest that sensitivity of zebrafish aquaporins to mercur-
ials is a complex phenomenon, as has been suggested
for other aquaporins, and may involve other residues in
addition to Cys'®® [56].

Expression of draqp11b or -12 had no effect on oocyte
water (Figure 7), or glycerol (data not shown) perme-
ability. The absence of water and solute transport in X.
laevis oocytes expressing mammalian AQP11 and -12
has been previously reported [57,58]. For AQP12, this
seems to be caused by the absence of protein expression
in the oocyte plasma membrane [57], but in the case of
AQP11 the protein is readily targeted to the plasma
membrane [58]. The underlying mechanisms involved in
the functional failure of AQP11 and -12 in oocytes are
not well known, but may be related to the fact that
these aquaporins are localized intracellularly in vivo
[57,59]. However, when AQP11 was reconstituted into
liposomes this protein proved to be a functional water
channel [60]. Although the identity of DrAqpl1b and
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-12 with AQP11 and -12 is low (35% and 38% identity,
respectively), a similar situation may be speculated in
zebrafish. Further studies employing reconstitution of
DrAqpllb and -12 into proteoliposomes, as well as spe-
cific antibodies to elucidate their subcellular localization,
would help to clarify this issue.

Expression pattern of zebrafish aquaporins
The relative expression of the zebrafish aquaporin genes
in adult tissues was evaluated by RT-PCR employing
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isoform-specific oligonucleotide primers (Figure 8).
These data revealed that while all genes except dragp5/
1 were expressed, some aquaporin transcripts were ubi-
quitiously distributed in the tissues examined or
appeared to be tissue-specific. Notably, mRNAs derived
from duplicated paralogs showed slightly different
expression patterns, although redundancy in some tis-
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Only two zebrafish aquaporin transcripts (dragpla
and -12) showed tissue-wide expression patterns. The
ubiquitous expression of dragpla transcripts is consis-
tent with the presence of the mammalian AQP1 ortho-
log in endothelial barriers of almost all tissues and in
many epithelia [61]. Its presence in the zebrafish gastro-
intestinal tract and gills agrees with that reported in
other teleosts [12,15,16,62]. In contrast, expression of
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dragplb was restricted to the ovary, testis and brain, as
previously reported [22]. The ubiquitous expression of
the unorthodox aquaporin dragp12, with lower levels in
the eye and muscle, differs markedly from the exclusive
expression of mammalian AQP12 in the pancreatic aci-
nar cells [57] and the retina [63]. The vertebrate-specific
unorthodox aquaporin, dragpl1b, also showed a differ-
ent expression pattern compared to that described for
mammalian AQP11. In mice, kidney expression of
AQP11 seems to be essential during development since
either its absence or mutations of the amino acid
sequence induce renal failure [59,64]. In our PCR
experiments, however, we could not observe detectable
levels of dragp11b transcripts in the kidney, although
they were abundantly expressed in the gut and were
also detected in ovary and liver.

In contrast to dragpla and -12, transcripts of draqpOa
and -8b were exclusively detected in tissues of the eye
and brain, respectively, and dragp0b was also observed
in the ovary. The specific expression of dragp0 paralogs
in the eye is consistent with that previously described in
the common mummichog (Fundulus heteroclitus)
[65,66], as well as in mammals where AQPO is predomi-
nantly present in fibre cells of the lens [67]. Expression
of draqp8b was noted only in the brain, where dragp8aa
and -8ab were not expressed. In contrast, these latter
transcripts were abundantly expressed in the gut and
kidney, dragp8ab mRNA being also present in the
ovary, testis, eye, gills and liver. The diffuse expression
of dragqp8aa and -8ab resembles that found for mam-
malian AQP8, which is present in the testis, ovary, kid-
ney, liver, pancreas, small intestine and colon [1,68].
The expression of dragp4 is similar to that of mamma-
lian AQP4 [1], which is distributed in the brain, small
intestine and muscle, but also in kidney. In the present
study, however, we did not detect dragp4 transcripts in
the zebrafish kidney.

The distribution of classical Glp mRNAs in zebrafish
was comparable to that described for mammals and
some teleosts [69,70]. dragp3a showed the most exten-
sive distribution in all tissues examined except in the
liver, showing high abundance in gills as previously
found for other teleosts [14,15]. In contrast, draqp3b
transcripts were seen only in the testis, gills, muscle and
skin. The dragp9a and -9b isoforms, as well as
draqplOa and -10b, also showed differential expression
in some tissues. The expression of two functional iso-
forms of dragpl0 in zebrafish, however, differs from
that reported for mouse in which AQP10 was suggested
to be a pseudogene [71]. As in mammals, dragp?7 is
expressed in the gonads and the kidney, while the
expression observed in the intestine may reflect an adi-
pocyte function [72,73].
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The RT-PCR studies suggest that redundant expres-
sion of duplicated aquaporin isoforms occurs in many
tissues of zebrafish. The physiological significance of
these findings is intriguing. In other teleosts, such as the
gilthead seabream (Sparus aurata), redundant expres-
sion of agpla (saaqpla) and -1b (saaqplb) in the ovary
and gastrointestinal tract is also observed, but immuno-
logical studies have revealed that their protein products
are differentially localized [16,17]. Thus, in the ovary
SaAqplb is oocyte-specific, whereas SaAqpla seems to
be only present in the external epithelium surrounding
the ovarian follicle. In the gut, SaAqplb is exclusively
detected at the apical membrane of rectal enterocytes,
whereas SaAqpla is localized at the brush border of
enterocytes in the duodenum and hindgut. Therefore,
the significance of the redundant aquaporin expression
in zebrafish must be further investigated by determining
the subcellular sites of transcription and protein
targeting.

Conclusions

In this study, we identified a large number of MIP
encoding genes in zebrafish when compared to tetra-
pods. By integrating the molecular phylogeny and the
genomic loci with structural and functional analyses we
demonstrate dual- or tri-paralogy between teleost aqua-
porins and human orthologs. Consequently teleost aqua-
porins can be classified into the same water-selective
and Glp subfamilies previously described in vertebrates
[2]. Expression in X. laevis oocytes also demonstrated
that zebrafish aquaporin genes, except agpl1b and -12,
encode functional channels, which in most cases have
retained the substrate specificity of the tetrapod coun-
terparts. Some mammalian aquaporins are also perme-
able to NH3, CO, or O, [74], but whether any of the
zebrafish orthologs are permeable to these compounds
remains to be investigated.

The high number of aquaporin genes in zebrafish and
other teleosts result from WGD at the root of the
crown-clade. Most duplicated isoforms are retained,
while agp4, -7, and -12 have remained single-copy genes
in non-human vertebrates. The findings further reveal
that tandem duplication has occurred within the clade
and in a lineage-specific manner, but such intrachromo-
somal replication events are rare for this superfamily.
While most of the duplicated genes seem to be con-
served during the diversification of teleosts, some such
as aqpll, -3 and -8 appear to have been differentially
retained among species. The reasons for the evolution-
ary selection of specific aquaporin isoforms in teleosts,
as well as the potential neofunctionalization of others,
as shown for agplb in the hydrating oocytes of marine
teleosts [17,22], have yet to be determined.
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An interesting finding was that zebrafish harbours a
hybrid gene with partial structural identity to the tetra-
pod AQP2, AQPS and AQP6 orthologs. This hybrid
sequence is not expressed, and it appears to represent a
pseudogene. The physiological significance of this obser-
vation remains to be elucidated. The present study,
however, provides a validated nomenclature for the pis-
cine aquaporin superfamily and lays the foundation for
further functional studies in zebrafish.

Methods

Fish

Adult zebrafish were purchased from local pet stores
and maintained as described [75]. To obtain samples of
the different tissues, fish were sedated by immersion for
approximately 15 min in 80-100 ppm phenoxyethanol,
and sacrificed by decapitation. Tissue samples were
immediately processed for RNA extraction or flash-fro-
zen in liquid nitrogen and stored at -80°C. Procedures
relating to the care and use of animals were approved
by the Ethics Committee from IRTA in accordance with
the Guiding Principles for the Care and Use of Labora-
tory Animals.

Genome and transcript analysis

Zebrafish aquaporin coding sequences were identified by
basic local alignment search tool (BLAST) [76] homol-
ogy searches of the NCBI [37] and ensembl [32] data-
bases with mammalian and previously cloned teleost
aquaporin sequences. The predicted amino acid
sequences were extracted, analyzed using BLASTP, and
annotated according to the nomenclature established for
zebrafish [30]. Intron-exon splicing sites were verified
visually using available cDNA sequences and/or corre-
sponding ESTs, and genomic sequences. Potential trans-
membrane helices in the encoded amino acid sequences
were predicted using the SOSUI engine v1.11 [77],
TMHMM Server v2.0 [78] and Phobius [79], or via
molecular wraps to resolved aquaporin structures (Addi-
tional file 5).

cDNA Cloning

In this study, cDNAs bearing the complete coding
region of draqpOa, -0b, -3a, -3b, -4, -7, -8aa, -8ab, -8b,
-9a, -9b, -10a, -10b, -11b, and -12 were cloned by con-
ventional RT-PCR. Full-length dragpla and -1b
cDNAs were previously isolated [17,22]. Total RNA
was extracted from the kidney, gut, gills, liver, brain
and ovary of adult fish using the RNeasy Maxikit (Qia-
gen) followed by DNase treatment following the manu-
facturer’s instructions. A pool of 1-10 pg total RNA
from the different tissues was reverse transcribed using
0.5 ug oligo (dT);7, 1 mM dNTPs, 40 IU RNAse inhi-
bitor (Roche), and 10 [U MMLuV-RT enzyme (Roche),
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for 1.5 h at 42°C. For amplification, PCR was carried
out with 1 pl of the synthesized cDNA and specific oli-
gonucleotide primers designed according to the avail-
able ¢cDNAs and genomic sequences. The PCR
reactions were conducted using a total volume of 50 pl
containing 1x reaction buffer supplemented with 1.5
mM MgCl,, 0.2 mM dNTPs, 0.2 mM of each forward
and reverse primer, and 1U of Easy-ATM High-Fidelity
PCR Cloning Enzyme (Stratagene). The PCR condi-
tions were an initial denaturation at 95°C for 5 min,
followed by 36 cycles at 95°C for 1 min, 60-65°C for 1
min (depending on the Tm of each primer pair), and
72°C for 1 min. A final elongation cycle at 72°C for 7
min was carried out in all cases. The products were
cloned into the pGEM-T Easy Vector (Promega) and
both strands sequenced by BigDye Terminator v3.1
cycle sequencing on ABI PRISM 377 DNA analyzer
(Applied Biosystems). The deduced amino acid
sequences of cloned cDNAs were 100% identical to
those available in the databases, except for DrAqp7
and -11b, which were 98% identical (3 and 2 amino
acid changes, respectively), and the cDNAs encoding
DrAqp8aa, -8ab, -9b, -10a and -12, which were 99%
identical (1 amino acid change in each sequence). In
further structural and phylogenetic analyses we used
the amino acid sequences derived from the cDNAs
cloned in this study since they were found to encode
functional proteins in oocytes.

Functional expression in Xenopus laevis oocytes

Zebrafish aquaporin full-length cDNAs were cloned into
the EcoRV/Spel sites of the oocyte expression vector
pT7Ts [80]. Capped RNAs (cRNAs) were synthesized in
vitro with T7 RNA Polymerase (Roche) from Xbal-line-
arized pT7Ts vector containing the different aquaporin
c¢DNAs. The isolation and microinjection of stage V-VI
oocytes was performed as described previously [80].
Oocytes were injected with 50 nl of distilled water
(negative control) or 50 nl of water solution containing
1-10 ng cRNA.

Swelling assays

The osmotic water permeability (Pg) was measured from
the time course of oocyte swelling in a standard assay.
Oocytes were transferred from 200 mOsm modified
Barth’s culture medium (MBS; 0.33 mM Ca(NO3),, 0.4
mM CaCl,, 88 mM NaCl, 1 mM KCI, 2.4 mM
NaHCO3, 10 mM Hepes, 0.82 mM MgSO,, pH 7.5) to
20 mOsm MBS at room temperature. Oocyte swelling
was followed by video microscopy using serial images at
2 s intervals during the first 20 s period. For Draqp3a
and -3b, the swelling assays were performed at pH 8.5.
The Pr values were calculated taking into account the
time-course changes in relative oocyte volume [d(V/V,)/



Tingaud-Sequeira et al. BMC Evolutionary Biology 2010, 10:38
http://www.biomedcentral.com/1471-2148/10/38

dt], the molar volume of water (V,, = 18 cm®/ml) and
the oocyte surface area (S) using the formula V,[d(V/
V,)/dt]/[SV(Osm;, - Osmgyye)]. To examine the inhibi-
tory effect of mercury on P, oocytes were pre-incubated
for 15 min in MBS containing 0.5 or 0.3 mM HgCl,
before and during the swelling assays. To determine the
reversibility of the inhibition, the oocytes were rinsed 3
times with fresh MBS and incubated for another 15 min
with 5 mM B-mercaptoethanol before being subjected to
swelling assays.

Radioactive solute uptake assays

To determine the uptake of [*H]glycerol (60 Ci/mmol)
and [**CJurea (52 mCi/mmol) groups of 10 oocytes,
injected with water or cRNA, were incubated in 200 pl
of MBS containing 20 pCi of the radiolabeled solute
(cold solute was added to give 1 mM final concentra-
tion) at room temperature. After 10 min (including zero
time for subtraction of the signal from externally bound
solute), oocytes were washed rapidly in ice-cold MBS
three times, and individual oocytes were dissolved in 5%
SDS for scintillation counting.

Statistical analysis of P; and solute uptake

Data are expressed as mean + SEM. The data shown are
from a representative experiment out of 3-4 different
trials producing similar results. The measured values of
Py, and glycerol and urea uptake were statistically ana-
lyzed in an unpaired Student’s ¢ test; p values < 0.01
were considered significantly different.

Gene expression analysis

Total RNA was extracted from different tissues, ovary,
testis, brain, eye, gills, anterior intestine, midgut, pos-
terior intestine, kidney, liver, muscle and skin, of 5-10
adult fish using the RNeasy Mini Kit (Qiagen). An ali-
quot of RNA (500 ng) was treated with Turbo-DNase
(Ambion) and reverse transcribed as described above.
PCR was carried out with 0.3-0.6 pl of cDNA employ-
ing Tfi DNA Polymerase (Invitrogen) and aquaporin
isoform-specific oligonucleotide primers (Additional
file 6). For each aquaporin nucleotide sequence, the
oligos were designed to flank one or separated introns
that were complementary to non-conserved regions
among aquaporin paralogs. The reactions were carried
out in a 25 pl volume containing 1x reaction buffer,
1.5 mM MgCl,, 0.2 mM dNTPs, 0.2 mM of each pri-
mer and 1U of Tfi polymerase. The PCR conditions
were as described above except for the number of the
cycles, which was increased to 40. As a reference gene
to control the variation in mRNA concentration, zeb-
rafish b-actinl (drbactinl) was used, employing PCR
conditions of 22 cycles at 95°C for 30 s, 55°C for 1
min, and 72°C for 1 min. Amplification of genomic
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DNA (500 ng), purified from liver, was used as a posi-
tive control using the same PCR conditions but with
an elongation step of 1 min per kb. An aliquot of the
PCR reactions was electrophoresed on 1% agarose gels
containing ethidium bromide and the products were
visualized and photographed.

Phylogenetic analysis

Orthologs of the aquaporin superfamily were obtained
from public GenBanks via entrez and BLAST and iden-
tified via BLASTP, BLASTN or BLAT from ensembl
[32] and the ghost shark (Callorhinchus milii) [81] gen-
ome databases. Construction of aquaporin amino acid
multiple sequence alignments was achieved using the t-
coffee v7.54 suite of tools [82] and ClustalX [83]. Each
amino acid alignment was converted to a codon align-
ment (nucleotide triplets) as described previously [20]
and manually adjusted to correct errors using MacVec-
tor (MacVector Inc, Cambridge, UK). Three-dimen-
sional alignments of each zebrafish amino acid sequence
against crystallographically resolved aquaporin molecules
(Additional file 5) were used to identify conserved sec-
ondary structures in order to minimize gaps in the o-
helical regions. Three-dimensional protein wraps were
rendered using Cn3D [37] as described previously [24].
Identity and similarity matrices were calculated using
MacVector.

Preliminary Bayesian analyses (Mr Bayes v3.1.2; [84])
were run for all sequences, and identical predictions
pruned from the alignments. Where possible GenBank
sequences were run with predicted variants to validate
the latter. Prior to phylogenetic analyses, the alignments
were trimmed to remove unrelated N- and C-terminal
regions. To determine the influence of lesser-conserved
regions, large gap regions were removed and these align-
ments tested via Bayesian analyses. This resulted in
shorter branch lengths, and an increased incidence of
polytomies, but no significant change to the tree
topologies.

Each data set was modeled primarily via Bayesian, but
also via maximum likelihood or maximum parsimony
methods of phylogenetic inference as described previously
[20]. Neighbor joining (NJ) methods were used for effi-
cient identification of orthologs. Tree topologies were
accepted after validating convergence using Tracer [85]
and when the codon and protein tree topologies were con-
gruent. For Bayesian analyses the following settings were
used for codon alignments: nucmodel = 4by4, nst = 2,
rates = gamma; and amino acid alignments: aamodel =
mixed, with 1,000,000 generations, sampled every 100 gen-
erations using 4 chains and a burnin of 3,500. For each
run, a majority rule consensus tree together with posterior
probabilities from the last 6,500 trees, representing
650,000 generations was arranged using Archeopteryx [86]
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and subsequently rendered with Geneious Pro (Biomatters
Ltd, Auckland, New Zealand). Maximum likelihood codon
trees were attained using PAUP v4b10 (Sinauer Associates
Inc.) and rendered using FigTree v2.2 [87]. Final trees
were annotated with accession numbers using Adobe
Photoshop.

Sequence accession numbers

The zebrafish aquaporin ¢cDNA nucleotide sequences
reported in this study, which encoded functional pro-
teins when expressed in X. laevis oocytes, have been
submitted to the DDBJ/EMBL/GenBank database
under the following accession numbers: draqpOa
(FJ666326), draqpOb (F]655389), dragp3a (EU341833),
draqp3b (EU341832), draqp4 (F]666327), draqp7
(FJ655385), draqp8aa (F]J655386), dragqp8ab
(EU341834), draqp8b (F]695516), dragp9a (F]655387),
draqp9b (F)655387), draqplOa (FJ655388), and
dragp10b (EU341836).

Additional file 1: Protein sequence identities among zebrafish
aquaporins. The percent identity between zebrafish amino acid
sequences.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2148-10-
38-S1.PDF]

Additional file 2: Comparison of aquaporin gene structures
between zebrafish and other metazoan organisms. Exon-intron sizes
are based on ensembl. In the case of dragp9a, the quality of the
genomic sequences available did not allow evaluation of the intron sizes.
Aquaporin groups are color-coded as described in the key.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2148-10-
38-52.PDF ]

Additional file 3: Identity and similarity scores of zebrafish agp5/1
exons. Nucleotides and deduced amino acids are compared to tetrapod
aquaporins. Data are means + standard deviations of the sequences
submitted to maximum likelihood analysis in Additional file 4.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2148-10-
38-S3.PDF]

Additional file 4: Phylogenetic analysis of draqp5/1. Maximum
likelihood codon trees of zebrafish dragp5/1 (ENSDARG00000038202)
exons compared to tetrapod orthologs. (a) Exons 4-8; (b) Exons 1-3. Scale
bars indicate nucleotide substitution rate.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2148-10-
38-S4.PDF]

Additional file 5: PDB structures used in the study.
Crystalographically resolved aquaporin molecules used to optimize the
amino acid alignments or identify secondary structures.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
38-S5.PDF ]

Additional file 6: Oligonucleotide primers used for RT-PCR analysis.
Nucleic acid sequences for primers specific for each zebrafish aquaporin
mMRNA, bactin1, and expected product size.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
38-S6.PDF]
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Abbreviations

AQP: aquaporin; BAC: bacterial artificial chromosome; cRNA: capped RNA;
EST: expressed sequence tag; Glp: aquaglyceroporin; LG: linkage group; MIP:
major intrinsic protein; NIP: nodulin 26-like intrinsic protein; NJ: Neighbor
joining; NPA: aspargine-proline-alanine; P osmotic water permeability; PIP:
plasma membrane intrinsic protein; TIP: tonoplast intrinsic proteins; DIP:
small and basic intrinsic protein; WGD: whole genome duplication.
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