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ABSTRACT 

Background 

Poxviruses evade the immune system of the host through the action of viral encoded 

inhibitors that block various signalling pathways. The exact number of viral inhibitors is 

not yet known. Several members of the vaccinia virus A46 and N1 families, with a Bcl-2-

like structure, are involved in the regulation of the host innate immune response where they 

act non-redundantly at different levels of the Toll-like receptor signalling pathway. N1 also 

maintains an anti-apoptotic effect by acting similarly to cellular Bcl-2 proteins. Whether 

there are related families that could have similar functions is the main subject of this 

investigation. 

 

Results 

We describe the sequence similarity existing among poxvirus A46, N1, N2 and C1 protein 

families, which share a common domain of approximately 110-140 amino acids at their C-

termini that spans the entire N1 sequence. Secondary structure and fold recognition 

predictions suggest that this domain presents an all-alpha-helical fold compatible with the 

Bcl-2-like structures of vaccinia virus proteins N1, A52, B15 and K7. We propose that these 

protein families should be merged into a single one. We describe the phylogenetic 

distribution of this family and reconstruct its evolutionary history, which indicates an 

extensive gene gain in ancestral viruses and a further stabilization of its gene content. 

 

Conclusions 

Based on the sequence/structure similarity, we propose that other members with unknown 

function, like vaccinia virus N2, C1, C6 and C16/B22, might have a similar role in the 
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suppression of host immune response as A46, A52, B15 and K7, by antagonizing at 

different levels with the TLR signalling pathways. 

 

 

 

 

BACKGROUND 

Innate immune cells recognize pathogens through pattern-recognition receptors (PRRs) [1]. 

PRRs include Toll-like receptors (TLRs), RIG-I-like receptors and NOD-like receptors. 

Pathogen recognition activates an immune response through signalling pathways that 

trigger the expression of genes encoding Type I IFNs and pro-inflammatory cytokines. 

Poxvirus genomes contain a large number of genes involved in avoiding the host immune 

response to viral infection [2, 3]. Known examples are vaccinia virus (VACV) genes coding 

for proteins A46, A52, B15, K7 and N1, which interfere with TLR signalling pathway at 

different levels. A46 contains a putative Toll/Interleukin-1 receptor (TIR) domain and 

targets several TIR adaptors like MyD88, MAL (TIRAP), TRIF and TRAM [4, 5], thus 

blocking MAP kinase activation and TRIF-mediated IRF3 activation. A52 targets IRAK2 

and TRAF6, and has a greater effect than A46 on inhibiting the activation of NF-kappaB [4, 

6]. Strikingly, it has been reported that A52 also activates p38 MAPK and potentiates LPS-

induced IL-10 [7]. Sequence relationship between A52 and N1 proteins led to experiments 

that related N1 with the inhibition of NF-kappaB activation by several signalling pathways 

[8]. N1 is an intracellular homodimer that has been shown to associate with several 

components of the IKK complex and with TANK-binding kinase 1 (TBK1) thus inhibiting 

NF-kappaB and IRF3 activation, respectively [8, 9], although recent experiments could not 



 4

reproduce these interactions [10, 11]. The crystallographic structure of N1 reveals a 

surprising similarity to Bcl-2 family of apoptotic regulators despite the absence of sequence 

homology [11, 12]. Moreover N1 binds with high affinity to BH3 peptides from pro-

apoptotic proteins Bid, Bim and Bak [12] and even inhibits the increase in
 
mitochondrial 

membrane permeability and caspase 3/7 activation after apoptotic stimuli [11]. B15 (named 

B14 in VACV strain Western Reserve) is an intracellular virulence factor [13], and has been 

found to target the IKK complex by avoiding IKKbeta phosphorylation and subsequent 

IKK activation which would lead to degradation of IkappaB, the inhibitor of NF-kappaB 

[10]. The crystallographic structures of A52 and B15 have been recently solved, showing 

that both are homodimers with a Bcl-2-like fold similar to that of N1 [14]. But in contrast 

to N1 the BH3-peptide-binding groove in both structures is occluded, what may explain 

why they cannot protect staurosporine-treated cells from apoptosis [14]. Similarly to A52, 

K7 inhibits TLR-induced NF-kappaB activation and interacts with IRAK2 and TRAF6 

[15]. Besides, K7 has been shown to modulate innate immune signalling pathways by 

binding the cellular DEAD-box RNA helicase DDX3, which forms part of a complex with 

TBK1-IKKepsilon that activates IRF3, thus inhibiting the IRF3-mediated IFNbeta gene 

transcription. This interaction was not observed in the case of A52. A NMR solution 

structure of K7 reveals a monomer that adopts a Bcl-2 fold, although similarly to A52 and 

B15 its pro-apoptotic peptide binding groove is predicted not to be functional [16]. The 

molecular details of the K7-DDX3 interaction have recently been unveiled [17].  

 In the Pfam database of protein families and domains [18] A46, A52, B15 and K7 

are included in a single family (Pox_A46) together with other poxvirus proteins like VACV 

C6 and C16/B22, whereas N1 is classified in the Orthopox_N1 family. Because of the 

importance of host immune response modulation for poxviruses we hypothesized the 
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existence of additional genes involved in this role among those of still unknown function. 

Hence, in this investigation we have searched for homologues of Pox_A46 family within 

poxvirus genomes using bioinformatics tools. We have found a clear relationship of A46 

family not only with N1 but also with poxvirus N2 and C1 protein families, suggesting that 

these proteins probably adopt a common structural fold. The sequence relationship existing 

among these four families is presented. These similarities indicate that VACV C6, 

C16/B22, N2 and C1, whose function is currently unknown, may be involved in 

suppressing the host immune response through the inhibition of either apoptosis or the TLR 

signalling pathway. In addition we show that this family is present exclusively in a 

monophyletic subset of vertebrate poxviruses. The reconstruction of the evolutionary 

history of this gene family indicates numerous gene gain events in more remote ancestral 

genomes and a further stabilization of the gene contents in extant genomes. 
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RESULTS AND DISCUSSION 

Poxvirus A46, N1, N2 and C1 protein families share a common domain 

In order to find remote homologues of the proteins belonging to Pox_A46 family, we used 

sensitive Hidden Markov Models (HMM) profile-based searches through HHpred, a 

sequence homology search method based on HMM profile vs. profile comparisons [19]. A 

Pox_A46 family multiple sequence alignment from Pfam database was used as input to run 

HHpred against a database of all Pfam HMM profiles. The results confirmed the 

relationship between the Pox_A46 and Orthopox_N1 families (97.6% probability, e-value 

3.4E-06), but also revealed the homology existing between the A46 family and two other 

families of poxvirus proteins: Pox_N2L (98.8% probability, e-value 1.6E-10) and 

Orthopox_C1 (72.5% probability, e-value 0.026). A similar search, started with the multiple 

sequence alignment of Pox_N2L family extracted from Pfam database, detected the 

Pox_A46 (99.9% probability, e-value 2.5E-25), Orthopox_C1 (97% probability, e-value 

2.8E-06) and Orthopox_N1 families (74.5% probability, e-value 0.4). To detect every 

protein sequence related to these families, an iterative HMM search was started with the 

Pox_A46 HMM profile from Pfam database against a poxvirus protein sequence database. 

This search detected with significant e-values not only sequences containing the Pox_A46 

domain, but also proteins belonging to other three Pfam families: Orthopox_N1, Pox_N2L 

and Orthopox_C1 (Additional File 1). Thus the sequence relationships among the four 

families were confirmed and all sequences belonging to any of them were collected. A 

multiple sequence alignment (Figure 1A) revealed that despite their size heterogeneity all 

these proteins contain a common conserved region of 110-140 residues at their C-terminal 

ends, leaving N-terminal ends of diverse lengths outside this region. For instance, in N1 

(VACV-WR_028) the conserved region spans its whole length, while A46 (VACV-
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WR_172) has almost 90 extra N-terminal amino acids. A single HMM profile was built 

from the common conserved region of all these sequences and was used to refine the 

search. A HMMer search with this profile vs. UniProt database [20] found all and only the 

previously collected sequences. All the significant hits detected were poxvirus proteins. 

This result confirms the validity of the relationship among the four families (A46, N1, N2 

and C1) and suggests that these four families should be merged into a single one. 

Within this set of related poxvirus families three-dimensional structures are known 

for VACV proteins N1, A52, B15 and K7. They present a similar compact structure, formed 

by 6-7 alpha-helices, with outstanding similarity to the Bcl-2 family fold despite their lack 

of sequence homology with these cellular proteins. Homology at the sequence level with 

A46 and N1 families implies that members of the N2 and C1 families will probably adopt 

the same Bcl-2-like fold. Interestingly, the predicted secondary structure of the conserved 

region in N2 and C1 proteins is compatible with this fold (Figure 1A). To test the 

hypothesis that these proteins share the common domain of A46 and N1 families, multiple 

sequence alignments of N2 and C1 families were used to start HHpred searches against a 

sequence profile database derived from proteins with structures in the Protein Data Bank 

(PDB) [21]. A strong relationship was found between N2 and A52 structure (99.0% 

probability, e-value 1.3E-12). These results were supported by predicting the structure of 

this family with 3D-Jury [22], a fold recognition meta-server that obtains consensus 

predictions from different threading servers. In all cases the best hits were structures 

belonging to A46 and N1 families. Only in the case of C1 the results were not conclusive 

either with HHpred (42.5% probability, e-value 0.35) or with 3D-Jury (not shown). 

However, given that C1 sequence homology to N2 is evident from the HHpred searches, 

both families will probably share the Bcl-2-like common domain. 
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Conserved residues in the common domain of the poxvirus protein families  

Highly conserved amino acids of a multiple sequence alignment usually indicate that these 

residues are important for protein structure and/or function. In addition, amino acids that 

are conserved only in certain subfamilies are indicative of importance for specific functions 

carried out by these proteins subfamilies. A multiple sequence alignment of the common 

domain containing representative sequences of the four families (A46, N1, N2 and C1) was 

analyzed to get an insight of the conserved residues. The Proteinkeys web server [23] was 

used to find both conserved residues in all families and specific residues for individual 

families. Although the minimum sequence identity between the most divergent sequences 

of the four families can be as low as 15%, at least three conserved motifs could be 

distinguished in the multiple sequence alignment (Figure 1A): [LIVM]-x-x-Y-[IFL]-x-

[WY]-[RS] in alpha-helix 1, G-x-x-[FY]-x-x-[LF]-x-x-[FYL]-[KD]-x-x-A in alpha-helix 2, 

and [IV]-G-[LF]-x-[ASG] in alpha-helix 5 (alpha-helices numbered according to N1). 

Since a common fold is assumed for all families, the sequence information was placed in 

the context of one of the known three-dimensional structures, that of N1 (PDB:2I39) 

(Figure 1B). Interestingly, alpha-helices 1, 2 and 5 are packed in close contact to one 

another in the common fold structure. Most of these conserved residues are hydrophobic 

and buried inside the protein core, so they are expected to have an essential role to preserve 

the domain structure stability. Because of their level of conservation and their position in 

the structure they might have been related to the pro-apoptotic peptide binding site. 

Alpha-helix 1 forms part of the dimerization surface in N1, B15 and A52 proteins [11, 

12, 14]. In the N1 homodimer residues Arg7 and Asp14 of alpha-helix 1 of different 

monomers form a potential salt bridge, contributing to dimer stability. This interaction is 



 9

not found in A52 and B15 dimers as the relative orientation of monomers varies. Alpha-

helix 2 is an amphipathic helix whose charged side is exposed and in the case of N1 

contains several residues involved in BH3-peptide binding like Leu30, Glu32 and Leu33. 

The C-terminus half of alpha-helix 5 contains mostly hydrophobic residues and is buried in 

the protein core. One pair of amino acids identified by Proteinkeys as being conserved 

specifically in one subset of proteins is that of charged residues Arg12 and Asp31, which 

are located in conserved motifs in alpha-helices 1 and 2, respectively. These positions are 

highly correlated in the multiple sequence alignment, where both are present in a large 

subset of members of N1 and A46 families and completely absent in others. These amino 

acids join alpha-helices 1 and 2 through a potential salt bridge and probably contribute to 

the stability of BH3-peptide binding site structure. The same interaction is also conserved 

in K7 (Arg37 and Asp61) and A52 (Arg67 and Asp87) proteins. On the other hand there are 

a number of charged residues which are exposed on the surface of the proteins with known 

structure and seem relatively conserved in all families. For instance the pattern of charged 

residues alternating with hydrophobic residues in alpha-helix 2 is observed in N1, K7, B15 

and A52 structures and it can be predicted in other proteins from their sequences. In N1 

protein residues projecting outwards from alpha-helix 2 include Asp22, Lys25, Lys26 and 

Glu32, of which only the last one belongs to the ligand binding site [11]. Arg81 at the C-

terminal end of alpha-helix 5 in N1 is exposed and charged residues at equivalent positions 

are conserved in A46 and N2 families. Conservation of these exposed residues may indicate 

a possible functionality, for instance an interaction with other proteins. Experimental data 

revealing detailed poxvirus-host protein interaction mechanisms are still scarce and more 

will be needed to confirm whether any of the conserved residues is functionally important. 
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Evolutionary history of A46 and related families 

In an attempt to reconstruct the evolutionary history of the whole family first we built its 

complete phyletic pattern, meaning by that the distribution of the subfamilies or groups of 

orthologues that integrate the gene family across all species of chordopoxviruses. Our gene 

set was divided into ten orthologue groups (Figure 2A). These orthologue groups are 

exclusively present in a monophyletic group that includes the genus Orthopoxvirus and a 

clade comprising five other genera (Yata-, Capri-, Sui-, Lepori- and Cervidpoxvirus), 

named Clade II by convention [24]. We could not find any remote homologue of this gene 

family in the remaining taxonomic groups of the poxvirus phylogeny. The distribution and 

number of genes of every orthologue group varies among different species (Figure 2B and 

Additional File 2), although they are always restricted to both terminal genome regions, 

where genes involved in virus-host interaction are usually located in poxvirus genomes [25, 

26]. Eight of the orthologue groups can be found in orthopoxvirus genomes: N1L, N2L, 

A52R and B15R can also be found in the Clade II species, whereas C6L, C1L, K7R and 

A46R are unique to orthopoxviruses. On the other hand two subfamilies are absent in this 

genus: those of orthologous genes to myxoma virus m136R and deerpoxvirus 159R, 

respectively. 

The information provided by the phyletic pattern was superimposed on a consensus 

phylogenetic tree built from several single-copy conserved genes in all poxviruses. The 

topology of this tree was similar to other poxvirus phylogenies [27, 28]. The family gene 

content evolution across the poxvirus phylogeny was reconstructed using the maximum 

likelihood method of Miklos and Csuros [29] implemented in the program Count [30]. This 

method allows inferring the genome sizes and gene repertoires of ancestral viruses, along 

with gene gain and loss events. The reconstruction of the evolutionary history of the family 
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(Figure 3) suggests that the common ancestor of orthopoxviruses and the Clade II would 

have contained three genes of this family. Which orthologue group it could have belonged 

to cannot be deduced since probabilities are low for all of them (p<0.5). As a comparison, 

reconstruction by parsimony suggests that this ancestor would have had four subfamilies 

(N1L, N2L, A52R and B15R). Less controversy exists between both methods for more 

recent ancestors. The common ancestor to all orthopoxviruses would have contained eight 

genes, what implies five gene gain events according to the maximum likelihood method. In 

this occasion the gene content of the ancestral virus is more evident as it most likely 

contained all eight orthologue groups present in practically every extant orthopoxvirus 

(with p=1). In the branch leading to the Clade II its common ancestor would have 

possessed four genes belonging to this family, implying three gene gains over the preceding 

node. The four genes present in the ancestral genome were with p=1 N2L, A52R, m136R 

and B15R. More recent evolutionary events include small gene gains and small gene losses 

in the branches leading to extant species. Altogether these data suggest that this gene family 

originated in the virus lineage leading to the common ancestor of orthopoxviruses and the 

Clade II, where between three and four gene gain events occurred. However it is unlikely 

that these gene gains occurred independently in a single ancestral virus. Furthermore, 

because of the evident sequence similarity among the putative genes in the ancestral virus 

genome, the most probable hypothesis would be that a Bcl-2 protein had been acquired 

from a eukaryotic host by the common ancestor of the subset of vertebrate poxviruses 

previously mentioned and probable events of gene duplication occurred within its genome 

before speciation proceeded. After the divergence of both poxviruses lineages new gene 

gain events increased the number of orthologue groups, probably because of the 

evolutionary advantage that these proteins conferred over the host organism in terms of 
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regulation or suppression of antiviral immune response. However in more recent ancestors 

the overall number of subfamilies within poxvirus genomes appears to have stabilized. An 

explanation for this stabilization might be that the gene repertoire of this family was varied 

enough to accomplish its mission. 

N1 is the only protein of this family with the same functionality as the putative Bcl-2 

ancestor gene so far. While keeping the same basic tertiary structure these proteins evolved 

until they managed to bind a diverse range of cellular proteins involved in an important 

pathway in response to pathogen attacks. As yet the presence of only other three families of 

Bcl-2-like genes has been confirmed in poxviruses. They are vaccinia virus F1L [31] with 

orthologues in all orthopoxviruses, myxoma virus M11L [32, 33] with orthologues in all 

genera of the Clade II, and fowlpox virus FPV039 [34] with orthologues in avipoxviruses. 

These are apparently single-copy genes and have no sequence similarity with the A46 and 

related Bcl-2-like families. Furthermore they lack sequence homology among them and 

only the avipoxvirus protein displays some sequence similarity with cellular Bcl-2 proteins. 

Very interestingly, these three families carry out the same function, apoptosis inhibition by 

binding pro-apoptotic BH3 peptides, but do not coincide in any poxvirus genome. Whether 

the origin of every poxvirus Bcl-2-like protein is independent or they arose from a gene 

present in a common ancestor of chordopoxviruses and any sequence relationship was lost 

during successive speciation events is undetermined. Nevertheless it is tempting to consider 

that the presence of other Bcl-2-like apoptosis inhibitors in poxvirus genomes offered the 

A46 and related families the opportunity to freely evolve. 

 

Functional considerations of the four protein families  

The common structural core and the sequence homology to N1 might suggest that some of 
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the other proteins belonging to A46, N2 and C1 families could be involved in an anti-

apoptotic role as N1. However this functionality has yet to be proven. On the contrary, it 

has been discarded for A52 and B15 [14] and probably for K7 [16]. However, the proteins 

A46, A52, B15, K7 and N1 target diverse host participants of the TLR signalling pathway 

(Figure 4) that are apparently unrelated among them, suggesting that the mechanisms of 

action of these poxvirus proteins are heterogeneous. We describe below the information 

available thus far on A46, N1, N2 and C1 families regarding the functional characteristics 

of these proteins, which might help to infer the molecular mechanism of these 

functionalities and find whether these functions can be transferred to other proteins in these 

families.  

N1 is the only of these families with an experimentally confirmed anti-apoptotic role. 

The N1 binding site to BH3 peptides consists basically of a hydrophobic groove flanked by 

charged residues [11]. Functional N1 residues are scarcely conserved in the rest of related 

families (Figure 1A). However, among the set of N1 residues which putatively interact with 

BH3 peptides, there are three residues (Ile75, Leu30 and Glu32) which belong to conserved 

motifs in alpha-helices 2 and 5. Proteins A52 and B15 do not inhibit staurosporine-induced 

apoptosis and this might be explained because in their surfaces the BH3-peptide binding 

groove would be blocked due to the greater length of alpha-helix 2, about one turn longer in 

comparison with that of N1 protein  [14]. Alpha-helix 2 in N1 has 12 residues while in A52, 

B15 and K7 it comprises 17 residues. In most members of the families A46, N2 and C1, the 

length of alpha-helix 2 can be predicted because two conserved Gly residues usually 

delimit it, and in all cases it would have approximately the same length as in A52. Thus 

none of these proteins would be expected to have anti-apoptotic properties like N1, 

although experiments should be performed to confirm this hypothesis. 
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VACV A46 inhibits TLR signalling pathway by binding to MyD88 and TRIF 

adaptors, a TIR-like domain being likely responsible for these interactions. This TIR-like 

domain has not yet been found in other VACV proteins or other poxvirus proteins apart 

from close A46 homologues in orthopoxviruses. Three conserved sequence motifs of TIR 

domains were described along the A46 protein sequence [4, 5]: one in its unique N-

terminus and the other two in the alpha-helices 1 and 7 of the common domain with N1. 

Despite the sequence similarity in these motifs the overall predicted structure of A46 

protein is not coincident with that of TIR domains, which in the case of TLR1 and TLR2 

contain a central five-stranded parallel beta-sheet surrounded by five alpha-helices on both 

sides [35]. In fact we could not find any relationship of A46 or any other VACV protein 

with TIR domains by using tools for remote sequence homology search or fold recognition 

(data not shown). This seems to discard the straightforward explanation that A46 would 

have acquired its unique role by grabbing a functional TIR domain from a host cell 

genome. In fact, if A46 had really evolved from a remote Bcl-2-like ancestor and not from a 

TLR-like ancestor the origin of the TIR conserved motifs might have probably been due to 

mutations which constituted an evolutionary advantage for viruses containing this gene. 

A52 inhibits TLR-dependent NF-kappaB activation by binding
 
to both TRAF6 and 

IRAK2 [4, 6]. Experiments with different mutant proteins have produced some data about 

A52 interaction with these host proteins at the molecular level. A deletion mutant including 

its N-terminal 144 residues was sufficient for inhibiting NF-kappaB activation and was able 

to interact with IRAK2 but not with TRAF6 [6], although it is not clear whether TRAF6 

interacts with the A52 C-terminus. Moreover the N-terminal 36 residues of A52 were not 

required to inhibit IL-1alpha-induced NF-kappaB activation [14]. A small peptide from 

VACV A52 has been shown to mimic the function of the whole protein as it avoids TLR-
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dependent cytokine secretion [36]. Recent experiments demonstrating that A52 inhibits NF-

kappaB activation by several TLRs only through its interaction
 
with IRAK-2 but not 

TRAF6 [37] support the hypothesis that this peptide acts on IRAK-2. The sequence 

corresponding to the peptide is moderately conserved among A52 orthologues and poorly 

conserved among other related poxvirus proteins. On the other hand we could not find in 

A52 sequence a canonical TRAF6-binding motif, P-x-E-x-x-(acidic/aromatic), that was 

identified in several TRAF6 cellular interaction partners [38]. This suggests that A52 must 

bind TRAF6 through a different mechanism.  

The crystal structure of K7 in complex with a 20 amino-acid DDX3 peptide has 

determined the precise details of their interaction [17]. DDX3 binds to a deep hydrophobic 

pocket in a negatively charged face of K7 delimited by its N-terminus, alpha-helix 1 and a 

non-helical segment equivalent to alpha-helix 6 in Bcl-2-like proteins. Interestingly, this 

region corresponds to the dimerization interface in A52, which differentiates from K7 in 

that it cannot bind DDX3. Like A52, K7 binds the TRAF domain of TRAF6 [15] but our 

search did not find a canonical TRAF6-binding motif in its sequence. 

It is striking how proteins of these families evolved from a common Bcl-2-like 

domain with anti-apoptotic role to perform diverse functions always related with the 

inhibition of the host immune response, more specifically the TLR signalling pathway, but 

at different levels and using different mechanisms. These poxvirus proteins probably act at 

the level of subtle protein interaction to sequester a target protein or impede a complex 

formation, but their mechanisms of action are mostly unknown. Although the structures of 

some of these proteins have been elucidated, as yet only one of them represents a complex 

with a host target peptide, what still hinders the prediction of possible functions for other 

members of these families. 
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Experimental data are scarce or even absent for VACV proteins C1, C6, N2 and 

C16/B22. C6 protein has been found in a very low proportion in vaccinia virus IMV 

particles [39], as is the case of A46. One possible reason for their presence in the virion 

could be that they are necessary for the viral cycle early after virus entry. On the other hand 

a VACV attenuated strain with a C6L gene deletion has shown an enhanced immune 

response in vivo (manuscript in preparation), indicating that this protein may also be 

involved in the regulation of the host immune response. An early study revealed N2 

location in the host cell nucleus during virus replication and discovered that a single 

nucleotide substitution in the 5’-UTR of N2L gene was responsible for an alpha-amanitin-

resistant phenotype [40]. This data could suggest a possible function of N2 in transcription, 

although this hypothesis has not been confirmed yet. An experiment performed to 

determine interactions between VACV and host cell proteins revealed three possible 

interacting partners for C6 and other three for N2, as determined by yeast two-hybrid and 

validated by pull-down [41]. However none of them seems to be directly related with the 

host immune response. One of the C6 binding partners was programmed cell death 6 

interacting protein (PDCD6IP/ALIX), which has been involved in apoptosis regulation, 

cytokinesis and HIV-1 budding. VACV C6 also interacted with keratin 4 (KRT4) and 

troponin I, skeletal, fast (TNNI2). In the same experiment three possible binding partners 

were described for N2: karyopherin alpha 2 (KPNA2), that may be involved in nuclear 

transport of proteins, phospholipid scramblase 4 (PLSCR4), that participates in the 

regulation of the movements of phospholipids in membranes, and valosin containing 

protein p97/p47 complex interacting protein 1 (VCPIP1), a deubiquitinating enzyme 

required for Golgi and ER assembly. These interaction data can help to uncover possible 

roles of C6 and N2, although they must be taken cautiously until more specific experiments 
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are performed. To our knowledge, no experimental data have been published yet about 

VACV proteins C1 or C16/B22. 

Recent studies on vaccinia virus transcription revealed the existence of an immediate-

early class of genes [42]. This class includes five genes of this family (A52R, B15R, C6L, 

K7R and N2L), while other five (A46R, N1L, C1L and C16L/B22R) belong to the early 

class. An immediate-early or early expression pattern can be characteristic of proteins 

involved in immune response evasion. Thus, those data agree with the known functions of 

A46, A52, B15, K7 and N1, and may support a possible role in immune response evasion 

of the members of these families with still unknown function. 

 The above findings have implications in the use of poxviruses as vaccines, in 

particular vaccinia virus attenuated strains MVA [43, 44] and NYVAC [45] that have been 

studied extensively [46]. In comparison with strain WR, MVA lacks A52R and C1L genes 

while NYVAC lacks C6L, N1L, N2L and C1L genes. However MVA contains one 

(MVA189R) and NYVAC contains two (C16L/B22R) additional genes with similarity to 

B15R which are not present in strain WR. A major difference in behaviour between these 

attenuated strains is that NYVAC provokes greater cytopathic effect, phosphorylation of 

EIF2-alpha and apoptosis in infected cells [47]. C6L, N2L and N1L are among the genes 

present in MVA and absent in NYVAC and thus could explain this behaviour. 

 

CONCLUSIONS 

We have described the sequence relationship among four families of poxvirus proteins, 

A46, N1, N2 and C1, which share a common domain with a Bcl-2-like fold, and proposed 

their integration into a single family. The phylogenetic distribution and reconstruction of 

the evolutionary history of this family indicate that it originated in the common ancestor of 
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orthopoxviruses and a clade formed by five other poxvirus genera. After initial increases in 

the family gene content in the most ancestral viruses a balance between gene gains and 

losses appears to have stabilized the number of family members in extant poxviruses. Their 

roles determined so far indicate that these proteins have specialized in regulating the host 

immune response, clearly suggesting that similar functions should be researched for other 

members of this family with still undefined function, like N2, C1, C6 and C16/B22. The 

diversity of host targets and the lack of precise data about what residues are involved in 

poxvirus-host protein interactions hamper the prediction of new targets for these families. 

Nevertheless, based on secondary structure predictions, our analysis foresees that 

practically all members of this family will be unable to bind pro-apoptotic peptides and 

inhibit apoptosis as N1 does. This study highlights the relevance of poxvirus protein 

families in innate immune sensing and suggests, from a point of view of the application of 

attenuated poxviruses as vaccines, that to avoid redundancy in related functions, gene 

deletions of entire families should be considered when recombinant vectors are developed 

with improved immune capacity. 

 

METHODS 

Sequence homology analysis 

Poxvirus protein sequences were obtained from the Poxvirus Bioinformatics Resource 

Center database [48, 49].  

Multiple sequence alignments of families were retrieved from Pfam database version 23 

[18] when indicated. A global sequence alignment was obtained with MAFFT [50] using 

the L-INS-i mode with default parameters and including three-dimensional structures to 

guide the alignment. The alignment was then manually adjusted. 
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Profile versus profile searches were performed with HHpred [19] in the global alignment 

mode and scoring secondary structure. Searches were carried out against Pfam-A_23 and 

PDB70 HMM profile databases available in the same web server. 

Iterative searches with HMMer [51], a method based on HMM profile vs. sequence 

comparisons, were performed as follows. A single search was started with a HMM profile 

against a database of poxvirus protein sequences. All hit sequences below a threshold e-

value of 0.01 were automatically aligned and from the alignment a new HMM profile was 

built which was used to start a new search. This was performed several rounds until the 

search reached the convergence, i.e. no new sequences were added. 

Secondary structure predictions were performed with PsiPred [52] starting from multiple 

sequence alignments of single families. 

 

Phylogenetic analyses 

The Bayesian phylogenetic tree of representative proteins of orthologue groups was 

obtained by running MrBayes v3.1.12 [53, 54] for 100000 generations in two rounds of two 

chains each through the Phylemon web server [55]. Trees were visualized with 

Phylodendron [56].  

For the poxvirus phylogenetic tree concatenated alignments of proteins encoded by five 

single-copy conserved poxvirus genes (E9L, J3R, J6R, H6R and D5R) from every 

chordopoxvirus species with at least one fully sequenced genome were used. An 

entomopoxvirus species was used as an outgroup to root the tree. The maximum likelihood 

phylogenetic tree was built with PhyML v3.0 [57] with the LG substitution model, four 

substitution rate categories, estimated proportion of invariable sites and branch support 

estimated by non-parametric bootstrap analysis with 100 replicates. 
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Reconstruction of the family gene content evolution 

Groups of orthologous proteins were detected by using the bidirectional best hit method. 

Starting with a dataset containing all poxvirus sequences, a BlastP [58] search was 

performed with every sequence within or with homology to the A46 family against the 

whole dataset. Two proteins belonging to different species were considered orthologues if 

each was the best hit of the other in their respective species. The orthologue groups 

obtained were contrasted with the Poxvirus Orthologous Clusters [59] from the Poxvirus 

Bioinformatics Resource Center database. For simplicity, several paralogues were included 

in orthologue groups in the cases of orthopoxvirus proteins in the B15R group and Clade II 

proteins in the N2L group. 

The gene content evolution was reconstructed with Count [30]. Input data comprised a table 

with the distribution of the groups of orthologous genes across the chordopoxvirus 

genomes (Additional File 2) and the poxvirus phylogenetic tree (Additional File 3). The 

ancestral reconstruction by likelihood maximization based on a phylogenetic birth-and-

death model was chosen [29]. Rate optimization was performed using a gain-loss-

duplication model with a Poisson family size distribution at the root. Family sizes and 

lineage-specific
 
events (gains, losses, expansions and contractions) were computed

 
using 

posterior probabilities in the optimized gain-loss-duplication
 
model. 
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FIGURE LEGENDS 

Figure 1. Sequence conservation in A46 and related families. 

(A) Multiple sequence alignment with the common sequence domain found in protein 

families A46, N1, N2 and C1. The alignment is non-redundant at 90% sequence identity. 

Sequences are identified by species/strain and gene locus number: SWPV-NEB, swinepox 

virus strain Nebraska 17077-99; SPPV-TU, sheeppox virus strain TU-V02127; DPV-

W848_83, deerpox virus strain W-848-83; MYXV-LAU, myxoma virus strain Lausanne; 
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RFV-KAS, rabbit fibroma virus strain Kasza; VACV-WR, vaccinia virus strain Western 

Reserve; YLDV-Davis, yaba-like disease virus strain Davis; RPXV-UTR, rabbitpox virus 

strain Utrecht; LSDV-NW_LW, lumpy skin disease virus strain Neethling Warmbaths LW; 

ECTV-NAV, ectromelia virus strain Naval. Shading indicates degree of sequence 

similarity. Conserved motifs are indicated with horizontal bars on the top of the alignment. 

Predicted secondary structure is indicated below each block of sequences (orange: alpha-

helix; blue: beta-sheet), except for A46 and N1, for which secondary structures of A52 

(PDB:2VVW) and N1 (PDB:2I39), respectively, are shown. Green arrowheads indicate N1 

protein residues putatively involved in BH3 peptide binding [11]. 

(B) Structural distribution of conserved motifs. Conserved residues in the multiple 

sequence alignment were mapped on the N1 structure (PDB:2I39). Secondary structure 

elements are depicted in yellow, except conserved residues, in orange. Side chains are 

coloured in red. Surface is shown in light grey. Structures were rendered with UCSF 

Chimera [60].  

 

Figure 2. Groups of orthologous genes in A46 and related families. 

(A) Phylogenetic relationships among the orthologue groups obtained from A46, N1, N2 

and C1 families. A Bayesian phylogenetic tree was constructed from a multiple sequence 

alignment of proteins encoded by genes in the ten orthologue groups. For simplicity only a 

representative species of every poxvirus genus, as depicted in (B), was selected. Posterior 

probabilities of every node are shown.  

 (B) Virus genomes representing genera Orthopoxvirus (VACV-COP), Leporipoxvirus 

(MYXV-LAU), Capripoxvirus (LSDV-NW_LW), Suipoxvirus (SWPV-NEB), Yatapoxvirus 

(YLDV-Davis) and Cervidpoxvirus (DPV-W848_83) are depicted, indicating the relative 
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genome positions of genes included in the orthologue groups. Species/strain names as in 

Figure 1A; VACV-COP, vaccinia virus strain Copenhagen. Numbers above every line 

represent the gene positions in the genome. Symbols below every line represent gene 

names. Genes drawn in the same colour belong to the same orthologue group. 

 

Figure 3. Reconstruction of ancestral gene repertoires in the evolutionary history of 

A46 and related families.  

The number in every node represents the inferred or real number of groups of orthologues 

present in each genome. This number was inferred for ancestral species by the maximum 

likelihood method implemented in the Count program [30]. The background colour of the 

number indicates the kind of variation in the gene content since the preceding node: green 

for nodes with a net gene gain, red for nodes with a net gene loss, and grey if the gene 

content remained unchanged. The tree contains a representative strain for every species of 

the subfamily Chordopoxvirinae with a completely sequenced genome and is based on a 

maximum likelihood phylogenetic tree (Additional File 3). Species/strain names as in 

Figures 1 and 2; TATV-DAH68, Taterapox virus strain Dahomey 1968; CMLV-CMS, 

Camelpox virus strain CMS; VARV-IND3_1967, Variola virus strain India 3 Major 1967; 

CPXV-GRI, Cowpox virus strain GRI-90; MPXV-SLE, Monkeypox virus strain Sierra 

Leone; YMTV-Amano, Yaba monkey tumor virus strain Amano; RFV-Kas, Rabbit 

fibroma virus strain Kasza; SPPV-A, Sheeppox virus strain A; GTPV-G20LKV, Goatpox 

virus strain G20-LKV; BPSV-AR02, Bovine papular stomatitis virus strain BV-AR02; 

ORFV-NZ2, Orf virus strain NZ2; MOCV-st1, Molluscum contagiosum virus strain 

subtype 1; CNPV-VR111, Canarypox virus strain ATCC VR111; FWPV-Iowa, Fowlpox 

virus strain Iowa; CRV-ZWE, Crocodilepox virus strain Zimbabwe. 
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Figure 4. Inhibition of host signalling pathways by VACV members of A46 and 

related families. TLRs are distributed in the plasma membrane and endosomes. When a 

pathogen is recognized by a TLR adaptor proteins are recruited which transmit the signal 

further downstream until specific transcription factors are activated and enhance the 

expression of genes encoding type I IFNs and pro-inflammatory cytokines. VACV proteins 

belonging to A46 and N1 families interfere with the TLR signalling pathway at different 

levels. A46 targets all known adaptor proteins: MyD88, MAL (TIRAP), TRIF and TRAM. 

A52 targets IRAK2 and TRAF6, intermediary between adaptors and transcription factors. 

K7 inhibits IRAK2, TRAF6 and also DDX3, which is part of the complex that activates 

transcription factor IRF3. B15 targets the IKK complex by avoiding IKKbeta 

phosphorylation, what eventually causes the inhibition of NF-kappaB. N1 associates with 

several components of the IKK complex and with TBK1, inhibiting NF-kappaB and IRF3 

activation, respectively. 

 

 

ADDITIONAL FILES 

Additional File 1 

Title: Poxvirus protein sequences detected by an iterative HMM search. 

Description: Poxvirus protein sequences detected with an e-value<1 in the final round after 

an iterative HMM search started with the Pox_A46 HMM profile from Pfam database 

against a poxvirus protein sequence database from the Poxvirus Bioinformatics Resource 

Center (www.poxvirus.org).  
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Additional File 2 

Title: Distribution of orthologue groups across poxvirus genomes. 

Description: Table that displays the number of genes of every orthologue group (rows) 

across every poxvirus species (columns). 

 

Additional File 3 

Title: Maximum likelihood phylogenetic tree of poxvirus species (Newick format). 

Description: Maximum likelihood phylogenetic tree built from concatenated alignments of 

sequences of proteins encoded by five single-copy conserved poxvirus genes (E9L, J3R, 

J6R, H6R and D5R) from every chordopoxvirus species with at least one fully sequenced 

genome. Protein sequences from an entomopoxvirus (AMEV-Moyer) were included to root 

the tree. 
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