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We demonstrate a swift ion-beam irradiation procedure based on electronicsnot nucleard excitation
to generate a large index jump step-like optical waveguidesDn0<0.2, Dne<0.1d in LiNbO3. The
method uses medium-mass ions with a kinetic energy high enough to assure that their electronic
stopping powerSeszd reaches a maximum value close to the amorphousslatentd track threshold
inside the crystal. Fluorine ions of 20 and 22 MeV and fluences in the ranges1–30d31014 are used
for this work. A buried amorphous layer having a low refractive indexs2.10 at a wavelength of
633 nmd is then generated at a controlled depth in LiNbO3, whose thickness is also tuned by
irradiation fluence. The layer left at the surface remains crystalline and constitutes the core of the
optical waveguide which, moreover, is several microns far from the end of the ion range. The
waveguides show, after annealing at 300 °C, low propagation lossess<1 dB/cmd and a high
second-harmonic generation coefficients50%–80% of that for bulk unirradiated LiNbO3, depending
on the fluenced. The formation and structure of the amorphous layer has been monitored
by additional Rutherford backscattering/channeling experiments. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1922082g

Ion implantation of light ionssH and Hed has been ex-
tensively investigated1 as an alternative to classical methods,
impurity diffusion and ion exchange, to fabricate optical
waveguides in dielectric and electro-optic materials, such as
LiNbO3. It has the advantage of being a flexible universal
method. However, the obtained refractive index profiles
that are based on nuclear collision damage are smooth and
typically require very high irradiation fluences
s1016–1017 cm−2d. Recently, the use of heavier ions and
higher energies to obtain waveguides is starting to be ex-
plored. Silicon,2 nickel3 at 3 MeV, and oxygen,4 fluorine,5

and nitrogen5 irradiations at around 5 MeV have already
been investigated. The fluences needed to achieve waveguid-
ing are markedly reduced down to around 1014 cm−2. How-
ever, the refractive index changes are neither large nor sharp,
and their origin is not well understood. Although the nuclear
collision damage still seems to be responsible for a signifi-
cant part of the refractive index modification in the low-
energy range, it has been pointed out that electronic excita-
tion could also be used to generate structural changessand/or
damaged and modify the refractive indices.4–6 Particularly,
oxygen and fluorine ions of 5 MeV generate a heavily dam-
aged layer at the surface after some critical fluence of
s2–6d31014 cm−2. Moreover, using silicon ions of 5 and
8 MeV, it has been recently found that such a surface layer is
optically isotropic and presents a low refractive indexsi.e.,

amorphous-liked, and that its thickness increases with
fluence.6 The physical basis recalled to explain the process is
as follows: lattice amorphization is induced7,8 along the tra-
jectories of bombarding ions whenever the electronic stop-
ping powerSe is above a certain thresholdSe,th. The so-called
latent tracks have a diameter of around a few nanometers.
When the irradiation fluence assures full overlapping of
the individual tracks, a homogeneous amorphous layer is
generated.

In this letter, we propose and implement a method, based
on the electronic excitation mechanism just described, to fab-
ricate an optical waveguide by means of choosing the experi-
mental irradiation conditionsstype of ion, high enough en-
ergyd so that the maximum electronic stopping powersabove
or close to the threshold for electronic-induced amorphiza-
tiond lies inside the crystal and not at the surface. An opti-
cally isotropic low-refractive-indexsamorphous-liked region
is then generated inside the crystal, whereas the material re-
mains crystalline near the surface. The high-index crystalline
layer at the surface constitutes the core of an optical wave-
guide. Conceptually the procedure relies on the same optical
barrier scheme successfully applied with light-ion implanta-
tion, but using the more effectivesas it has turned out to bed
electronic excitation. Moreover, the waveguide is several mi-
crons far from the end of range, thus keeping the impurity
level at a minimum. The method has been specifically ap-
plied to LiNbO3, which is a reference material9 for electro-
optic and nonlinear opticalsNLOd applications.

X- and Z-cut nominally puresintegrated optical graded
LiNbO3 plates purchased from Photox Optical Systems, UK,
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were irradiated with F+4 ions at 20 and 22 MeV in the 5 MV
tandetron accelerator recently installed at the CMAM in the
University Autónoma de Madrid.10 The samples were tilted
8° relative to normal incidence to avoid channeling and the
beam current density was kept below 200 nA/cm2 to mini-
mize charging and heating. In order to characterize the struc-
tural changes induced in the irradiated samples Rutherford
backscattering sRBSd/channeling experiments were per-
formed along thec-axis channel using H ions at 3 MeV. The
waveguide modes have been characterized by the prism-
coupling darkm-lines technique using a 5 mW He–Ne laser
sl=632.8 nmd. Propagation losses were determined by mea-
suring the scattered laser light along the beam trajectory in
the waveguide with a CCD camera. The second-harmonic
sSHd response was evaluated by using the method described
in Ref. 11 and applied to proton-exchange waveguides. As a
fundamental beam the 532 nm outputsns pulsesd of a
frequency-doubled Nd:YAG laser was focused on the irradi-
ated surface of the plate to an intensity of 1012 W m−2 to
generate a SH beam at 266 nm. The light polarization is
chosen to probe thed33 coefficient.

In this work, the selected energy of the ion irradiation is
substantially higher than those previously used in implanta-
tion experiments both to assure the dominant effect of elec-
tronic excitation in waveguide formation and to have the
maximum of the electronic stopping buried a few microns
inside the crystal. In fact, the physical situation achieved
during irradiation is illustrated in Fig. 1sad showing the re-
sults ofSRIM 2003 calculations for the nuclearsSnd and elec-
tronic sSed stopping powers for 22-MeV fluorine ions. The
maximum of theSeszd curve is inside the crystal at a depth of
about 4.5mm, well separated from the peak value of the
nuclear stopping powerSn at the end of the ion range
sz<8 mmd. The generated waveguides show several sharp
dark modes for both ordinary and extraordinary polarizations
for fluences above a threshold value of 131014 cm−2. The
measured values of the effective refractive index squared
sNm

2 d are shown in Fig. 2 as a function ofm2, m being the
mode order, for the various obtained modes. The obtained
refractive index profile for some representative fluences are
illustrated in Fig. 1sbd. The data corresponding to the thresh-

old fluences131014 cm−2d indicate a maximum waveguide
thicknesssi.e., maximum damage depthd at around 4.5mm,
in very good agreement with the maximum ofSeszd, clearly
supporting the hypothesis of electronic induced amorphiza-
tion. For fluences above 231014 cm−2 the measuredNm

2 ap-
proximately follow aNm

2 ~m2 dependence, as it is shown in
Fig. 2, indicating that an approximate step-like index profile
has been generated at the surface. The upper values of the
step profiles are consistent with those for the bulk crystal
sTable Id. The bottom level of the refractive index step is
obtained from the abrupt change in slope of theNm

2 ~m2 plot.
It is approximately the same for the two polarizations and
coincides with the refractive index of amorphous LiNbO3
sRefs. 6 and 12d sna=2.10d. The thickness of the waveguid-
ing layer determined from the optical measurements is a
function of the irradiation fluencef, as it is clearly seen in
Fig. 2 and given in Table I. It reveals that the position of the
sfrontd boundary separating the crystalline and amorphous
layers moves towards the input surface of the sample on
increasing fluence. On the other hand, forNm,na some reso-
nances are also measured which are caused by the refractive
index jump at the back amorphous-crystalline boundary as
indicated by the much smaller slope in Fig. 2. RBS/
channeling data shown below also indicate that the back
boundary moves towards the end of ion range. Given the
relevance for the waveguide performancesi.e., high mode
confinement allowing the production of nonleaky narrow
monomode waveguidesd this estimated part of the refractive
index profile has also been plotted in Fig. 1sbd with dashed
lines sthe expected refractive index change in the nuclear
stopping layer, not relevant for this work, is neglectedd. This
boundary motion effect has been recently observed and at-
tributed to a reduction in the amorphization threshold with
fluence.6 Note that optical barriers as wide as 4–5mm are
obtained for fluences of,131015 cm−2.

FIG. 1. sad Electronic sSed and nuclearsSnd stopping power of 22-MeV
fluorine ions in LiNbO3 calculated withSRIM 2003. sbd Ordinary snod and
extraordinarysned refractive index profiles obtained from the dark-mode
datassolid linesd for some representative fluences. The estimated refractive
index profilesusing the low-index optical resonances and RBS/channeling
datad corresponding to the back amorphous-crystalline boundary is also
shown with dashed lines.

FIG. 2. Effective refractive index squaredsNm
2 d of the measured modes and

resonances as a function of the mode number squaredsm2d for ordinary
sleftd and extraordinarysrightd polarization, for the fluences indicated in the
figure. The squared refractive indices for the bulk LiNbO3 and for amor-
phous layer are also indicated with dashed lines.

TABLE I. Data for theZ-cut samples irradiated with 22-MeV F ions.hopt

andhRBS are, respectively, the waveguide thickness obtained from the dark-
mode optical measurements and from the RBS/channeling measurements.
ne,s andno,s refer to the surface refractive index for extraordinary and ordi-
nary polarization, respectively.x33

s2dsnormd stands for the second-order sus-
ceptibility measured relative to a virgin substrate.

Fluence
sat/cm−2d

hopt

smmd
hRBS

smmd ne,s no,s x33
s2dsnormd

131014 4.5 3.7 ¯ 2.286 0.8
231014 3.6 2.7 2.207 2.284 0.7
431014 3.0 2.3 2.208 2.281 0.6
131015 2.3 1.8 2.210 2.278 0.6
331015 2.0 1.6 2.211 2.278 0.5
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Figure 3 shows the RBS/channeling data taken by using
3-MeV H as probing ions on the irradiatedz-cut samples.
One sees that at fluences above 1014 cm−2 a buried region
with random-like yield is observed. The thickness of the
waveguide layer decreases as the buried damaged layer
grows with fluence. Values are listed in Table I together with
the optical data. The front crystalline-amorphous boundary is
quite sharp in agreement with the opticalsdark-mode datad.
On the other hand, the high-index surface layer shows rela-
tively clean channeled spectra suggesting a good crystallinity
and thus good optical properties.

Experimental data after implantation show high light
propagation losses associated to color centers introduced
during the irradiation. However, annealing treatments above
200 °C markedly improve the propagation, improving at the
same time the sharpness of the refractive index step. It is
noticeable that after 1 h annealing at 300 °C, the low refrac-
tive index of the amorphous layer remains unchanged. Figure
4 shows the losses measurement obtained for extraordinary-
index propagation in anX-cut sample irradiated with 20
-MeV F ions at the intermediate fluence of 431014 cm−2 and
annealed 1 h at 300 °C in air. The quantitative analysis of
the scattered light shows losses around 1 dB/cm, which ap-
pears competitive with values reported for waveguides pre-
pared by other implantation techniques.2–5 In order to assess
the potential of the generated waveguide for NLO devices
the second-harmonic generationsSHGd response of the layer
has been measured for several fluences. By comparing to a
reference LiNbO3 substrate, the SHG susceptibility of the

waveguides at the crystal surface amounts to<80% of the
bulk value of unirradiated LiNbO3 for low fluences. For
higher fluences a monotonic decrease is found as given in
Table I. On the other hand, no substantial improvement is
obtained after annealing at 300 °C. The decrease in SHG
yield may be related to small structural disorder and to do-
main depolarization caused by the irradiation as previously
reported for He+ implantation in both LiNbO3 sRef. 13d and
KNbO3.

14 Further work on irradiation conditions, annealing,
and domain poling is needed.

In summary, a sharp step-like optical waveguide has
been generated at the surface by irradiating LiNbO3 sub-
strates with a 20–22 MeV F beam at fluences in the range
231014–331015 cm−2. At this energy, the electronic stop-
ping power reaches a maximum beneath the surface, with a
value close to the threshold for amorphization. A several-
micron-wide isotropic s“amorphous”d low-index layer
sn=2.10 atl=633 nmd is then created by the swift heavy
ion-beam irradiation. The crystalline surface layer constitutes
the waveguide core and approximately maintains the refrac-
tive index values of the bulk crystal. Therefore, large refrac-
tive index jumps ofDno<0.2 andDne<0.1 are created, al-
lowing for the propagation of highly confined modes. The
high optical confinement, reasonable low waveguide losses
s,1 dB/cmd and significant second-harmonic efficiency
sabout 50%–80% of that for unirradiated LiNbO3d show a
promising performance for optoelectronic applications. Fur-
thermore, the method is expected to apply to other relevant
crystalline materials.
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FIG. 3. RBS/channeling spectra measured, with 3-MeV H along thec axis,
in Z-cut samples irradiated with 22-MeV F ions at the fluences ofs1d 1
31014 striangles symbolsd, s2d 231014, s3d 431014, s4d 131015, and s5d
331015. For the purposes of clarity, only the spectra corresponding to
curves s2d and s5d are plotted for channels below 700. The depth scale
shown has been calculated using the density of the virgin LiNbO3; it under-
stimates the width of the buried amorphous layer since it is expected to have
a lower density.

FIG. 4. Loss measurement derived from the scattered light from the funda-
mental extraordinary mode of a waveguide produced by irradiating anX-cut
sample with 20-MeV F ions at a fluence of 431014 cm−2 and annealed in air
1 h at 300 °C. The strong peak is due to a scratch on the surface.
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