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Kramers’ turnover theory for diffusion of Na atoms on a Cu „001… surface
measured by He scattering
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The diffusion of adatoms and molecules on a surface at low coverage can be measured by helium
scattering. The experimental observable is the dynamic structure factor. In this article, we show how
Kramers’ turnover theory can be used to infer physical properties of the diffusing particle from the
experiment. Previously, Chudley and Elliot showed, under reasonable assumptions, that the dynamic
structure factor is determined by the hopping distribution of the adsorbed particle. Kramers’ theory
determines the hopping distribution in terms of two parameters only. These are an effective
frequency and the energy loss of the particle to the bath as it traverses from one barrier to the next.
Kramers’ theory, including finite barrier corrections, is tested successfully against numerical
Langevin equation simulations, using both separable and nonseparable interaction potentials.
Kramers’ approach, which really is a steepest descent estimate for the rate, based on the Langevin
equation, involves closed analytical expressions and so is relatively easy to implement. Diffusion of
Na atoms on a Cu~001! surface has been chosen as an example to illustrate the application of
Kramers’ theory. ©2003 American Institute of Physics.@DOI: 10.1063/1.1587687#
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I. INTRODUCTION

The last years have seen a proliferation of experime
and theoretical studies of atom-surface diffusion.1–17 The
most important questions addressed in such studies, a
from accurate measurements of diffusion coefficients
jump rates, have been the determination of diffus
mechanisms,2–5 the role played by long jumps in the diffu
sion process,6–17 and the detailed knowledge of the adiaba
potential energy surface~PES! which governs the motion o
the adsorbed particles.18–20

For clean, perfectly periodic surfaces at low coverag
the motion of single adatoms can be probed by differ
experimental techniques. Field ion microscopy~FIM! and
scanning tunneling microscopy~STM! have made possible
the study of diffusion on metal surfaces directly at the atom
level,6–8 providing time-dependent information on the ind
vidual displacements carried out by a diffusing adato
From these measurements, the diffusion coefficients at
ferent temperatures and the time-dependent distribution
adatom locations can be obtained. Their drawback is
they are restricted to relatively low diffusion mobilities (D
;1029 cm2/s).

The quasielastic helium atom scattering~QHAS! tech-
nique has also been successfully applied to study diffusio
single atoms and molecules on metal surfaces.18–20 van
Hove’s formalism for quasielastic neutron scattering21,22gen-
eralized to surface diffusion23 can be straightforwardly ap
plied. In contrast to the previous techniques, in which o
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follows the motion of a single adatom, here, only the e
semble of diffusing particles, as described by a tim
dependent distribution functionG(R,t), can be probed. At
low adatom concentrations, interactions between adsorb
can be ignored, andG(R,t) is defined as the probability o
finding a single adatom at the surface positionR at time t,
given that it was at the origin at some arbitrary timet50.
The observable directly accessible by scattering experim
is the dynamic structure factor,S(K ,v), which is the Fourier
transform in space and time of the functionG(R,t). HereK
is the momentum transfer of the helium atoms parallel to
surface andv the corresponding energy transfer. To obta
information about diffusion coefficients, jump rates, a
jump distributions, one generally assumes a diffusion mo
valid in a certain wave-vector range under some conditio
For instance, the diffusion coefficients are usually extrac
from the behavior of the dynamic structure factor at smallK .
Low values of the wave-vector transfer imply that the heliu
beam is probing large distances, thus a continuous diffus
model ~no influence of the adiabatic PES! is supposed to be
a good description for the diffusion process. On the ot
hand, as first introduced in this context by Chudley a
Elliot,24 jump distributions and rates are obtained by fitti
the wholeK dependence of the quasielastic peak width to
instantaneous jump model~master equation approach!.

The remarkable feature of the QHAS technique is tha
also allows a direct measurement of low vibrational frequ
cies of the adatoms. In addition to the quasielastic peak c
tered atv50, a dispersionless mode inelastic peak appe
at fixed frequency values of the dynamic structure fac
This peak is related to the frustrated translational mode
0 © 2003 American Institute of Physics
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2781J. Chem. Phys., Vol. 119, No. 5, 1 August 2003 Kramers’ turnover theory for diffusion of Na atoms
T-mode, representing vibrations of the adatoms at equ
rium sites. Moreover, the T-mode lifetime, obtained by e
trapolation of the T-mode width to surface zero temperatu
gives a direct estimation of the friction coefficient25 between
the adatom and the surface. Analysis of the broadening
this peak as a function of the surface temperature and
mentum transfer also provides information about the cur
ture of the PES minima and the anharmonicity. This kno
edge has been used in combination with extensive molec
dynamics and Langevin simulations to determine the sh
of the adiabatic PES of several systems.18–20,26

The good agreement between the simulated data and
experimental values obtained for friction constants, diffus
coefficients, and vibrational frequencies at low adatom c
centration allows one to extract some important conclusi
for the systems studied. First of all, for barriersV‡.3kT,
the diffusion process is activated and the instantaneous j
picture works well. Second, the coupling to the surface
well described in terms of an ohmic friction in the expe
mentally accessible range of temperatures~between 50 and
300 K!. This is an indication that the damping mechanism
mainly due to electron–hole pair creation and/or acou
phonons.12,17,18 This is consistent with the fact that th
T-mode frequency is lower than the Debye frequency. Th
activation barriers measured from Arrhenius plots of the d
fusion coefficient or the quasielastic peak width are alw
lower than the ‘‘static’’ activation barrierV‡ determined from
simulation data or from the T-mode frequency.19,26 This dis-
crepancy has been attributed to several factors: a sizable
tribution of long jumps as the surface temperature increa
a failure of the Chudley–Elliot model, or the addition
broadening of the quasielastic peak caused by the T-m
contribution, which is not an activated process. Thus st
activation barriers obtained from experiment are only re
able if they are measured at low temperatures. Fourth, c
parison of the prefactors for the activated jump rates
diffusion coefficients with those given by classical transiti
state theory~TST! showed large discrepancies.19 The exis-
tence of multiple jumps was again mentioned as a sourc
error,27 but only in the context of the Chudley–Elliot mode
Last, in order to find agreement between numerical simu
tions and experiment, a two-dimensional PES with coupl
between the two coordinates had to be considered.

A quantum and classical theory of surface diffusion
low coverage, based on Kramers’ theory10 of activated es-
cape over potential barriers was developed by Mel’niko28

and Pollak and co-workers.11,12This theory provides analytic
expressions for the diffusion coefficient, escape rate,
hopping distribution, whenever the underlying dynamics
described in terms of a Langevin equation. The theory p
vides a steepest descent estimate for the relevant quant
where the large parameter is the reduced barrier he
V‡/(kBT). The theory has been successfully applied to in
pret experimental results of 1D surface diffusion by FIM a
STM techniques,13,14 as well as to analyze the role of mu
tiple hops in activated diffusion.12,14 For multidimensional
problems, it can be also used to study the importance of
coupling between the different degrees of freedom.14 In this
theory, observable quantities such as jump distributions
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diffusion coefficients are governed by two paramete
namely, the energy lossd ~the average energy loss, in units
kT, of a particle as it traverses the distance between
consecutive barriers! and the escape rate in the spatial diff
sion regimeGsd.

The fact that only two parameters are needed is an
portant advantage over other existing approaches to fit
experimental data. Random walk models in which the h
ping rates to different sites are taken as independent fit
parameters29 are very often used. In the Kramers based a
proach, the complete hopping distribution is determined
terms of a single parameter, the energy loss. This does
mean that there Langevin equation simulations are no lon
necessary. However, they do demand extensive paramet
tion of a potential energy surface. In comparison, the Kra
ers based theory is simple—analytic expressions—
physically transparent. These considerations imply that
theory should be added to the tools used in the analysi
the experimental results and in particular, the full width
half maximum of the deconvoluted quasielastic peak a
function of the wave vector transfer.

That Kramers’ approach is viable is demonstrated in F
1, where a fit of Kramers’ theory~solid line! to a Langevin
simulation ~black circles! for the motion of Na atoms on a
nonseparable, two-dimensional Cu~001! surface at T
5200 K is displayed. In particular, in the numerically exa
Langevin simulation, the two physical parameters are kno
to bed51.59 andGsd50.062 ps21. The least-squares fit o
Kramers’ theory to the numerical data gives the values 1
and 0.076 ps21, respectively. This level of accuracy is suffi
cient to demonstrate that indeed a fit of Kramers’ theory
experimental data would lead to a rather accurate determ
tion of the two parameters.

The main purpose of the present article is thus to sh
that Kramers’ theory generalized to surface diffusion p
vides a good method for analyzing experimental QHAS
sults and quickly obtaining the relevant information. We w
show that even the multidimensional Kramers’ theory can

FIG. 1. Half width at half maximum~in meV! of the quasielastic peak as
function of the wave-vector transfer for the diffusion of Na adatoms on
Cu~001! surface at 200 K. Black circles are the results from the Lange
numerical simulation using a nonseparable interaction potential and the
line is the least-squares fit of Kramers’ theory to the numerical data.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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successfully used provided that the coupling between the
ferent degrees of freedom is not too strong. In the next s
tion we will briefly describe the system and the basic form
ism usually employed to obtain the quantities of intere
such as diffusion coefficients or jump distributions, fro
QHAS experiments. Next, in Sec. III, we discuss Krame
theory of activated surface diffusion. Then, in Sec. IV, w
provide detailed one- and two-dimensional numerical test
Kramers’ theory. We finish with a comparison to availab
experimental data and some conclusions.

II. THE QUASIELASTIC HELIUM ATOM SCATTERING
„QHAS… FORMALISM

A. Potential energy surface

As mentioned earlier, at low adatom coverages,
adsorbate–adsorbate interactions can be disregarded
only the adsorbate–substrate interaction which is gover
by a multidimensional PES must be taken into account.
the Na/Cu~001! system, the frequency of vibration along th
coordinate perpendicular to the surface is much larger t
parallel vibrational frequencies, and the corresponding P
is considered as being averaged over the Na vibrations
mal to the surface. Therefore Na atoms move on a tw
dimensional, periodic potential. In theoretical simulations
QHAS experiments, two PESs have been proposed.18,19 The
most recent one is nonseparable and was fitted to an ex
sion of the form19

V~x,y!5V0~x,y!1V1~x,y!1V2~x,y!. ~1!

The first term is a separable cosine potential

V0~x,y!5V0@22cos~2px/a!2cos~2py/a!#, ~2!

where a is the lattice constant of the Cu~001! surface (a
52.557 Å), andV0541.4 meV. The second term is adde
to produce a lowering of the potential barrier in the diago
direction.

V1~x,y!52A(
m,n

exp„2b$@x/a2~m1 1
2!#

2

1@y/a2~n1 1
2!#

2%… ~3!

with A52V0 andb511.8. This term was added to accou
for the experimental observation of a sizable contribution
diffusion paths not going directly over the saddle point19

Finally, the third term is a nonseparable part which chan
the curvature near the minima and varies the difference
tween the potential at the minima and the bridge position

V2~x,y!5CV0p2(
m,n

@~x/a2m!21~y/a2n!2#

3exp@2~x/a2m!22~y/a2n!2# ~4!

with C520.2.
The four adjustable parametersV0 , A, b, and C were

obtained after extensive optimization to give the best fit
tween the theoretical~Langevin simulation! and experimen-
tal values. Thex and y directions are taken along the az
muths with indices@11̄0# and @110#, respectively. The
energy zero is taken at the minima (x,y)5(0,0) of the po-
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tential wells, corresponding to hollow sites. The saddle po
energy along thex or y directions, (x,y)5(6a/2,0) or
(x,y)5(0,6a/2), respectively, is at 74.64 meV, and th
saddle point energy along the diagonal@100# or @010# azi-
muths is at 84.49 meV. There appear also small minima
the potential truncated hills corresponding to on-top si
above the copper atoms which are at an energy of 82
meV. The maxima at the hill tops are located at 85.51 m
In the first theoretical simulations of the QHAS experimen
for this particular system,18 a separable potential consistin
of only the V0(x,y) term, Eq. ~2!, was employed, with a
slightly lower saddle point energy~67 meV!.

In the present work, we will use both interaction mode
to calculate diffusion rates and jump distributions in order
reveal the distinctive features emerging from the poten
energy coupling. As Kramers’ theory of activated diffusio
was originally derived for one-dimensional systems, the
of a separable potential will be a good test for the theory.
analytic multidimensional theory along these lines is on
available under additional assumptions since, in princip
the energy loss cannot be easily calculated.14,30,31

From the point of view of the purely Hamiltonian dy
namics, corresponding to motion without friction, the diffe
ence between the separable and coupled cases is qualit
A separable potential gives an integrable Hamiltonian a
the classical dynamics consists of only stable orbits. Abo
the saddle point energy trajectories along thex or y directions
propagate in a ballistic way, diffusing freely, and no chan
of direction or trapping into a well can occur. In contrast, t
nonseparable potential gives rise to instabilities and cha
Trajectories with energies above the diffusion barrier can
come trapped for long times in a well, due to the existence
stable rotating orbits not present in the integrable cas32

Transport properties in analogy to the noisy case can
defined33 ~although the source of randomness is intrin
here, due only to the classical dynamics without friction a
random force! and, depending on the energy, two differe
transport regimes, normal and enhanced, can arise.32,34,35

At low friction and temperature features of the classic
dynamics can still survive.32 Moreover, in the low to inter-
mediate friction regime the analytical solution for the esca
rate requires that the energy distribution of particles close
the barrier top depends mainly on the classical action o
trajectory connecting two consecutive saddle points.28,36,37

Therefore knowledge of the Hamiltonian dynamics may
important in order to establish the validity of Kramer
theory in the turnover region. It is also worth mentioning th
different behavior of the diffusion coefficient as a function
friction has been found for separable and nonseparable
dimensional potentials.15,17,38

B. Basic formalism

The observable measured in QHAS experiments is
differential reflection probability~the probability for a pro-
jectile helium atom to be scattered into a certain solid an
V with an energy exchange\v! which is proportional to the
dynamic structure factorS(K ,v) ~Ref. 23!
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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d2R~K ,v!

dVdv
5ndF2S~K ,v!. ~5!

Here,nd is the diffusing particle concentration on the surfa
andF is the atomic form factor which depends on the int
action potential between the He atom and the adparticles
mentioned in the Introduction, the dynamic structure fac
has contributions both from the quasielastic peak centere
v50, whose broadening is mainly due to the diffusion
motion of the adatoms, and from the T-mode vibrations. T
contribution of the T-mode to the quasielastic peak will d
pend on the incident beam energy, the surface tempera
and the parallel wave-vector transferK , which is controlled
by changing the incident angle of the beam with respec
the surface normal. Experimentally it is not possible to se
rate the vibrational and diffusional motion contributions,
though some mechanisms which take advantage of the
dent beam conditions have been recently propose39

Nevertheless, a comparison with theoretical predictions
possible by fitting the quasielastic peak to an effect
Lorentzian after deconvolution with the instrument respo
function.18,19

In the absence of any numerical simulation, two sim
models are customarily used to extract information from
width of the quasielastic peak. The incident He atom wa
packet probes the motion of the adatom on a length s
given by 2p/K . At small wave vector transfer, correspon
ing to distances much larger than the lattice constant,
atoms are sensitive only to the macroscopic continuous
fusional motion of the adatoms. Then the distribution fun
tion G(R,t) obeys the usual diffusion equation, whose so
tion is well known,40 and the dynamic structure factor ha
the Lorentzian form

S~K ,v!5
1

p

DK2

v21D2K4 . ~6!

Therefore the diffusion coefficientD can be estimated from
the full width at half maximum~FWHM! of the quasielastic
peak with respect tov at smallK , which should be equal to
G52DK2. Langevin calculations of the diffusion coefficien
for the Na/Cu~001! system through the Einstein or Green
Kubo relations

D5 lim
t→`

1

4t
^uR~ t !2R~0!u2&5 lim

t→`
E

0

t

^v~0!•v~t!&dt ~7!

have shown that Eq.~6! is indeed a good approximation t
the dynamic structure factor forK,0.2 Å21.19,32

In order to get the total jump rates and jump distributio
from the dynamic structure factor the most widely us
model is the master equation approach, which dates bac
least to Chudley and Elliot.24 Here the diffusion process i
assumed to be activated, residence times inside a wel
much longer than the velocity correlation timetv;1/g, with
g the friction coefficient, and jumps between different sit
are considered to be instantaneous. The Fokker–Planck
namics can then be approximated by a discrete master e
tion which is solved by Fourier transformation.24,41 In this
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case the dynamic structure factor is again a Lorentzian w
respect tov, and the FWHM is related to the total jump ra
and jump probabilities as

G~K !52k(
j

Pj@12cos~ j "K !#. ~8!

k is the total jump rate out of an adsorption site andPj the
relative probability for a jump with a displacement vectorj .
Note that Eq.~8! is in fact a cosine Fourier series, so th
using the inversion formula for the Fourier coefficients, t
total jump rate and jump distributions along specificx or y
directions can be obtained from the FWHM as

k5
a

2p E
0

p/a

G~Kx,y!dKx,y , ~9!

Pj52
a

kp E
0

p/a

G~Kx,y!cos~a jKx,y!dKx,y , ~10!

where Pj is now the probability of jumping overj lattice
sites in a single jump along thex or y direction andKx,y is
the wave-vector transfer in this direction.

Ideally, if one has enough experimental points in the fi
Brillouin zone ofK , this inversion procedure can be accom
plished to obtain the rates and jump distributions. In pract
one has two sources of error: first, the instantaneous ju
picture ~for a one-dimensional cosine potential! is a good
approximation only for barriersV‡/kT>3.42 Second, and
more importantly, the FWHM is not really a periodic func
tion of K whose period is a reciprocal lattice vector,18,19 as
suggested by Eq.~8!. This is due to the fact that at larg
values of wave-vector transfer the contribution of the vib
tional T-mode to the quasielastic peak width is appreciab
and diffusional and vibrational motions cannot be separa
In this case, a more reliable way of obtaining informati
from experiments is by numerically simulating the dynam
structure factor. This can be achieved with molecular dyna
ics simulations;26 by a direct numerical solution of the cor
responding Fokker–Planck equation~a Klein–Kramers
equation in this case! for the distribution function
G(R,t);38,42,43by application of the Mori projection operato
formalism to a microscopic lattice dynamics Hamiltonian44

or by simulating stochastic trajectories directly from
Langevin equation.15,19 Obviously the last three method
should give equivalent results, although a particular cho
may be more convenient for practical reasons. For instanc
matrix continued fraction solution43 of the Klein–Kramers
equation is more slowly convergent at low friction value
and difficult in more than one dimension, while the oppos
happens with a Langevin simulation: propagation times a
size of the ensembles need to be considerably increase
high friction values~and low temperatures!, but the added
degrees of freedom do not pose a numerical bottleneck.

In order to test the analytical predictions of Krame
turnover theory we will solve the Langevin equation for
particle in an external field of force with constant~ohmic!
friction:

R̈52
1

m
¹RV~R!2gṘ1

1

m
Fr~ t !, ~11!
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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whereV is the adiabatic adsorption potential, Eq.~1!, g is the
friction coefficient, andFr a Gaussian white noise with zer
mean and autocorrelation function

^Fr~ t !Fr~ t8!&52mgkBTd~ t2t8!. ~12!

The relevant physical observable are obtained by suita
averaging over stochastic paths and time. For instance
diffusion coefficients can be calculated through any of
equivalent relations~7!, and the dynamic structure factor ca
be obtained from22

S~K ,v!5E dte2 ivt^e2 iK "R~ t !eiK "R~0!&. ~13!

The numerical method chosen here to integrate the Lang
equation~11! is a third-order velocity Verlet,45 which con-
verges rapidly even when compared to methods of supe
accuracy, such as fourth order Runge-Kutta.46

III. KRAMERS’ BASED THEORY OF ACTIVATED
SURFACE DIFFUSION

A. One-dimensional theory

In Refs. 11, 12, and 28 a semiclassical and class
theory of activated surface diffusion in one dimension w
developed, which generalizes Kramers’ solution for the pr
lem of escape from a metastable well.10,28,36,47The theory is
valid for the whole damping range, from the energy diffusi
regime to the high friction or spatial diffusion regime, und
the following assumptions: the dynamics is described b
Langevin equation; the~reduced! barriers for diffusion are
high (V‡/kT@1); the potential at the barrier top is approx
mately parabolic, with frequencyv‡; and energy loss to the
bath of trajectories close to the barrier top is given by cl
sical mechanics. We stress~as also shown below! that for a
one-dimensional Langevin equation, the Kramers’ ba
theory with finite barrier correction terms can replace
numerical simulation, provided that the reduced barr
height is of the order of;3 and higher.

The starting point for the evaluation of the escape ra
jump distribution, and diffusion coefficient is an equation f
the stationary flux of particles exiting each well at eith
barrier:

f j
1~e!5E

2`

`

de8P~eue8!@u~2e8! f j
2~e8!

1 f j 21
1 ~e8!u~e8!#, ~14!

where f j
1( f j

2) are the number of particles per unit ener
and per unit time hitting the right~left! barrier of thej th well
with positive~negative! velocity, u(x) the unit step function,
and the kernelP(eue8) is the probability that the particle
changes its~reduced! energy frome to e8 as it traverses from
one barrier to the next. The kernel has been shown to h
the Gaussian form28,36

P~eue8!5
1

A4pd
expF2

~e2e81d!2

4d G , ~15!

whered is the ~reduced! average energy loss from the pa
ticle to the bath. To first order in the damping and the bar
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height the energy loss is simplyd5gS/kT, whereS is the
classical action of the trajectory which crosses one unit
at an energy equal to the barrier energy. For a single co
potential like the one in Eq.~2!, with barrier heightV‡

52V0 , the energy loss is given by

d5
8V0g

kTv0
, ~16!

wherev052pAV0 /ma2 is the harmonic frequency of oscil
lation near the well bottom.

To obtain escape rates and jump distributions, the pa
ratesG j are defined as the number of particles per unit ti
exiting the zeroth well which are thentrapped in the j th
well. They are given by the difference between incoming a
outgoing fluxes:

G j5E
0

`

de@ f j 21
1 ~e!1 f j 11

2 ~e!2 f j
2~e!2 f j

1~e!#. ~17!

Finally, one needs to solve Eqs.~14! and ~17! subject to the
boundary condition

f j
1~e!.d j 0

v0l‡

2pv‡ e2~e1V‡! e→2` ~18!

which implies that, initially, all the population is in the we
j 50 and has a thermal distribution of energy close to
bottom of the well. Herev‡ is the harmonic barrier fre-
quency. Note also that the Kramers–Grote–Hynes prefa

l‡

v‡ 5A11
g2

4v‡22
g

2v‡ ~19!

appears here as a normalization taking into account recr
ings, since we are working in normal mode coordinates
the diffusing particle and the bath.36

Equations~14!–~17! with the boundary condition~18!
are solved by a discrete Fourier transformation inj followed
by a Laplace transformation in energy, for details see R
11. The final result for the partial rates is

G j52
Gsd

p E
0

2p

dk sin2S k

2D cos~ jk !

3expH 2

p E
0

p/2

dx lnF 12P2~x!

11P2~x!22P~x!cos~k!G J ,

~20!

whereGsd is the spatial diffusion escape rate10

Gsd5
l‡

v‡

v0

p
e2~V‡/kT! ~21!

and the functionP(x) is given by48

P~x!5expF2
d

4 cos2~x!G . ~22!

The rate of escape from the zeroth well is

k52G0 . ~23!

The relative probability for a jump of lengthj is given by the
probability of being trapped at thej th well:
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Pj5
G j

k
. ~24!

For a one-dimensional potential, the diffusion coefficient
related to the escape rate by41

D5
1

2
k^ l 2&5

1

2
a2 (

j 52`

j 5`

j 2G j , ~25!

where^ l 2& is the mean squared path length. Introducing E
~20! into Eq. ~25!, the diffusion coefficient can be express
in the closed form12,28

D5DsdY
21 expH 2

p E
0

p/2

dx ln@11P~x!#J , ~26!

whereDsd[1/2a2Gsd is the diffusion coefficient in the spa
tial diffusion regime, andY is the depopulation factor for th
metastable well first given by Mel’nikov@see Eqs.~2.55! and
~2.56! in Ref. 28#

Y5expH 2

p E
0

p/2

dx ln@12P~x!#J . ~27!

In analogy to the Chudley–Elliot model, an analytic
expression for the dynamic structure factor can be obtai
by imposing a master equation for the time-dependent di
bution Gl(t), which is the probability that the particle is a
site l at time t if it was at the zeroth well att50. Using the
partial ratesG j this equation takes the form12

dGl~ t !

dt
5 (

j 52`

j 5`

G jGl 2 j~ t ! ~28!

which is solved as usual by Fourier transformation. Defin

Ĝ~k!5 (
j 52`

j 5`

eik jG j ~29!

and using the expression for the partial rates Eq.~20!, one
readily sees that the dynamic structure factor has the ubi
tous Lorentzian shape with the FWHM given by

G~k!52Ĝ~k!

54Gsdsin2S k

2D
3expH 2

p E
0

p/2

dx lnF 12P2~x!

11P2~x!22P~x!cos~k!G J .

~30!

It is easy to check by direct substitution of the definitio
~23!, ~24!, and~29! that Eqs.~8! and~30! are equivalent. We
note, however, that we have identified the probability o
jump of lengthl in Eq. ~8! asPl52G l /k since only positive
l values are considered and the symmetry conditionG l

5G2 l has been used. Notice also that herek corresponds to
the dimensionless wave-vector transferaKx,y along one spe-
cific x or y direction.

Equation~30! is important in the sense that, assumi
the validity of Kramers’ model and the master equation
proach, it allows for a direct comparison with the experime
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tal data and therefore an estimation of the spatial diffus
rate Gsd and the energy lossd. From these parameters an
their temperature dependence, one can further infer@via Eqs.
~16!, ~19! and ~21!# the barrier heightV‡, the friction coef-
ficient g, and the barrier frequencyv‡. As will be seen in
Sec. III C, finite barrier corrections will mainly affect th
prefactorGsd.

B. Multidimensional theory

Kramers’ turnover theory of activated rate processes
been generalized under certain limitations to many dim
sions in Ref. 30. The final equations are formally equival
to those for the one-dimensional case, but differ in two
spects: first, the spatial diffusion rate depends on the fo
constant matrices at the barrier and the well,51,52 denoted by
W‡ andW0 , respectively:

Gsd
2D5

1

p F det~W0!

udet~W‡!uG
1/2

l‡ exp~2V‡/kT!. ~31!

The barrier frequencyl‡ is the positive solution of the equa
tion

det~l‡2
I1l‡g1W‡!50, ~32!

where I is the 232 identity matrix andg is the diagonal
friction matrix whose elements are the friction coefficien
along the unstable and stable directions.

The other difference lies in the energy loss: the para
eterd appearing in the Gaussian kernel~15! depends now on
the initial conditions. Strictly speaking, the energy loss a
the initial and final energies of the unstable mode,e ande8 in
Eq. ~15!, should be averaged over all trajectories initiated
the first barrier with a thermal distribution of energy in th
perpendicular stable mode. Therefore application of the m
tidimensional Kramers’ turnover theory calls for a numeric
evaluation of the energy loss parameter, which can be c
putationally as expensive as the calculation of the rate
solving the exact Langevin equation. An analytical estim
for the energy loss is, however, possible in two limits: in t
first limit, the two degrees of freedom are strongly coupl
through the potential energy function. Motion in the regi
of the well is then ergodic and then the energy loss tu
out30,49,50to be proportional to (V‡/kT)2. In the second weak
coupling limit, the separable energy loss~16!, proportional to
V‡/kT, is a good approximation. If the Langevin dynamics
outside of these two limits, then one has no choice bu
resort to full fledged numerical simulations.

C. Finite barrier corrections

When the reduced barrier heightV‡/kT<5, one must
include in the theory finite barrier corrections to the ra
expressions.53,54The corrections for the spatial diffusion ra
are obtained by using the reactive flux method in which
choice of the dividing surface is chosen by minimization
the transition-state flux. Details of the derivation of the r
sulting expressions can be found elsewhere,53,54here we pro-
vide only the final formulas for the 2D separable and no
separable potentials. If the so-called nonlinearity parametx
is defined as
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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x5
~11a!2

a
~33!

with a5g/2v‡, then for a one-dimensional potential, or
2D separable potential, we have that

G fbc.
l‡

v‡

v0

p
e2~V‡/kT!F12

1

8b S 1

x2

Vx
~4!~x5a/2!

@Vx
~2!~x5a/2!#2

2
Vx

~4!~x50!

@Vx
~2!~x50!#2D G , ~34!

whereVx
(n) denotes thenth partial derivative of the potentia

along the reaction coordinatex.
In a similar way, for a 2D nonseparable potential, o

finds that the leading finite barrier correction term is

G fbc
2D.Gsd

2DF12
1

4b S Vx
~4!~a/2,0!

2x2@Vx
~2!~a/2,0!#2

1
Vy

~4!~a/2,0!

2@Vy
~2!~a/2,0!#2 1

Vx,y
~2,2!~a/2,0!

3xVx
~2!~a/2,0!Vy

~2!~a/2,0!

2
Vx

~4!~0,0!

2@Vx
~2!~0,0!#22

Vy
~4!~0,0!

2@Vy
~2!~0,0!#2

2
Vx,y

~2,2!~0,0!

3Vx
~2!~0,0!Vy

~2!~0,0!
D G , ~35!

where nowVx,y
(2,2) denotes a crossed second order partial

rivative in both directions. Except where stated otherwise,
Kramers’ results in this work are understood to be with
inclusion of finite barrier corrections to the spatial diffusio
rate.

As shown by Mel’nikov in Ref. 55, the preexponenti
factor can be also developed in a series in terms of the
ergy loss parameter in order to take into account finite bar
corrections. However, in the energy diffusion limited regim
for V‡/kT>3, such corrections are small and so will be n
glected.

IV. NUMERICAL RESULTS

A. Separable potential

As a first demonstration of the power of Kramers’ bas
theory, we studied the separable cosine potential case us
the first simulations of the experiment with a barrier of
meV.18 We calculated escape rates, diffusion coefficien
jump distributions, and the dynamic structure factor by so
ing the Langevin equation for initial ensembles of partic
thermalized at the bottom of the potential well. Two a
proaches were used to numerically determine the rates.
is based on the mean first passage time~MFPT! of the tra-
jectories through a given boundary. For periodic potent
with two equivalent exit paths along each direction, the
cape rate in one direction is simply related to the mean
passage time (tMFPT) by

k5
1

2tMFPT
. ~36!
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This relation between the MFPT and the escape rate, as
culated in Kramers’ work by the total flux of particles ov
the initial population of the well, has been demonstrated
the special case of a Gaussian white noise in Appendix B
Ref. 47, and has been recently shown to hold rigorously
arbitrary time-homogeneous stochastic processes.56 Such a
time is almost independent of the precise location of the e
point, as long as it is at a sufficiently remote distance fro
the barrier to avoid contributions from recrossin
trajectories.27,47

The second numerical strategy consisted in explicitly
termining the jumps between different sites. The rates
then obtained as the total number of jumps of the ensem
divided by the total propagation time. For numerical pu
poses, a jump starts when a particle leaves the domain
unit cell. For the termination of a jump, we employed tw
different criteria: in one case,15,27 a jump finishes when its
energy is smaller than a prescribed value below the poten
barrier in a different potential well; in the other case,57 the
jump terminates when the residence time inside a new we
larger than the characteristic relaxation time~for the low to
intermediate friction regime, we typically set it as 2/g!.
These criteria are chosen to assure a thermalization of
particle inside a potential well before starting a new jump.
course, they should give equivalent results within numeri
uncertainty.

In Fig. 2 we show the escape rates calculated at
different temperatures: atT5110 K, V‡/kT;7 and at T
5200 K, V‡/kT;3.9, both cases being in the activated r
gime. The MFPT results are shown as open circles, the b
squares with error bars show the rates obtained by coun
jumps, the solid line is the theoretical prediction given
Eqs.~23! and~20!, and the dashed line corresponds to inc
sion of the finite barrier correction. There is a small b
noticeable difference between Kramers’ theory~solid lines!
and the numerical simulation. This difference is mainly d
to the fact that the~reduced! barrier height is not sufficiently
large and one must take finite barrier corrections into acco
~dashed lines! for the spatial diffusion limited regime, a
described in the previous section. As can be seen, includ
the finite barrier correction gives good agreement with
simulation results for the whole friction range. From he
onwards, all Kramers’ based computation will include t
finite barrier correction terms.

FIG. 2. Escape rates~in ps21! as a function of the scaled friction for the
separable cosine potential, at two different surface temperatures: left p
T5110 K, and right panel,T5200 K. Kramers’ results~solid and dashed
lines! are obtained by Eqs.~20!–~23! without and with finite barrier correc-
tions, respectively. Mean first passage time results are plotted with o
circles and the closed squares are the corresponding numerical rate
tained by counting jumps.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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We have also investigated the diffusion coefficients fo
wide range of friction values. Analytical predictions for th
diffusion coefficient in a periodic potential, apart from E
~26!, are available only for the spatial diffusio
regime38,57–60with only nearest neighbor hops. In Fig. 3 th
theoretical prediction given by Eq.~26! is plotted as the solid
line. Numerical diffusion coefficients are obtained in tw
ways: through the rates and the mean squared jump len
Eq. ~25! ~closed squares!, and using the Einstein relation, Eq
~7! ~open circles!. For a comparison, we also show with th
dashed line the analytical prediction valid in the Smo
chowski limit38,58

Dx5
D0a2

*0
adx ebV~x!*0

adx e2bV~x! , ~37!

where D0 is the diffusion coefficient in the absence of
potential, D05kT/mg. For the separable cosine potent
~2!, the integrals can be evaluated to yield

Dx5
D0

I 0
2~bV0!

~38!

with I 0(x) the modified Bessel function of order zero.
From molecular dynamics simulations with the separa

cosine potential and the experimental T-mode lifetime,18 the
friction coefficient for the Na/Cu~001! system was estimate
to beg;0.15v0 . From Fig. 2 we can see that we are in t
turnover region, closer to the low damping regime. At the
low damping values, long jumps have been theoretica
predicted13,15,42 and experimentally observed in oth
systems.6–8 In Fig. 4 we compare the numerically obtaine
jump distributions atg50.15v0 and two different tempera

FIG. 3. Diffusion coefficients~in cm2/s! as a function of the scaled friction
for the separable cosine potential at two surface temperatures, 110 an
K. Solid lines: Kramers’ results given by Eq.~26! with finite barrier correc-
tions. Dashed lines: Analytical high friction estimation, Eq.~38!. Closed
squares: Numerical results using Eq.~25! and the Langevin simulation dat
for the escape rates and mean squared path lengths. Open circles: Num
diffusion coefficients from the Einstein relation, Eq.~7!.

FIG. 4. Probabilities of jumps of lengthl ~in units of the lattice constanta!,
at T5110 and 200 K for the separable potential. Hereg50.15v0 . Black
bars: Numerical results with the corresponding error bars. White: Kram
results, Eqs.~20! and ~24!.
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tures ~black bars! with the analytical estimation given b
Eqs.~20!–~24! ~empty bars!. Following the previous trends
for the highly activated regime (T5110 K) and for T
5200 K, the agreement in both cases is very good. As
pected, the probability of long jumps becomes more imp
tant as the temperature is increased.

Finally, we come to the question of how well the FWHM
of the quasielastic peak can be reproduced using Kram
turnover theory and the jump diffusion model. Results a
displayed in Fig. 5 atg50.15v0 and the two previous tem
peratures. Solid lines are the theoretical prediction and
dashed lines correspond to the Chudley–Elliot model,
~8!, with the numerically obtained jump rates and jump d
tributions. With closed circles we also plot the FWHM o
tained from the best fit of the numerically simulated dynam
structure factor, Eq.~13!, to a Lorentzian. The very good
agreement between the ‘‘exact’’ FWHM and the Chudle
Elliot model atT5110 K demonstrates that for high barrie
the jump diffusion approximation is excellent. WhenV‡/kT
,4 this approximation deteriorates, as shown in the ri
panel forT5200 K. Moreover, at large wave-vector transf
values we note that purely diffusive contributions cannot
separated so well from vibrational contributions to the qua
elastic peak. The analytical FWHM result shows in bo
cases a small discrepancy aroundk5p. In particular, atT
5200 K, it can be attributed to the worse agreement
single and double jump probabilities with the numerical on
~see Fig. 4! and to the overlapping between the quasielas
and T-mode peaks making the fitting to a pure Lorentz
function more questionable. In this parameter limit, o
should complement the Kramers’ based theoretical anal
with numerical simulations. Note that fork5p the mean
free path isl̄ 52a and only single and double jumps can b
detected.

B. Nonseparable potential

From the previous section we conclude that, forV‡

>4kT, the Kramers’ turnover theory provides a good a
proximation to the exact Langevin dynamics. All the quan
ties which can be of experimental relevance are accura
estimated whenever the Langevin equation approach w
ohmic damping is a good description of the atom-surfa
dynamics. Here we will investigate the implementation

00

rical

s’

FIG. 5. FWHM~in meV! of the dynamic structure factor as a function of th
dimensionless wave-vector transfer,k5aK , for the separable cosine poten
tial at T5110 and 200 K andg50.15v0 . Solid lines: Kramers’ results, Eq
~30!. Dashed lines: Chudley–Elliott model, Eq.~8!, with numerically calcu-
lated jump rates and jump distributions. Closed circles: Numerical res
obtained by fitting of the simulated dynamic structure factor, Eq.~13!, to a
Lorentzian shape.
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the theory to the 2D problem, that is, when thex and y
degrees of freedom are coupled. The semiempirical pote
given in Eqs.~1!–~4! will be used for the numerical an
analytical comparisons.

As already mentioned, application of Kramers’ theory
the multidimensional case is not as straightforward as in
dimension. To apply Kramers’ theory, one needs an esti
tion of the average energy lossd appearing in the Gaussia
probability kernel. The theory is readily applicable only
the coupling between the system modes is either stron
weak. To this end it is necessary to understand the clas
dynamics in the absence of friction. Previous detailed stud
of the classical dynamics of Na particles moving on t
particular PES have shown that for energies above the sa
point chaotic dynamics plays an important role.32 In fact,
statistical properties such as diffusion coefficients can be
fined using this deterministic randomness, and they m
even display an anomalous behavior depending on the
regularity of the classical dynamics.

The important point here is that by finding the simple
periodic orbits of the system and studying their evoluti
with energy one can get a very good estimate of the irre
larity of the classical dynamics at any energy. The main
riodic motions in this system are of three types: two trans
tional orbits parallel to thex and y directions and along
diagonal directions, respectively@see Fig. 6~a!#, and a rotat-
ing orbit of circular type. At the saddle-point energy, t
parallel orbits alongx or y undergo an abrupt series o
bifurcations,32 since the orbit is no longer localized inside
potential well and free drifting periodic motions of all po
sible periods become allowed. This also marks a transitio
chaotic scattering.31,33,61 We found, however, that untilE
;90 meV, the parallel and circular motions are stable a
influence most of the available phase space of the sys
This is illustrated in Fig. 6~b! with a Poincare´ surface of
section of the system at the saddle-point energy: despite
fact that the diagonal orbit shown in Fig. 6~a! is unstable,
most of the phase space is regular with one central chai
stability islands corresponding to the parallel drift moti
alongx, and two islands to its left and right corresponding
the rotating orbit. Therefore it is reasonable to expect that
separable approximation for the energy loss will work rat
well. Indeed, the numerical action across one unit cell for
periodic orbit parallel to thex or y directions is S

FIG. 6. ~a! Main periodic orbits of the Na/Cu~001! system from the non-
separable potential at the saddle point energy, 74.64 meV. Solid lines
cate stable orbits and dashed lines unstable ones. The equipotential l
that energy is also shown with thin solid lines to guide the eye.~b! Poincare´
surface of section at the middle of the potential well, fixingx50, for an
ensemble of classical trajectories with the barrier energy.
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;46.4 a.u., while the action for the separable cosine po
tial, S54aAmV‡/2/p, with the static barrier heightV‡

574.64 meV yields the valueS;46.6 a.u.
In a similar vein, for weak damping, motion perpendic

lar to the reaction coordinate is integrable. Therefore we
nore the finite barrier correction terms that come from
perpendicular direction and include from Eq.~35! only the
finite barrier corrections along the reaction coordinate~x di-
rection!. Including the finite barrier corrections for the pe
pendicular mode gives qualitatively wrong results, due to
very shallow nature of the potential along they direction at
the top of the barrier. It should be stressed though that
difficulty in estimating from theory the spatial diffusion ra
does not mean that the rate does not exist. It only means
due to the relatively high temperature, it is difficult to es
mate it from theory without any further assumptions, such
the integrability of motion along this coordinate.

In Fig. 7 we show the results~a! for the directional rate
alongx, ~b! the diffusion coefficient,~c! the jump probabili-
ties, and~d! the FWHM of the dynamic structure factor a
T5200 K or V‡/kT;4.3. For the escape rates, we includ
the multidimensional finite barrier correction53 along the re-
action coordinate as described in the previous section
above. The hopping distribution and the FWHM are sho
for the value of the friction coefficientg50.1v0 , choosing
v059 THz from the T-mode frequency. This is the valu
given in Ref. 19 for this particular PES after extensive sim
lations and comparison to experiments. The analytical res
are obtained with the average energy loss

d;
4ga

pkT
AmV‡

2
. ~39!

i-
at

FIG. 7. Results for the nonseparable potential, Eqs.~1!–~4!, at T5200 K.
~a! Escape rates: solid and dashed lines, Kramers’ results, Eq.~20!, without
and with finite barrier corrections, respectively; open circles, numer
Langevin calculations with error bars.~b! Diffusion coefficients: solid line,
Eq. ~26!; dashed line, quasi-2D approximation Eq.~40!; closed squares,
numerical results from Eq.~25!; open circles, Einstein relation~7!. ~c! Jump
distributions: black bars, Langevin results with error bars; white bars: E
~20! and ~24! with g50.1v0 . ~d! FWHM of the dynamic structure factor
with g50.1v0 : solid line, Kramers’ results obtained by Eq.~30!; dashed
line, Chudley–Elliott model, Eq.~8!, with numerical data for the jump rate
and jump distributions; closed circles, numerical results from the dyna
structure factor Eq.~13! with error bars; open squares: experimental da
taken from Ref. 19~see text for details!.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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For the diffusion coefficient we also compare with an expr
sion similar to Eq.~37! generalized to two dimensions, calle
the quasi-2D approximation:38

D5D0a2
*0

2dy@*0
adx ebV~x,y!#21

*0
ady*0

adx e2bV~x,y! . ~40!

The general agreement is as good as for the separable c
potential. Note, however, that the coupling, even though
weak and the classical dynamics for energies below
around the barrier remains very regular, does have an ap
ciable effect on all observable quantities. Indeed, the dir
tional escape rates are larger than in the separable cas
the probability of long jumps also increases, compare
Figs. 2–4. This is due to the fact that the frequency at
barrier along the stable direction is smaller, and the spa
diffusion rate then becomes larger, see Eq.~31!. In a more
intuitive picture, a lower frequency along they direction im-
plies that the channel for diffusion alongx is wider, and it is
easier to cross the barrier.

Another effect induced by the coupling is the lowerin
of the barrier at the maxima, i.e., for diffusion along t
diagonal directions. This implies that at high temperatu
other diffusion paths than those alongx andy directions may
become available. This can be detected from an analys
the experimental results.19 In Fig. 7~d! a comparison is
shown between the numerical and analytical FWHM and
experimental data taken from Ref. 19. Note thatK in Fig.
6~d! is the wave-vector transfer along the diagonal@100# di-
rection ~these data are much less affected by experime
error than those along the parallel@110# direction!. In order
to compare with the Chudley–Elliot model and the resu
from Kramers’ theory we follow a reasoning similar to th
experimentalists: if only jumps along thex andy directions
were possible, the FWHMG(K) at the maximum would be
twice as large along the diagonal direction than the va
along the parallel direction. However, the ratio at the maxi
for the azimuths@110#:@100# is here 1:1.4@estimated in our
case from the numerical simulation of the dynamic struct
factor ~13! along these two different directions#. This indi-
cates that we have a sizable proportion of jumps along d
onal directions. Therefore the results with solid and das
lines in Fig. 7~d! were calculated with the directional rate
and jump distributions alongx and then multiplied by 1.4. It
can be seen that the agreement of both the Chudley–E
model and the analytical prediction are fairly good. Mor
over, by varying the static barrierV‡ we found that the bes
fit of the analytical model to the experimental results w
given byV‡;72 meV, only;2.5 meV lower than the esti
mated value from the Langevin dynamics simulations, a
certainly inside the experimental error~around 6 meV! given
for the static barrier.26

V. CONCLUSIONS

The central conclusion of this work is that Kramer
theory as applied to activated surface diffusion should
used as an added standard tool to fit and interpret experim
tal results for adatom diffusion at low coverage. Krame
theory provides a two parameter representation for
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-

ine
s
d

re-
c-
and
o
e
al

s

of

e

al

s

e
a

e

g-
d

ot
-

s

d

’
e
n-
’
e

FWHM of the quasielastic peak vs the momentum trans
The two parameters are the spatial diffusion rate and
energy loss. We have shown that~a! the two parameter fit
works well with experimental data; and~b! when applied to
a Langevin model for which the barrier in units ofkT is not
too low, the fit agrees well with the theoretical determinati
of the two parameters from the Hamiltonian governing t
dynamics of the system. From an experimental point of vie
the main practical working expression is given in Eq.~30!
where the FWHM is given in terms of the two parameter

Kramers’ approach involves closed analytical expr
sions and so is easier to implement than Langevin numer
simulations. The resulting fitting procedure is less cumb
some and time consuming. At the same time, the fit lead
two parameters, with direct relation to relevant physic
quantities. With this in mind we suggest that this method
of value when interpreting and predicting the experimen
results.

In addition, we have also demonstrated that Krame
turnover theory gives a very good estimate of rates, diffus
coefficients, and jump distributions for diffusion of atom
adsorbed on metal surfaces when the barriers for diffus
are V‡/kT.4 and finite barrier corrections are include
through Eqs.~34! and~35!. These conditions can be achieve
at room temperature for systems with barriersV‡

.100 meV. For most of the systems studied by the QH
technique, with exception of the Xe/Pt~111! which has a free
gas behavior, surface temperatures in general should
lower but are all inside the experimental capabilities.20

A further restriction in theory is that the potential co
pling should be weak, in the sense that the classical dyn
ics around the barrier energy should be mainly regular. T
is not so restrictive as one may think, as there is also v
freedom in the choice of the PES used to fit the experime
results, when undertaking Langevin simulations. For
stance, a periodic PES representing the atom–surface i
action can always be expressed as a Fourier series with
proper symmetry requirements. For the Na/Cu~001! we can
take as well the pure cosine potential

V~x,y!5V02V1FcosS 2px

a D1cosS 2py

a D G
1V2 cosS 2px

a D cosS 2py

a D . ~41!

With V0 , V1 , and V2 chosen such thatV(0,0)50, V(0,
6a/2)5V‡ ~energy barrier at the saddle point!, and
V(6a/2,6a/2)5Vm ~energy barrier at the maxima! this re-
sults in V05Vm/41V‡/2, V15Vm/4, andV25Vm/42V‡/2.
Now, from experimental data we have an estimation of
friction coefficient g50.9 THz.18 The only parameters re
maining to be determined in the theory are the saddle-p
energyV‡ and thedifference Vm2V‡. Note that the frequen-
cies needed for the spatial diffusion rate are

v0,x5v0,y5vx
‡5pA2V‡

ma2, ~42!
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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vy
‡5pA2~Vm2V‡!

ma2 . ~43!

The static barrierV‡;75 meV can be determined from th
T-mode positionv0 @see Eq.~42!# and therefore only one
parameter remains to be fitted, namely, the energy of
barrier top Vm which determines the frequency along t
stabley direction and the potential energy coupling. Usin
Kramers’ theory~without the finite barrier correction! we fit
the experimental data shown in Fig. 7~d! by varyingVm . The
best fit ~with the same quality as in Fig. 1! is found with
Vm;90 meV, a value slightly higher than the previous P
~85 meV! but still far away from the barrier for a separab
potentialVm;150 meV. In other words, using Kramers’ a
proach, one will find rather accurate physical paramet
which will result in the same answer found when undert
ing the Langevin simulations. The only difference is that t
Kramers’ result is simple and very fast.

Does Kramers’ theory replace the necessity of carry
out numerical simulations of the Langevin equations? Yes
the diffusion is one dimensional and the reduced bar
height is not less than;3. No, if the diffusion process is
multidimensional. In this case, one needs to understand
underlying classical dynamics in the absence of friction, a
one must make sure that indeed the relevant measured
perimental data are in the range in which the Kramers’ ba
theory is applicable. Of course, the whole approach assu
low coverage, that is, that interactions between adatoms
not affect the diffusion.

In summary, we have shown that Kramers’ theory is
viable approach for analyzing experimental results on dif
sion using the QHAS technique. This does not mean
there are not any questions left. For high temperatures, s
that the reduced barrier height is lower than;3 one should
include also finite barrier corrections for the energy lo
application of Mel’nikov’s theory55 for finite barrier correc-
tions to the hopping distribution remains to be carried o
The theoretical computation of the spatial diffusion rate fro
the potential energy surface is not always trivial, the lead
order finite barrier correction may not suffice. Krame
theory assumes that hopping in thex direction is uncorrelated
with hopping in they direction. This assumption is not a
ways true, as may be seen from the fact that the ratio of
maximal rate measured along the@100# direction is not twice
as large as that measured along the@110# direction.19 All this
implies that the theory of activated surface diffusion m
still have some surprises in store for the future.
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