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Kramers’ turnover theory for diffusion of Na atoms on a Cu (001) surface
measured by He scattering
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The diffusion of adatoms and molecules on a surface at low coverage can be measured by helium
scattering. The experimental observable is the dynamic structure factor. In this article, we show how
Kramers’ turnover theory can be used to infer physical properties of the diffusing particle from the
experiment. Previously, Chudley and Elliot showed, under reasonable assumptions, that the dynamic
structure factor is determined by the hopping distribution of the adsorbed particle. Kramers’ theory
determines the hopping distribution in terms of two parameters only. These are an effective
frequency and the energy loss of the particle to the bath as it traverses from one barrier to the next.
Kramers’ theory, including finite barrier corrections, is tested successfully against numerical
Langevin equation simulations, using both separable and nonseparable interaction potentials.
Kramers’ approach, which really is a steepest descent estimate for the rate, based on the Langevin
equation, involves closed analytical expressions and so is relatively easy to implement. Diffusion of
Na atoms on a Q001) surface has been chosen as an example to illustrate the application of
Kramers’ theory. ©2003 American Institute of Physic§DOI: 10.1063/1.1587687

I. INTRODUCTION follows the motion of a single adatom, here, only the en-
semble of diffusing particles, as described by a time-
The last years have seen a proliferation of experimentalependent distribution functio&(R,t), can be probed. At
and theoretical studies of atom-surface diffusiot. The  |ow adatom concentrations, interactions between adsorbates
most important questions addressed in such studies, apajin be ignored, anG(R,t) is defined as the probability of
from accurate measurements of diffusion coefficients andinding a single adatom at the surface positRrat timet,
jump rates, have been the determination of diffusiongiven that it was at the origin at some arbitrary time0.
mechanism3;® the role played by long jumps in the diffu- The observable directly accessible by scattering experiments
sion proces$; " and the detailed knowledge of the adiabaticis the dynamic structure factd®(K, ), which is the Fourier
potential energy surfacES which governs the motion of  transform in space and time of the functi&{R,t). HereK
the adsorbed particleé8-%° is the momentum transfer of the helium atoms parallel to the
For clean, perfectly periodic surfaces at low coveragessyrface andw the corresponding energy transfer. To obtain
the motion of single adatoms can be probed by differenfnformation about diffusion coefficients, jump rates, and
experimental techniques. Field ion microsco@®M) and  jump distributions, one generally assumes a diffusion model,
scanning tunneling microscop{5TM) have made possible yajid in a certain wave-vector range under some conditions.
the study of diffusion on metal surfaces directly at the atomiq=gr instance, the diffusion coefficients are usually extracted
level>~® providing time-dependent information on the indi- from the behavior of the dynamic structure factor at sriall
vidual displacements carried out by a diffusing adatom, o values of the wave-vector transfer imply that the helium
From these measurements, the diffusion coefficients at difyegm is probing large distances, thus a continuous diffusion
ferent temperatures and the time-dependent distribution gf,oqel (no influence of the adiabatic PEB supposed to be
adatom locations can be obtained. Their drawback is thaj good description for the diffusion process. On the other
they are restricted to relatively low diffusion mobilitie® ( hand, as first introduced in this context by Chudley and
~10"? cn?Ys). Elliot,?* jump distributions and rates are obtained by fitting
The quasielastic helium atom scatteri@HAS) tech-  {he wholek dependence of the quasielastic peak width to an
nique has also been successfully applied to study diffusion of,stantaneous jump modéhaster equation approach
single atoms and molecules on metal surfate&’ van The remarkable feature of the QHAS technique is that it
Hove's formalism for quasielastic neutron scatteffiggen- 4150 allows a direct measurement of low vibrational frequen-
eralized to surface diffusid? can be straightforwardly ap-  cjes of the adatoms. In addition to the quasielastic peak cen-
plied. In contrast to the previous techniques, in which onggeq atw=0, a dispersionless mode inelastic peak appears
at fixed frequency values of the dynamic structure factor.
dElectronic mail: rgn@imaff.cfmac.csic.es This peak is related to the frustrated translational mode or
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T-mode, representing vibrations of the adatoms at equilib- 100
rium sites. Moreover, the T-mode lifetime, obtained by ex- {1 T=200 K
trapolation of the T-mode width to surface zero temperature, 80
gives a direct estimation of the friction coefficiéhbetween
the adatom and the surface. Analysis of the broadening of e
this peak as a function of the surface temperature and mo-
mentum transfer also provides information about the curva- g_
ture of the PES minima and the anharmonicity. This knowl- —
edge has been used in combination with extensive molecular
dynamics and Langevin simulations to determine the shape 20
of the adiabatic PES of several systelfis??-2°

The good agreement between the simulated data and the 0
experimental values obtained for friction constants, diffusion 0 1,
coefficients, and vibrational frequencies at low adatom con- K(A )
centration allows one to extract some important conclusions _ o o
fo the systems studied. Firt of al, for bariéfé>3KcT,  {1C.L Helwioh ol mexnunin ey o e st peak o2
the diffusion process is activated and the instantaneous jumy0o1) surface at 200 K. Black circles are the results from the Langevin
picture works well. Second, the coupling to the surface iswmerical simulation using a nonseparable interaction potential and the solid
well described in terms of an ohmic friction in the experi- line is the least-squares fit of Kramers’ theory to the numerical data.
mentally accessible range of temperatufiestween 50 and
300 K). This is an indication that the damping mechanism is

mainly due to electron—hole pair creation and/or acoustigjiffusion coefficients are governed by two parameters,
phonons®*"* This is consistent with the fact that the namely, the energy loss(the average energy loss, in units of
T-mode frequency is lower than the Debye frequency. ThirdiT, of a particle as it traverses the distance between two

activation barriers measured from Arrhenius plots of the dif-consecutive barrieysaind the escape rate in the spatial diffu-
fusion coefficient or the quasielastic peak width are alwayssjon regimel .

lower than the “static” activation ba.rrie”’i determined from The fact that On|y two parameters are needed is an im-

simulation data or from the T-mode frequertéy” This dis-  portant advantage over other existing approaches to fit the
crepancy has been attributed to several factors: a sizable cogxperimental data. Random walk models in which the hop-
tribution of long jumps as the surface temperature increaseging rates to different sites are taken as independent fitting
a failure of the Chudley—EIIiot model, or the additional parametefsg are very often used. In the Kramers based ap-
broadening of the quasielastic peak caused by the T-moderoach, the complete hopping distribution is determined in
contribution, which is not an activated process. Thus statigerms of a single parameter, the energy loss. This does not
activation barriers obtained from experiment are only reli-mean that there Langevin equation simulations are no longer
able if they are measured at low temperatures. Fourth, conhecessary. However, they do demand extensive parametriza-
parison of the prefactors for the activated jump rates andion of a potential energy surface. In comparison, the Kram-
diffusion coefficients with those given by classical transitioners based theory is simple—analytic expressions—and
state theory(TST) showed large discrepanci€sThe exis-  physically transparent. These considerations imply that the
tence of multiple jumps was again mentioned as a source afheory should be added to the tools used in the analysis of
error?’ but only in the context of the Chudley—Elliot model. the experimental results and in particular, the full width at
Last, in order to find agreement between numerical simulahalf maximum of the deconvoluted quasielastic peak as a
tions and experiment, a two-dimensional PES with couplingunction of the wave vector transfer.
between the two coordinates had to be considered. That Kramers’ approach is viable is demonstrated in Fig.
A quantum and classical theory of surface diffusion atl, where a fit of Kramers’ theorgsolid line) to a Langevin
low coverage, based on Kramers’ thedrpf activated es-  simulation (black circles for the motion of Na atoms on a
cape over potential barriers was developed by Mel'nfRov nonseparable, two-dimensional ©Q01) surface at T
and Pollak and co-worker$:**This theory provides analytic =200 K is displayed. In particular, in the numerically exact
expressions for the diffusion coefficient, escape rate, antlangevin simulation, the two physical parameters are known
hopping distribution, whenever the underlying dynamics isto be §=1.59 andl's;=0.062 ps®. The least-squares fit of
described in terms of a Langevin equation. The theory proKramers’ theory to the numerical data gives the values 1.56
vides a steepest descent estimate for the relevant quantitiemd 0.076 ps!, respectively. This level of accuracy is suffi-
where the large parameter is the reduced barrier heightient to demonstrate that indeed a fit of Kramers’ theory to
V*/(kgT). The theory has been successfully applied to interexperimental data would lead to a rather accurate determina-
pret experimental results of 1D surface diffusion by FIM andtion of the two parameters.
STM techniques®**as well as to analyze the role of mul- The main purpose of the present article is thus to show
tiple hops in activated diffusiott"** For multidimensional that Kramers’ theory generalized to surface diffusion pro-
problems, it can be also used to study the importance of theides a good method for analyzing experimental QHAS re-
coupling between the different degrees of freed8rm this  sults and quickly obtaining the relevant information. We will
theory, observable quantities such as jump distributions ogshow that even the multidimensional Kramers’ theory can be
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successfully used provided that the coupling between the dittential wells, corresponding to hollow sites. The saddle point
ferent degrees of freedom is not too strong. In the next seenergy along thex or y directions, §&,y)=(*a/2,0) or

tion we will briefly describe the system and the basic formal-(x,y) =(0,=a/2), respectively, is at 74.64 meV, and the
ism usually employed to obtain the quantities of interestsaddle point energy along the diagona00] or [010] azi-
such as diffusion coefficients or jump distributions, from muths is at 84.49 meV. There appear also small minima on
QHAS experiments. Next, in Sec. Ill, we discuss Kramers'the potential truncated hills corresponding to on-top sites
theory of activated surface diffusion. Then, in Sec. IV, weabove the copper atoms which are at an energy of 82.74
provide detailed one- and two-dimensional numerical tests ofmeV. The maxima at the hill tops are located at 85.51 meV.
Kramers’ theory. We finish with a comparison to availableIn the first theoretical simulations of the QHAS experiments

experimental data and some conclusions. for this particular systenf a separable potential consisting
of only the Vy(x,y) term, Eg.(2), was employed, with a

Il. THE QUASIELASTIC HELIUM ATOM SCATTERING slightly lower saddle point energ¥67 me\V).

(QHAS) FORMALISM In the present work, we will use both interaction models

to calculate diffusion rates and jump distributions in order to
reveal the distinctive features emerging from the potential
As mentioned earlier, at low adatom coverages, thenergy coupling. As Kramers’ theory of activated diffusion
adsorbate—adsorbate interactions can be disregarded a@@s originally derived for one-dimensional systems, the use
only the adsorbate—substrate interaction which is governegf a separable potential will be a good test for the theory. An
by a multidimensional PES must be taken into account. Fognalytic multidimensional theory along these lines is only
the Na/Cu001) system, the frequency of vibration along the available under additional assumptions since, in principle,
coordinate perpendicular to the surface is much larger thathe energy loss cannot be easily calculdfetf:
parallel vibrational frequencies, and the corresponding PES  From the point of view of the purely Hamiltonian dy-
is considered as being averaged over the Na vibrations nofamics, corresponding to motion without friction, the differ-
mal to the surface. Therefore Na atoms move on a twoence between the separable and coupled cases is qualitative.
dimensional, periodic potential. In theoretical simulations ofA separable potential gives an integrable Hamiltonian and
QHAS experiments, two PESs have been propd$&tThe  the classical dynamics consists of only stable orbits. Above
most recent one is nonseparable and was fitted to an expregre saddle point energy trajectories alongxiwe y directions

A. Potential energy surface

sion of the form?® propagate in a ballistic way, diffusing freely, and no change
V(X,y) = Vo(X,y) + V1(X,Y) + Va(X,Y). (1) of direction or trapping into a well can occur. In contrast, the
] . . ) nonseparable potential gives rise to instabilities and chaos.
The first term is a separable cosine potential Trajectories with energies above the diffusion barrier can be-
Vo(X,y)=Vg[2—cog 2mx/a) —cog 2my/a)], (2)  come trapped for long times in a well, due to the existence of

. . stable rotating orbits not present in the integrable ¢ase.
where a is the lattice constant of the (@01 surface &  Transport properties in analogy to the noisy case can be
=2.557 A), andVo=41.4 meV. The second term is added gefined (although the source of randomness is intrinsic

to produce a lowering of the potential barrier in the diagonalere que only to the classical dynamics without friction and

direction. random forcg and, depending on the energy, two different
transport regimes, normal and enhanced, can i¥e®
Vi(x,y)=—A> exp(—b{[x/a—(m+})]? At low friction and temperature features of the classical
e dynamics can still survivé? Moreover, in the low to inter-
+[yla—(n+ 1) 3 mediate friction regime the analytical solution for the escape

rate requires that the energy distribution of particles close to

with A=2V, andb=11.8. This term was added to account ) : . .
fthe barrier top depends mainly on the classical action of a

for the experimental observation of a sizable contribution of i .
P trajectory connecting two consecutive saddle poffit§:’

d|'ffu3|on path_s not going directly over the sad(jle poht. Therefore knowledge of the Hamiltonian dynamics may be
Finally, the third term is a nonseparable part which changes . . L )

. : . important in order to establish the validity of Kramers
the curvature near the minima and varies the difference be;

tween the potential at the minima and the bridge positions,theory in the turnover region. It is also worth mentioning that

different behavior of the diffusion coefficient as a function of
friction has been found for separable and nonseparable two-
Va(xy) = CVOWszn [(x/a—m)*+(yla=n)?] dimensional potentiafs:1"38

x exf[ — (x/a—m)?—(y/a—n)?] 4

with C=—-0.2. _ _

The four adjustable parameteg, A, b, and C were  B- Basic formalism
obtained after extensive optimization to give the best fit be-  The observable measured in QHAS experiments is the
tween the theoreticglangevin simulationand experimen-  differential reflection probability(the probability for a pro-
tal values. Thex andy directions are taken along the azi- jectile helium atom to be scattered into a certain solid angle
muths with indices[110] and [110], respectively. The € with an energy exchangew) which is proportional to the
energy zero is taken at the minima,y)=(0,0) of the po-  dynamic structure factd®(K,w) (Ref. 23

Downloaded 02 Mar 2010 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 119, No. 5, 1 August 2003 Kramers’ turnover theory for diffusion of Na atoms 2783

d’R(K,w) 5 case the dynamic structure factor is again a Lorentzian with
“d0de _ NaF S(K,w). (5 respect taw, and the FWHM is related to the total jump rate
and jump probabilities as

Here,nq is the diffusing particle concentration on the surface

andF is the atomic form factor which depends on the inter- F(K)ZZKZ Pj[1—cogj-K)]. (8
action potential between the He atom and the adparticles. As !

mentioned in the Introduction, the dynamic structure factork is the total jump rate out of an adsorption site @)dhe
has contributions both from the quasielastic peak centered aglative probability for a jump with a displacement vector
0=0, whose broadening is mainly due to the diffusionalNote that Eq.(8) is in fact a cosine Fourier series, so that
motion of the adatoms, and from the T-mode vibrations. Theausing the inversion formula for the Fourier coefficients, the
contribution of the T-mode to the quasielastic peak will de-total jump rate and jump distributions along specifior y
pend on the incident beam energy, the surface temperaturédirections can be obtained from the FWHM as

and the parallel wave-vector transt€r which is controlled a -

by changing the incident angle of the beam with respectto ,— = T'(K, ,)dK, )
the surface normal. Experimentally it is not possible to sepa- 2w Jo i i

rate the vibrational and diffusional motion contributions, al- a a

though some mechz_amsms which take advantage of the inci- P=- k_j (K, y)cogajK,,,)dK,,, (10)
dent beam conditions have been recently propdSed. ™ Jo

Nevertheless, a comparison with theoretical predictions i%vhereP- is now the probability of jumping ovef lattice
possible by fitting the quasielastic peak to an effective !

. : . . sites in a single jump along theor y direction andK, , is
Lorent2|?8r’11§1fter deconvolution with the instrument responsg . \wave-vector transfer in this direction.

function. Ideally, if one has enough experimental points in the first

In th n f any numerical simulation, two simple, .., - g .
the absence ot any numerical simu atio ’.t 0 SIMPY€gj10uin zone ofK, this inversion procedure can be accom-
models are customarily used to extract information from the

) . . e lished to obtain the rates and jump distributions. In practice
width of the quaS|eIast|_c peak. The incident He atom WaVegne has two sources of error: first, the instantaneous jump
packet probes the motion of the adatom on a length scal

. by 2m/K . At I tor t ¢ d Sicture (for a one-dimensional cosine potentia a good
given by em/i. At smafl wave veclor transter, Cormespona- o, . yimation only for barriera/*/kT=342 Second, and

|ntg to d|stance§t-much| Iatrg<te; than the Iat'gce cc;_nstant, g.'fnore importantly, the FWHM is not really a periodic func-
atoms are sensitive only to thé macroscopic continuous it ., o k* \whose period is a reciprocal lattice vectdt® as

I_usmgallQrPotlcgn oftt:e adatlog?;. Then the td'smbl#'on fur:C'suggested by Eq@8). This is due to the fact that at large
ion G(R,t) obeys the usual difiusion equation, whose so YValues of wave-vector transfer the contribution of the vibra-

:'r?g L'(s)r\gﬂlziggivgpn’q and the dynamic structure factor has tional T-mode to the quasielastic peak width is appreciable,
and diffusional and vibrational motions cannot be separated.
In this case, a more reliable way of obtaining information
(6)  from experiments is by numerically simulating the dynamic
structure factor. This can be achieved with molecular dynam-
ics simulations® by a direct numerical solution of the cor-
responding Fokker—Planck equatiofa Klein—Kramers
equation in this cage for the distribution function
G(R,t);384243py application of the Mori projection operator
formalism to a microscopic lattice dynamics Hamiltonf4n;
or by simulating stochastic trajectories directly from a
Langevin equation>!® Obviously the last three methods
1 . should give equivalent results, although a particular choice
D=lim—(|R(t)—R(0)|?)=lim f (v(0)-v(7))d7 (7)  may be more convenient for practical reasons. For instance, a
(it t—o 70 matrix continued fraction solutidf of the Klein—Kramers
o o equation is more slowly convergent at low friction values,
have shown that Eq(6) is indeed a good approximation to anq difficult in more than one dimension, while the opposite
the dynamic structure factor fo¢<0.2 A~*.1%% happens with a Langevin simulation: propagation times and
In order to get the total jump rates and jump distributionssjze of the ensembles need to be considerably increased at
from the dynamic structure factor the most widely usedhigh friction values(and low temperaturg¢sbut the added
model is the master equation approach, which dates back gkgrees of freedom do not pose a numerical bottleneck.
least to Chudley and Elligt* Here the diffusion process is In order to test the analytical predictions of Kramers’
assumed to be activated, residence times inside a well aggrnover theory we will solve the Langevin equation for a

much longer than the velocity correlation timg~1/y, with  particle in an external field of force with constaf@hmic)
v the friction coefficient, and jumps between different siteSfriction:

are considered to be instantaneous. The Fokker—Planck dy-
namics can then be approximated by a discrete master equa-
tion which is solved by Fourier transformatiéh?! In this

K o) 1 DK?2
(Kow)= o 7o
Therefore the diffusion coefficieri? can be estimated from
the full width at half maximun{FWHM) of the quasielastic
peak with respect ta at smallK, which should be equal to
I'=2DK?2. Langevin calculations of the diffusion coefficient
for the Na/C@001) system through the Einstein or Green—
Kubo relations

L1 .1
R=— —VaV(R)— yR+ —F,(1), (11)
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whereV is the adiabatic adsorption potential, &), yis the  height the energy loss is simply=yS/kT, whereSis the

friction coefficient, and~ a Gaussian white noise with zero cjassical action of the trajectory which crosses one unit cell

mean and autocorrelation function at an energy equal to the barrier energy. For a single cosine
(F(DF(t"))=2mykgTS(t—t"). (12)  potential like the one in Eq(2), with barrier heightV*

) ) . =2V, the energy loss is given by
The relevant physical observable are obtained by suitable

averaging over stochastic paths and time. For instance, the _ M
diffusion coefficients can be calculated through any of the  kTwg’
equivalent relation§7), and the dynamic structure factor can
be obtained frorf?

(16)

wherewy=2m\V,/ma is the harmonic frequency of oscil-
lation near the well bottom.

To obtain escape rates and jump distributions, the partial
ratesI’; are defined as the number of particles per unit time

The numerical method chosen here to integrate the LangevﬁxItlng the zerqth well Wh'C.h are themappedm the Jth
equation(11) is a third-order velocity Verlef® which con- well. T_hey are given by the difference between incoming and
verges rapidly even when compared to methods of superio(?u'“‘]’omg fluxes:

accuracy, such as fourth order Runge-Kdfta.

S(K, )= f dte”'“{(e K RUKRO), (13)

rj=fode[fr,1<e>+f;+1<e>—f;<e)—fr<e>]. (17
gIUEEAA(I;/I;ESFESSSIIéDN THEORY OF ACTIVATED Finally, one needs to solve Eq4.4) and(17) subject to the

boundary condition
A. One-dimensional theory

. . . + _ wO)\ —(e+V¢) -
In Refs. 11, 12, and 28 a semiclassical and classical f; (e)—éjome €——® (18
theory of activated surface diffusion in one dimension was
developed, which generalizes Kramers’ solution for the probwhich implies that, initially, all the population is in the well
lem of escape from a metastable W8lf®*44"The theory is j=0 and has a thermal distribution of energy close to the
valid for the whole damping range, from the energy diffusionbottom of the well. Herew® is the harmonic barrier fre-
regime to the high friction or spatial diffusion regime, under quency. Note also that the Kramers—Grote—Hynes prefactor

the following assumptions: the dynamics is described by a ¥ 5
Langevin equation; théreduced barriers for diffusion are 2.\ /14 7_12_ 2_7f (19
high (V*/kT>1); the potential at the barrier top is approxi- w 4o w

mately parabolic, with frequenay™; and energy loss to the appears here as a normalization taking into account recross-

bath of trajectories close to the barrier top is given by Clas'ings, since we are working in normal mode coordinates for

sical mechanics. We stregas also shown belowthat for a éhe diffusing particle and the bath.

one-dimensional Langevin equation, the Kramers' base Equations(14)—(17) with the boundary conditiorf18)

theory with finite barrier correction terms can replace the re solved by a discrete Fourier transformatio fallowed

numerical simulation, provided that the reduced barrlerby a Laplace transformation in energy, for details see Ref.

height is of the ord_er of-3 and hlgher_. 11. The final result for the partial rates is
The starting point for the evaluation of the escape rate,

jump distribution, and diffusion coefficient is an equation for  Dgq (2m ir? k )
the stationary flux of particles exiting each well at either [ dksin| 7 Jcod jk)
barrier:
) " 2 fw/zd | 1-P2(x)
f;(e)zf de'P(ele)[0(—€)f; (') P Tl N TEPA )= 2P(x)cogk) | [
+f,_1(e")0(e")] (14 20
i-1t€ € wherel 4 is the spatial diffusion escape rifte
wherefj*(fj‘) are the number of particles per unit energy "
and per unit time hitting the rigtieft) barrier of thejth well I d=£f ﬂe—(v*/m (21)
with positive (negative velocity, 6(x) the unit step function, ot
and the kernelP(e|€’) is the probability that the particle and the functiorP(x) is given by®
changes itgreduced energy frome to €’ as it traverses from
one barrier to the next. The kernel has been shown to have P(x)=exd — g 22)
the Gaussian forf{® 4 cog(x) |’
1 r{ (e—€'+ 5)2} The rate of escape from the zeroth well is
P(ele’)= exg —————|, (15
(ele) Jamws 45 k=—T. (23)

where é is the (reduced average energy loss from the par- The relative probability for a jump of lengjhs given by the
ticle to the bath. To first order in the damping and the barrieprobability of being trapped at thigh well:
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tal data and therefore an estimation of the spatial diffusion
Pj:7- (24 rateT'yy and the energy loss. From these parameters and
their temperature dependence, one can further [nfarEgs.
For a one-dimensional potential, the diffusion coefficient is(16), (19) and (21)] the barrier heighv/*, the friction coef-

related to the escape rate*by ficient y, and the barrier frequency®. As will be seen in
j=co Sec. IlIIC, finite barrier corrections will mainly affect the
1 1 _
D= §K<|2>: gaz. >y, (25)  prefactorl'gg.
j=—»

where(12) is the mean squared path length. Introducing EqB- Multidimensional theory
(20) into Eq.(25), the diffusion coefficient can be expressed  Kramers’ turnover theory of activated rate processes has

in the closed fornf® been generalized under certain limitations to many dimen-
2 (w2 sions in Ref. 30. The final equations are formally equivalent
D=Dde‘1exp{—f dxIn[1+ P(x)]], (26) to those for the one-dimensional case, but differ in two re-
mJo spects: first, the spatial diffusion rate depends on the force

whereD = 1/2aT o is the diffusion coefficient in the spa- constant matrices at' the barrier and the wef denoted by
tial diffusion regime, and’ is the depopulation factor for the W*¥ andW,, respectively:

metastable well first given by Mel'nikojsee Eqs(2.55 and 1] defW,) ]2
. 2D_ — * _yvi
(2.56) in Ref. 2§ I'sy 7 | [detWo)| N exp(— VHKT). (32
Y = eX%E fﬁlzdxm[l_ p(x)]] ) (27)  The barrier frequency* is the positive solution of the equa-
m™Jo tion
In analogy to the Chudley—Elliot model, an analytical de()\tzl-i-)\i'y-l-Wi):O, (32)

expression for the dynamic structure factor can be obtained ) ) ) . ] ]
by imposing a master equation for the time-dependent distri’here! is the 2<2 identity matrix andy is the diagonal
bution G,(t), which is the probability that the particle is at friction matrix whose elements are the friction coefficients
site| at timet if it was at the zeroth well at=0. Using the ~ &l0ng the unstable and stable directions.
partial rated’; this equation takes the forfh The othe_r dn_‘ference lies in the energy loss: the param-

. eter § appearing in the Gaussian kerrigb) depends now on
dG(t) ' the initial conditions. Strictly speaking, the energy loss and

Tdt zl.zzm [5G 5(1) (28) the initial and final energies of the unstable modlande’ in
Eq. (15), should be averaged over all trajectories initiated at

which is solved as usual by Fourier transformation. Defininghe first barrier with a thermal distribution of energy in the

j=o0 perpendicular stable mode. Therefore application of the mul-
(k)= _ > eikirj (290  tidimensional Kramers’ turnover theory calls for a numerical
J=—ee evaluation of the energy loss parameter, which can be com-

and using the expression for the partial rates @), one putationally as expensive as the calculation of the rate by

readily sees that the dynamic structure factor has the ubiqugC!Ving the exact Langevin equation. An analytical estimate
tous Lorentzian shape with the FWHM given by for the energy loss is, however, possible in two limits: in the
first limit, the two degrees of freedom are strongly coupled

I'(k)=21"(k) through the potential energy function. Motion in the region
K of the well is then ergodic and then the energy loss turns
_ 4I’sdsin2( _) out?®4%5%q be proportional to*/kT)2. In the second weak
2 coupling limit, the separable energy lad$), proportional to
2 (w2
X ex Efo dxIn| T B2 %)~ 2P (x)cog k)
(30)

1-P(x) H VKT, is a good approximation. If the Langevin dynamics is
It is easy to check by direct substitution of the definitions

outside of these two limits, then one has no choice but to
resort to full fledged numerical simulations.
(23), (24), and(29) that Eqs.(8) and(30) are equivalent. We When the reduced barrier height/kT<5, one must
note, however, that we have identified the probability of ainclude in the theory finite barrier corrections to the rate
jump of lengthl in Eq. (8) asP,=2T",/« since only positive expressions>>*The corrections for the spatial diffusion rate
| values are considered and the symmetry condifign are obtained by using the reactive flux method in which the
=I"_, has been used. Notice also that hkmorresponds to choice of the dividing surface is chosen by minimization of
the dimensionless wave-vector transié, , along one spe- the transition-state flux. Details of the derivation of the re-
cific x or y direction. sulting expressions can be found elsewtéréhere we pro-
Equation(30) is important in the sense that, assumingvide only the final formulas for the 2D separable and non-
the validity of Kramers’ model and the master equation ap-separable potentials. If the so-called nonlinearity parameter
proach, it allows for a direct comparison with the experimen-is defined as

C. Finite barrier corrections
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(1 + a)z 0.05
— 0.002 1 T=200K
X= o (33) 0.04 ,ﬁii‘i \
) t . . . 7 0.0015 003 v 30
with a= y/2w™, then for a one-dimensional potential, or a & : RN
. 4 ~
2D separable potential, we have that 0.001 1 0,02 0y
r MY wo —(VHIKT) 11 Vi(x=al) 0:0005 1 5 oot i 3
=—5—¢€ i e e v v /
fbc Zf . 8,8 XZ [V§2)(X=a/2)]2 yim, /o,
(4) FIG. 2. Escape rateén ps ) as a function of the scaled friction for the
\2 (x=0) 34 separable cosine potential, at two different surface temperatures: left panel,
o [V(z)(XZO)]Z ! (34) T=110K, and right panel]T =200 K. Kramers’ resultgsolid and dashed
X

lines) are obtained by Eq$20)—(23) without and with finite barrier correc-

whereV(”) denotes theth partial derivative of the potential tions, respectively. Mean first passage time results are plotted with open
along thxe reaction coordinate circles and the closed squares are the corresponding numerical rates ob-

. . tained by counting jumps.
In a similar way, for a 2D nonseparable potential, one

finds that the leading finite barrier correction term is

1 v (al2,0) This relation between the MFPT and the escape rate, as cal-
1-—l| - - 2 > culated in Kramers’ work by the total flux of particles over
4B\ 2x [V, (al2,0)] L .
x the initial population of the well, has been demonstrated for
V§,4)(a/2,0) fo)(a/Z,O) the special case of a Gaussian white noise in A_ppend|x B of
+ @ a2 O + 3D 220V D (a/2.0 Ref. 47, and has been recently shown to hold rigorously for
2[Vy(al2,0)] XV (al2,00Vy~(a/2,0) arbitrary time-homogeneous stochastic process&ich a
v¥(0,0 v (0,0) time is almost independent of the precise location of the exit
= 3 point, as long as it is at a sufficiently remote distance from
2[V;(0,0]% 2[vy"(0,0] the barrier to avoid contributions from recrossing

2D__12D
1—‘fbc_l—‘sd

V22(0,0) trajectories’’ 4
— A , (35 The second numerical strategy consisted in explicitly de-
3vi2(0,0V'7(0,0 L : - :
x A Wy A termining the jumps between different sites. The rates are

where nowvff) denotes a crossed second order partial dethen obtained as the total number of jumps of the ensemble,

rivative in both directions. Except where stated otherwise, alfivided by the total propagation time. For numerical pur-

Kramers’ results in this work are understood to be with thePoses, a jump starts when a particle leaves the domain of a

inclusion of finite barrier corrections to the spatial diffusion unit cell. For the termination of a jump, we employed two

rate. different criteria: in one cas&;?’ a jump finishes when its

As shown by Mel'nikov in Ref. 55, the preexponential €nergy is smaller than a prescribed value below the potential

factor can be also developed in a series in terms of the erparrier in a different potential well; in the other calethe

ergy loss parameter in order to take into account finite barriefimp terminates when the residence time inside a new well is

corrections. However, in the energy diffusion limited regimelarger than the characteristic relaxation tifer the low to

for V#/kT=3, such corrections are small and so will be ne-intermediate friction regime, we typically set it asyp/

glected. These criteria are chosen to assure a thermalization of the
particle inside a potential well before starting a new jump. Of
course, they should give equivalent results within numerical

IV. NUMERICAL RESULTS uncertainty.
. In Fig. 2 we show the escape rates calculated at two
A. Separable potential different temperatures: at=110K, V¥#/kT~7 and atT

As a first demonstration of the power of Kramers’ based=200 K, V¥/kT~3.9, both cases being in the activated re-
theory, we studied the separable cosine potential case usedgime. The MFPT results are shown as open circles, the black
the first simulations of the experiment with a barrier of 67 squares with error bars show the rates obtained by counting
meV® We calculated escape rates, diffusion coefficientsjumps, the solid line is the theoretical prediction given by
jump distributions, and the dynamic structure factor by solv-Egs.(23) and(20), and the dashed line corresponds to inclu-
ing the Langevin equation for initial ensembles of particlession of the finite barrier correction. There is a small but
thermalized at the bottom of the potential well. Two ap-hoticeable difference between Kramers’ thegsplid lines
proaches were used to numerically determine the rates. Or@d the numerical simulation. This difference is mainly due
is based on the mean first passage tiiM&PT) of the tra-  to the fact that théreduced barrier height is not sufficiently
jectories through a given boundary. For periodic potentialdarge and one must take finite barrier corrections into account
with two equivalent exit paths along each direction, the es{dashed lingsfor the spatial diffusion limited regime, as
cape rate in one direction is simply related to the mean firsflescribed in the previous section. As can be seen, including
passage timenepy) by the finite barrier correction gives good agreement with the

simulation results for the whole friction range. From here
1 , . L

= _ (36) onwards, all Kramers’ based computation will include the

2TmrpT finite barrier correction terms.
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FIG. 3. Diffusion coefficientsin cm?/s) as a function of the scaled friction
for the separable cosine potential at two surface temperatures, 110 and 2
K. Solid lines: Kramers' results given by E®6) with finite barrier correc-
tions. Dashed lines: Analytical high friction estimation, E§8). Closed

&JJG. 5. FWHM(in neV) of the dynamic structure factor as a function of the
dimensionless wave-vector transfler aK, for the separable cosine poten-
tial at T=110 and 200 K and/=0.150,. Solid lines: Kramers’ results, Eq.

squares: Numerical results using E25) and the Langevin simulation data (30 Dashed lines: Chudley—Elliott model, E@), with numerically calcu-

for the escape rates and mean squared path lengths. Open circles: Numerikaéﬁd. jump ra_te_s and Jump distributions. (_:Iosed circles: Numerical results
diffusion coefficients from the Einstein relation, H@). obtained by fitting of the simulated dynamic structure factor, @8), to a
' Lorentzian shape.

We have also investigated the diffusion coefficients for qures (black barg with the analytical estimation given by

w|de range Of.fl‘.ICtIOIl‘l valueg. A_nalytlcal .pred|ct|ons for the Eqgs. (20)—(24) (empty bars Following the previous trends,
diffusion coefficient in a periodic potential, apart from Eq. . . : >~
. . . . for the highly activated regimeT(=110K) and for T
(26), are available only for the spatial diffusion . )
S 285760, - . . =200 K, the agreement in both cases is very good. As ex-
regime® with only nearest neighbor hops. In Fig. 3 the o . :
. . : . . pected, the probability of long jumps becomes more impor-
theoretical prediction given by E@6) is plotted as the solid s
tant as the temperature is increased.

line. .Numerlcal diffusion coefficients are obta|r_1ed in two Finally, we come to the question of how well the FWHM
ways: through the rates and the mean squared jump lengths

Eq. (25) (closed squargsand using the Einstein relation, Eq. Of the quasielastic peak can be. rep_roduced using Kramers
. . : turnover theory and the jump diffusion model. Results are
(7) (open circles For a comparison, we also show with the

dashed line the analytical prediction valid in the Smolu—dls’pl‘wed |nSFI|% |.5 aty=0.15hwo ?]nd thg tvlvo prde_wpus terg—h
chowski limi8:58 peratures. Solid lines are the theoretical prediction and the

dashed lines correspond to the Chudley—Elliot model, Eqg.
Doa? (8), with the numerically obtained jump rates and jump dis-
Jadx PV [adx e AV (37 tributions. With closed circles we also plot the FWHM ob-
i o o ] tained from the best fit of the numerically simulated dynamic
where_Do is the diffusion coefficient in the a_bsence Of_astructure factor, Eq(13), to a Lorentzian. The very good
potential, Do=kT/mvy. For the separable cosine potential agreement between the “exact” FWHM and the Chudley—

D,=

(2), the integrals can be evaluated to yield Elliot model atT=110 K demonstrates that for high barriers
Do the jump diffusion approximation is excellent. Whef/kT
szm (38) <4 this approximation deteriorates, as shown in the right
oo panel forT=200 K. Moreover, at large wave-vector transfer
with [o(x) the modified Bessel function of order zero. values we note that purely diffusive contributions cannot be

From molecular dynamics simulations with the separableseparated so well from vibrational contributions to the quasi-
cosine potential and the experimental T-mode lifetifhthe  elastic peak. The analytical FWHM result shows in both
friction coefficient for the Na/C{@01) system was estimated cases a small discrepancy aroukd 7. In particular, atT
to be y~0.150,. From Fig. 2 we can see that we are in the =200 K, it can be attributed to the worse agreement of
turnover region, closer to the low damping regime. At thesesingle and double jump probabilities with the numerical ones
low damping values, long jumps have been theoreticallysee Fig. 4 and to the overlapping between the quasielastic
predicted®!>*? and experimentally observed in other and T-mode peaks making the fitting to a pure Lorentzian
system$78In Fig. 4 we compare the numerically obtained function more guestionable. In this parameter limit, one
jump distributions aty=0.15»4 and two different tempera- should complement the Kramers' based theoretical analysis

with numerical simulations. Note that fde= 7 the mean

. " free path isl =2a and only single and double jumps can be

08 T=110K =200 K detected.
‘ 061 {
0.6
. 0.4 B. Nonseparable potential
02 PN | From the previous section we conclude that, Tt
o | [ o i A =4KkT, the Kramers’ turnover theory provides a good ap-
0 0 proximation to the exact Langevin dynamics. All the quanti-

FIG. 4. Probabilities of i F lengihin units of the latt " ties which can be of experimental relevance are accurately
. 4. Probabilities of jumps of length(in units of the lattice constaral), : ; ; ;
at T=110 and 200 K for the separable potential. Here0.150,. Black estimated whenever the Langevin equation approach with

bars: Numerical results with the corresponding error bars. White: Kramers®Mic _damping is a g_oo_d des_cription OT the atom's_urface
results, Eqs(20) and (24). dynamics. Here we will investigate the implementation of
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FIG. 6. (a) Main periodic orbits of the Na/G001) system from the non- 06 ] © @ i
separable potential at the saddle point energy, 74.64 meV. Solid lines indi- ' 100 Eiﬁi
cate stable orbits and dashed lines unstable ones. The equipotential line ¢ a-os] Z
that energy is also shown with thin solid lines to guide the éyePoincare | é ol Y ﬁ
surface of section at the middle of the potential well, fixixg 0, for an 021 y \
ensemble of classical trajectories with the barrier energy. L
R R B R ’ I
I K(A™

the theory to the 2D prob|em, that is, when tkeand y FIG. 7. Results for the nonseparable potential, Edjs-(4), at T=200 K.
degrees of freedom are coupled. The semiempirical potentié‘?) Escape rates: solid and dashed lines, Kramers’ resultg2B8g.without
. in E 1)—(4 il b d f h ical d and with finite barrier corrections, respectively; open circles, numerical
given .m qs.( )_( ) wi e used for the numerical an Langevin calculations with error bar&) Diffusion coefficients: solid line,
analytical comparisons. Eq. (26); dashed line, quasi-2D approximation Eg0); closed squares,
As already mentioned, application of Kramers’ theory tonumerical results from Eq25); open circles, Einstein relatiof). (c) Jump
the multidimensional case is not as Straightforward asin on istributions: black bars, Langevin results with error bars; white bars: Egs.

. . . 20) and (24) with y=0.1w,. (d) FWHM of the dynamic structure factor
dimension. To apply Kramers’ theory, one needs an estimay, ) and (29 4 o (@ Y

. e ’ vith y=0.1w,: solid line, Kramers’ results obtained by E@O0); dashed

tion of the average energy logsappearing in the Gaussian line, Chudley—Elliott model, Eq8), with numerical data for the jump rate

probability kernel. The theory is readily applicable 0n|y if and jump distributions; closed circles, numerical results from the dynamic

the coupling between the system modes is either strong (ﬁructure factor Eq(13) with error bars; open squares: experimental data
. . . _taken from Ref. 19see text for details

weak. To this end it is necessary to understand the classical

dynamics in the absence of friction. Previous detailed studies

of the classical dynamics of Na particles moving on this—46 .4 a.u., while the action for the separable cosine poten-

particular PES have shown that for energies above the saddlgy S=4a./mVF/2/, with the static barrier height/*
point chaotic dynamics plays an important rdfein fact, =74 64 mev yields the valuB~46.6 a.u.

statistical properties such as diffusion coefficients can be de- | g similar vein, for weak damping, motion perpendicu-

fined using this deterministic randomness, and they mayyy to the reaction coordinate is integrable. Therefore we ig-
even display an anomalous behavior depending on the ifhore the finite barrier correction terms that come from the
regularity of the classical dynamics. perpendicular direction and include from E&5) only the
The important point here is that by finding the simplestfinite barrier corrections along the reaction coordinateli-
periodic orbits of the system and studying their evolutionrection. Including the finite barrier corrections for the per-
with energy one can get a very good estimate of the irregupendicular mode gives qualitatively wrong results, due to the
larity of the classical dynamics at any energy. The main peyery shallow nature of the potential along thelirection at
riodic motions in this system are of three types: two translathe top of the barrier. It should be stressed though that this
tional orbits parallel to thex and y directions and along gijfficulty in estimating from theory the spatial diffusion rate
diagonal directions, respectivelgee Fig. 6a)], and a rotat-  goes not mean that the rate does not exist. It only means that
ing orbit of circular type. At the saddle-point energy, the que to the relatively high temperature, it is difficult to esti-
parallel orbits alongx or y undergo an abrupt series of mate it from theory without any further assumptions, such as
bifurcations® since the orbit is no longer localized inside a the integrability of motion along this coordinate.
potential well and free drifting periodic motions of all pos- In Fig. 7 we show the resuli&) for the directional rate
sible periods become allowed. This also marks a transition t@longx, (b) the diffusion coefficient(c) the jump probabili-
chaotic scattering:*>** We found, however, that untiE tjes and(d) the FWHM of the dynamic structure factor at
~90 meV, the parallel and circular motions are stable andr=200 K orV*/kT~4.3. For the escape rates, we included
influence most of the available phase space of the systenhe multidimensional finite barrier correctfralong the re-
This is illustrated in Fig. @) with a Poincaresurface of  action coordinate as described in the previous section and
section of the system at the saddle-point energy: despite thghove. The hopping distribution and the FWHM are shown
fact that the diagonal orbit shown in Fig(ef is unstable, for the value of the friction coefficieny=0.1w,, choosing
most of the phase space is regular with one central chain qﬁozg THz from the T-mode frequency. This is the value
stability islands corresponding to the parallel drift motion giyen in Ref. 19 for this particular PES after extensive simu-

alongx, and two islands to its left and right corresponding to|ations and comparison to experiments. The analytical results

the rotating orbit. Therefore it is reasonable to expect that thgre optained with the average energy loss
separable approximation for the energy loss will work rather

well. Indeed, the numerical action across one unit cell for the . 4ya /mV* (39)
periodic orbit parallel to thex or y directions is S KT '
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For the diffusion coefficient we also compare with an expresFWHM of the quasielastic peak vs the momentum transfer.
sion similar to Eq(37) generalized to two dimensions, called The two parameters are the spatial diffusion rate and the
the quasi-2D approximatiofr: energy loss. We have shown th@ the two parameter fit
F2dy[ fadx eBVxy)] L works well with experimental data; anil) when applied to
270 72 077 7 _ (40) & Langevin model for which the barrier in units kif is not
ody/5dx e AVxY) too low, the fit agrees well with the theoretical determination

The general agreement is as good as for the separable cosipleth® two parameters from the Hamiltonian governing the
potential. Note, however, that the coupling, even though it i€lynamics of the system. From an experimental point of view,
weak and the classical dynamics for energies below ané® main practical working expression is given in E80)
around the barrier remains very regular, does have an appréere the FWHM is given in terms of the two parameters.
ciable effect on all observable quantities. Indeed, the direc-  Kramers’ approach involves closed analytical expres-
tional escape rates are larger than in the separable case a#@nS and so is easier to implement than Langevin numerical
the probability of long jumps also increases, compare to$|mulat|ons: The resultmg fitting procedu.re is Iess_ cumber-
Figs. 2—4. This is due to the fact that the frequency at th&ome and time consuming. At the same time, the fit leads to
barrier along the stable direction is smaller, and the spatidiVo Parameters, with direct relation to relevant physical
diffusion rate then becomes larger, see E3{). In a more  guantities. With this in mind we suggest that this method is
intuitive picture, a lower frequency along tigedirection im- of value when interpreting and predicting the experimental

plies that the channel for diffusion alongs wider, and itis ~ results.
easier to cross the barrier. In addition, we have also demonstrated that Kramers’

Another effect induced by the coupling is the lowering turnover theory gives a very good estimate of rates, diffusion
of the barrier at the maxima, i.e., for diffusion along the coefficients, and jump distributions for diffusion of atoms
diagonal directions. This implies that at high temperature@dsorbed on metal surfaces when the barriers for diffusion
other diffusion paths than those alorgndy directions may @€ V#KkT>4 and finite barrier corrections are included
become available. This can be detected from an analysis dfrough Eqs(34) and(35). These conditions can be a.ch|?ved
the experimental resulf. In Fig. 7(d) a comparison is @t room temperature for systems with barrieis

shown between the numerical and analytical FWHM and the” 100 meV. For most of the systems studied by the QHAS
experimental data taken from Ref. 19. Note thain Fig. technique, with exception of the Xe(R11) which has a free

D:Doa

6(d) is the wave-vector transfer along the diagofi0] di- gas behavior, sgrche temperatgres in gener.e.ll should be
rection (these data are much less affected by experimentaPwer but are all inside the experimental capab|llﬁ%§.
error than those along the paral[@lL0] direction. In order A further restriction in theory is that the potential cou-

(41)

to compare with the Chudley—Elliot model and the resultsP!ing should be weak, in the sense that the classical dynam-
from Kramers’ theory we follow a reasoning similar to the IS around the barrier energy should be mainly regular. This
experimentalists: if only jumps along theandy directions 1S not so restrlctlvg as one may think, as'there is aI;o vast
were possible, the FWHNT'(K) at the maximum would be freedom in the choice of_the PES us_ed tq fit the_z experlmental
twice as large along the diagonal direction than the valud€Sults, when undertaking Langevin simulations. For in-
along the parallel direction. However, the ratio at the maximaSt@nce, a periodic PES representing the atom-—surface inter-
for the azimuthg110]:[100] is here 1:1.4estimated in our action can always be (_axpressed as a Fourier series with the
case from the numerical simulation of the dynamic structurd®fOPer symmetry requirements. For the Na/@i) we can
factor (13) along these two different directiohsThis indi-  @ke as well the pure cosine potential
cates that we have a sizable proportion of jumps along diag-
onal directions. Therefore the results with solid and dashed 27X 2wy
lines in Fig. 7d) were calculated with the directional rates ~ V(X.Y)=Vo—Vy CO{ T) +005( T”
and jump distributions along and then multiplied by 1.4. It
can be seen that the agreement of both the Chudley—Elliot 27X 2my
model and the analytical prediction are fairly good. More- +Va COS{ _) COE{T
over, by varying the static barriaf* we found that the best
fi'F of the ainalytical model to the experimental results Was,ith Vo, V;, andV, chosen such thav(0,0)=0, V(O,
given byV*~72 meV, only~2.5 meV lower than the esti- +a/2)=V* (energy barrier at the saddle pgintand
mated value from the Langevin dynamics simulations, amg(ia/2 +a/2)=V,, (energy barrier at the maximshis re-
certainly inside the %xperimental er@round 6 meygiven i ,\/0=Vm/4-|[nV¢/2, V,=V, /4, andV,=V, /4— V2.
for the static barrief: Now, from experimental data we have an estimation of the
friction coefficient y=0.9 THz!® The only parameters re-
V. CONCLUSIONS maining to be determined in the theory are the saddle-point
_ , , energyV* and thedifference \,— V*. Note that the frequen-
The centra! conclu3|_on of this work is that Kramers’ .ios needed for the spatial diffusion rate are

theory as applied to activated surface diffusion should be
used as an added standard tool to fit and interpret experimen-
tal results for adatom diffusion at low coverage. Kramers’ _ ot 2V

. . Wox= Woy= W=T"\| —3, (42
theory provides a two parameter representation for the : vy
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