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Abstract
Growth at elevated CO2 and temperature often leads to decreased Rubisco activity.

We investigated the effects of increased CO2, temperature and nitrogen on the

diurnal changes in the control of ribulose-1,5-bisphosphate carboxylase oxygenase

(Rubisco) activity in wheat (Triticum aestivum L.). Spring wheat was grown at

ambient and 700 µmol mol-1 CO2, under ambient and 4 ºC warmer temperatures, and

with two levels of nitrogen supply in field tunnels in a Mediterranean environment.

At ear emergence, elevated CO2 increased Rubisco activation, but decreased Rubisco

protein and, with high nitrogen, Rubisco specific activity, and had no effect on the

rbcS transcript. Warmer temperatures tended to decrease the rbcS mRNA level and

Rubisco protein, although the effect on Rubisco activity was small. High nitrogen

decreased Rubisco activation or specific activity, depending on the CO2

concentration. It increased Rubisco protein at the end of the night, but accelerated its

diurnal loss. The main changes after anthesis were the disappearance of the decrease

in Rubisco specific activity caused by elevated CO2, an increase in this activity with

above-ambient temperatures combined with high nitrogen, and that high temperature

and nitrogen did not affect Rubisco protein contents. This study suggests that

decreased leaf protein and increased levels of a Rubisco inhibitor, rather than gene

repression by sugars,  are involved in acclimation to elevated CO2. High nitrogen

increases this down regulation. Changes during growth in levels of leaf metabolites

and protein may alter the relative importance of levels of inhibitors and Rubisco

amounts for Rubisco regulation.

Key-words: Triticum aestivum, carbohydrates, diurnal, elevated CO2, elevated

temperature, nitrogen, protein, Rubisco regulation.

Abbreviations – rbcS, Rubisco small subunit; Rubisco, ribulose-1, 5-bisphosphate

carboxylase oxygenase; RuBP, ribulose-1,5-bisphosphate.
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Introduction
Many studies on acclimation to elevated CO2 have pointed to a decrease in

Rubisco (Drake et al. 1997) which could be accounted for by the acceleration of

development and an earlier senescence (Sicher and Bunce 1997), but the decrease in

Rubisco precedes any change in senecence or is not affected by it (Nie et al. 1995b).

In recent years much emphasis has been placed on the control of Rubisco gene

expression by high atmospheric CO2 levels. The levels of transcripts for the Rubisco

subunits show small diurnal variations, from a maximum at approximately dawn to a

minimum in the late afternoon (Nie et al. 1995a, Cheng et al. 1998), and are lower at

elevated CO2 (Van Oosten and Besford, 1995), especially before dawn (Nie et al.

1995a) and in the night (Cheng et al. 1998). This diurnal oscillation is antiparallel to

the pattern of carbohydrate accumulation (Nie et al. 1995a) and coincides with high

levels of hexoses in the first hours of the night under elevated CO2 (Cheng et al.

1998), suggesting a relationship between high levels of sugars and gene repression.

Growth at elevated CO2 leads to an accumulation of carbohydrates (Nie et al. 1995a)

and there is evidence that the expression of photosynthetic genes is inhibited by

sugars (Sheen, 1990, Krapp et al. 1993). Despite the relationship between diurnal

changes in sugar levels and gene repression, the correspondence of transcript levels

to the accumulation of soluble carbohydrates at different stages of development is

variable (Nie et al. 1995b, Geiger et al. 1999). Moreover, with a high nitrogen supply

sugars increase at elevated CO2 but no acclimation of photosynthesis or decreased

transcripts for Calvin cycle enzymes is observed (Geiger et al. 1999.). The decrease

in Rubisco protein at elevated CO2 is accompanied by lowered total soluble protein

(Sicher et al. 1997) and total nitrogen in leaves (Nakano et al. 1997), suggesting that

the effect of elevated CO2 on photosynthesis is due to the nitrogen status (Riviere-

Rolland et al. 1996, Nakano et al. 1997, Farage et al. 1998, Geiger et al. 1999).

The control of Rubisco contents by elevated CO2 may involve multiple effects on

mRNA translation and/or protein turnover (Webber et al. 1994, Moore et al. 1999).

In addition to this coarse control of Rubisco activity, the kcat of Rubisco decreases

with inhibitory phosphorylated compounds that bind tightly to Rubisco during the

photoperiod (Parry et al. 1993, Keys et al. 1995, Parry et al. 1997). The catalytic

activity of Rubisco increases with elevated CO2 by 8% in soybean, although it is not

affected by CO2 in rice (Vu et al. 1997). In turn, Rubisco activation decreased at
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elevated CO2 in some studies (Sage et al. 1988, 1989, McKee and Woodward 1994,

Vu et al. 1997), though not in others (Nakano et al. 1997).

The increase in atmospheric CO2 concentration may be associated with a rise in

temperature of 1.5-6 ºC (Schneider 1992). Rubisco protein is decreased by 23% in

rice and by 17% in soybean as temperatures increase from 32 to 38 ºC and from 28 to

40 ºC, respectively; in addition, the total activity and activation of Rubisco decreases

in rice, while only activation decreases in soybean (Vu et al. 1997). That Rubisco

protein, but not total activity in soybean, decreases at high temperature indicates that

the apparent kcat is up-regulated (Vu et al. 1997). Rubisco catalytic activity increases

with temperature and shows values 40-70 % lower in C3 species from warm than

from cool habitats (Sage et al. 2002). It has been observed that growth temperature

alters the relative stimulation of photosynthesis by elevated CO2 in response to

temperature, reflecting an acclimation to this environmental parameter (Hikosaka et

al. 1999, Bunce 2000 a; Ziska 2001); the apparent specificity of Rubisco for CO2

(Bunce 2000 b) or long-term adjustments in the potential rate of electron transport

and the maximum velocity of RuBP-saturated carboxylation (Ziska 2001) seem to

account for this acclimation to temperature.

Studies of the response of Rubisco activity to rising CO2 and temperature in field

crops, with the fluctuations in light, temperature and humidity of the natural

environment, particularly under Mediterranean conditions of limiting water and

warm temperatures, are sparse. The aim of this work was to assess whether Rubisco

activity and its diurnal fluctuation in flag leaves of wheat are affected, at the various

control levels described, by combined increases in CO2 and temperature in the air,

and to ascertain whether the nitrogen supply modifies these effects. Carbohydrates

were analysed to examine their relationship with Rubisco activity. In order to

approach the natural environment of Mediterranean wheat crops, this study was

conducted in the field, without the restrictions to root growth imposed by pots, under

temperature gradient tunnels – to track the diurnal and seasonal fluctuations in

temperature – with a water supply equivalent to the average rainfall during the

growing season. The flag leaf at the key growth stage of ear emergence was selected

for this study. This was the youngest fully expanded leaf at a time when acclimation

to elevated CO2 is more likely than in younger plants, and the elongating last

internode of the stem and the ear provided an active sink for assimilates. Changes
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during growth on the control of Rubisco by CO2, temperature and nitrogen were

assessed by comparing leaves sampled at ear emergence and after anthesis.
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Materials and Methods
Spring wheat (Triticum aestivum L., cv. Areces) was sown in a clay sand soil at a

rate of 180 kg ha-1 and 0.13 m row spacing on 13 February. Before sowing,  N (as

NH4NO3), P and K fertilizers (80, 40 and 40 kg ha-1, respectively) were applied. The

crop was watered weekly through a drip irrigation system providing amounts of

water equivalent to the average rainfall in this area during the period of the

experiment (198 mm between February and June). The experiment was carried out at

the IRNASA farm at Salamanca (41o N, 800 m above sea level).

Temperature gradient tunnels were mounted on the crop on 23 March rather than

at sowing to select crop areas with a uniform plant cover. Mean crop densitiy at ear

emergence was 534Ä77 shoots m-2. The tunnels were 9 m long, 2.2 m wide, and 1.7

m high at the ridge and followed the design of Rawson et al. (1995). Briefly, each

tunnel had transparent walls and roof and comprised three modules separated by

horizontally slotted polycarbonate septa to reduce the mixing of air between modules

due to convection. Two inlet fans and an outlet fan continuously circulated air

through the tunnel at the speed required to maintain a temperature difference

between the two extreme modules. Three small fan heaters placed in the outlet

plenum were used to help maintain the temperature difference at night and whenever

solar radiation was insufficient to raise the temperature. A two-probe Pt-100 system

measuring the difference between the inlets of the inlet and outlet fans was connected

to proportional integrative differential (PID) controllers with outputs to the fans and

the heaters. To raise CO2 levels in the air, the signal of an infrared gas analyser

monitoring the CO2 concentration at the outlet module was fed into another PID

controlling a solenoid valve which injected CO2 at the two inlet fans. Ventilated

temperature and humidity sensors and air probes for CO2 analysis were placed at the

centre of each module. The data were recorded continuously by a computer.

This study was conducted in two tunnels, one kept at the ambient air CO2

concentration and another at 700 µmol mol-1 during the light hours. CO2 enrichment

in the night period may be irrelevant, because direct effects of CO2 on leaf

respiration in the dark seem not to exist, the reports in the literature appearing to be

artefactual (Jahnke and Krewitt 2002). The temperature difference between the

extreme modules in a tunnel was set at 4 oC. Additional (40 kg ha-1) nitrogen was

added to one of the longitudinal halves of each tunnel 34 days after sowing, such that



7

two levels of this nutrient (80 and 120 kg ha-1) were compared. The samplings were

repeated in four consecutive sections within the two module halves. The experimental

design (Fig. 1) and its stastistical analysis are further discussed below.Figure 2 shows

that the diurnal courses of air temperature, relative humidity and CO2 concentration

were controlled satisfactorily. Air humidity in the high-temperature module was lower

with elevated than ambient CO2, probably due to decreased transpiration at elevated

CO2. An increase in temperature and an associated decrease in air humidity during the

light hours occurred from April to May- early June. No relevant changes in CO2

concentrations were observed during this period.

On day 3 after the beginning of ear emergence in the whole experiment (22 May)

- ear emergence was advanced about 3 days by warm temperatures -, flag leaves (two

per replicate) were harvested and immediately plunged into liquid nitrogen just

before dawn, 4-6 h later, 1-2 h before dusk, and 2-3 h into the dark period; light

intensities were <10, 1700, 100 and <10 µmol m-2 s-1, respectively. On day 9 after

100 % anthesis in each temperature regime  (3 and 9 June for plants under ambient

and ambient + 4 ºC, respectively), another sample of the same size was harvested 4-6

h after the start of the light period.  The samples were kept in liquid nitrogen until

analysis. After determining the fresh weight in subsamples of frozen leaves, leaf area

was determined by image analysis and chlorophyll was extracted in 80 % acetone

and measured (Arnon 1949). This allowed the results to be expressed on a leaf area

basis.

For Rubisco activity assays, a procedure based on that described by Lilley and

Walker (1974), as modified by Ward and Keys (1989) and Sharkey et al. (1991), was

followed. Aliquots of the frozen leaves were ground in a mortar with liquid nitrogen

and extracted with 100 mM Bicine-NaOH (pH 7.8), 10 mM MgCl2, 10 mM β-

mercaptoethanol and 2% PVPP (w/v). An aliquot of the whole extract was used to

determine chlorophyll contents (Arnon 1949) and the remainder was centrifuged at

13000 g. The total time from extraction to the assay of initial Rubisco activity was

less than 2.5 min. Activity was assayed by adding extract to a mixture of 100 mM

Bicine (pH 8.2), 20 mM MgCl2, 10 mM NaHCO3, 10 mM KCl, 1 mM ribulose-1,5-

bisphosphate (RuBP), 0.2 mM NADH, 5 mM ATP, 5 mM creatine phosphate, 52

units/ml phosphocreatine kinase, 12 units/ml phosphoglycerate kinase, 11 units/ml

glyceraldehyde 3-phosphate dehydrogenase and recording the decrease in absorbance
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at 340 nm minus 400 nm for 40-60 s, at a stoichiometry of 2:1 between NADH

oxidation and RuBP carboxylation. To assay total Rubisco activity, an aliquot of the

extract was incubated with NaHCO3 and MgCl2 for 10 min at room temperature prior

to the addition of coupling enzymes and NADH; the reaction was started by adding

RuBP. The activation state was estimated as initial activity as a percentage of total

activity. Commercial coupling enzymes suspended in ammonium sulphate were

precipitated by centrifugation and dissolved in 20 % glycerol (Sharkey et al. 1991).

With the assay buffer described, the initial lag in the reaction reported by others

(Ward and Keys 1989, Sharkey et al. 1991) was not observed. The amount of

Rubisco in a subsample of frozen leaf material was determined by densitometric

scanning of SDS-PAGE gels, as described previously (Martín del Molino et al.

1995). Rubisco specific activity was determined by dividing total activity by Rubisco

active site contents.

For analysis of RNA, frozen leaf material was homogenized with guanidine

buffer. The supernatant was extracted with phenol/chloroform (1:1, v:v) and after

phase separation the aqueous phase was washed with chloroform. Total nucleic acids

were precipitated with sodium acetate and ethanol. The pellet was washed with

ethanol, dried and finally resuspended in DEPC water. Purity was checked by

measuring absorption at 230, 260, 280 and 320 nm and the absorption at 260 nm was

used for quantification (Logemann et al. 1987). For Northern blots, 10 µg of RNA

were separated electrophoretically on 1.2% agarose gels containing 7%

formaldehyde (Sambrook et al. 1989) and transferred to membranes (Hybond N,

Amersham Pharmacia Biotec). The membrane was baked and prehybridization was

performed as described by Krapp et al. (1993). The 32P-labelled (radiolabelling was

by random primer using the Boehringer kit) Rubisco small subunit (rbcS) cDNA of

wheat kindly provided by Dr. Christine Raines (Dept. of Biological Sciences, John

Tabor Laboratories, University of Essex, UK) was added to the prehybridization

mixture and hybridization was carried out for at least 12 h. The filters were washed

and autoradiography was carried out at –80ºC with Kodak Xomat films, using a

single intensifying screen. The relative levels of rbcS expression were determined by

image analysis using the Scion ImagePC (Scion Corp., Maryland, USA) ) software.

Subsamples of leaves stored in liquid nitrogen were extracted three times in 1 ml

80 % ethanol - 10 mM Hepes-KOH (pH 7.5) at 80 ºC for 30 min and the extracts

were pooled. Then, the residue was extracted three times in 1 ml water at 80 ºC for
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30 min and the extracts were pooled. Chlorophyll in the extracts was analysed as

described above. Glucose, fructose and sucrose in ethanol extracts were determined

according to Jones et al. (1977). Since most commercial invertases hydrolyze

oligofructans (Koroleva et al. 1998), sucrose contents were estimated from glucose

rather than from fructose released by invertase. For fructan analysis, aliquots from

both the ethanol and water extracts were rendered 360 mM HCl, heated at 60 ºC for

30 min and then neutralized with KOH before analysing glucose and fructose;

fructan (fructose equivalents) in the hydrolyzed ethanol extract was estimated by

subtracting the amounts of free- and sucrose-fructose; fructose in excess of glucose

in the sucrose analysis was assumed to correspond to fructans and was added to

these. Fructose in the hydrolyzed water extract was added to obtain total fructan

contents. Starch in the residue from ethanol-water extractions was digested with

amyloglucosidase and amylase and determined according to ap Rees et al. (1977).

The restriction of the number of available tunnels to just two, with the consequent

lack of replication for CO2, was a drawback in the experimental design. In addition,

randomisation of treatments was limited with temperature gradient tunnels, which

unavoidably placed in a same tunnel module the two combinations of nitrogen with a

given temperature. With a lay-out of samples within samples, analyses of variance

were performed as in a nested design according to Snedecor and Cochran (1967),

with temperature and nitrogen as a stratum included in CO2, and replicates as a

stratum included in that for temperature and nitrogen. Details of one of such analyses

are summarized in Table 1.The variance ratio for CO2 was obtained by dividing the

mean square for CO2 (1 degree of freedom) by the nitrogen and temperature within

CO2 mean square (6 degrees of freedom). Thus, the variability of the CO2 levels was

compared with the variability of individual nitrogen and temperature treatments after

removing any overall similarity between treatments belonging to the same CO2.

Although debatable, this method of obtaining the variance ratio following the

Snedecor and Cochran (1967) model seemed more adequate than comparing the CO2

mean square against a residual mean square representing the random variability

between treatments after removing CO2 as well as nitrogen and temperature effects.

Similarly, the nitrogen, temperature and interactive effects (1 degree of freedom

each) were compared against the replicates within CO2-temperature-nitrogen mean

square (24 degrees of freedom). Time effects were evaluated by including the hour of

day as a further stratum in the analysis (3 against 9 degrees of freedom). The
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standard errors of differences, rather than simply the standard error of means, are

shown in the figures, since the former are better estimates of the treatment effects.
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Results
 Flag leaf photosynthesis during the morning hours (data not shown) was higher in

plants grown at elevated than ambient CO2. When measured at the same CO2

concentration, however, elevated CO2 plants had decreased photosynthesis rates,

except that plants grown at above ambient temperatures and abundant nitrogen

supply showed smaller or no significant decreases in photosynthesis.

Ear emergence
Rubisco

Rubisco activity

In general, initial Rubisco activity (Fig. 3 A, B) showed a decrease from the end

of the night to the end of the light period, and then increased during the two first

hours of the night. Elevated CO2 decreased initial Rubisco activity at the end of the

night and mid morning, and then the effect disappeared due to a faster decline with

ambient than elevated CO2. With a high nitrogen supply, the initial activity of the

enzyme was higher at the end of the night, as compared to low nitrogen; at other

times of the day, nitrogen had no significant effect on initial activity. Growth

temperatures did not affect initial Rubisco activity.

Compared to the values obtained at the end of the night, the activation state of

Rubisco (Fig. 3 C, D) decreased to a greater extent at ambient than elevated CO2 in

the light period. Two hours into the dark period, Rubisco activation displayed an

increase in plants grown at ambient, but not at elevated, CO2. A similar increase in

Rubisco activation after dusk was observed by Parry et al. (1993), and no pre-dawn

decrease in activity was observed in a number of species (Vu et al. 1984, Servaites et

al. 1986). The activation state of Rubisco was similar at ambient and elevated CO2

by the end of the night, while it was higher at elevated CO2 during the day. A high

nitrogen supply decreased Rubisco activation, although in the morning this decrease

occurred only at ambient CO2; as an exception, nitrogen had no effect on the degree

of activation of Rubisco by the end of the night. Temperature had no effects on

Rubisco activation.

In plants grown at ambient CO2, total Rubisco activity (Fig. 3 E, F) showed an

increase from the end of the night to mid-morning; from there to the end of the day,

it changed little in plants at the current temperatures and increased with 4 ºC higher

temperatures. Two hours after dusk, in contrast, total Rubisco activity increased
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somewhat at the current temperatures, but decreased to values close to those at the

end of the night at 4 ºC above ambient temperatures. By contrast, at elevated CO2

total Rubisco activity generally decreased from the end of the night to the first part of

the light period and then increased until 2 hours after dusk. Compensating in part the

increased activation of Rubisco, total activity was decreased by elevated CO2 at the

end of the night and the decrease was even greater during the light hours. Abundant

nitrogen did not prevent the decrease in total Rubisco activity caused by elevated

CO2; rather, high nitrogen increased total Rubisco activity in plants grown under

ambient CO2, but not under elevated CO2. The increase in temperature had no

significant effect on total Rubisco activity.

Rubisco specific activity

At ambient CO2, the specific activity of Rubisco (Fig. 3 G, H), as total Rubisco

activity, generally increased from the end of the night to the end of the day. Two

hours into the dark period, Rubisco specific activity changed relatively little at the

current temperatures, but underwent a marked decrease at 4 ºC higher temperatures.

In plants grown at elevated CO2, Rubisco specific activity also increased from the

end of the night to mid-morning in plants with a low nitrogen supply, but, in contrast,

it decreased in this interval in plants with an ample nitrogen supply. At elevated CO2

there was no homogeneous pattern of change in specific activity from  the morning

to the end of the day, and this was generally followed by an increase two hours into

the dark period.

During the light hours, elevated CO2 decreased Rubisco specific activity in plants

with abundant nitrogen and did not affect it with low nitrogen; two hours after the

start of the night, elevated CO2 continued to decrease the specific activity of the

enzyme in plants with high nitrogen and ambient temperatures, but not with above-

ambient temperatures. High temperatures increased the specific activity at the end of

the day in plants at ambient CO2 and decreased it at the beginning of the dark period

in plants at ambient CO2 and high nitrogen. Nitrogen showed the described

interaction with CO2 on Rubisco specific activity.

Rubisco protein content

The diurnal change in Rubisco protein (Fig. 3 I, J) depended on the supply of

nitrogen. Thus, with abundant nitrogen Rubisco protein generally decreased from the

end of the night to the end of the day. With low nitrogen, Rubisco protein showed

little change from the end of the night to the final light hours at ambient CO2, while
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at elevated CO2 it decreased at mid-morning and changed little thereafter at the

current temperatures, but increased throughout the light hours with higher

temperatures. With both nitrogen levels, Rubisco protein increased in the first hours

of the night. Elevated CO2 decreased the amount of Rubisco protein. High

temperatures decreased the amount of Rubisco in plants with high nitrogen during

the light hours, but the effect disappeared or was reversed two hours into the dark

period. With low nitrogen, however, this effect of high temperatures only occurred

under elevated CO2 during the night hours. A high nitrogen supply increased the

amount of Rubisco in the night hours at high temperature, and at the end of the night

and mid-morning at the current temperatures, but did not modify Rubisco contents at

the end of the day.

rbcS transcript levels

Northern-blots were carried out with two of the four replicates of all treatments

and sampling times (Fig 4 A). The mRNA level for the Rubisco small subunit did not

change significantly during the day (Fig. 4 B). High nitrogen increased the rbcS

mRNA level. However, this increase was not judged as reliable because the high-

and low-nitrogen samples were arranged on separate membranes. There were no

significant effects of CO2 on rbcS transcript levels. In contrast, high temperatures

tended to decrease rbcS expression.

Leaf Carbohydrates

Fructose (Fig. 5 C-D) increased during the first part of the light period and

decreased thereafter; although glucose and fructans (Fig. 5 A-B, G-H) followed the

same pattern, it did not reach significance. Sucrose (Fig. 5 E, F) increased from the

end of the dark period to the first part of the day, remained at this level until the end

of the light period, and then declined during the first hours of the night. Starch (Fig. 5

I, J) increased throughout the light period and was mobilized at night. Therefore,

total non-structural carbohydrate contents increased during the day compared to the

end of the night and decreased two hours into the night.

Elevated CO2 significantly increased glucose and fructans during the dark period;

in the day time this increase did not reach significance. Elevated CO2 also increased

fructose, sucrose and starch at all day and night samplings. Thus, total non-structural

carbohydrates always increased at elevated CO2. The higher carbohydrate levels at

the end of the night under elevated CO2 indicate that the extra carbohydrate

accumulated during the day was not fully mobilized during the dark period. High
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temperatures decreased the contents of fructose, except in plants at elevated CO2 and

low nitrogen, and, in the light hours, they decreased sucrose contents. High

temperatures also decreased starch contents in plants with ample nitrogen in the light

hours and, in plants with ample nitrogen and elevated CO2, also two hours after the

start of the night. Nitrogen deficiency did not affect glucose, fructose and sucrose

contents; it increased fructan contents only in the light hours and starch contents

throughout the day in elevated CO2 plants and, at mid-morning and the beginning of

the night, also in ambient CO2 and high-temperature plants.

After anthesis
Rubisco

Rubisco activity

At mid morning 9 days after anthesis, elevated CO2 decreased initial Rubisco

activity (Fig. 6 A) as was observed at ear emergence, except in plants under current

temperatures and low nitrogen, which also showed high total and specific Rubisco

activity and protein compared to other combinations of factors.  Initial Rubisco

activity showed a positive response to increased temperatures after anthesis – except

for elevated CO2 and low nitrogen -, in contrast with the temperature insensitivity

displayed at ear emergence.  Nitrogen increased initial Rubisco activity at ambient

CO2, significantly so at  above ambient temperatures; at elevated CO2 and current

temperatures, nitrogen decreased initial Rubisco activity due to the high value with

the elevated CO2, current temperature and low nitrogen combination.

While elevated CO2 increased Rubisco activation state at ear emergence, it

decreased activation after anthesis (Fig 6 B), except at warm temperature and low

nitrogen. A temperature increase, which had no significant effect on the activation of

Rubisco at ear emergence, caused an increase in activation after anthesis which was

small in all treatment combinations except in elevated CO2 and low nitrogen. At the

current temperatures, high nitrogen did not affect the activation state of Rubisco,

while at high temperatures it decreased this activation, especially at elevated CO2, an

effect which was observed at both temperatures, but only at ambient CO2, at ear

emergence.

At above ambient temperatures, elevated CO2 decreased total Rubisco activity

(Fig. 6 C), an effect observed at both temperatures at ear emergence; at ambient

temperature and low nitrogen, total activity was high at elevated CO2, as already
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indicated. Except for this treatment, a temperature rise increased total Rubisco

activity after anthesis, especially at ambient CO2 and high nitrogen, in contrast with

its lack of effect at ear emergence. Apart from the high activity in plants at elevated

CO2, ambient temperature and low nitrogen, a high nitrogen supply increased total

Rubisco activity, and the interaction of nitrogen and CO2 on this activity at ear

emergence disappeared after anthesis.

Rubisco specific activity

Elevated CO2 increased the specific activity of Rubisco (Fig. 6 D); this effect of

CO2 tended to be higher at current than warmer temperatures, which accounted for

the unaltered  total Rubisco activity under elevated CO2 at the current temperatures.

Therefore, the decrease in specific activity caused by elevated CO2 with a high

nitrogen supply at ear emergence disappeared after anthesis. Above ambient

temperatures increased Rubisco specific activity with high nitrogen, while under

elevated CO2 and low nitrogen this activity was high at ambient temperature.

Rubisco protein contents and rbcS transcript levels

Except for the high Rubisco protein under ambient CO2 and temperature with low

nitrogen, elevated CO2 decreased the amount of Rubisco protein (Fig. 6 E) 9 days

after anthesis, as it did at ear emergence. Warmer temperatures had no effect on

Rubisco protein, in contrast with the decrease induced in its contents in plants with

high nitrogen at ear emergence. Abundant nitrogen did not affect the contents of

Rubisco protein after anthesis, and thus the positive effect of high nitrogen at

ambient temperatures observed at mid morning at ear emergence, disappeared after

anthesis.

The mRNA level for the Rubisco small subunit was not affected by the treatments

after ear emergence (data not shown).

Leaf Carbohydrates

Nine days after anthesis elevated CO2 had no significant effect on the contents of

glucose and fructose (Fig. 7 A, B) and increased starch contents (Fig. 7 E), except at

current temperatures and high nitrogen. With low nitrogen, elevated CO2 increased

sucrose contents (Fig. 7 C), but with high nitrogen it decreased these contents. Under

ambient temperatures, elevated CO2 decreased the levels of fructan (Fig. 7 D), while

at warmer temperatures it increased these levels. Thus, the overall increase in non-

structural carbohydrate contents caused by elevated CO2 at ear emergence had

disappeared after anthesis. Above ambient temperatures decreased fructan contents
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and, with elevated CO2 and low nitrogen, as well as with ambient CO2 and high

nitrogen, also the starch contents. Consequently, a rise in temperature tended to

decrease the contents of non-structural carbohydrates, as was generally observed at

ear emergence. Nitrogen deficiency did not affect the contents of glucose, fructose

and fructan. Starch contents were higher with low nitrogen, elevated CO2 and current

temperatures than with other combination of factors.
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Discussion

With the modifications discussed below, initial Rubisco activity at ear emergence

showed a decline during the day which was due to a deactivation of Rubisco, since

total Rubisco activity generally showed an increase from before dawn or mid-

morning, depending on growth CO2 level. Although Rubisco activation state often

increases with light (Portis, 1992), the higher activation of Rubisco at night hours in

our experiment is consistent with previous results showing an increase in Rubisco

activation in the dark (Parry et al., 1993, Anwaruzzaman & Yokota, 1999) and no

pre-dawn decrease in Rubisco activity in some species, including Gramineae (Vu et

al., 1984; Servaites et al., 1986). The increase during the day in total Rubisco activity

contrasts with the afternoon decrease reported in previous studies (Kobza and

Seemann 1989) and was due – with some exceptions, discussed later - to increasing

specific activities of the enzyme, since Rubisco protein contents displayed a

decreasing pattern. This inhibition of catalysis, which did not disappear in vitro (He

et al. 1997, Sharkey et al. 2001), pointed to the in vivo presence of tight-binding

Rubisco inhibitors (Kobza and Seemann 1988, Parry et al. 1997). A day-time

inhibitor of Rubisco with properties similar to those of pentodiulose-bisphosphate

(Kane et al. 1998) has been found in wheat (Keys et al. 1995, Parry et al. 1997); the

inhibitor contents could increase in response to an accumulation of its precursors, as

has been confirmed for the nocturnal inhibitor 2-carboxyarabinitol 1-phosphate

(Andralojc et al. 2002) and can play a major role in regulating Rubisco activity in the

light (Parry et al. 1993, 1997, Medrano et al. 1997). The increase up to the end of the

day in Rubisco specific activity in most plants grown at ambient CO2 revealed that

the putative inhibitor was released only slowly from Rubisco active sites. In turn,

Rubisco protein displayed diurnal decreases - similar in magnitude to those observed

for Nitrate Reductase (Scheible et al. 1997) and soluble protein (Häder et al. 1997) -

which showed a low correspondence with the diurnal changes in Rubisco mRNA

levels, suggesting that gene transcription was not the only regulator of the abundance

of this enzyme (Webber et al. 1994, Moore et al. 1999).

The activation state of Rubisco was higher at elevated CO2, especially with an

abundant nitrogen supply, due to a slower deactivation of Rubisco during the day.

Therefore, the decrease in initial activity of Rubisco at elevated CO2 must be a

consequence of a lowered total activity, which was not prevented, but was
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exacerbated by a high nitrogen supply, in contrast to previous reports (Riviere-

Rolland et al. 1996, Geiger et al. 1999, Stitt and Krapp 1999). This occurred, firstly,

because when combined with abundant nitrogen, elevated CO2 reversed or prevented

the increase in specific activity observed at ambient CO2. This change points to an

increase in the level of an inhibitor of Rubisco parallel to the greater accumulation of

carbohydrates - particularly of hexoses and sucrose with high nitrogen - and probably

also phosphorylated intermediates caused by elevated CO2. Secondly, elevated CO2

reduced the amount of Rubisco protein, in agreement with earlier studies reporting an

inhibition of gene expression for this enzyme (Van Oosten and Besford 1995, Nie et

al. 1995a, Cheng et al. 1998). However, we observed no significant changes in rbcS

expression associated with the accumulation of carbohydrates at elevated CO2. The

decrease in Rubisco protein was associated, in agreement with others (Nakano et al.

1997, Geiger et al. 1999), with a decrease in leaf nitrogen, attributable in part to a

dilution on a leaf area basis and to a change in allocation within the plant rather than

to decreased nitrogen uptake (I. Martín del Molino, P. Pérez, R. Martínez-Carrasco,

R. Morcuende, unpublished data), which is consistent with the results reported by

Makino et al. (1997).  In contrast with other studies (Geiger et al. 1999), however,

decreased leaf nitrogen at elevated CO2 was not relieved by a high nitrogen supply,

because the latter did not alter the allocation of nitrogen to the flag leaf (unpublished

data). The main changes in effects of elevated CO2 on Rubisco after anthesis were a

decrease in the activation state and no decrease in Rubisco specific activity. The

latter may be due to the fact that levels of carbohydrates, and possibly also of

photosynthetic intermediates, were no longer increased by elevated CO2, probably

due to enhanced carbohydrate export, as the increased ear dry weight suggests (data

not shown).

Higher temperatures did not affect the activation or the total activity of Rubisco at

ear emergence as elevated CO2 did. In contrast, high temperatures altered the specific

activity of Rubisco at certain hours of the day. The paralellism of this effect with

carbohydrate levels was poor. In addition, high temperatures with abundant nitrogen,

decreased the amount of Rubisco protein, in agreement with previous studies (Vu et

al. 1997). Here we show that a trend towards decreased rbcS transcript is involved in

the loss of Rubisco at high temperature. After anthesis, the activation state of

Rubisco and its specific activity with high nitrogen were stimulated by above-

ambient temperatures, while Rubisco protein and rbcS levels were unaffected. Again,
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the change in specific activity with temperature was not closely related to

carbohydrate levels. With abundant nitrogen, a slower loss of Rubisco protein from

ear emergence to 9 days after anthesis with warmer temperatures accounted for the

disappearance of the negative effect of rising temperatures on Rubisco protein  and

associated levels of mRNA (Geiger et al. 1999).

The greater decrease in the morning of initial Rubisco activity with a high than

with a low nitrogen supply at ambient CO2 was due to a faster decrease in Rubisco

activation state, in agreement with other studies (Mächler et al. 1988, Cheng and

Fuchigami 2000), possibly because the ATP/ADP ratio decreases with high nitrogen

(Mächler et al. 1988). At variance with this, at elevated CO2 a high nitrogen supply

did not decrease Rubisco activation, but tended to decrease total Rubisco activity at

mid morning as a consequence of decreased specific activity, as already discussed.

By contrast, abundant nitrogen generally increased the amount of Rubisco protein at

the end of the night and/or mid morning at both ambient and elevated CO2, as

previously reported (Cheng and Fuchigami, 2000, Nakano et al. 1997), although it

accelerated the loss of protein during the light period. This increase in Rubisco

protein could be associated with higher levels of rbcS transcripts. After anthesis,

abundant nitrogen increased the specific activity of Rubisco at high temperatures, a

change that was not associated with lower carbohydrate contents. More Rubisco

protein was lost between the two samplings with high than with low nitrogen,

probably as a consequence of increased export to sinks, and thus the positive effect

of nitrogen on Rubisco contents and on the nitrogen-dependent amount of RNA

(Geiger et al. 1999) disappeared after anthesis.

In conclusion, this study suggests that decreased leaf protein and increased levels

of a Rubisco inhibitor, rather than gene repression by sugars, are involved in

acclimation to elevated CO2. Warmer temperatures may decrease Rubisco gene

expression with little consequence for Rubisco activity. High nitrogen does not

prevent, but rather increases down regulation of Rubisco under elevated CO2,

probably due to increased levels of Rubisco inhibitors. Changes during growth in

levels of leaf metabolites and protein may alter the relative importance of Rubisco

amounts and levels of inhibitors for Rubisco regulation under a changing climate.
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Figure legends

Fig. 1. Lay-out of the experiment in temperature gradient tunnels at ambient (360

µmol mol-1) and elevated (700 µmol mol-1) CO2, ambient  and ambient + 4 ºC

temperatures, and 80 (low nitrogen) and 120 (high nitrogen) kg nitrogen ha-1.

Fig. 2. Mean daily courses of air temperature, humidity and CO2 concentration in

temperature gradient tunnels set at either ambient (360 µmol mol-1, open symbols) or

elevated (700 µmol mol-1, closed symbols) CO2, and ambient (circles) or ambient + 4

ºC (squares) temperatures.

Fig. 3. Diurnal changes in Rubisco activity, activation state, specific activity and

Rubisco protein content of flag leaves of wheat in response to CO2, temperature and

nitrogen 3 days after ear emergence. Plants were grown in the field under

temperature gradient tunnels at either ambient (360 µmol mol-1) or elevated (700

µmol mol-1) CO2, ambient (circles) or ambient + 4 ºC (squares) temperatures, and 80

(open symbols) or 120 (closed symbols) kg nitrogen ha-1. Light intensities  before

dawn, 4-6 h later, 1-2 h before dusk, and 2-3 h into the dark period were <10, 1700,

100 and <10 µmol m-2s-1, respectively. Each point is the mean of four replicates.

Vertical bars represent twice the standard error of the difference for main effects of

CO2 (a), temperature and nitrogen (b) and time (c). The standard errors of the

differences for treatment interactions are omitted for clarity.

Fig 4. (A) Diurnal changes in rbcS mRNA levels 3 days after ear emergence in flag

leaves of wheat grown in the field under temperature gradient tunnels either at

ambient (360 µmol mol-1) or elevated (700 µmol mol-1) CO2, ambient or ambient +4

ºC  temperatures and 80 (low N) or 120 (high N) kg nitrogen ha-1. Numbers (1, 2)

represent replicate samples. Equal amounts of RNA were applied to each lane. (B)

Quantified signals (arbitrary units) of diurnal changes in rbcS transcripts. The signal

intensity indicates the transcript abundance relative to total RNA Symbols as in Fig.

2.

Fig. 5. Diurnal changes in carbohydrate contents of flag leaves of wheat in response

to CO2, temperature and nitrogen 3 days after ear emergence. Plants were grown in
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the field under temperature gradient tunnels. The levels of fructan and starch are in

hexose equivalents. Each point is the mean of four replicates. Symbols as in Fig. 2.

Fig. 6. Effects of CO2, temperature and nitrogen on Rubisco activity, activation state,

specific activity and Rubisco protein content of flag leaves of wheat at mid morning

9 days after anthesis. Plants were grown in the field under temperature gradient

tunnels at either ambient (360 µmol mol-1) or elevated (700 µmol mol-1) CO2,

ambient (white, dark grey) or ambient + 4 ºC (pale grey, black) temperatures, and 80

(white, pale grey) or 120 (dark grey, black) kg nitrogen ha-1. Each point is the mean

of four replicates. Vertical bars represent twice the standard error of the difference

for main effects of CO2 (a) and temperature and nitrogen (b). The standard errors of

the differences for treatment interactions are omitted for clarity.

Fig. 7. Effects of CO2, temperature and nitrogen on carbohydrate contents of flag

leaves of wheat at mid morning 9 days after anthesis. Plants were grown in the field

under temperature gradient tunnels. The levels of fructan and starch are in hexose

equivalents. Each point is the mean of four replicates. Symbols as in Fig. 6.
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Table 1.- Example of the analysis of variance used in this study with two CO2

concentrations, two air temperatures, two nitrogen levels, four replicate samples and

four sampling times in a nested design, with nitrogen and temperature in a stratum

within CO2, replicates in a stratum within temperature and nitrogen, and sampling

hour as a further stratum within replicates. Details are shown on the distribution of

degrees of freedom and error terms used to estimate variance ratios.

Sum of
Squares

Degrees of
freedom

Mean
Square

Variance
ratio

CO2 (C) 1467.9 1 1467.9 27.323
SubTN stratum 322.3 6 53.7
Temp. (T) 1.4 1 1.4 0.008
Nitro. (N) 0.8 1 0.8 0.005
CT 47.8 1 47.8 0.276
CN 199.2 1 199.2 1.150
TN 22.2 1 22.2 0.128
CTN 50.9 1 50.9 0.294
Sub Replicate stratum 4157.2 24 173.2
Sub Hour stratum 11606.0 96 120.9
Hour 2144.8 3 714.9 19.560
Error 328.9 9 36.5
Total 17553.5 127
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Fig. 2
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Fig. 5
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Fig. 6
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Fig. 7
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