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MODELLING THE RATE OF SECONDARY SUCCESSION AFTER 1 

FARMLAND ABANDONMENT IN A MEDITERRANEAN MOUNTAIN AREA 2 

 3 

Abstract 4 

Secondary succession after farmland abandonment has become a common process 5 

in north Mediterranean countries, especially in mountain areas. In this paper a 6 

methodology is tested which combines Markov chains and logistic multivariate 7 

regression to model secondary succession after farmland abandonment in environments 8 

where abiotic constraints play a major role, like mountain areas. In such landscapes a 9 

decay in the succession rate with time is usually found, as the best locations are 10 

progressively occupied. This is frequently addressed using non-stationary Markov 11 

chains. Here, we test if the combination of logistic multivariate regression with Markov 12 

chains, however, allows for spatially distributed transitions probabilities based on 13 

abiotic factors and therefore it is able to reproduce the preferential colonization of the 14 

most favourable locations. The model is tested in the Ijuez valley in the Spanish 15 

Pyrenees, which underwent generalised land abandoned during the 50s. Results confirm 16 

a substantial improve in the prediction success of the Markov-logistic model when 17 

compared to the standard Markov chain approach. As a result, the decay in the 18 

succession rate can be successfully modelled. The specific results for our study area are 19 

discussed further in an ecological context. The methodology proposed is applicable to 20 

any landscape where vegetation dynamics are constrained by environmental factors. 21 

However, the inclusion of land use as an explanatory factor would be necessary in 22 

human-managed landscapes. 23 

Keywords: environmental constraints, logistic regression, Markov chains, Pinus 24 

sylvestris, Pyrenees, succession rate. 25 



  

Introduction 26 

North Mediterranean countries are enduring rural depopulation since last century, 27 

specially in marginal areas like mountains (Lasanta et al., 2005; Romero-Calcerrada and 28 

Perry, 2004). Immediate consequences of this process are farmland abandonment and 29 

decrease in livestock pressure (García-Ruiz et al., 1996; Lasanta et al., 2006; Pueyo and 30 

Alados, in press), which enhances natural secondary succession and leads to 31 

reforestation of previously occupied areas (Beguería, 2006a; Beguería et al., 2003; 32 

Rocchini et al., 2006; Sickel et al., 2004). 33 

There is large interest in applied ecology and environmental planning in 34 

understanding the driving processes of secondary succession, because usually land use 35 

changes (in type or intensity) lead to land cover change. For this reason, a considerable 36 

amount of studies have been devoted to quantify the magnitude of changes in land cover 37 

and the processes originating them, like rural abandonment and global warming 38 

(Riebsame et al., 1994; Vicente-Serrano et al., 2004). At a finer scale, secondary 39 

succession is constrained by physical conditions like topography (Pan et al., 1999). This 40 

is specially true for mountain areas, where topography controls climatic gradients and 41 

soil and water distribution (del Barrio et al., 1997; Villalba et al., 1994). After a large 42 

disturbance, secondary succession is determined by the differential growth, survival and 43 

colonization ability of plant species, which can differ largely depending on the 44 

environmental conditions (Aragón and Morales, 2003; Mueller-Dombois, 2000; Myster 45 

and Pickett, 1994). As a consequence, high variability in the succession rate has been 46 

observed in highly heterogeneous areas like mountain landscapes (Prach, 1993). 47 

There is hence great interest in the ability to model the process of secondary 48 

succession. When conveniently calibrated for a given case study, spatially-explicit 49 

simulation models can become a useful tool for decision making in landscape planning. 50 



  

This is because they allow understanding the main driving factors in the process, but 51 

they also provide ecological forecasting tools for scenario testing. In this context, 52 

Markov chain models have been frequently used for modelling ecosystem dynamics, 53 

and more specifically for vegetation succession processes (Acevedo et al., 1995; 54 

Balzter, 2000; Callaway and Davis, 1993; Usher, 1979). 55 

A Markov chain model describes the states of a system at successive times. The 56 

system is characterized by a discrete variable which can adopt several states, and hence 57 

the Markov chain describes its changes of state (transitions). In the context of vegetation 58 

dynamics, the states of the system are the different vegetation types which characterize 59 

the secondary succession sequence. A concept central to the Markov chain theory are 60 

the transition probabilities, which quantify the likelihood of a given transition. In a 61 

standard Markov chain approach, it is assumed that transition probabilities are constant 62 

across space and stationary in time. These conditions are hardly found in nature. For this 63 

reason, several authors have criticized their adequacy, and alternative models have been 64 

proposed (Hill et al., 2002; Yemshanov and Perera, 2002). 65 

 Since transition probabilities are constant across space (usually obtained from 66 

counts over the whole spatial domain), standard Markov models average the spatial 67 

effects (Usher, 1981). Thus, they are not able to represent the spatial heterogeneity of 68 

succession rates present in a real landscape, and consequently they fail in predicting 69 

vegetation dynamics in heterogeneous environments. In order to solve this problem, 70 

Yemshanov et al. (2002) defined various environmental domains in their study area and 71 

derived specific transition matrices for each of them. An improved approach consists on 72 

considering the transition probabilities as a continuous spatial variate, dependent on the 73 

spatial variation of a set of explanatory variables. These transition probabilities have 74 

been estimated using multivariate regression techniques (Augustin et al., 2001), and 75 



  

artificial neural networks (Gullison and Bourque, 2001). 76 

The assumption of stationarity of transition probabilities over time, i.e. that 77 

transition probabilities remain constant during the succession process, is another 78 

important issue which complicates the application of Markov chain models to the 79 

analysis of natural systems (Childress et al., 1998; Usher, 1979). Observation often 80 

contradicts the stationarity assumption, since succession rate tends to decrease with time 81 

(Myster and Pickett, 1994; Shugart and Hett, 1973). Usher (1979) pointed out that 82 

natural succession should be usually modelled as a non-stationary Markov process, i.e., 83 

allowing the transition probabilities to change with time. If observations are available at 84 

different times, this can be approached by calculating different transition probabilities 85 

for each observation interval (Benabdellah et al., 2003; Hill et al., 2002). However, this 86 

approach fails to explain the reason why transition probabilities change in time. Besides, 87 

it does not allow predicting future states of the system, since future transition 88 

probabilities are not known. By including external abiotic factors in transition models it 89 

could be possible to explain the decay of succession rate by natural ecological 90 

processes, and thus to predict the future evolution of the succession process. 91 

The aim of this work was to assess a methodology to predict the process of 92 

secondary succession after farmland abandonment. This methodology was tested in a 93 

small valley in the Pyrenees, the Ijuez RiverValley. We hypothesized that secondary 94 

succession rate after farmland abandonment is not spatially homogeneous, but shows 95 

important differences because of the spatial heterogeneity of the abiotic factors. Also we 96 

hypothesized that succession rate would show a decay through the process of secondary 97 

succession due to the decreasing availability of favourable locations as the process 98 

advances. 99 

We used a simple model which simulates the process of secondary succession 100 



  

based on a stationary Markov chain. Transition probabilities were not spatially 101 

homogeneous, but they were estimated using multivariate logistic regression from a set 102 

of spatially distributed variables, to allow for spatial heterogeneity. We expected that 103 

such a simple model would be able to predict both the temporal and the spatial patterns 104 

of secondary succession better than the standard Markov approach. 105 

This work will contribute to understand the process of secondary succession after 106 

farmland abandonment on environments with strong abiotic constrains, such as 107 

mountain areas. Although the specific results of our research (i.e. the vegetation 108 

transition model) are in principle valid only for the specific conditions of the study area, 109 

the theory and methods can be generalized for the analysis of secondary succession in 110 

any other area. Modelling the process of secondary succession can be a useful tool for 111 

environmental planning and forest managers, in Mediterranean mountain areas where 112 

land abandonment has been a common landscape process in the last decades, but also at 113 

a European scale, where landscape homogenization requires a scientific based landscape 114 

planning to maintain cultural and ecological values (Jongman, 2002; Lasanta et al., 115 

2006). 116 

Materials and methods 117 

Study area 118 

The study area corresponds to the Ijuez River Valley, a small tributary to the 119 

Upper Aragón River in the Central Spanish Pyrenees, covering an area of 54.6 km2. 120 

The altitude of the valley ranges from 800 to 2200 m. a.s.l. (Fig. 1). The valley lies 121 

within the Eocene Flysch sector, lithology consisting of a succession of thin, alternating, 122 

heavy folded layers of marls and sandstones. Climate is of submediterranean type, with 123 

average temperature ranging from 3.5º to 10º and annual rainfall ranging between 1000 124 



  

and 2000 mm (Ibarra and De la Riva, 1996). 125 

The Ijuez River valley supported a high human pressure until the last decades of 126 

the 19th Century, with full occupation of the land available for cultivation and grazing. 127 

According to Ibarra and De la Riva (1996) the depopulation process was slow but 128 

steady in the first decades of the 20th century, so by 1950 the valley population was 129 

62% of the population in 1900. In the years 1956 to 1960 the five villages in the valley 130 

and most part of the arable lands were bought by the State Forest Service for land 131 

reclamation. The population of the valley descended to 26.7% of the initial population 132 

by 1960 and 4.4% in 1970. Some reforestation works were carried out mostly between 133 

1956 and 1965 in the abandoned lands, and the rest of the valley underwent a process of 134 

natural vegetation recovery. The forestry (natural of aforestations) is not managed for 135 

timer production or other purposes. Currently there is no significant land use in the 136 

valley except for some crops and meadows in the valley bottom (2% of the area) and 137 

cow summer grazing in the alpine pastures (7% of the area). These conditions conform 138 

an excellent scenario to study the influence of abiotic factors in secondary succession 139 

with minimum interference of land use, which is a problem often encountered. 140 

Potential vegetation in the valley is a forest of Quercus faginea Lam. below 1200-141 

1300 m, and Pinus sylvestris L. woodland (Scots pine) above this altitude (Montserrat, 142 

1966). P. sylvestris has extended its potential area to lower altitude in detriment of Q. 143 

faginea forest, favoured by aforestations and faster growing rates in secondary 144 

succession (Montserrat, 1966). 145 

Secondary succession after farmland abandonment in the study area leads to a fast 146 

invasion by weeds (Brachypodium pinnatum (L.) P.Beauv., Carex flacca Schreb., 147 

Bromus erectus Huds., Medicago lupulina L.) in the first three years, and by shrubs 148 

afterwards (Genista scorpius (L.) DC., Juniperus communis L., Rosa sp. and Crataegus 149 



  

monogyna Jacq.). Finally, P. sylvestris colonizes the shrublands, usually developing a 150 

monospecific forest, although it can be mixed with Q. faginea specially in south 151 

oriented slopes where pines grow slower (Gracia et al., 2002). As a consequence, 152 

secondary forest in the study area consists mostly on P. sylvestris along the whole 153 

altitude range. 154 

Assessing land cover change 155 

We built a GIS database based on the analysis of a sequence of aerial photos 156 

dating from 1957 (black and white images at aprox. 1:32000 scale), 1977 (black and 157 

white images at aprox. 1:18000 scale) and 2002 (digital color orthophoto with a 158 

resolution of 1 m). The older photos were orthorrectified using the 2002 image as 159 

reference and a 10 m digital terrain model (DTM) with Erdas Imagine 8.5, for a final 160 

resolution of aproximately 1 m. 161 

Areas that were cultivated before 1957 were identified and mapped based on the 162 

1957 aerial photos and information on the abandonment process from a previous study 163 

by Ibarra & de la Riva (1996). The succesional state of patches that were abandoned 164 

was assessed on consecutive images. The abandoned patches were determined and 165 

classified into three categories: shrubland, secondary forest and reforestation. Due to 166 

difficulties in recognizing shrubland composition in the old aerial photos, only one 167 

shrubland category was identified which includes from early to more mature stages of 168 

shrubland development. A patch was classified as forest when presenting a percentage 169 

of soil covered by trees greater than 60%. Artificial reforestation was identified very 170 

clearly, thus not leading to any uncertainty. 171 

Since the interest of this work was the natural succession process, we identified 172 

and removed from the analysis the human-promoted transitions (i.e. conversion of 173 

natural cover into croplands, which was in any case very limited, and reforestation; 174 



  

Figure 3). Thus, our analysis was restricted to abandoned farmland areas, isolating the 175 

process of natural secondary succession from human-induced changes. Usually, it is 176 

difficult to separate abiotic factors from human land use, because they are closely 177 

interrelated (Poyatos et al., 2003). However, considering the abrupt depopulation of the 178 

Ijuez valley in the decade between 1955 and 1965, we consider that these problems 179 

have been reduced to a reasonable minimum in this study. 180 

Assessing the temporal pattern of secondary succession by a standard Markov chain 181 

In a standard Markov chain model, stationary transition probabilities are applied 182 

recursively each time step to simulate the changes of state of the system being 183 

modelled. This requires the construction of a transition matrix, which includes the 184 

transition probability for each possible change between two states (Caswell, 2001). The 185 

transition matrices are usually inferred from empirical evidences of the state of the 186 

system at various times. From the transition matrix it is possible to predict the 187 

proportion of the different vegetation classes at any time, average transition times from 188 

one class to another and the average time to reach the final (absorbing) state. In our case 189 

we considered only the transition from abandoned fields to shrubland, and from these to 190 

incipient secondary forest (the absorbing state). We calculated three transition matrices 191 

counting the spatial units (grid cells), nij, that changed from state i to state j (i = j = 192 

{abandoned field, shrubland, secondary forest}) between two consecutive land cover 193 

maps. 194 

We tested for non-stationarity of transition probabilities using the Anderson–195 

Goodman test (Anderson and Goodman, 1957), 196 

 (1) 197 

where nij(t) and pij(t) are the frequency and transition probabilities at time t, and pij is 198 



  

the average transition probability from i to j .  follows a χ2 distribution with 199 

degrees of freedom, m being the number of possible states. The null 200 

hypothesis tested is that pij(t) is constant and equal to pij. 201 

Assessing the spatial pattern of secondary succession by multivariate logistic regression 202 

The use of averaged transition probabilities as calculated in the transition matrix 203 

has the drawback of masking the spatial heterogeneity in secondary succession rate that 204 

usually exists in real landscapes. For this reason, we used multivariate logistic 205 

regression to estimate transition probabilities from spatially distributed variables, in a 206 

similar way that was proposed by Augustin et al. (2001). We performed logistic 207 

regressions for the transitions between every two consecutive maps. We used forward 208 

and backward stepwise procedures to choose only the variables that were relevant to the 209 

models. We looked at the variables entering the models and their importance for 210 

transition probabilities through their Wald statistics (Hair et al., 1998). Overall fitting of 211 

the models was evaluated by the receiver operating characteristic (ROC) curve and 212 

computing the area under the curve, AUC (Beguería, 2006b; Swets, 1988). Then, we 213 

derived forest transition probability maps for each time period from the regression 214 

models, as well as a transition time map. 215 

The explanatory variables were derived from a DTM with 10 m resolution. The 216 

variables were the elevation (km), the slope gradient (m m-1), the topographic index, 217 

and the potential radiation (kJ). Elevation strongly determines temperature and rainfall 218 

in mountain areas (Barry, 1922), and thus it is broadly used as a proxy for climatic 219 

gradients (Arroyo and Marañón, 1990; Fernandez et al., 2004). In the study area the 220 

temperature gradient with altitude can be determinant, because secondary succession by 221 

P. sylvestris is observed in its natural range and also at lower elevation. Slope gradient 222 



  

and the topographic index account for water and nutrient availability in the soil. Slope 223 

gradient represents the potential energy available at a point, and controls hydrological 224 

and erosion processes in the soil (Florinsky et al., 2002). The topographic index ln(As/β) 225 

(non-dimensional) is calculated from the relative accumulated drainage area, As, (i.e. 226 

the total upslope area draining to a certain pixel divided by the area of the pixel) and the 227 

slope gradient, β (Beven and Kirkby, 1979). The topographic index has been 228 

extensively used to express the accumulation of water and soil in the landscape 229 

(Gómez-Plaza et al., 2001). Annual potential radiation influences soil temperature and 230 

evaporation and hence soil water content, and thus it may also be a decisive factor for 231 

determining the succession rate. Potential radiation was estimated using the Potrad 5.1 232 

model, written in the PCRaster dynamic modelling language. 233 

As a result of this stage, the logistic models were translated into maps showing the 234 

spatial distribution of the transition probabilities from shrubland to forest for the three 235 

observation intervals. 236 

Stochastic simulation of the secondary succession process 237 

 In order to assess the capability of the above transition models to adequately 238 

represent the time development of the succession process, we performed a stochastic 239 

simulation using the transition probability map obtained from the first observation 240 

interval. The transition probabilities were applied recursively to the cells corresponding 241 

to the abandoned fields, which were initially set to shrubland. The simulation period 242 

was set to 1950-2002, corresponding to the observation time, and it was subdivided into 243 

a number of equal timesteps. At each time step a random field was generated, and the 244 

state of each cell was either changed to forest if the random value at the cell was equal 245 

or lower than the transition probability, or left as shrubland in the opposite case. Cells 246 



  

changed to forest were not changed in subsequent time steps. For comparison purposes, 247 

an alternative simulation was made using the average transition probabilities obtained 248 

from the transition matrices, which represents a standard Markov chain approach. The 249 

ability of the Markov-logistic stochastic simulation to predict the observed spatial 250 

distribution of vegetation in 2002 was assessed. The statistic employed was the success 251 

rate, computed as the percentage of pixels that were well predicted in 2002 (Fielding 252 

and Bell, 1997). We also compared the proportion of forest predicted by both models at 253 

the three moments with real observations. This allowed us to determine which model 254 

best predicted the decay in secondary succession rate. Due to the stochastic nature of the 255 

modelling approach, a different final configuration is obtained each time a new 256 

simulation is run. In order to obtain reliable validation statistics we used a Monte Carlo 257 

technique, consisting on performing a high number (1000) of simulation runs and using 258 

the most frequent final state (shrub or forest) for each pixel to compute the statistic 259 

(Manly, 1997). 260 

Results 261 

The analysis of the sequence of aerial images confirmed that secondary forest 262 

succession following land abandonment has been the dominant process during the 263 

second half of the 20th century in the Ijuez Valley (Fig. 2). From the initial state in 264 

which 61% of the territory was cultivated, a big part of the farmland (74%) had already 265 

been abandoned around 1957 (Fig. 3). 56% of the abandoned fields remained in the 266 

shrubland stage, and only 6% of the abandoned surface had reached the incipient forest 267 

state by 1957. The other 12% of the surface had been reforested. By 1977 only 14% of 268 

the remaining farmland was maintained, while 11% presented a shrubland cover and 9% 269 

had evolved towards secondary forest. Important reforestation works were performed on 270 

this period, which affected 66% of the abandoned farmland. During the same period, 271 



  

24% of the shrubland (fields abandoned in the previous interval) evolved into forest, 272 

and 65% remained in the same state. From 1977 to 2002 there was no more land 273 

abandonment, but secondary succession continued in the shrubland areas. By 2002 274 

croplands were nearly inexistent, only appearing on the valley bottom (around 2% of the 275 

total territory). Incipient secondary forest dominated the landscape, although shrub still 276 

remained in large areas (21% of the territory; Fig 2). 277 

From the previous analysis on the land cover changes in the valley transition 278 

matrices were calculated only for the patches that were abandoned and led to natural 279 

succession (Table 1). That is, artificial reforestation of former farmland and the 280 

continuity of crops were excluded from the analysis. The period 1957 to 1977 allows 281 

comparing the transition probabilities to secondary forest from recent and old 282 

abandoned fields (Table 1, panel b). According to the results, the transition probability 283 

is lower for the recently abandoned fields, supporting the hypothesis of a decay in the 284 

succession rate with time. The same result is found when comparing transition from 285 

shrubland to secondary forest (Table 1, panels b and c), for which it was found that the 286 

transition probability was reduced from 0.27 to 0.15 between 1957 and 2002. If this 287 

probability is referred to a period of one year to correct for the different time spans 288 

between the images, the reduction in the transition probability becomes more evident 289 

(0.0135 and 0.006). This represents a decay in the average succession rate, which was 290 

confirmed by the Anderson-Goodman test of stationarity (χ2 = 1406, p < 0.001). 291 

In order to obtain transition probabilities dependent on abiotic conditions (and 292 

thus, spatially variable), three logistic models where adjusted to the transitions observed 293 

starting from abandoned fields in 1957, from shrubland in 1957 and from shrubland in 294 

1977. The three models showed a good fit to the data, with AUC equal to 0.77, 0.83 and 295 

0.76 for models a, b and c, respectively (Table 2). 296 



  

Selection of variables by the two stepwise methods (forward and backward) was 297 

consistent, resulting in identical sets of predictor variables. According to the Wald 298 

statistic the most important variable in all the three models was potential radiation, 299 

having a negative effect on forest transition probability. This results confirm that solar 300 

radiation exerts a negative effect on secondary succession rate in our study area. 301 

Elevation was the second variable in importance in the first model (Table 2a), but it did 302 

not appear in the next two models. Slope gradient and the topographical index, showing 303 

positive relation to transition probability, appeared to be much less important in the 304 

model. After potential solar radiation, the most important variable in the second and 305 

third models was slope gradient, inversely related to transition probability (Table 2b and 306 

2c). The topographic index showed decreased importance with respect to the previous 307 

model. 308 

Three maps showing the spatial distribution of transition probabilities were 309 

derived from the logistic models (Fig. 4). It can be observed that locations showing high 310 

transition probabilities on one moment tend to be occupied by forest in the next step, 311 

and thus excluded from the analysis. On the contrary, locations with low transition 312 

probabilities tend to appear in subsequent maps, showing slower succession rate. This 313 

information can be presented in the form of transition times, i.e. the estimated time to 314 

reach the forest state (Fig. 5). Expected transition times to secondary forest in the study 315 

area ranged between 25 years in the most favourable areas and more than 200 years in 316 

the least favourable ones. 317 

It must be noted that the transition probabilities show more or less the same values 318 

at the same locations in the consecutive maps (Fig. 4). The faster occupation of the cells 319 

with high transition probability is, thus, responsible for the reduction in the average 320 

transition probability which was found previously. This result supports the hypothesis 321 



  

that the succession process can be modelled by a stationary approach, i.e. using the 322 

transition probability map from the first observation interval. The results of one such 323 

stochastic simulations (Markov-logistic simulation) are shown in Figure 6. A good 324 

agreement was found between the simulation results and the situation observed in 2002, 325 

the success rate being 67%. For comparison, a standard Markov chain simulation with 326 

averaged transition probabilities was not able to predict the spatial distribution of 327 

succession states (Fig. 6c), and yielded a success rate of only 50%. 328 

An important fact shown by the Markov-logistic stochastic simulation was the 329 

faster colonisation of the most favourable locations. Locations with high transition 330 

probability became scarcer as the process advances in time, which determines a decay in 331 

the average transition probabilities in the Markov-logistic simulation (Fig. 7). This 332 

contrasts with the standard Markov chain model, in which transition probabilities are 333 

constant through time. If one compares the observed proportion of secondary forest in 334 

the three aerial photos with the forest cover predicted by the two simulations (Fig. 8), a 335 

better agreement is also found between the Markov-logistic model and the observation. 336 

This has major importance if predictions are to be made about the future state of 337 

vegetation in the area, for example in the context of a decision making process through 338 

scenario testing. We prolonged the simulation up to year 2100, in order to compare the 339 

percentage of forest cover predicted by the two models (Fig. 8). Compared to the 340 

standard Markov model, the Markov-logistic simulation predicts a more realistic decay 341 

in forest recovery rate, and hence the time to total recovery is significantly higher. The 342 

decay curve can be adjusted by a logarithmic function (Fig. 8). 343 

Discussion 344 

This study has shown the existence of a strong relationship between transition 345 

probability (and its reciprocal, the succession rate) and abiotic factors in a mountain 346 



  

landscape. This agrees with the results obtained by other authors, which show that forest 347 

succession rates can show large differences over relatively short distances in response to 348 

environmental gradients (Aragón and Morales, 2003; Carmel and Kadmon, 1999; 349 

Donnegan and Rebertus, 1999). This implies that the spatial pattern of secondary 350 

succession can be successfully modeled upon the spatial distribution of the abiotic 351 

factors. 352 

Vegetation dynamics are very often addressed using Markov chain models, in 353 

which transition probabilities are obtained from cross-counting between two correlative 354 

vegetation surveys. Utility of Markov chains has been criticized to model future 355 

transitions because observed succession rates are seldom stationary (Usher, 1981). In 356 

practice, decay in succession rate is observed very often in natural ecosystems (Myster 357 

and Pickett, 1994; Shugart and Hett, 1973). 358 

 We demonstrate that the decay in succession rate can be modelled using a 359 

stationary first order Markov chain if factors determining transition probabilities and 360 

their spatial distribution are included in the model. Temporal differences in the 361 

succession rate can be explained by the spatial selection of the most favourable 362 

locations for secondary succession, which can only be modelled if transition 363 

probabilities are considered a continuous spatial variable. 364 

The combination of Markov chains and multivariate analysis incorporating spatial 365 

variables related with dispersal abilities has proved to be very useful in matching 366 

observed spatial succession patterns (Augustin et al., 2001). Here, we show the utility of 367 

this methodology in predicting successional processes in environments highly 368 

dependent on abiotic constraints. 369 

In our case study, both the transition matrices and the logistic models showed 370 

evidences of non-stationarity. We interpreted the non-stationarity of transition matrices 371 



  

as emerging from the process of vegetation succession in a heterogeneous landscape, in 372 

which transition probabilities differ largely from one location to another. The shortage 373 

of high favourable locations as the revegetation process advances in time is sufficient to 374 

explain the decay in the succession rate observed in the sequence of aerial photos. 375 

Accordingly, the results of our simple stochastic dynamic model based on spatially 376 

distributed transition probabilities showed a good agreement with the field observations, 377 

both in predicting the spatial distribution of secondary forest fifty years after 378 

abandonment and the timing of the process for the whole study area. 379 

Nevertheless, we encountered a methodological problem in order to validate the 380 

results of the model, pixel-based, with the polygon maps drawn from the aerial 381 

photographs, which could affect negatively the success rate. Moreover, the model would 382 

be improved by adding neighbour information (Hersperger, 2006; Turner, 1987), seed 383 

dispersal patterns and distance from seed sources (Prevosto et al., 2003), but a fully 384 

pixel-based data would be required. 385 

Previous models of P. sylvestris forest development did not take into account 386 

environmental constraints (Prevosto et al., 2003), and thus they were not applicable to a 387 

highly heterogeneous area such as the Pyrenees, where abiotic factors play a major role 388 

on determining vegetation dynamics at landscape scale (del Barrio et al., 1997). For 389 

heterogeneous areas our approach could be more useful. However, our proposed 390 

approach should include explanatory variables related to human activities (i.e. grazing 391 

and forest management) when landscapes with evidences of human use are taken into 392 

consideration. 393 

Furthermore, the relative importance of abiotic constraints can not be directly 394 

extrapolated to other areas, as far as it is particular for the landscape analysed and the 395 

plant species involved. In our study area elevation and potential solar radiation 396 



  

determined the faster installation of Pinus sylvestris after land abandonment. Elevation 397 

determines a climatic gradient in mountains (Donnegan and Rebertus, 1999), which 398 

reproduces from bottom to top the changes in mean temperature observed from south to 399 

north. Since the Pyrenees are located in the southernmost part of the geographical range 400 

of P. sylvestris, high temperatures and water scarcity in summer are the limiting factors 401 

for this species (Castro et al., 2004). Dispersal and establishment determine largely 402 

survival of P. sylvestris (Castro et al., 2004; Prevosto et al., 2003). As seedling 403 

germination take part in spring, high solar radiation reduces water availability and 404 

decrease seedling survival during summer in Mediterranean mountains. Low summer 405 

temperatures, large water retention and less solar radiation favour the establishment of 406 

P. sylvestris, and thus increase secondary succession rate (Castro et al., 2004). Water 407 

availability and high temperatures are decisive in the distribution of a large amount of 408 

trees at the boundary between the summer drought Mediterranean zone and the cooler 409 

and moister mountain and northern areas (Pigott and Pigott, 1993). 410 

Accumulation of water and nutrients due to the topography played a secondary 411 

role on determining succession rate, although in other mountain areas it has been found 412 

to be a major factor determining succession (Donnegan and Rebertus, 1999). It can be 413 

argued that in the southern limit of the geographic range of P. sylvestris high summer 414 

temperature and insolation play a major role and outweigh other factors, which in more 415 

temperate conditions would determine the succession rate. Also, it is likely that the 416 

broad scale used in this study affected negatively the importance of these factors. 417 

Where conditions are favourable to P. sylvestris, it tends to originate nearly 418 

monospecific forest. The rapid growth rate of the pine impedes Quercus faginea to 419 

colonize more mesic areas. It is expected that in locations where successional rates are 420 

slower the establishment of Q. faginea would be allowed (Gracia et al., 2002). 421 



  

Nevertheless, further study is needed to confirm this issue. 422 

Conclusions 423 

We propose a method to model the rate of secondary succession after farmland 424 

abandonment based on Markov chains and incorporating the effect of abiotic factors 425 

through multivariate analysis. This method was able to predict both the spatial and 426 

temporal patterns of secondary succession in our study area. For secondary forest of P. 427 

sylvestris in the Pyrenees, the most important factor determining rate of succession was 428 

the gradient of temperature with elevation and potential solar radiation. Water and 429 

nutrient availability due to local topographical conditions played a secondary role. The 430 

results of this research can be useful for forest managers and environmental planners, in 431 

order to decide the best practices after land abandonment. The application of this 432 

methodology is suitable anywhere where there are evidences suggesting strong abiotic 433 

constraints to secondary succession, such as mountain areas. In human-managed 434 

landscapes, the inclusion of human use as explanatory variables (i.e grazing or forest 435 

management) could improve predictive power of the model. 436 
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 585 

586 



  

Table 1. Transition matrices for natural secondary succession on abandoned farmland 586 

between around 1950 and 1957 (a), 1957 and 1977 (b), 1977 and 2002 (c). 587 

 588 

a Shrubland Forest 

Abandoned fields 0.90 0.10 

b Shrubland Forest 

Abandoned fields 0.55 0.45 

Shrubland 0.73 0.27 

c Shrubland Forest 

Shrubland 0.85 0.15 

589 



  

Table 2. Logistic models specifications: a, transition from abandoned fields to forest 589 

1977; b, transition from shrublands 1957 to forest 1977; c, transition from shrublands 590 

1977 to forest 2002. 591 

 592 

a Variable B se Wald sign. 

 Intercept -1.007 0.164 37.5 <0.001 

 elevation 5.136 0.114 2039.8 <0.001 

 slope gradient 1.767 0.261 46.0 <0.001 

 topographic index 0.134 0.012 127.6 <0.001 

 potential radiation -0.604 0.013 2157.3 <0.001 

b Parameter B se Wald sign. 

 Intercept 9.711 0.232 1757.0 <0.001 

 slope gradient -7.036 0.361 380.7 <0.001 

 topographic index 0.050 0.014 12.4 <0.001 

 potential radiation -0.870 0.017 2473.1 <0.001 

c Parameter B se Wald sign. 

 Intercept 7.539 0.255 871.6 <0.001 

 slope gradient -6.328 0.385 270.3 <0.001 

 topographic index -0.123 0.018 48.7 <0.001 

 potential radiation -0.622 0.019 1101.7 <0.001 

  se: standard error 593 

 594 

595 



  

Figure captions 595 

 596 

Figure 1. Location of the study area and relief. Contour interval is 100 m. The area 597 

under study (abandoned farmland that undergone natural succession) is shown in grey. 598 

Figure 2. Land cover maps from 1950 (a, inferred from 1957 photo and Ibarra & de la 599 

Riva (1996), 1957 (b), 1977 (c) and 2002 (d). Legend: 1, mature forest; 2, arable lands; 600 

3, shrubland; 4, secondary forest; 5, reforestation; 6, other. 601 

Figure 3. Transitions tree. In black, the transitions considered in the model. 602 

Figure 4. Forest transition probability maps. a, transition from abandoned fields to 603 

forest (1977); b, transition from shrubs (1957) to forest (1977); c, transition from shrubs 604 

(1977) to forest (2002). 605 

Figure 5. Expected transition time (years to forest state). 606 

Figure 6. Secondary succession on abandoned fields, land cover in 2002: a, observed; b, 607 

simulated, Markov - logistic model; c, simulated, standard Markov chain model. 608 

Legend: 1, secondary forest; 2, shrubland. 609 

Figure 7. Average transition probabilities for the standard Markov model (plain line) 610 

and the Markov-logistic simulation (dots). Dashed line: adjusted power curve (y = 611 

5.22*1040 x-12.32). 612 

Figure 8. Rate of forest recovery, percentage of the abandoned surface. Big squares, 613 

observed; small squares, standard Markov model; dots, Markov-logistic simulation; 614 

dashed line, adjusted logarithmic curve (y = -0,67 + 0,29 ln(x-1938,7) ∀ x-x0 > 0). 615 

 616 

Table 1. Transition matrices for natural secondary succession on abandoned farmland 617 



  

between 1950 and 1957 (a), 1957 and 1977 (b), 1977 and 2002 (c). 618 

 619 

a Shrublands Forest 

Abandoned croplands 0.91 0.09 

b Shrublands Forest 

Abandoned croplands 0.35 0.65 

Shrublands 0.73 0.27 

Forest 0 1 

c Shrublands Forest 

Shrublands 0.85 0.15 

Forest 0 1 

 620 

621 



  

Table 2. Logistic models specifications. a, transition from abandoned fields to forest 621 

1977; b, transition from shrublands 1957 to forest 1977; c, transition from shrublands 622 

1977 to forest 2002. 623 

 624 

a Parameter B se Wald sign. 

 Intercept -1.007 0.164 37.5 <0.001 

 elevation 5.136 0.114 2039.8 <0.001 

 slope gradient 1.767 0.261 46.0 <0.001 

 

topographic 

index 0.134 0.012 127.6 <0.001 

 

potential 

radiation -0.604 0.013 2157.3 <0.001 

b Parameter B se Wald sign. 

 Intercept 9.711 0.232 1757.0 <0.001 

 slope gradient -7.036 0.361 380.7 <0.001 

 

topographic 

index 0.050 0.014 12.4 <0.001 

 

potential 

radiation -0.870 0.017 2473.1 <0.001 

c Parameter B se Wald sign. 

 Intercept 7.539 0.255 871.6 <0.001 

 slope gradient -6.328 0.385 270.3 <0.001 

 

topographic 

index -0.123 0.018 48.7 <0.001 

 potential -0.622 0.019 1101.7 <0.001 



  

radiation 

  se: standard error 625 
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Figure captions 627 

 628 

Figure 1. Location of the study area and relief. Contour interval is 100 m. The area 629 

under study (abandoned farmland that undergone natural succession) is shown in grey. 630 

Figure 2. Land cover maps from 1950 (a, inferred from 1957 photo and Ibarra & de la 631 

Riva (1996), 1957 (b), 1977 (c) and 2002 (d). Legend: 1, mature forest; 2, arable lands; 632 

3, shrubland; 4, secondary forest; 5, reforestation; 6, other. 633 

Figure 3. Transitions tree. In black, the transitions considered in the model. 634 

Figure 4. Forest transition probability maps. a, transition from abandoned fields to 635 

forest (1977); b, transition from shrubs (1957) to forest (1977); c, transition from shrubs 636 

(1977) to forest (2002). 637 

Figure 5. Expected transition time (years to forest state). 638 

Figure 6. Secondary succession on abandoned fields, land cover in 2002: a, observed; b, 639 

simulated, Markov - logistic model; c, simulated, standard Markov chain model. 640 

Legend: 1, secondary forest; 2, shrubland. 641 

Figure 7. Average transition probabilities for the standard Markov model (plain line) 642 

and the Markov-logistic simulation (dots). Dashed line: adjusted power curve (y = 643 

5.22*1040 x-12.32). 644 

Figure 8. Rate of forest recovery, percentage of the abandoned surface. Big squares, 645 

observed; small squares, standard Markov model; dots, Markov-logistic simulation; 646 

dashed line, adjusted logarithmic curve (y = -0,67 + 0,29 ln(x-1938,7) ∀ x-x0 > 0). 647 
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