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The geometric quantization of Jacobi manifolds is discussed. A natural cohomol-
ogy ~termed Lichnerowicz–Jacobi! on a Jacobi manifold is introduced, and using it
the existence of prequantization bundles is characterized. To do this, a notion of
contravariant derivatives is used, in such a way that the procedure developed by
Vaisman for Poisson manifolds is naturally extended. A notion of polarization is
discussed and the quantization problem is studied. The existence of prequantization
representations is also considered. ©1997 American Institute of Physics.
@S0022-2488~97!01212-7#

I. INTRODUCTION

The quantization of a classical system comes back to Dirac, and consists of associatin
each classical observablef on the phase space a Hermitian operator on some Hilbert space, in
a way that the Poisson bracket of two observables is associated~up to some constants! with the
commutator of the operators. The geometric quantization theory is just a geometrization
procedure. It was developed by Kostant1 and Souriau2 for symplectic manifolds, and it was late
extended to Poisson manifolds by Vaisman.3 In an algebraic context, the geometric quantization
Poisson manifolds appears as a particular case of the quantization of Poisson algebras de
by Huebschmann.4

The geometric theory proceeds in two steps. First, one associates to a symplectic maniM
a prequantization bundle, that is, a complex line bundleK overM . Next, one needs to restrict th
space of observables, and one represents it irreducibly on a suitable Hilbert space w
constructed fromK. The condition for the existence of a prequantization bundle is that
cohomology class of the symplectic form be integral. Indeed, the prequantization formula
that there exists a covariant derivative“ on the prequantization bundle such that the curvature
“ is ~modulo some constants! the symplectic form. We refer to Refs. 5,6,7 as standard referen
and to Ref. 8 for a recent survey.

For Poisson manifolds, Vaisman discovered that a more convenient geometric framewo
to consider contravariant derivatives instead of covariant as in the case of symplectic form
reason is very clear, Poisson structures are defined by contravariant two-vectors instead
forms. So, Vaisman3 characterized the existence of prequantization bundles of a Poisson ma
M by means of a natural cohomology of multivectors defined by Lichnerowicz,9 and termed
Lichnerowicz–Poisson cohomology ofM . This cohomology can be obtained as the cohomolo
of a subcomplex of the Chevalley–Eilenberg complex associated to the Lie algebra of fun
C`(M ,R).

The purpose of this paper is to extend these results to the context of Jacobi manifolds
well-known ~see Refs. 10–12!, Jacobi structures are the natural generalization of Poisson s
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tures and in particular of symplectic, cosymplectic and Lie–Poisson structures. However
interesting manifolds like contact and locally conformal symplectic~l.c.s.! manifolds are also
Jacobi and they are not Poisson. A Jacobi bracket$,% on a manifoldM is in fact the most genera
local bilinear operator on the space of real functionsC`(M ,R) which is skew-symmetric and
satisfies Jacobi’s identity. Alternatively, a Jacobi structure on a manifoldM can be defined by a
pair (L,E), whereL is a two-vector andE is a vector field onM such that@L,L#52E`L and
@E,L#50. The link between both approaches is the formula$ f ,g%5L(d f ,dg)1 f E(g)
2gE( f ), for two functions f and g on M . In this paper we discuss first the prequantizat
problem in terms of an adequate cohomology~the Lichnerowicz–Jacobi cohomology!, and later
the quantization problem. It should be noticed that the problem of quantizing Jacobi manifold
physical interest since the relation between them and BV-algebras~see Refs. 13–16!.

The paper is organized as follows. In Sec. II we discuss some generalities on Jacobi
folds. The main examples are given, and the characteristic foliationF is defined. Let us recall tha
if ( M ,L,E) is a Jacobi manifold with Jacobi bracket$,% then for every pointxPM , F x is
generated for all the Hamiltonian vector fields evaluated atx. Since the Hamiltonian vector field
associated with the functionf is Xf5#(d f)1 f E, where #:V1(M )→X(M ) is the
C`(M ,R)-linear mapping induced byL, we getF x5#x(Tx* M )1^Ex&. We have that the even
dimensional leaves ofF are l.c.s. manifolds, and the odd dimensional ones are contact mani
both with the induced Jacobi structure~see Ref. 10!. We recall in this section the relationshi
between regular Jacobi manifolds and quantizable Poisson manifolds given in Ref. 17. T
algebroid structure on the jet bundleJ1(M ,R)>T* M3R of a Jacobi manifoldM introduced in
Ref. 18 is also considered.

In a Jacobi manifold (M ,L,E) with Jacobi bracket$,%, there are two different representatio
of the algebra of functionsC`(M ,R) on the moduleC`(M ,R). The first one is defined by the
Jacobi bracket, say (f ,g)°$ f ,g% and it leads to the usual Chevalley–Eilenberg cohomology. T
cohomology has been studied by Lichnerowicz.12 The second one is defined by means of t
Hamiltonian vector fields, say (f ,g)°Xf(g). For a Poisson manifold, they coincide, but for a
arbitrary Jacobi manifold the second representation yields the so-calledH –Chevalley–Eilenberg
cohomology~H for Hamiltonian!, which is discussed in Sec. III. The corresponding subcomp
of 1-differentiable cochains provides the Lichnerowicz–Jacobi cohomology, which can be i
fied with the cohomologyHLJ* (M ) of the complex (V * (M ) % V * 21(M ),s), whereV * (M )
5 % kV k(M ), V k(M ) is the space ofk-vectors onM and

s~P,Q!5~2@L,P#1kE`P1L`Q,@L,Q#2~k21!E`Q1@E,P# !,

for (P,Q)PV k(M ) % V k21(M ). The cohomology provided by the subcomplex of (V * (M )
% V * 21(M ),s) consisting of pairs (P,0) with P invariant byE was previously studied in Refs
19–21. An alternative way to introduce the Lichnerowicz–Jacobi cohomology which wil
useful to introduce the Jacobi–Chern class of a complex line bundle over a Jacobi manifold
following. Using the Lie algebroid structure onJ1(M ,R) we can define a representation of the L
algebra (V1(M )3C`(M ,R), $,%! on the (V1(M )3C`(M ,R))-moduleC`(M ,R). The cohomol-
ogy of the subcomplex consisting of theC`(M ,R)-linear cochains is isomorphic to th
Lichnerowicz–Jacobi cohomology. The relationship with the de Rham cohomology is also s

and we obtain a linear homomorphism #˜:HdR* (M )→HLJ* (M ) given by #̃(@a#)5@(#(a),
2#(i Ea))#.

In Sec. IV we introduce the notion of Jacobi–Chern class of a complex line bundleK over a
Jacobi manifold (M ,L,E) ~see also Ref. 22!. To do this, we first extend the concept of contr
variant derivative given by Vaisman for Poisson manifolds to Jacobi manifolds. A contrava
derivative D is defined as a derivation of sections with respect to pairs (a, f ) consisting of a
1-form a and a functionf . We also define the curvatureCD of D. The curvatureCD defines a
J. Math. Phys., Vol. 38, No. 12, December 1997
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cohomology classjc(K,L,E)PHLJ
2 (M ), which is called the real Jacobi–Chern class ofK. The

Jacobi–Chern class is related with the usual real Chern classc(K,R) of K by the formula

#̃(c(K,R))5 jc(K,L,E).
Section V is devoted to a discussion on the prequantization of Jacobi manifolds. We sa

a Jacobi manifold (M ,L,E) is quantizable if there exists a complex line bundlep:K→M overM
such that

$ f ,ĝ%5 f̂ +ĝ2ĝ+ f̂ , f ,gPC`~M ,R!

with f̂ PEndc(G(K)) defined bysPG(K)° f̂ (s)5D j 1fs12p i f s5D (d f, f )s12p i f s. Here,G(K)
is the space of cross sections ofp:K→M and D is a contravariant derivative onK. The main
result of this section is a necessary and sufficient condition for a Jacobi manifold to be qu
able:

Theorem V.2: Let (M ,L,E) be a Jacobi manifold. Then, M is quantizable if and only if the
exist a vector field A, a real differentiable function f and a closed 2-formV which represents an
integral cohomology class of M such that

~i! #̃(V)5s(A, f ).
~ii ! If x is a point of M and Ex50 then f(x)51.
~iii ! If x is a point of M andv is a 1-form at x such that ExÞ0 and #x(v)5Ex then f(x)

5v(Ax)11.

For a Poisson manifold we recover the result obtained by Vaisman.3 In particular, if M is a
symplectic manifold with symplectic 2-formF, we deduce thatM is quantizable is and only ifF
represents an integral cohomology class ofM ~see Refs. 1–3!. These examples and many othe
are discussed in Sec. VI. We study the case of Jacobi manifolds with l.c.s. characteristic fo
and conclude that a l.c.s. manifold is quantizable if and only if it is a quantizable symp
manifold. For Jacobi manifolds with contact characteristic foliation, we deduce that the
always quantizable, so, in particular, every contact manifold is. The particular case of a r
Jacobi manifold and some interesting examples of Jacobi manifolds with mixed leaves~with
nonpure characteristic foliation in our terminology! are also discussed.

The space of sectionsG(K) of the quantum bundleK of a quantizable Jacobi manifol
(M ,L,E) is usually too big for quantization purposes, so that we have to introduce a polariz
in order to reduce it. In Sec. VII we define a polarization ofM as a subspaceP of V1(M ) ^ C such
that P 3$0% is a subalgebra of ((V1(M )3C`(M ,R)) ^ C,$,%) andL~a,b!50, for a,bPP . Here,
the bracket$,% is the natural extension of the bracket onV1(M )3C`(M ,R). The subalgebra of
the straightforwardly quantizable observables is thenP(P )5$ f PC`(M ,R)/$(d f , f ),(a,0)%PP

3$0%, for all aPP %. If we choose a Hermitian metrich on K and a quantization Hermitian
contravariant derivativeD, we can extendD to the space of sectionsG(K ^ D) of K ^ D , where
D is the complex line bundle of complex half-densities ofM . If M is compact, and we denot
H05$vPG(K ^ D)/ for everyaPP , D (a,0)v50%, thenH0 can be made a pre-Hilbert space wi
the scalar product

^s1^ %1 ,s2^ %2&5E
M

h~s1 ,s2!%1%̄2 ,

where the bar denotes complex conjugation. Moreover, iff̂ :G(K ^ D)→G(K ^ D) is the operator

given by f̂ (s^ %)5D (d f, f )(s^ %)12p i f (s^ %) then$ f ,ĝ%(s^ %)5( f̂ +ĝ2ĝ+ f̂ )(s^ %) and if, in

addition, f PP(P ) then f̂ (H0)#H0 and the operatori f̂ :H0→H0 is Hermitian. The noncom-
pact case is also considered. The obtained results in both cases extend those by Vais
J. Math. Phys., Vol. 38, No. 12, December 1997
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Poisson manifolds.3 We end the section by discussing several examples of contact manifold
Jacobi manifolds with nonpure characteristic foliation. We omit the case of symplectic man
since there exists a large literature on the subject.

In Sec. VIII we discuss the existence of~1-differentiable! prequantization representations f
complex line bundles on Jacobi manifolds in terms of contravariant derivatives and of th
Jacobi–Chern class. The existence of these representations has been studied by Vaism3 but
using covariant derivatives. Our results extend the previous ones obtained by Urwin23 for sym-
plectic manifolds and by Vaisman for Poisson manifolds.3

Finally, it should be noticed that an alternative approach to the quantization of Po
manifolds was developed by Karasev24 and Weinstein25 by using the notion of symplectic
groupoid~see also Refs. 26,27!. The extension of the theory for Jacobi manifolds is a matte
obvious interest. Some work has been done by Dazord28 by introducing the notion of contac
groupoid.

II. JACOBI AND POISSON MANIFOLDS

All the manifolds considered in this paper are assumed to be connected.

A. Local Lie algebras and Jacobi manifolds

A Jacobi structureon am-dimensional manifoldM is a pair (L,E), whereL is a 2-vector
andE a vector field onM satisfying the following properties:

@L,L#52E`L, LEL5@E,L#50. ~1!

Here @,# denotes the Schouten–Nijenhuis bracket27,29 and L is the Lie derivative operator. The
manifold M endowed with a Jacobi structure is called aJacobi manifold. A bracket of functions
~the Jacobi bracket! is defined by

$ f ,g%5L~d f ,dg!1 f E~g!2gE~ f !, for all f ,gPC`~M ,R!. ~2!

The Jacobi bracket$,% is skew-symmetric, satisfies the Jacobi identity and

support$ f ,g%#~supportf !ù~supportg!.

Thus the spaceC`(M ,R) of C` real-valued functions onM endowed with the Jacobi bracket isa
local Lie algebrain the sense of Kirillov~see Ref. 30!. Conversely, a structure of local Lie algeb
on C`(M ,R) defines a Jacobi structure onM ~see Refs. 11,30!. If the vector fieldE identically
vanishes then$,% is a derivation in each argument and, therefore,$,% defines aPoisson bracketon
M . In this case,~1! reduces to@L,L#50 and (M ,L) is a Poisson manifold. Jacobi and Poisson
manifolds were introduced by Lichnerowicz9,12 ~see also Refs. 29,31, and 27!.

B. Examples of Jacobi manifolds

Examples of Poisson structures are symplectic and Lie–Poisson structures~see Refs. 9 and
32!. Other examples of Poisson manifolds are the cosymplectic manifolds.

A cosymplectic manifold~see Refs. 33,34,35 and 17! is a triple (M ,F,h), whereM is an odd
dimensional manifold,F is a closed 2-form andh is a closed 1-form onM such thathLFm is a
volume form, with dimM52m11. If [:X(M )→V1(M ) is the isomorphism of
C`(M ,R)-modules from the space of the vector fieldsX(M ) on M onto the space of 1-forms
V1(M ) defined by[(X)5 i xF1( i xh)h, then the vector fieldj5[21(h) is called theReeb
vector fieldof M . The Reeb vector fieldj is characterized by the relationsi jF50 andi jh51. In
particular,LjF50 andLjh50. A 2-vectorL on M is defined by

L~a,b!5F~[21~a!,[21~b!!5F~[21~a2a~j!h!,[21~b2b~j!h!!,
J. Math. Phys., Vol. 38, No. 12, December 1997
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for all a,bPV1(M ). Thus (M ,L) becomes a Poisson manifold. Moreover,LjL50. In canoni-
cal coordinates$q1,...,qm,pi ,...,pm ,z%, we have33,35

F5(
i 51

m

dqi`dpi , h5dz, j5
]

]z
, L5(

i 51

m
]

]qi `
]

]pi
.

Other interesting examples of Jacobi manifolds, which are not Poisson manifolds, are the c
manifolds and the locally conformal symplectic manifolds which we will describe below. LeM
be a (2m11)-dimensional manifold andu a 1-form onM . We said thatu is a contact 1-form if
u`(du)mÞ0 at every point. In such a case (M ,u) is termed acontact manifold~see, for example,
Refs. 31, 33, and 34!. A contact manifold (M ,u) is a Jacobi manifold. In fact, we define th
2-vectorL on M by

L~a,b!5du~[21~a!,[21~b!!, ~3!

for all a,bPV1(M ), where[:X(M )→V1(M ) is the isomorphism ofC`(M ,R)-modules given
by [(X)5 i X du1u(X)u. The vector fieldE is just the Reeb vector fieldj5[21(u) of (M ,u).
It is characterized by the relationsi ju51 andi j du50. Moreover, around every point ofM there
exist canonical coordinates (t,q1,...,qm,p1 ,...,pm) such that~see Refs. 12, 33, and 34!

u5dt2(
i

pi dqi , L5(
i

S ]

]qi 1pi

]

] l D`
]

]pi
, E5

]

]t
.

An almost symplectic manifoldis a pair (M ,F), whereM is an even dimensional manifold andF
is a nondegenerate 2-form onM . An almost symplectic manifold is said to belocally conformal
symplectic (l.c.s.)if for each pointxPM there is an open neighborhoodU such thatd(e2sF)50,
for some functions:U→R ~see, for example, Refs. 11, 17, and 36!. So, (U,e2sF) is a symplec-
tic manifold. If U5M thenM is said to be aglobally conformal symplectic (g.c.s.)manifold. An
almost symplectic manifold (M ,F) is l.~g.!c.s. if and only if there exists a closed~exact! 1-form
v such thatdF5v`F. The 1-formv is called theLee 1-formof M . It is obvious that the l.c.s
manifolds with Lee 1-form identically zero are just the symplectic manifolds.

In a similar way that for contact manifolds, we define a 2-vectorL and a vector fieldE on M
which are given by

L~a,b!5F~[21~a!,[21~b!!, E5[21~v!,

for all a,bPV1(M ), where[:X(M )→V1(M ) is the isomorphism ofC`(M ,R)-modules defined
by [(X)5 i xF. Then (M ,L,E) is a Jacobi manifold. Notice that

v~E!50, LEv50, LEF50.

Using the classical theorem of Darboux, around every point ofM there exist canonical coordinate
(q1,...,qm,p1 ,...,pm) and a local differentiable functions such that

F5es(
i

dqi`dpi , v5ds5(
i

S ]s

]qi dqi1
]s

]pi
dpi D ,

L5e2s(
i

S ]

]qi `
]

]pi
D , E5e2s(

i
S ]s

]pi

]

]qi2
]s

]qi

]

]pi
D .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Finally, a very simple but interesting Jacobi structure is that provided by a vector fieldE on a
manifold M . That is, the Jacobi structure is given by (L50, E). It should be remarked that thi
structure is closely related with Virasoro algebras~see Ref. 37!.

C. The characteristic foliation of a Jacobi manifold

Let (M ,L,E) be a Jacobi manifold. Define a mapping #:V1(M )→X(M ) by

~#~a!!~b!5L~a,b!, ~4!

for a,bPV1(M ). This mapping can be extended to a mapping, which we also denote by #,
the space ofk-forms Vk(M ) on M onto the space ofk-vectorsV k(M ) by putting

#~ f !5 f , #~a!~a1 ,...,ak!5~21!ka~#~a1!,...,#~ak!!, ~5!

for all f PC`(M ,R), aPVk(M ) anda1 ,...,akPV1(M ).
In the particular case of a cosymplectic manifoldM with Reeb vector fieldj, we have that

#(a)52[21(a)1a(j)j for aPV1(M ). For a contact manifold with Reeb vector fieldj, we
also deduce that #(a)52[21(a)1a(j)j. For a l.c.s. manifold, we obtain that #52[21.

If f is a C` real-valued function on a Jacobi manifoldM , the vector fieldXf defined by

Xf5#~d f !1 f E ~6!

is called theHamiltonian vector fieldassociated withf . It should be noticed that the Hamiltonia
vector field associated with the constant function 1 is justE. A direct computation proves that~see
Refs. 12 and 38!

@Xf ,Xg#5X$ f ,g% . ~7!

Now, for everyxPM , we consider the subspaceF x of TxM generated by all the Hamiltonia
vector fields evaluated at the pointx. In other words,F x5#x(Tx* M )1^Ex&. SinceF is involu-
tive, one easily follows thatF defines a generalized foliation, which is called thecharacteristic
foliation in Ref. 10. Moreover, the Jacobi structure ofM induces a Jacobi structure on each le
In fact, if L is the leaf over a pointx of M andEx¹Im#x thenL is a contact manifold with the
induced Jacobi structure. IfExPIm#x , L is a l.c.s. manifold~for a more detailed study of the
characteristic foliation of a Jacobi manifold we refer to Ref. 10!. If M is a Poisson manifold then
from ~4! and~6!, we deduce that the characteristic foliation ofM is just thecanonical symplectic
foliation of M ~see Refs. 9 and 32!.

D. Regular Jacobi manifolds and quantizable Poisson manifolds

A Jacobi manifold (M ,L,E) is said to beregular if the vector fieldE is complete,EÞ0 at
every point and the 1-dimensional foliation defined byE is regular in the sense of Palais.39 In such
a case, the space of leavesM̄5M /E has a structure of differentiable manifold and the canon
projection p:M→M̄ is a fibration ~surjective submersion!. Moreover, we can define onM̄ a
2-vectorL̄ by

L̄~ ā,b̄ !+p5A~p* ā,p* b̄ !, ;ā,b̄PV1~M̄ !.

Notice that, from~1!, L̄ is well-defined and (M̄ ,L̄) is a Poisson manifold~see Ref. 10!. Next, we
will relate the regular Jacobi manifolds with the quantizable Poisson manifolds~see Ref. 17!.

We first recall the characterization of quantizable Poisson manifolds given by Vaisma3 A
Poisson manifold (M̄ ,L̄) is quantizableif and only if there exist a vector fieldA and an integral
closed 2-formV̄ on M̄ such that
J. Math. Phys., Vol. 38, No. 12, December 1997
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L̄2L ĀL̄5#̄~V̄!, ~8!

where #̄:V2(M̄ )→V 2(M̄ ) is the homomorphism given as in~4! and ~5!.
Now, suppose that (M̄ ,L̄) is a quantizable Poisson manifold and thatĀ,V̄ are a vector field

and an integral closed 2-form onM̄ , respectively, satisfying~8!. From the results of Ref. 40, ther
exists a principal circle bundlep:M→M̄ over M̄ with connection formu such thatV̄ is the
curvature for the connectionu, that is,p* V̄5du.

In Ref. 17 we have proved that onM there exists a Jacobi structure (L,E) such that (M ,L,E)
is a regular Jacobi manifold and the corresponding quotient Poisson manifoldM /E is just (M̄ ,L̄).
Moreover,

u~E!51, LEu50. ~9!

In fact, E is the infinitesimal generator of the action ofS1 on M andL is given by

L5L̄H1E`ĀH, ~10!

whereL̄H ~respectively,ĀH! is the horizontal life toM of L̄ ~respectively,Ā! ~see Remark II.1
below!.

A converse of the above result is also proved. Namely, a compact regular Jacobi ma
(M ,L,E) endowed with a 1-formu satisfying~9! is the total space of a principal circle bund
over a quantizable Poisson manifold~see Ref. 17!.

Remark II.1:Let p:M→M̄ be a principal circle bundle over a manifoldM̄ endowed with a
connection formu. If P̄ is a k-vector onM̄ , k>1, we define thehorizontal lift of P̄ to M as the
k-vector P̄H on M characterized by the following conditions:

P̄H~p* ā1 ,...,p* āk!5 P̄~ ā1 ,...,āk!+p, i uP̄H50, ~11!

for all ā1 ,...,ākPV1(M̄ ).

E. Lie algebroid of a Jacobi manifold

A Lie algebroid structureon a differentiable vector bundlep:K→M is a pair that consists o
a Lie algebra structure$,% on the spaceG(K) of the global cross sections ofp:K→M and a
homomorphism ofC`(M ,R)-modules%:G(K)→X(M ) such that

~i! %:(G(K),$,%)→(X(M ),@ ,#) is a Lie algebra homomorphism.
~ii ! For all f PC`(M ,R) and for alls1 , s2PG(K) one has

$s1 , f s2%5 f $s1 ,s2%1~%~s1!~ f !!s2 .

A triple (K,$,%,%) is calleda Lie algebroid over M~see Refs. 27 and 41!.
Let (M ,L,E) be a Jacobi manifold. In Ref. 18, the authors obtain a Lie algebroid structu

the jet bundleJ1(M ,R) as follows. It is well-known that ifT* M is the cotangent bundle ofM , the
spaceJ1(M ,R) can be identified with the product manifoldK5T* M3R in such a sense that th
spaceG(K) of the global cross sections of the vector bundleK5T* M3R→M can be identified
with V1(M )3C`(M ,R). Now, we consider onV1(M )3C`(M ,R) the bracket$,% given by~see
Ref. 18!

$~a, f !,~b,g!%5 j 1~L~#~a!1 f E!g2L~#~b!1gE! f 2L~a,b!!1~~L~#~a!1 f E!2 i Ea!~b2dg!

2~L~#~b!1gE!2 i Eb!~a2d f !,0!5~L#~a!b2L#~b!a2d~L~a,b!!1 f LEb

2gLEa2 i E~a`b!,a~#~b!!1#~a!~g!2#~b!~ f !1 f E~g!2gE~ f !!, ~12!
J. Math. Phys., Vol. 38, No. 12, December 1997
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where j 1:C`(M ,R)→V1(M )3C`(M ,R) is theprolongation mappingdefined by

j 1~ f !5~d f , f !.

We have~see Ref. 18!
Theorem II.2: Let (M, L, E) be a Jacobi manifold and$,% the bracket onV1(M )3C`(M ,R)

defined by (12). Then, the triple(T* M3R,$,%,(#,E)) is a Lie algebroid over M, where
(#,E):V1(M )3C`(M ,R)→X(M ) is the homomorphism of C`(M ,R)-modules given by

~#,E!~a, f !5#~a!1 f E. ~13!

Moreover, if we consider on C`(M ,R) the Jacobi bracket then the prolongation mapping

j 1:C`~M ,R!→V1~M !3C`~M ,R!, f→ j 1f 5~d f , f ! ~14!

is a Lie algebra homomorphism.
Remark II.3:~i! If XH(M ) is the Lie algebra of the Hamiltonian vector fields, it is clear th

(#,E)( j 1(C`(M ,R)))5XH(M ).
~ii ! In the particular case whenM is a Poisson manifold we recover, by projection, the us

Lie algebroid structure on the vector bundlep:T* M→M ~see Refs. 29, 42, 43!.

III. H –CHEVALLEY–EILENBERG COHOMOLOGY OF A JACOBI MANIFOLD

Let (M ,L,E) be a Jacobi manifold and$,% the Jacobi bracket. We consider the cohomology
the Lie algebra (C`(M ,R),$,%) relative to the representation defined by the Hamiltonian ve
fields, that is, to the representation given by

C`~M ,R!3C`~M ,R!→C`~M ,R!, ~ f ,g!→Xf~g!.

This cohomology is denoted byHHCE* (M ) and it is called theH–Chevalley–Eilenberg cohomol-
ogyassociated toM ~see Refs. 20,21!. In fact, if CHCE

k (M ) is the real vector space of thek-linear
skew-symmetric mappingsck:C`(M ,R)3••• (k•••3C`(M ,R)→C`(M ,R) then

HHCE
k ~M !5

ker$]H :CHCE
k ~M !→CHCE

k11 ~M !%

Im$]H :CHCE
k21 ~M !→CHCE

k ~M !%
,

where]H :CHCE
r (M )→CHCE

r 11 (M ) is the linear differential operator defined by

~]Hcr !~ f 0 ,...,f r !5(
i 50

r

~21! iXf i
~cr~ f 0 ,...,f̂ i ,...,f r !!

1(
i , j

~21! i 1 j cr~$ f i , f j%, f 0 ,...,f̂ i ,...,f̂ j ,...,f r ! ~15!

for crPCHCE
r (M ) and f 0 ,...,f rPC`(M ,R).

Notice that for a Poisson manifold,HHCE* (M ) is theChevalley–Eilenberg cohomologyof the
Lie algebra (C`(M ,R),$,%) ~see Ref. 9!. However, for arbitrary Jacobi manifolds the Chevalle
Eilenberg cohomology~which is defined with respect to the representation given by the Ja
bracket12! does not coincide in general with theH –Chevalley–Eilenberg cohomology define
above.

Now, we will study the cohomology of the subcomplex of the 1-differentiable cochain
k-cochainckPCHCE

k (M ) is said to be 1-differentiable if it is defined by a linear differential
operator of order 1. IfV r(M ) is the space ofr -vectors onM then we can identify the spac
J. Math. Phys., Vol. 38, No. 12, December 1997
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V k(M ) % V k21(M ) with the space of all 1-differentiablek-cochainsCHCE21diff
k (M ) as follows

~see, for instance, Ref. 9!: define j k :V k(M ) % V k21(M )→CHCE
k (M ) the monomorphism given

by

j k~P,Q!~ f 1 ,...,f k!5P~d f1 ,...,d fk!1 (
q51

k

~21!q11f qQ~d f1 ,...,d fq̂,...,d fk!. ~16!

Then, j k(V k(M ) % V k21(M ))5CHCE12diff
k (M ) which implies that the spacesV k(M )

% V k21(M ) andCHCE12diff
k (M ) are isomorphic.

On the other hand, ifP̃PCHCE12diff
k (M ) then ]HP̃PCHCE12diff

k11 (M ). Thus, we have the
corresponding subcomplex (CHCE12diff* (M ),]HuC

HCE12diff* (M )) of the H –Chevalley–Eilenberg

complex whose cohomologyHHCE12diff* (M ) will be called the 1-differentiable H–Chevalley–
Eilenberg cohomologyof M . Moreover, using~15!, ~16! and the properties of the Schouten
Nijenhuis bracket, we can prove that

]H~ j k~P,Q!!5 j k11~s~P,Q!!, ~17!

where

s~P,Q!5~2@L,P#1kE`P1L`Q,@L,Q#2~k21!E`Q1@E,P# !. ~18!

The last equation defines a mappings:V k(M ) % V k21(M )→V k11(M ) % V k(M ) which is in
fact a differential operator that verifiess250. Thus we have a complex (V * (M ) % V * 21(M ),s)
whose cohomology will be called theLichnerowicz–Jacobi cohomology (LJ-cohomology)of M
and denoted byHLJ* (M ). This cohomology is a generalization of the Lichnerowicz–Jacobi co
mology introduced in Refs. 19–21. In fact, the former one is the cohomology of the subcom
of the pairs (P,0), whereP is invariant byE. For this reason, we retain the name.

Notice that the mappingsj k :V k(M ) % V k21(M )→CHCE
k (M ) given by ~16! induce an iso-

morphism between the complexes (V * (M ) % V * 21(M ),s) and (CHCE12diff* (M ),
(]H)C

HCE12diff* (M )) and therefore the corresponding cohomologies are isomorphic.

Remark III. 1: If s̃ denotes the cohomology operator in the 1-differentiable Chevall
Eilenberg subcomplex then~see Ref. 12!

ŝ~P,Q!5~2@L,P#1~k21!E`P1L`Q,@L,Q#2~k22!E`Q1@E,P# !,

for (P,Q)PV k(M ) % V k21(M ). Thus, from ~18!, we deduce that the 1-differentiabl
H –Chevalley—Eilenberg cohomology~that is, the LJ-chomology! does not coincide in genera
with the 1-differentiable Chevalley–Eilenberg cohomology.

Now, we define a natural structure of (V1(M )3C`(M ,R))-module onC`(M ,R) putting

~a, f !g5~#,E!~a, f !~g!,

where (#,E):V1(M )3C`(M ,R)→X(M ) is the homomorphism given by~13!. If $,% is the
bracket on V1(M )3C`(M ,R) defined by ~12! then, since (#,E):(V1(M )
3C`(M ,R),$,%)→(X(M ),@ ,#) is a Lie algebra homomorphism~see Theorem II.2!, we have a
representation of the Lie algebra (V1(M )3C`(M ,R),$,%) onto the moduleC`(M ,R), and we
can define the corresponding differential complex and the corresponding cohomology. I
complex thek-cochains are theR-linear skew-symmentric mappingsR̂:(V1(M )3C`(M ,R))k

→C`(M ,R) and the cohomology operator]̃ is given by
J. Math. Phys., Vol. 38, No. 12, December 1997
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~ ]̃ R̃!~~a0 , f 0!,...,~ak , f k!!5(
i 50

k

~21! i~#,E!~a i , f i !~R̃~~a0 , f 0!,...,~a i , f î !,...,~ak , f k!!!

1(
i , j

~21! i 1 j R̃~$~a i , f i !,~a j , f j !%,

~a0 , f 0!,...,~a i , f î !,...,~a i , f ĵ !,...,~ak , f k!!. ~19!

We can consider the subcomplex of those cochains which areC`(M ,R)-linear. The cohomology
of this subcomplex is also isomorphic to theLJ-cohomology. An isomorphism is induced by th

mapping (P,Q)°(P,Q̃), where (P,Q)PV k(M ) % V k21(M ) and (P,Q̃):(V1(M )
3C`(M ,R))k→C`(M ,R) is theC`(M ,R)-linear mapping defined by

~P,Q̃!~~a t , f 1!,...,~ak , f k!!5P~a1 ,...,ak!1 (
q51

k

~21!q11f qQ~a1 ,...a q̂...,ak!. ~20!

In fact, we can prove that

]̃~P,Q̃!5s~P,Q̃!. ~21!

Finally, we will show the relation between the de Rham cohomology and the LJ-cohomo
Denote by #:Vk(M )→V k(M ) the homomorphism ofC`(M ,R)-modules defined in~4! and~5!.
We have~see Refs. 19–21!:

LE~#~a!!5#~LEa!, 2@L,#~a!#1kE`#~a!52#~da!1#~ i Ea!`L, ~22!

for all aPVk(M ). Using these results and~18!, we deduce

Theorem III.2: Let (M ,L,E) be a Jacobi manifold and#̃ :Vk(M )→V k(M ) % V k21(M ) the
homomorphism of C`(M ,R)-modules given by

#̃~a!5~#~a!,2#~ i Ea!! ~23!

for all aPVk(M ). Then #̃ induces a homomorphism of complexes#̃ :(V* (M ),d)→(V * (M )
% V * 21(M ),2s). Thus if HdR* (M ) is the de Rham cohomology of M, we have the correspon

homomorphism in cohomology#̃ :HdR* (M )→HLJ* (M ).
Remark III.3: If ( M ,L) is a Poisson manifold we can define the linear differential oper

s̃:V k(M )→V k11(M ) by s̄(P)52@L,P#. Since s̄250, s̃ defines a cohomology which i
called theLichnerowicz–Poisson cohomology (LP-cohomology)for the Poisson manifoldM ~see
Ref. 9!. We will denote byHLP* (M ) the LP-cohomology. Using~22!, we obtain thats̃+#52#
+d and therefore we have an induced homomorphism in cohomology #:HdR* (M )→HLP* (M ). On
the other hand, from~18!, we deduce that the LP-cohomology ofM is isomorphic to the coho-
mology of the subcomplex of the LJ-complex consisting of the pairs (P,0). Consequently, using
Theorem III.2 we obtain the following commutative diagram:
J. Math. Phys., Vol. 38, No. 12, December 1997
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,

wherei * is the induced homomorphism by the canonical inclusionP°(P,0).

IV. JACOBI–CHERN CLASS OF A COMPLEX LINE BUNDLE OVER A JACOBI
MANIFOLD

Let (M ,L,E) be a Jacobi manifold andp:K→M a complex line bundle overM . Denote by
G(K) the space of cross sections ofp:K→M and, byEndc(G(K)) the space of theC-linear
endomorphisms ofG(K).

Definition IV.1: A contravariant derivative D onp:K→M is a mapping D:V1(M )
3C`(M ,R)→Endc(G(K)) which satisfies the following conditions:

D ~a1b, f 1g!5D ~a, f !1D ~b,g!, D ~ga,g f !5gD~a, f ! ,
~24!

D ~a, f !gs5gD~a, f !s1~#,E!~a, f !~g!s,

for all aPV1(M ), f, gPC`(M ,R) and sPG(K).
This definition is a natural extension of the one given by Vaisman for Poisson manifolds~see

Ref. 3, 27!. In fact, if (M ,L) is a Poisson manifold andD:V1(M )3C`(M ,R)→Endc(G(K)) is
a contravariant derivative on a complex line bundlep:K→M , then the mapping

D̃:V1~M !→Endc~G~K !! D̃a5D ~a,0!

defines a contravariant derivative in the sense of Vaisman. Conversely
D̃:V1(M )→Endc(G(K)) is a contravariant derivative in the sense of Vaisman then the map

D:V1~M !3C`~M ,R!→Endc~G~K !! D ~a, f !5D̃a

satisfies~24!.
Let (M ,L,E) be a Jacobi manifold andh a Hermitian metric on the complex line bund

p:K→M . A contravariant derivativeD on p:K→M is said to beHermitian (or compatible with
h) if

~#,E!~a, f !~h~s1 ,s2!!5h~D ~a, f !s1 ,s2!1h~s1 ,D ~a, f !s2!, ~25!

for all aPV1(M ), f PC`(M ,R) ands1 ,s2PG(K).
For instance, if“ is a usual~Hermitian! covariant derivative onp:K→M and we put

D (a, f )5¹ (#,E)(a, f ), we obtain a~Hermitian! contravariant derivative. This remark shows th
~Hermitian! contravariant derivatives always exist.

Next, we will introduce the definition of curvature of a contravariant derivative.
Definition IV.2: Letp:K→M be a complex line bundle over a Jacobi manifold M and D

contravariant derivative onp:K→M . The curvature of D is the mapping CD :(V1(M )
3C`(M ,R))3(V1(M )3C`(M ,R))3G(K)→G(K) given by

CD~~a, f !,~b,g!!~s!5~D ~a, f !+D ~b,g!2D ~b,g!+D ~a, f !2D $~a, f !,~b,g!%!s ~26!
J. Math. Phys., Vol. 38, No. 12, December 1997
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for all (a, f ),(b,g)PV1(M )3C`(M ,R) and sPG(K).
Using ~24!, ~26! and Theorem II.2, we deduce thatCD is trilinear overC`(M ,R) and

CD~~a, f !,~b,g!!~s!52CD~~b,g!,~a, f !!~s!.

Thus, from the results in Sec. III, we have that there exist a globally defined complex 2-v
PCD

5P11 iP2 and a globally defined complex vector fieldYCD
5Y11 iY2 such that

CD~~a, f !,~b,g!!~s!5~~PCD
,YCD̃

!~~a, f !,~b,g!!!s, ~27!

where (PCD
,YCD̃

)5(P1 ,Y1̃)1 i (P2 ,Y2̃) and (Pi ,Yĩ) are defined by~20!.
Now, let s be the LJ-cohomology operator~see~18!!. If P5P11 iP2 ~respectively,Q5Q1

1 iQ2) is a complexk-vector~respectively, (k-1)-vector! then we can defines(P,Q) by linearity
as follows

s~P,Q!5s~P1 ,Q1!1 is~P2 ,Q2!.

It is clear thats250 and, therefore, we obtain the corresponding cohomology which wil
denoted byHCLJ* (M ). Moreover, we prove the following.

Theorem IV.3: Let p:K→M be a complex line bundle over a Jacobi manifold M. Supp
that D is a contravariant derivative onp:K→M with curvature CD . Then:

~i! The pair (PCD
,YCD

) defines a cohomology class in HCLJ
2 (M ).

~ii ! The cohomology class@(PCD
,YCD

)# does not depend of the contravariant derivative D.
~iii ! If h is a Hermitian metric onp:K→M and D is a Hermitian contravariant derivative the

PCD
and YCD

are purely imaginary.

Proof: ~i! Let $e% be a local basis ofG(K). From ~20! and~24! we deduce that there exist
local complex vector fieldXD5X11 iX2 and a local complex functiongD5g11 ig2 such that

D ~a, f !e5~~XD ,gD̃!~a, f !!e ~28!

for (a, f )PV1(M )3C`(M ,R), where (XD ,gD̃)5(X1 ,g1̃)1 i (X2 ,g2̃). Thus, using~19!, ~21!,
~24!, ~26! and ~27!, we have that

s~XD ,gD!5~PCD
,YCD

! ~29!

which implies thats(PCD
,YCD

)50.

~ii ! Assume thatD̄ is another contravariant derivative onp:K→M and thatXD̄ andgD̄ are
the corresponding local complex vector field and the corresponding local complex function
~i!. We obtain~see~29!!

~PCD̄
,YCD̄

!5~PCD
,YCD

!1s~XD̄2XD,gD̄2gD!. ~30!

On the other hand, if we define the mapping

D̄2D:~V1~M !3C`~M ,R!!3G~K !→G~K !, ~~a, f !,s!°D̄ ~a, f !s2D ~a, f !s,

then, from~24! and the results of Sec. III, we conclude that there exists a globally defined com
vector fieldX(D̄2D) and a globally defined complex functiong(D̄2D) such that

~D̄2D !~~a, f !,s!5~~X~D̄2D ! ,g~D̄2D !
˜ !~a, f !!s. ~31!
J. Math. Phys., Vol. 38, No. 12, December 1997
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But in the overlapping we have

X~D̄2D !5XD̄2XD and g~D̄2D !5gD̄2gD . ~32!

Consequently, by using~30!, we prove~ii !.
~iii ! If $e% is a local orthonormal basis ofG(K) then ~see~25!!

05h~D ~a, f !e,e!1h~e,D ~a, f !e!5~XD,gD̃!~a, f !1~XD,gD̃!~a, f !, ~33!

for all (a, f )PV1(M )3C`(M ,R), where the bar denotes complex conjugation. Takingf 50 in
~33!, we deduce thata(XD)1a(X̄D)50 for all a. Therefore,XD is purely imaginary which, by
~33!, implies thatgD is also purely imaginary. Since (PCD

,YCD
)5s(XD ,gD), we deduce the

result.
h

Theorem IV.3 suggests us to introduce the following definition.
Definition IV.4: Letp:K→M be a complex line bundle over a Jacobi manifold(M ,L,E).

Suppose that D is a contravariant derivative with curvature CD such that PCD
and YCD

are purely

imaginary. Then, the cohomology class@(( i /2p)PCD
,(i /2p)YCD

)# in HLJ
2 (M ) is called the real

Jacobi–Chern class of the complex line bundlep:K→M and it is denoted by jc(K,L,E).
Next, we will show the relation between the usual real Chern class and the real Jacobi–

class of a complex line bundle over a Jacobi manifold.
Let p:K→M be a complex line bundle over a differentiable manifoldM . If h is a Hermitian

metric onp:K→M and“ a Hermitian covariant derivative then there exists a purely imagin
closed 2-formV¹ such that

V̄¹~X,Y!~s!5V¹~X,Y!~s! ~34!

for all X,YPX(M ) andsPG(K), whereV̄¹ is the curvature of the connection“, i.e.,

V̄¹~X,Y!~s!5~“X+“Y2“Y+“X2“ @X,Y#!~s!.

The real Chern classc(K,R)PHdR
2 (M ) is just the integral cohomology class@( i /2p)V¹# ~see

Ref. 1!.
Theorem IV.5: Let p:K→M be a complex line bundle over a Jacobi manifold(M ,L,E). If

c(K,R) and jc(K,L,E) are the real Chern class and the real Jacobi–Chern class, respectively, o
p:K→M then

#̃~c~K,R!!5 jc~K,L,E!,

where #̃ :HdR
2 (M )→HLJ

2 (M ) is the induced homomorphism between the de Rham cohomo
and the LJ-cohomology.

Proof: If “ is a Hermitian covariant derivative and$e% is a local basis ofG(K), we have

“Xe5u~X!e ~35!

for all XPX(M ), whereu is the local connection 1-form. Moreover, ifV5( i /2p)V¹ we deduce
that locally ~see Ref. 1!

22p iV5V¹5du. ~36!

Now, let D be the Hermitian contravariant derivative given byD (a, f )5“ (#,E)(a, f ) . Denote byXD

andgD the local complex vector field and the local complex function which satisfy~28!. Using
~35!, it follows that
J. Math. Phys., Vol. 38, No. 12, December 1997
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2 #̃~u!5~2#~u!,u~E!!5~XD ,gD!. ~37!

Thus, from~29!, ~36!, ~37! and Theorem III.2, we conclude that

#̃~V!5S i

2p
PCD

,
i

2p
YCDD ~38!

which proves our result. h

Remark IV.6:Let (M ,L) be a Poisson manifold and #:HdR* (M )→HLP* (M ) the canonical
homomorphism between the de Rham cohomology ofM and the LP-cohomology~see Remark
III.3!. If p:K→M is a complex line bundle overM , Vaisman3 defined thePoisson–Chern class
pc(K,L) of p:K→M as a LP-cohomology class of order 2 so that #(c(K,R))5pc(K,L). Thus,
using Remark III.3 and Theorem IV.5, we obtain that

i * ~pc~K,L!!5 jc~K,L,0!,

where jc(K,L,0) is the Jacobi–Chern class ofp:K→M and i * :HLP* (M )→HLJ* (M ) is the ca-
nonical homomorphism between the LP-cohomology and the LJ-cohomology.

V. PREQUANTIZATION

Let (M ,L,E) be a Jacobi manifold andD a coutravariant derivative on the complex lin
bundlep:K→M . Suppose thatx is a point ofM and thatv is a 1-form atx. If Kx5p21(x) is the
fibre overx, we define the linear mappingDv :G(K)→Kx by

Dv~s!5~D ~ṽ,0!s!x ,

whereṽ is a 1-form onM such thatṽx5v. Using ~24!, we deduce thatDv does not depend on
the extensionṽ, i.e., if v̄ is another 1-form onM such thatv̄x5v then

~D ~v̄,0!s!x5~D ~v̄,0!s!x .

We will assume that all the contravariant derivatives considered in this section satisfy the fo
ing conditions:

~C1! If Ex50 then (D (0,1)s)x50 for all sPG(K).
~C2! If ExÞ0 and there exists a 1-formv at x such that #x(v)5Ex then

Dvs2~D ~0,1!s!x50

for all sPG(K).
Note that if“ if a usual covariant derivative onp:K→M , then the contravariant derivativ

D (a, f )5¹ (#,E)(a, f ) satisfies the above conditions.
Definition V.1: We say that a Jacobi manifold(M ,L,E) is quantizable if there exists a

complex line bundlep:K→M over M such that

$ f ,ĝ%5 f̂ +ĝ2ĝ+ f̂ f ,gPC`~M ,R! ~39!

with f̂PEndc(G(K)) defined by

sPG~K !° f̂ ~s!5D j 1fs12p i f s5D ~d f, f !s12p i f s, ~40!

where D is a contravariant derivative onp:K→M .
For the sake of simplicity and following Refs. 1 and 3, we have forgotten about the P

constant in the definition of quantizable Jacobi manifold.
J. Math. Phys., Vol. 38, No. 12, December 1997
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If CD is the curvature ofD, from ~2!, ~24!, ~26!, ~40! and Theorem II.2, we deduce that th
condition ~39! is equivalent to

CD~~d f , f !,~dg,g!!~s!522p iL~d f ,dg!s522p i ~~L,0̃!~~d f , f !,~dg,g!!!s,

for all sPG(K). Thus using the fact thatCD is trilinear overC`(M ,R) and its skew-symmetric
character we obtain that

CD~~a, f !,~b,g!!~s!522p i ~~L,0̃!~~a, f !,~b,g!!!s, ~41!

for all (a, f ),(b,g)PV1(M )3C`(M ,R) andsPG(K). This implies that~see~27!!

S i

2p
PCD

,
i

2p
YCDD5~L,0!. ~42!

Hence (M ,L,E) is quantizable if and only if there is a complex line bundlep:K→M that
possesses a contravariant derivativeD satisfying ~42!. In particular, we must have (PCD

,YCD
)

purely imaginary which suggests looking forK together with a Hermitian contravariant derivativ
Also, sinces(0,1)5(L,0) ~s being the LJ-cohomology operator, see~18!!, we deduce that the
real Jacobi–Chern class ofp:K→M is null ~see Definition IV.4!. Moreover, if

#̃ :Vk(M )→V k(M ) % V k21(M ) is the homomorphism ofC`(M ,R)-modules given by~23!, we
obtain:

Theorem V.2: Let (M ,L,E) be a Jacobi manifold. Then, M is quantizable if and only if the
exist a vector field A, a real differentiable function f and a closed 2-formV which represents an
integral cohomology class of M such that

~i! #̃(V)5s(A, f ).
~ii ! If x is a point of M and Ex50 then f(x)51.
~iii ! If x is a point of M andv is a 1-form at x such that ExÞ0 and #x(v)5Ex then f(x)

5v(Ax)11.

Proof: Suppose that (M ,L,E) is quantizable. Then, there is a complex line bundlep:K→M
over M and a contravariant derivativeD on p:K→M with curvatureCD satisfying~42!.

Now, let h be a Hermitian metric onp:K→M and “ a Hermitian covariant derivative
Denote byV̄¹ the curvature of“ and byV¹ the 2-form given by~34!. ThenV5( i /2p)V

“

is a
closed real 2-form which represents an integral cohomology class ofM . In fact, the real Chern
classc(K,R) is just @V# ~see Sec. IV!.

We consider the contravariant derivativeD̄ defined byD̄ (a, f )5“ (#,E)(a, f ) . From ~18!, ~38!,
~42! and Theorem IV. 3, we obtain that there exist a complex vector fieldX(D̄2D) and a complex
function g(D̄2D) such that

#̃~V!5~L,0!1sS i

2p
X~D̄2D ! ,

i

2p
g~D̄2D !D5sS i

2p
X~D̄2D ! ,

i

2p
g~D̄2D !11D .

Thus we have

#̃~V!5s~A, f !,

whereA and f are the real vector field and the real function, respectively onM given by

A5
21

2p
Im~X~D̄2D !!, f 5

21

2p
Im~g~D̄2D !!11.
J. Math. Phys., Vol. 38, No. 12, December 1997
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~Here Im(X(D̄2D) and Im(g(D̄2D)) denote the imaginary parts ofX(D̄2D) andg(D̄2D) , respectively!.
This proves~i!.

~ii ! and ~iii ! follows using~28!, ~32! and the fact thatD andD̄ satisfy the conditions~C1! y
~C2!.

Conversely, assume thatA, f andV are a vector field, a real function and an integral clos
2-form on M which satisfy the conditions~i!, ~ii ! and ~iii !. Then, it is well-known~see, for
instance, Ref. 1! that there exists a complex line bundlep:K→M over M , endowed with a
Hermitian metrich, such that22p iV is the curvature form of a certain Hermitian covaria
derivative“ on p:K→M .

Define the Hermitian contravariant derivativeD:V1(M )3C`(M ,R)→EndC(G(K)) by

D ~a,g!s5“ ~#,E!~a,g!s12p i ~a~A!1~ f 21!g!s. ~43!

A direct computation, using~ii ! and ~iii !, proves thatD satisfies the conditions~C1! and ~C2!.
Finally, from ~18!, ~28!, ~30!, ~32! and ~38!, we conclude that

S i

2p
PCD

,
i

2p
YCDD5~L,0!.

Remark V.3:The condition~i! of Theorem V.2 is equivalent to

#~V!5 f A2LAL1E`A and 2#~ i EV!5#~d f !1LEA.

Using Theorems III.2 and V.2, we deduce the following
Corollary V.4: Let(M ,L,E) be a Jacobi manifold and HdR* (M ) the de Rham cohomology o

M. Suppose that HdR
2 (M )5$0%. Then, M is quantizable if and only if there exists a 1-cocy

(A, f )PX(M )3C`(M ,R) in the LJ-cohomology such that:
(i) If x is a point of M and Ex50 we have that f(x)51.
(ii) If x is a point of M andv is a 1-form at x such that ExÞ0 and #x(v)5Ex then f(x)

5v(Ax)11.

VI. EXAMPLES

Example VI.1: [Poisson, symplectic and Lie–Poisson structures.]Let (M ,L) be a Poisson
manifold. Using Theorem V.2, we obtain thatM is quantizable as a Jacobi manifold if and only
there exist a vectorA and a closed 2-formV that represents an integral cohomology class ofM
which satisfy~8!. Thus,M is quantizable as a Jacobi manifold if and only ifM is quantizable as
a Poisson manifold in the sense of Vaisman.3

In particular, if M is a symplectic manifold with symplectic 2-formF, we deduce thatM is
quantizable if and only ifF represents an integral cohomology class ofM ~see Refs. 1, 2 and 3!.
On the other hand, since for the Lie–Poisson structure of a coadjoint Lie algebra the P
2-vector is exact in the LP-cohomology, we have that these Poisson structures are always
tizable ~see Ref. 3!.

Example VI.2: [Jacobi manifolds with l.c.s. characteristic foliation.]Let (M ,L,E) be a Ja-
cobi manifold and suppose that there exists a closed 1-forma such that

E52#~a! ~44!

and

Ex50, for xPM⇒ax50. ~45!
J. Math. Phys., Vol. 38, No. 12, December 1997
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In particular, this implies thatM has l.c.s. characteristic foliation, i.e., all the leaves of
characteristic foliation ofM are l.c.s. manifolds with the induced Jacobi structure~see Sec. II C!.

Assume thatM is quantizable.
Using ~44!, ~45! and Theorem V.2, we obtain that there exist an integral closed 2-formV and

a vector fieldA such that

#~V!5A2LAL1E`A2a~A!A, ~46!

2#~ i EV!52#~d~a~A!!!1@E,A#. ~47!

From ~44!, ~46! and sincea is closed, we deduce that

#~ i EV!5 i a~#~V!!52E2 i a~LAL!52E2@E,A#1#~LAa!52E2@E,A#1#~d~a~A!!!.

Thus, using~47!, we have thatE50, i.e.,M is a Poisson manifold. On the other hand, ifM is a
l.c.s. manifold with Lee 1-formv then, v is closed,E52#(v) and Ex50 if and only if vx

50 ~see Secs. II B and II C!. Therefore, we can apply the above results and conclude that a
manifold is quantizable if and only if it is a quantizable symplectic manifold.

Example VI.3: [Jacobi manifolds with contact characteristic foliation.]Let (M ,L,E) be a
Jacobi manifold with contact characteristic foliation, i.e., all the leaves of the characteristic
tion are contact manifolds with the induced Jacobi structure. This condition is equivalent t
Ex¹Im#x , for all xPM ~see Sec. II C!. In particular, a contact manifold is trivially a Jaco
manifold with contact characteristic foliation.

We will prove that a Jacobi manifoldM with contact characteristic foliation is always qua
tizable.

For this purpose, we consider the trivial complex line bundlep:K5M3C→M . It is clear
that, in this case,G(K) can be identified with the spaceC`(M ,C) of C` complex-valued functions
on M . Under this identification, we define the contravariant derivativeD by

D ~a, f !s5~#~a!1 f E!s22p i f s, ~48!

for all aPV1(M ), f PC`(M ,R) andsPC`(M ,C). If h is the usual Hermitian metric onp:M
3C→M thenD is compatible withh. Moreover, from~40! and ~48!, we deduce that

f̂ ~s!5Xf~s!. ~49!

Thus, it is obvious that

$ f ,ĝ%5 f̂ +ĝ2ĝ+ f̂ .

Notice that the fact that a Jacobi manifold with contact characteristic foliation to be quanti
also follows directly from Theorem V.2.

Remark VI.4: (i)If M is a Jacobi manifold with contact characteristic foliation andXH(M ) is
the Lie algebra of the Hamiltonian vector fields, the mapping

C`~M ,R!→XH~M !, f→Xf

is a Lie algebra isomorphism.
~ii ! In Ref. 44, Vaisman discussed some basic ideas on geometric quantization under

general aspect. In that paper, geometric quantization was regarded as a theory of represent
Lie algebras of vector fields on manifolds rather then of Poisson algebras of functions. Co
line bundles and covariant derivatives were used. The symplectic case was studied an
J. Math. Phys., Vol. 38, No. 12, December 1997
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classical results were recovered. Moreover, another new situation was also discussed: the
a contact manifold. In particular, Vaisman proved that a contact manifold is always quant
and, as in our scheme, a flat complex line bundle was used.

Example VI.5: [Regular Jacobi manifolds.]Let (M̄ ,L̄) be a quantizable Poisson manifold an
Ā,V̄ a vector field and an integral closed 2-form onM̄ which satisfy~8!.

Suppose thatp:M→M̄ is the principal circle bundle overM̄ corresponding to the 2-formV̄,
that is, there exists a connection formu on p:M→M̄ with curvature formV̄. Denote by (L,E)
the associated Jacobi structure onM ~see Sec. II D and Ref. 17!.

Now, assume that there exists a 1-formā on M̄ such that

Ā5 #̄~ ā !. ~50!

In such a case, we will prove that (M ,L,E) is a Jacobi manifold with contact characteris
foliation which implies thatM is quantizable.

Let x be a point ofM . We will see thatEx¹Im #x . Suppose that there exists a 1-formv at x
such that #x(v)5Ex . Then, using~10! and ~11!, we deduce that

i vL̄x
H50 and v~Āx

H!521.

On the other hand, from~10!, ~11! and ~50!, we obtain thatĀH5#(p* ā). Thus w(Āx
H)

52(p* ā)x(#x(w))52(p* ā)x(Ex)50, which is a contradiction. Two particular cases of t
above situation are the following:

~i! If ( M̄ ,L̄) is a quantizable symplectic manifold with symplectic 2-formF̄ thenF̄ represents
an integral cohomology class ofM̄ and we can takeĀ50. In this case, the correspondin
Jacobi manifoldM is a contact manifold~see Ref. 17!.

~ii ! If ( M̄ ,F̄,h̄) is a cosymplectic manifold of dimension 2m11 and the closed 2-formF̄

represents an integral cohomology class ofM̄ then, using that #̄(F̄)5L̄, we have thatM̄
is quantizable and we also can takeĀ50. In this case, the leaves of the characteris
foliation of the Jacobi manifoldM are contact manifolds of dimension 2m11 ~for more
details, see Ref. 17!.

If the vector fieldĀ does not belong to the space #(̄V1(M̄ )) then, in general, the Jacob
manifold (M ,L,E) is not quantizable as the next example proves. Let (M̄ ,F̄,h̄) be a cosymplectic
manifold with Reeb vector fieldj̄. Suppose that the closed 2-formF̄ represents an integra
cohomology class ofM̄ . As in ~ii !, M̄ is quantizable. But, sinceL z̄ L̄50, we can takeĀ5 j̄
~instead ofĀ50!. In this case, it is proved in Ref. 17 thatM with the Jacobi structure (L,E) is
a l.c.s. manifold. Therefore,M is not quantizable~see Example VI.2!.

Example VI.6: [Jacobi manifolds with nonpure characteristic foliation.]We say that a Jacob
manifold hasnonpure characteristic foliationF if there exist leaves ofF of odd and even
dimension, i.e., contact and l.c.s. leaves.

Next, we will give four examples of Jacobi manifolds with nonpure characteristic foliat
The first and second examples are not quantizable. However, the two remaining examp
quantizable.

Example VI.6.1:Let sb~2,C! be the 3-dimensional real Lie algebra of 232 traceless uppe
triangular complex matrices with real diagonal elements. A basis$e1 ,e2 ,e3% of sb~2,C! is given
by

e15S 1 0

0 21D , e25S 0 1

0 0D , e35S 0 i

0 0D .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Suppose thatsb~2,C!* is the dual space ofsb~2,C! and that$e1,e2,e3% is the dual basis of
$e1 ,e2 ,e3%. Denote by (t,q,p) the induced global coordinates onsb(2,C)* >R3 by the basis
$e1,e2,e3%. In these coordinates, the Lie–Poisson structureL on sb~2,C!* is given by

L5
]

]t
`S q

]

]q
1p

]

]pD .

This structure is related to the quantum SU~2! group of Woronowicz~see Ref. 45; see also Ref
46, 47!. The Poisson manifold~sb~2,C!* ,L! is quantizable~see Example VI.1!.

Now, we consider onsb~2,C!* the Jacobi structure (L,E), whereE is the vector field

E5
]

]t
.

The leaves of the characteristic foliation of (sb(2,C)* ,L,E) are the following submanifolds:

~i! 2-dimensional symplectic leaves: the family of open half planes with boundary the
l :q50, p50.

~ii ! 1-dimensional contact leaves: the linel .

Hence, all the leaves are quantizable.
On the other hand, in the open subsetU5sb(2,C)* 2 l we have

E5#~a!,

wherea is the 1-form onU defined by

a5
21

~q21p2!
~qdq1pdp!.

ThusU with the induced Jacobi structure is not quantizable~see Example VI.2!. Therefore, using
Theorem V.2 and Corollary V.4, we conclude that the Jacobi manifold (sb(2,C)* ,L,E) is not
quantizable.

Example VI.6.2:Let su~2,C! be the Lie algebra of the special unitary group SU~2!,

su~2,C!5$APgl~2,C!/Āt52A, trace A50%.

If s1 , s2 ands3 are the Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D ,

andej52 is j , j 51,2,3 then$e1 ,e2 ,e3% is a basis ofsu~2,C!. Denote by$e1,e2,e3% the dual basis
of the dual spacesu~2,C!* and by (x,y,z) the induced global coordinates onsu(2,C)* >R3.

On the product manifoldsu~2,C!*3R, we consider the Jacobi structure (L,E) given by

L5z
]

]x
`

]

]y
1x

]

]y
`

]

]z
1y

]

]z
`

]

]x
1t

]

]t
`S x

]

]x
1y

]

]y
1z

]

]zD ,
~51!

E5t
]

]t
,

wheret is the usual coordinate onR.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Notice that (L,E) induces a Poisson structure on the submanifoldsu~2,C!*3$0%>su~2,C!* .
This structure is just the usual Lie–Poisson structure onsu~2,C!* .

The leaves of the characteristic foliation of the Jacobi manifold (su(2,C)* 3R,L,E) are the
following submanifolds:

~i! 4-dimensional g.c.s. leaves: the open subsets
U15~su~2,C!* 2$~0,0,0!%!3R1, U25~su~2,C!* 2$~0,0,0!%!3R2,

R1 ~respectively,R2! being the space of positive~respectively, negative! real numbers.
~ii ! 2-dimensional symplectic leaves:S2(r )3$0%, with r .0 and S2(r ) the 2-dimensional

sphere of radiusr in su(2,C)* >R3.
~iii ! 1-dimensional contact leaves:$(0,0,0)%3R1 and$(0,0,0)%3R2.
~iv! 0-dimensional symplectic leaves:$~0,0,0!%3$0%.

The leaves of dimension 4 are not quantizable~see Example VI.2!. Moreover, from~51!, we
deduce that the induced symplectic form on the leafS2(r )3$0% is integer if and only if 4pr 3 is
an integer number. Thus the leafS2(r )3$0% is quantizable if and only if 4pr 3 is an integer
number~see Example VI.1!.

Finally, in the open subsetU5(su(2,C)* 2$(0,0,0)%)3R we have that

E5#S 2
1

~x21y21z2!
~x dx1y dy1z dz! D .

Therefore, proceeding as in Example VI.6.1, we conclude that the Jacobi manifold (su(2,C)*
3R,L,E) is not quantizable.

Example VI.6.3:On R2m11 we consider the Jacobi structure (L,E) defined by

L5(
i 51

m S ]

]qi 1~pit !
]

]t D`
]

]pi
,

~52!

E5t
]

]t
,

(t,q1,...,qm,p1 ,...,pm) being the usual coordinates onR2m11.
The leaves of the characteristic foliation of the Jacobi manifold (R2m11,L,E) are the follow-

ing submanifolds:

~i! 2m11-dimensional contact leaves: the open subsets
U15R13R2m, U25R23R2m.

Notice that the diffeomorphisms
F1 :R2m11→U1 , ~ t,q1,...,qm,p1 ,...,pm!°~et,q1,...,qm,p1 ,...,pm!

F2 :R2m11→U2 , ~ t,q1,...,qm,p1 ,...,pm!°~2et,q1,...,qm,p1 ,...,pm!

are contact transformations, that is,F1* (h1)5h andF2* (h2)5h, whereh, h1 andh2 are
the contact 1-forms onR2m11, U1 andU2 , respectively.

~ii ! 2m-dimensional symplectic leaves:$0%3R2m>R2m. We remark that the induced symple
tic structure on$0%3R2m is just the usual symplectic structure onR2m.

From the above results, we deduce that the Jacobi structure (L, E) on R2m11 can be consid-
ered as an adequate combination of the usual contact structure ofR2m11 and of the usual sym-
plectic structure ofR2m. It is clear that all the leaves are quantizable.

Now, we denote bys the LJ-cohomology operator onR2m11 and byA the vector field given
by
J. Math. Phys., Vol. 38, No. 12, December 1997
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A52(
i 51

m

pi

]

]pi
.

A direct computation, using~52!, proves thats(A,1)50. Therefore, from Corollary V.4, we
conclude that the Jacobi manifold (R2m11,L,E) is quantizable.

Example VI.6.4:Let M be a differentiable manifold andE a vector field onM . We consider
on M the Jacobi structure (L50,E) ~see Sec. II B!. The leaves of the characteristic foliation a
the maximal integral curves ofE. Thus if Ex50 the leafF x over x is the 0-dimensional sym
plectic manifoldF x5$x% and, if ExÞ0 thenF x is a 1-dimensional contact manifold. Moreove
in this case,s~0,1!5~0,0! ~see~18!!. Therefore, using Theorem V.2, we have that (M ,L,E) is a
quantizable Jacobi manifold.

Remark VI.7:There exist examples of quantizable Poisson manifolds with nonquantiz
symplectic leaves. This is the case for the Lie–Poisson structure of a coadjoint Lie algebr~see
Ref. 3,27; see also Ref. 48 for a discussion about the relations between the geometric quan
of a Poisson manifold and of its symplectic leaves!. Now, in this direction and in our context, a
interesting problem is to obtain examples of quantizable Jacobi manifolds with nonpure c
teristic foliation and with nonquantizable symplectic leaves.

VII. QUANTIZATION

The space of sectionsG(K) is usually too big for quantization purposes. So, a polarization
to be introduced in order to reduceG(K) ~see, for instance, Refs. 5 and 6!. In this section, we will
discuss the notion of polarization in the context of Jacobi manifolds and we will see that ifM is
a quantizable Jacobi manifold andP is a polarization onM then, usingP , we can construct a
quantum Hilbert space.

Let (M ,L,E) be a Jacobi manifold and$,% the associated Jacobi bracket. If we also denote
$,% the natural extension to the space (V1(M )3C`(M ,R)) ^ C>(V1(M ) ^ C)3C`(M ,C) of the
bracket onV1(M )3C`(M ,R) given by~12!, we will define apolarizationto be a subspaceP of
V1(M ) ^ C such thatP 3$0% is a subalgebra of ((V1(M )3C`(M ,R)) ^ C,$,%) and

L~a,b!50,

for all a,bPP .
We remark that if a,bPV1(M ) ^ C and L~a,b!50 then $(a,0),(b,0)%P(V1(M ) ^ C)

3$0%. Usually, one takes a maximal subspaceP . But we prefer not to do this here.
Notice that if f PC`(M ,R) andaPV1(M ) ^ C then$(d f , f ),(a,0)%P(V1(M ) ^ C)3$0% ~see

~12!!. Thus, we can consider the subalgebra of (C`(M ,R),$,%) given by

P~P !5$ f PC`~M ,R!/$~d f , f !,~a,0!%PP 3$0%, for all aPP %. ~53!

P(P ) is called the subalgebra of thestraightforwardly quantizable observablesof M . A direct
computation, using~12!, proves that the above definitions extend those given by Vaisman3 for
Poisson manifolds.

On the other hand, letD be the complex line bundle of complex half-densities of a differ
tiable manifold M , which is defined by transition functions that are the square roots of
absolute values of the Jacobians of the coordinate transformationsx̃ i5 x̃ i(xj ), i.e., u]xj /] x̃ i u1/2.
The cross-sections% of D are calledhalf-densitiesof M and the Lie derivativeL of such objects
can be defined as for tensors.44,49

Let (M ,L,E) be a Jacobi manifold which is quantizable. We considerp:K→M the quanti-
zation complex line bundle endowed with a Hermitian metrich andD a quantization Hermitian
J. Math. Phys., Vol. 38, No. 12, December 1997
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contravariant derivative. We remark that ifM is a quantizable Jacobi manifold then we can cho
always a Hermitian metrich on p:K→M and a quantization Hermitian contravariant derivati
~see the proof of Theorem V.2!.

Using ~24! and the properties ofL, we can extend the contravariant derivativeD to G(K
^ D) by

D ~a,g!~s^ % !5D ~a,g!s^ %1s^ L~#,E!~a,g!%, ~54!

for all (a,g)P(V1(M )3C`(M ,R)) ^ C. Thus for everyf PC`(M ,R) we can definef̂ :G(K
^ D)→G(K ^ D) by

f̂ ~s^ % !5D ~d f, f !~s^ % !12p i f ~s^ % !. ~55!

Notice that if we add~54! to ~55! we have

f̂ ~s^ % !5 f̂ ~s! ^ %1s^ LXf
%, ~56!

for all f PC`(M ,R) ands^ %PG(K ^ D).
Using ~7!, ~56! and the properties of the Lie derivative we obtain that

$ f ,ĝ%~s^ % !5~ f̂ +ĝ2ĝ+ f̂ !~s^ % !.

On the other hand, from~26!, ~40!, ~41!, ~54!, ~56! and Theorem II.2 we deduce that

D ~a,g! f̂ ~s^ % !5 f̂ D ~a,g!~s^ % !2D $~d f, f !,~a,g!%~s^ % !12p igE~ f !~s^ % !, ~57!

for all (a,g)P(V1(M )3C`(M ,R)) ^ C, f PC`(M ,R) ands^ %PG(K ^ D). Set

H05$vPG~K ^ D !/D ~a,0!v50, for all aPP %. ~58!

If f PP(P ) andvPH0 then, using~57!, we obtain thatf̂ (v)PH0 . Thus f̂ uH0
:H0→H0 is well

defined. Hence we can useH0 as aquantization spacefor P(P ).
A difficulty of this scheme is that it is unclear thatH0Þ0 ~a Bohr–Sommerfeld condition!. In

what follows, we will assume that this condition holds. Now, ifM is compact thenH0 can be
made a pre-Hilbert space with the scalar product

^s1^ %1 ,s2^ %2&5E
M

h~s1 ,s2!%1%̄2 , ~59!

where the bar denotes complex conjugation.
Moreover, using~25!, ~40!, ~56! and ~59! and the density version of Stokes’ theorem44,49 we

obtain that the operationsf̂ defined in~55! are anti-Hermitian, i.e.,

^ f̂ ~s1^ %1!,s2^ %2&1^s1^ %1 , f̂ ~s2^ %2!&5E
M

LXf
~h~s1 ,s2!%1%̄2!50.

If we get the operatorsi f̂ then we obtain Hermitian operators. Finally, if we want a Hilbert spa
we will just take the completation ofH0 .

Remark VII.1:If ( M ,L) is a Poisson manifold a direct computation, using Definition V
proves that the mapping

D̃:V1~M !→EndC~G~K !!, aPV1~M !°D̃a5D ~a,0!
J. Math. Phys., Vol. 38, No. 12, December 1997
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is a quantization Hermitian contravariant derivative in the sense of Vaisman3 ~notice that in this
case, from the condition~C1!, we have thatD (0,1)s50, for all sPG(K)). Furthermore,

H05$vPG~T^ D !/D̀av50, for all aPP %.

Thus, the above construction of the pre-Hilbert space (H0 ,^,&) for compact quantizable Jacob
manifolds extends the one given by Vaisman for compact quantizable Poisson manifolds~see Ref.
3!.

If the Jacobi manifoldM is not compact, we will postulate a special regularity condition.
P 0 be the subspace ofV1(M ) defined byP 05P ùV1(M ). The complexification ofP 0 is P ùP̄

andP 03$0% is a subalgebra of (V1(M )3C`(M ,R),$,%). We also have that

L~a,b!50,

for all a,bPP 0 . Moreover, we will assume that #(P 0) defines a regular foliationF of M which
fibersM over a Hausdorff manifoldN5M /F . Notice that, in such a case, iff PP(P ) then, from
~53! and Theorem II.2, we deduce that the Hamiltonian vector fieldXf projects onto a vector field
X̃f on N and we have

f̂ ~s^ t* %̃ !5 f̂ ~s! ^ t* %̃1s^ LXf
~t* %̃ !5 f̂ ~s! ^ t* %̃1s^ t* ~L X̄ f

%̃ !, ~60!

for all sPG(K) and %̃ a complex half-density ofN, wheret:M→N5M /F is the canonical
projection. Thus, for the definition ofH0 , instead of using half-densities ofM we will use
F -transversal half-densities% obtained by lifting half-densities ofN to M . It is clear that ifa
PP 0 , we have thatL#(a)(t* %̃)50. Using this fact,~54! and ~58!, we can prove that ifsi

^ t* %̃ iPH0 , i 51,2, then

h~s1 ,s2!~t* %̃1!~t* %̄̃2!

projects to a complex 1-density ofN. Generally, one may expect to have a nonzero subspaceH 0
c

of H0 , such that for allvPH 0
c , its support projects onto a compact subset ofN. Then~59! with

M replaced byN yields a pre-Hilbert structure onH 0
c . Furthermore, iff PP(P ) and f̂ is the

corresponding operator~see~60!! then, proceeding as in the case whenM is compact, we conclude
that

^ f̂ ~s1^ t* %̃1!,s2^ t* %̃2&1^s1^ t* %̃1 , f̂ ~s2^ t* %̃2!&5E
N

LXf
%̃50,

where%̃ is the complex 1-density ofN on which projectsh(s1 ,s2)(t* %̃1)(t* %̃2).
Remark VII.2: The above construction extends the one given by Vaisman for Poi

manifolds.3

Next, we will study the quantization of some examples of Jacobi manifolds.
Example VII.3:Let u be the usual contact structure onM5R2m11>R3Cm given by

u5dt2(
j

pj dqj5dt1
i

4 (
j

~zj2 z̄j !~dzj1dz̄j !,

where (t,q1,...,qm,p1 ,...,pm) are the usual coordinates onR2m11, zj5qj1 ip j and z̄j5qj

2 ip j . Then the associated Jacobi structure (L,E) is defined by

L5(
j

S ]

]qj 1pj

]

]t D`
]

]pj
522i(

j

]

]zj
L

]

] z̄j
1

1

2 (
j

~zj2 z̄j !
]

]t
`S ]

]zj
2

]

] z̄j
D ,
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E5
]

]t
.

We have proved in Example VI.3 that (M ,L,E) is a quantizable Jacobi manifold and that t
trivial complex line bundlep:K5M3C→M is the quantum bundle.

A convenient complex polarization isP 15span$dzj% j 51
m , and then we see thatP(P 1) con-

sists of the functionsf PC`(M ,R) such that

~#~dzj !!~ f !5hj
f+pr2 ,

for j P$1,...,m%, wherepr2 :M5R3Cm→Cm is the canonical projection onto the second fac
andhj

f :Cm→C is a complex analytic function onCm. Notice thatP 1ùP̄ 15$0%.
On the other hand, the bundleD of complex half-densities overM is also trivial and it has a

basis that can be written formally as

g5ubu1/2,

where

b5dt`dq1`•••`dqm`dp1`•••`dpm5S i

2D m

dt`dz1`•••`dzm`dz̄1`•••Ldz̄m .

Then, if vPG(K ^ D), v can be seen asv51^ wg, wherew is a complex-valued function onM .

Now, if we denote byD the Hermitian contravariant derivative given by~48!, D can be extended
to G(K ^ D) as in ~54!. Then, we obtain

D ~dzj ,0!~1^ wg!51^ L#~dzj !
~wg!.

Therefore, using the fact thatLXg5( 1
2div X)g ~see, for instance, Ref. 44!, it follows that

D ~dzj ,0!~1^ wg!50

if and only if

~#~dzj !!~w!522i
]w

] z̄j
2

1

2
~zj2 z̄j !

]w

]t
50.

Hence the quantization spaceH0 can be identified with the space

H05H wPC`~M ,C!Y 2i
]w

] z̄j
1

1

2
~zj2 z̄j !

]w

]t
50J .

On the other hand, iff PP(P 1) andwPH0 then, using~49! and ~56!, we deduce that

f̂ ~w!5Xf~w!1 1
2w~div Xf !.

Moreover, the scalar product of two functionsw1 ,w2PH0 with compact support is

^w1 ,w2&5E
M

w1w̄2b.

Now, we consider the real polarizationP 25span$dqj% j 51
m .
J. Math. Phys., Vol. 38, No. 12, December 1997
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In this case, aC` real-valued functionf belongs to the subalgebraP(P 2) if and only if f is
an affine function in the coordinatespj of the form

f 5(
j 51

m

f j~q1,...,qm!pj1h~ t,q1,...,qm!,

with f jPC`(Rm,R) andhPC`(Rm11,R).
We have that (P 2)05P 2ùV1(M )5P 2 and that #(P 2)0 defines a regular foliationF of M

generated by the vector fields$]/]pj% j 51
m .

Moreover, the space of leavesN5M /F can be identified withRm11 and under this identifi-
cation the canonical projectiont:M→M /F >Rm11 is the mapping given by

t~ t,q1,q2,...,qm,p1 ,...,pm!5~ t,q1,...,qm!.

If we denote byD̃ the bundle of half-densities overN and byg̃ the basis of this bundle, then w
obtain

D ~dqj ,0!~1^ wt* ~ g̃ !!5~#~dqj !!~w!~1^ t* ~ g̃ !!, ~61!

whereD is the extension of the contravariant derivative defined in~54! to the sections of the form
1^ wt* (g̃), w being a complex-valued function onM .

Using ~61! we conclude that 1̂ wt* (g̃)PH0 if and only if ]w/]pj50. HenceH 0
c can be

identified with the space ofC` complex-valued functions onRm11 with compact support. Fur-
thermore, the scalar product of two functionsw1 ,w2PH 0

c is given by

^w1 ,w2&5E
Rm11

w1w̄2 dt dq1•••dqm.

Example VII.4:Let (L,E) be the quantizable Jacobi structure onM5R2m11 given by ~52! ~see
Example VI.6.3!. Using the identificationR2m11>R3Cm we have

L522i(
j

]

]zj
`

]

] z̄j
1

t

2 (
j

~zj2 z̄j !
]

]t
`S ]

]zj
2

]

] z̄j
D ,

where (t,q1,...,qm,p1 ,...,pm) are the usual coordinates onR2m11, zj5qj1 ip j and z̄j5qj

2 ip j .
Clearly, the quantum bundle is the trivial complex line bundlep:K5M3C→M and the

quantization contravariant derivativeD on p:M3C→M is defined by~see~43!!

D ~a,g!s5~#~a!1gE!~s!12p ia~A!,

whereA is the vector field

A52(
j

pj

]

]pj
52

1

2 (
j

~zj2 z̄j !S ]

]zj
2

]

] z̄j
D .

Now, we consider the polarizationP 5span$dzj% j 51
m . Then, P(P ) consists of the functionsf

PC`(M ,R) such that

~#~dzj !!~ f !5hj
f+pr2 ,

for j P$1,...,m%, wherepr2 :M5R3Cm→Cm is the canonical projection onto the second fac
andhj

f :Cm→C is a complex analytic function onCm.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Proceeding as in the above example, the sections of the complex line bundleK ^ D can be
seen asv51^ wg, wherew is a complex-valued function onM andg is a basis of the bundle o
half-densitiesD over M .

Since

D ~dzj ,0!~1^ wg!5~~#~dzj !!~w!2w~zj2 z̄j !~ ip1 1
4!!~1^ g!,

the spaceH0 can be identified with

H05H wPC`~M ,C!Y 2i
]w

] z̄j
1~zj2 z̄j !S wS ip1

1

4D1
t

2

]w

]t D50J .

Then, if f PP(P ) andwPH0 , the quantum operatorf̂ is defined by

f̂ ~w!5w~2p iA~ f !12p i f 1 1
2div Xf !1Xf~w!

and the scalar product of two functionsw1 ,w2PH0 with compact support is

^w1 ,w2&5E
M

w1w̄2 dt dq1•••dqm dp1•••dpm .

As in the above example, we also can consider the real polarizationP 5span$dqj% j 51
m and obtain

similar results.
Remark VII.5: (i)A complex foliationF on a (2m11)-dimensional contact manifold (M ,u)

is said to beSasakianif F ùF̄ 5$0%, ^F ,u&50 and dimC F 5m. There is a close relation
between Sasakian foliations and a particular class of contact manifolds, the Sasakian ma
~for the definition and properties of Sasakian manifolds we refer to Ref. 34!. This relation justifies
the name of Sasakian foliation. In fact, it can be proved50 that a Sasakian manifold admits
Sasakian foliation. The Sasakian foliations play the same role in contact geometry that the¨hler
polarizations in symplectic geometry. We remark that in Example VII.3,F 15#(P 1) is a Sasakian
foliation.

~ii ! A real foliation F on a (2m11)-dimensional contact manifold (M ,u) is said to be
Legendreif ^F ,u&50 and dimR F 5m or equivalently, if the leaves ofF are Legendre submani
folds of M ~see Refs. 31,34,51!. The Legendre foliations play the same role in contact geom
that the Lagrangian foliations in symplectic geometry. We remark that in Example VII.3,F 2

5#(P 2) is a Legendre foliation.
~iii ! In a next paper50 we will discuss the geometric quantization of a contact manifold

which there exists a Sasakian or Legendre foliation.

VIII. PREQUANTIZATION REPRESENTATIONS

In Ref. 3~see also Ref. 27!, Vaisman have extended to Jacobi manifolds Urwin’s definition
~1-differentiable! prequantization representations for complex line bundles over symplectic m
folds ~see Ref. 23!. Vaisman has discussed the existence of such representations using co
derivatives.

In this section, we will characterize the existence of~1-differentiable! prequantization repre
sentations for Jacobi manifolds in terms of contravariant derivatives and of the real Jacobi–
class. We recall the definition of prequantization representation~see Refs. 3,27!.

Let (M ,L,E) be a Jacobi manifold with Jacobi bracket$,% and p:K→M a complex line
bundle overM . A prequantization representationof (C`(M ,R),$,%) is a Lie algebra homomor
J. Math. Phys., Vol. 38, No. 12, December 1997
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phismQ of the algebra (C`(M ,R),$,%) into the algebra of the first order differential operators
G(K) with the usual commutator as product such that for allf PC`(M ,R) one has that thesymbol
of Q( f ) is Xf .

Remember that an operatorQ( f ) as requested is one which acts onsPG(K) as follows: if e
is a local basis of cross sections ofK then s5ge for a complex valued funtiong and Q( f )(s)
5(X(g)1wg)e, whereX is a vector field andw is a function. The vector fieldX does not change
if e is changed toẽ5ue hence,X is global onM , and it is called the symbol ofQ. If p:K→M
is a complex line bundle over a Jacobi manifold (M ,L,E), h is a Hermitian metric onp:K→M
andD is a Hermitian contravariant derivative, it follows that the symbol ofD (d f, f ) is exactlyXf

~see~24!!. Thus, if Q is a prequantization representation,Q must be of the form

Q~ f !~s!5D j 1fs12p im~ f !s5D ~d f, f !s12p im~ f !s, ~62!

wherem( f ) is given by aR-linear mappingm:C`(M ,R)→C`(M ,C). SinceQ is a Lie algebra
homomorphism then

Q~$ f ,g%!5@Qf ,Qg#

@,# being the usual commutator on the first order differential operators onG(K).
This commutation condition, using~15!, ~24!, ~26!, ~62! and Theorem II.2, becomes

i

2p
CD~~d f , f !,~dg,g!!~s!5Xf~m~g!!s2Xg~m~ f !!s2m~$ f ,g%!s5~]Hm!~ f ,g!s, ~63!

where CD is the curvature ofD and ]H is the H–Chevalley–Eilenberg cohomology operat
Since the right-hand of~63! is real~D is a Hermitian contravariant derivative!, the imaginary part
of m is a H–Chevalley–Eilenberg 1-cocycle. Thus, ifm5m11 im2 and j 2 :V 2(M ) % V 1(M )
→CHCE

2 (M ) is the monomorphism given by~16!, we have that~see~20! and ~27!!

]Hm15 j 2S i

2p
PCD

,
i

2p
YCDD , ]Hm250. ~64!

Therefore, modulo 1-cocycles in the H–Chevalley–Eilenberg cohomology, it suffices to fin
real solutionm5m1 .

The prequantization representationQ is said to be 1-differentiable if the mapping
m1 :C`(M ,R)→C`(M ,R) is a 1-differentiable H–Chevalley–Eilenberg 1-cochain, that is, th
exists a vector fieldA on M and a functionw such that

m1~ f !5 j 2~A,w!~ f !5A~ f !1w f , ~65!

for all f PC`(M ,R).
Notice that, from~31!, we deduce that this definition only depends of the prequantiza

representationQ, i.e., it does not depend of the Hermitian contravariant derivativeD.
Denote by j * :HLJ

2 (M )→HHCE
2 (M ) the induced homomorphism in cohomology b

j 2 :V 2(M ) % V 1(M )→CHCE
2 (M ). Then, in the following theorem, we characterize the existe

of ~1-differentiable! prequantization representations.
Theorem VIII.1: Let (M ,L,E) be a Jacobi manifold. A complex line bundlep:K→M has

prequantization representations if and only if

j ~ jc~K,L,E!!50,
*

J. Math. Phys., Vol. 38, No. 12, December 1997
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where j* is the homomorphism defined above and jc(K,L,E) is the real Jacobi–Chern class.
Moreover, K admits 1-differentiable prequantization representations if and only if jc(K,L,E)
50.

Proof: The first part of this theorem follows from~64! and Definition IV.4. Now, if we have
a 1-differentiable prequantization representation then, using~17!, ~64! and ~65!, we obtain that
there existAPX(M ) andwPC`(M ,R) such that

S i

2p
PCD

,
i

2p
YCDD5s~A,w!, ~66!

where D is a Hermitian contravariant derivative ands is the LJ-cohomology operator. Henc
jc(K,L,E)50.

Conversely, ifjc(K,L,E)50 andD is a Hermitian contravariant derivative, then there exi
(A,w)PX(M )3C`(M ,R) satisfying ~66!. Define m5m1 :C`(M ,R)→C`(M ,R) by m
5 j 2(A,w). From ~66!, we deduce that

Q~ f !~s!5D ~d f, f !s12p im~ f !s

is a 1-differentiable prequantization representation.
Remark VIII.2:Let (M ,L) be a Poisson manifold. In this case, the H–Chevalley–Eilenb

cohomology ofM is just the Chevalley–Eilenberg cohomology and we have a homomorp
l * :HLP* (M )→HCE* (M ) between the LP-cohomology and the Chevalley–Eilenberg cohomol
In fact, l * 5 j * + i * where i * :HLP* (M )→HLJ* (M ) is the canonical homomorphism between t
LP-cohomology and the LJ-cohomology~see Remark III.3!. Thus, using Remark IV.6 and Theo
rem VIII.1, we deduce that a complex line bundlep:K→M has prequantization representations
and only if l * (pc(K,L))50, pc(K,L) being the Poisson–Chern class ofp:K→M . Moreover,K
admits 1-differentiable prequantization representations if and only ifi * (pc(K,L))5 jc(K,L,0)
50, that is~see~18!!, if pc(K,L)5@ f L# with f a Casimir function, i.e., #(d f)50. This result is
just the one obtained by Vaisman in Ref. 3~see also Ref. 27!.
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