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In this letter, we investigate the optical properties of packed monodisperse silica submicron spheres
by means of optical transmission measurements. The results are compatible with a three dimensional
face centered cubic order in these solid structures. The lattice parameter of these structures, and
therefore their optical properties, can be easily tuned through the sphefeeatizeen 200 and 700

nm) thus covering the whole visible and near infrared spectrum.1997 American Institute of
Physics[S0003-695097)00935-3

Photonic band gap materials have gathered great impoparameter of the samples can be varipdtween 200 and
tance in recent years3 Some photoelectronic devickgs 700 nm through the sphere diameter.
lasers, can dramatically increase their efficiency because the Scanning electron microscog$EM) and atomic force
coupling between electronic and light states can be advantaricroscopy (AFM) in tapping mode is used to study the
geously modified. A great effort has already been put in thesurface. Thus, surface quality and sphere size are character-
oretical calculations.It is very desirable to obtain three di- ized. In Fig. 1, a SEM image from the top surface of a
mensional3D) photonic crystals for the visible range of the sample made with spheres of 415 nm is shown. The triangu-
electromagnetic spectrum. So far experiments on 3D strudar arrangement observed can correspond, in principle, to ei-
tures are mostly restricted to the millimeter and submillime-ther a(111) surface of a fcc system or @01) surface of a
ter regions where photonic crystals with full gap have beerheéxagonal close packétcp one. Recently, Van Blaaderen
obtained in different rangésin two dimensional structures, €t al. have grown fcc sphere packings through a template
a wider range has been covered, inc|uding the Vigib[ery directed Crystallizatioﬁ(? The SEM and AFM images reveal
few experiments on 3D photonic band gap solid structures ihat the surface presents large ordered domé&in20 um
the visible region have been reporfethese having only a  &cross in averagéand up to hundreds gfm in some casgs
very restricted number of layers. At longer range, domains are observed with slightly different

Three-dimensional periodic dielectric structures have s@rientations due to defects such as steps, vacancies, and dis-
far been achieved through the self-ordering in suspensions d@cations as can be seen in ordinary atomic solids.
latex microparticles. These colloidal crystals show Bragg 1he ordering of the submicrometric spheres in the
diffraction effects in the optical region of the spectfiand ~ growth direction has been investigated as well. A typical
optical evidence of the 3D face centered cufic) ordering ~ SEM photograph of a cleaved edge is shown in Fig. 2. Here
has been found However, these sorts of systems are very®ne can see that vertipal ordgr hgs coherence lengths of tens
unmanageable as they are liquid suspensions. of microns. Wide sections with triangular arrangements cor-

The use of opal-like structures as photonic crystals waesponding to{111} planes can be observed. This sort of
recently proposed'? Opals are natural 3D close packed
arrangements of amorphous silica sphéfes.

In this letter, we investigate the optical properties of
packed monodisperse silica spheres. Solid samples are ob- |
tained from a colloidal suspension of microspheres. The
spheres employed have less than 5% of dispersion in diam-
eter. The growth of the crystalline phase takes place close to
equilibrium and can be described by the Edwards—Wilkinson
model!* Since the as-grown samples present a small cohe-
sion, a sintering process is performed in order to improve
their mechanical properties. In green samples, spheres are
kept in place by van der Waals forces, whereas in the sin-
tered ones the spheres are joined together by the formation of
intersphere necks. Full details of the fabrication can be found
elsewheré® As the structures are close packed, the lattice

FIG. 1. SEM image of a 8 10 um? region of the surface of a sample made
dCorresponding author. Electronic mail: cefe@icmm.csic.es from 415 nm spheres.
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FIG. 2. SEM image from a cleaved edd#11) and (111 surfaces can be FIG. 4. The Bragg reflection maximum wavelengiqX plotted against the
seen. sphere size and fit to Bragg lafdashed ling

lateral order can only be seen if the spheres are arranged jaw for normal incidencel.=2-n-d, wheren is the effec-
an fcc structure. The two surfaces which can be seen in Figive index of refraction of the Sigair composite and
2 correspond t@111) and(111) crystalline planes of an fcc  =0.816 ¢ the distance between crystalline planes in the di-
structure. rection 6=0°. Thus from the slope of the fitted curve
In order to optically characterize these structures, light(dashed line in Fig. ¥ we obtainn=1.349, which is ex-
transmission measurements were performed. In transmissiaremely close tan=1.348, the value obtained averaging the
spectra, information on every Bragg diffracting plane is con-dielectric constant=(n;)?f+(n,)?(1—f ), wheref is the
tained. As samples have an average thickness of the order fifling factor (f=0.74 for a close packed structire
1 mm, thousands of layers are crossed by the transmitted In order to estimate peak broadening effects, we have
radiation. The sample surface tested was 30’mm compared our experimental results with the analytical ex-
In Fig. 3, the spectra recorded for samples made ofression derived by Tarhan and Watsérin their model,
spheres with different diametéfrom 220 to 535 nmare (Aw/w.)=0.054 for the[111] stop band of an fcc photonic
shown. These spectra were measured at normal incidenceystal’® The experimental Aw/w.) is larger in all cases
(6=0°). Aclear attenuation band in the optical transmission(0.08 in average which can in principle be due to the exis-
can be observed in each case due to the Bragg reflectiaence of domains.
caused by th¢111) planes. As the sphere size decreases, the Transmission measurements of visible and near infrared
Bragg reflection moves linearly towards shorter wavelengthgNIR) radiation were also performed at different angkes
(see Fig. 3 This shows the accurate tuning of the optical
properties resulting from the sphere size control.

In Fig. 4, the Bragg reflection maximum {) has been ' o '
plotted against the sphere siz®). We can fit\ ; using Bragg (111)
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FIG. 5. Transmission spectra for different incidence anghesith respect
FIG. 3. Optical transmission a#=0° for opal-like structures made of to the surface normal in a sample made of 440 nm diameter spheres. From
spheres with different diameteft) 535, (2) 480, (3) 415, (4) 350, (5) 305, bottom to top,#=0°, 10°, 15°, 20°, 25°, 30°, 35°, and 40°. The vertical bar
(6) 245, and(7) 220 nm. Spectra have been vertically shifted for the sake ofindicates one decade. Spectra have been vertically shifted for the sake of
clarity. clarity.
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1000 — —— . the optical properties, can be controlled through the size of
] the spherical particles.
(111) | These structures can be used as matrices to host high

900 o refractive index materials in order to obtain a full photonic
3 800k band gap material. For a close packed fcc structure with
£ 00 i n,/n;=4, the appearance of a full band gap between fhe 8
<& and 9" photonic bands has been predicf&d.

700 1 The authors would like to thank J. L. Sacedfor en-
I 1 couragement and M. Planes and M. J. Lacruz for SEM char-

600} (220) ______ . acterization. This work was partially financed by the Spanish
_________ 5 o @ o o 0] CICyT, Project No. MAT94-0727, the EU under the Human
500 T . PR . Capital and Mobility Program, Contract No. CHRX-CT94-
0 10 20 30 40 0464, and the FundacgioRama Areces.

0 (degree)

FIG. 6. A\, of the [111] and [220] bands plotted against (circles and
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