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Let g,h: V XV — C be two non-degenerate symmetric bilinear forms on a finite-dimensional
complex vector space V. Let G (resp. H) be the Lie group of isometries of g (resp. h). If
the endomorphism L: V' — V associated to g, h is diagonalizable, then the dimension of the
intersection group G N H is computed in terms of the dimensions of the eigenspaces of L.
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1. The group of isometries

This paper is an extended version of a preliminary statement of Theorem 2.1, which
was presented [1] without proof. Here, we also include a counterexample showing
that the hypothesis in the theorem cannot be improved.

Let V, W be two complex vector spaces of finite dimension and let £(V, W) be
the space of C-linear mappings from V into W. We write gl(V) = L(V, V) and we
denote by GL(V) the linear group of V, i.e., the group of invertible elements in

gl(V).

DEFINITION 1.1 An element A € GL(V) is said to be an isometry of a symmetric
bilinear form g: V x V. — C if the following equation holds:

9(A(z), A(y)) = g(x,y), Va,yeV. (1)

LEMMA 1.2 Let g: V xV — C be a symmetric bilinear form on an n-dimensional
complex vector space V and let V', V" be vector subspaces such that,

(1) gly: is non-degenerate,
(2) g(v,v") =0, Vv e VYo" e V",
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() V=V gV
Then, every isometry A € GL(V') of g can be written as

A O
A= <BC>, Be£(V,V"), Cegl(V"),

and A" is an isometry of gly.

/
Proof We set A = % g), with A" € L(V', V'), Be L(V',V"), C € gl(V"),

De (V" V). If v1,...,v, is a basis for V such that vy,...,v,, n' =dim V', is
a basis for V' and vy/11,...,v, is a basis for V", then A is an isometry if and only
if the following equations hold:

g (A(vy), A(vj)) = g(vi,v5), 4,5=1,...,n. (2)

Ifi=1,...,n, then A(v;) = A'(v;) + B(v;), with A'(v;) € V', B(v;) € V", and
according to the item (2), for 4, j = 1,...,n/ from the equation (2) we obtain

9 (Avi), A(vg)) = g (A'(vi), A'(v5)) + g (A'(vi), B(vy))
+9 (B(vi), A'(v5)) + g (B(vi), B(vy))
=g (A/(Uz) A/(UJ»
= g(vi, vj),

thus proving that A’ = Ay, is an isometry for g|y.
Similarly, if ¢ = n’ + 1,...,n, then A(v;) = D(v;) + C(v;) with D(v;) € V/,
C(v;) € V". Again from the item (2), we obtain

0=g(v,vi) = g (A(v), A(vi)) = g (A(v), D(vi) + C(vi)) = g (A(v), D(vi)),

for every v € V. As A is an isomorphism this in particular implies g(v’, D(v;)) = 0
Vo' € V', and we can conclude D = 0 by applying the item (1). [ |

Consequently, the structure of the set of isometries of a degenerate symmetric
bilinear form ¢ can be recovered from the non-degenerate part of g. Because of
this, below we confine ourselves to consider only non-degenerate symmetric bilinear
forms. In this case, the equation (1) implies det A = +1, and the set of all isometries
of g is a subgroup of GL(V'), which is denoted by G. By choosing an orthonormal
basis in V, every element of GG is represented by an orthogonal matrix and an
isomorphism holds, G = O(n, C). The Lie algebra of O(n, C) is denoted by o(n,C).
We also remark on the fact that G is a closed subgroup in GL(V') and hence, G is
a Lie subgroup of the linear group of V', the Lie algebra of which is denoted by g.

2. The dimension of the intersection group

THEOREM 2.1 Let V' be an n-dimensional complex vector space and let g, h be two
non-degenerate symmetric bilinear forms on' V. Let G, H be the groups of isometries
of g, h, respectively and let L: V — V' be the endomorphism associated to g, h, i.e.,
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g (x,L(y)) = h(z,y), Yx,y € V. If L is diagonalizable, then

dim(G N H) = Z <”;)

i=1
where m;, i = 1,...,r, are the dimensions of the eigenspaces of L.

Proof Let ay, i = 1,...,r, be the distinct eigenvalues of L and let E(a;) be the
eigenspace attached to «;. As L is diagonalizable, we have V = @&]_, E(«a;). We
claim that F(c;) and E(«;) are orthogonal with respect to both metrics for i # j.
In fact, if v; (resp. v;) is a non-vanishing eigenvector for a; (resp. o), then taking

account of the fact that L is symmetric, we obtain
a;g(vi,v;) = g (vi, L(vj)) = g (L(vi), v;) = aig(vi, vj).

Hence, (o — ;) g (vi,vj) = 0. As o; # «, we conclude g (v;,v;) = 0. In addi-
tion, from the definition of L, we have h(v;,vj) = g (v, L(vj)) = a;jg(vi,vj) = 0.
Therefore E(c;) and E(c;) are also h-orthogonal.

As a consequence of the g-orthogonality of the eigensubspaces we deduce that
every E(q;) is non-singular with respect to both bilinear forms g and h.

By choosing a g-orthonormal basis for every subspace E(a;) and collecting all
theses bases, we obtain a basis (vi,...,v,) of eigenvectors for L which is also
g-orthonormal. Hence the matrices of g and h in this basis are as follows:

M, = I, = n x n identity matrix,

M}, = diagonal (al,(.r.”.l,al, e ,ar,(.’flf,ar> , M1+ ...+m. =n.

Let g (resp. ) be the Lie algebra of G (resp. H). The map exp: g — G induces
a diffeomorphism from a neighborhood of the origin in g onto a neighborhood of
the unit element in G ([4, Theorem 3.31]). Hence dim(G N H) = dim(g N ), and
we are led to determine the Lie algebra of the intersection subgroup. Moreover, as
g={Aecgl(V):g(z,Aly)) + g (A(z),y) =0,Vz,y € V}, and similarly for b, we
conclude that g N h can be identified to the subspace of n x n skew-symmetric
matrices A = (a;j) such that,

A'M;, + My A = 0. (3)

We decompose A in blocks as follows:

A .. Ay

Arl .. Arr
each A;; being a m; x m; matrix for 4,j = 1,...,r, and the equation (3) trans-
forms into the following system: o; A;; + ajAE»i =0,4,7=1,...,r. As A is skew-
symmetric, we have A;; + A?i = 0. Hence this system is equivalent to saying

(i —aj)Aj;=0for 1 <i<j<r.
Accordingly, A;; = 0, 7 # j, and the submatrices Ay1,..., A, are arbitrary. As
dimo(m, C) = (), we can conclude. [ |

COROLLARY 2.2 Let S?V* be the space of symmetric bilinear forms on V and let
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U C S?V* be the subset of non-degenerate forms. The pairs (g,h) € U xU for
which the conclusion of the theorem above holds, is a dense subset in U X U.

Proof The map 0: U x U —gl(V'), 0(g,h) = L, is analytic and the result follows
taking [2, Chapter 7, Theorem 1] into account. [ |

Remark 1 According to the proof of the previous theorem, the matrices of the form
exp(A11) - - - exp(Ayr), with A;; € o(m;, C) for 1 <i <r, and

- Oﬂuﬂi O/M,mv: Oﬂi,n—HiH
Aii = Omiuu'i AZZ Omi,n—ﬂz‘+1 )
On—#i+1,ﬂi On—#z‘+17mi On—ﬂi+1,n—ﬂi+1

where p; = mi+...+m;_1, O, denoting the null ux v matrix, span the intersection
group GN H. Hence the problem of computing the intersection group is feasible; in
fact, it reduces (up to polynomial time) to exponentiate skew-symmetric matrices
of sizes my,...,m, (see [3]).

Example 2.3 Assume dimV = n = 5, and that L has two distinct eigenvalues
a,  such that dim F(a) = 2, dim E () = 3. In this case, g N h is identified to the
matrices of the form

0 abd
A=<A101A0>7 A11=<_gg),A22= —a Oc
22 —b—c0

According to Remark 1, the intersection group is generated by exp Ay exp Ags.
Exponentiating, we obtain

( cosd sind) 0
B B —sind cosd
exp A1 exp Ao = A11 A12 A13 :
0 0|72 | A21 A22 A3
A31 A32 A33

where v = (a, b, ¢), and

M=+ (a2 + b2) cos(|v),

A12 = alv|sin(|v]) + be (cos(|v]) — 1),
A1z = blv|sin(|v]) — ac (cos(|v]) — 1),
o1 = —alv|sin(|v|) — be (cos(|v]) — 1),
A2 = b2 + (a® + %) cos([v]),

Aoz = c|v|sin(|v]) + ab (cos(|v]) — 1),
A31 = —blv|sin(|v|) + ac (cos(|v]) — 1),
A3z = —c|v|sin(|v]) — ab (cos(|v]) — 1),
Nas = a2 (17 + ) cos([o]).
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3. A counterexample

The formula for the dimension of the intersection group GNH given in the previous
theorem is no longer true if the endomorphism L is not diagonalizable.

We provide a counterexample in arbitrary dimension as follows: For the metrics
g, h with matrices given respectively by

(k
—_—
* 00...1 «
—_—— 00 a0
0...1 A 0
g 0 la...00
1 0 a0...00
Mg: (n—k v My = (n—k ’
—
0 1 00...1 «
19, 00...a0
1...0 0 S
la...00
a0...00

we obtain dim(g N H) = min(k,n — k). In fact, assuming k < n — k, a computation
shows that the n x n matrices A such that A'M,+ MyA = 0 and A*Mj, + M A =0
are

oY
1=(70)

where

k
Z = § 2By k—ip—i, 21,-..,2k €C,

(E;;) being the standard basis of the matrix vector space. Moreover, dim E(a) = 2,
where « is the only eigenvalue of L. In fact,



January 15, 2009 11:59 International Journal of Computer Mathematics Intersect’SI'CMMSE

6 Durdn Diaz et al.
(k
a00...000
la0...000
0la...000
RN 0
000...a00
000...1a0
000...01 «
_ -1 _

ML_MQ Mh_ (n—k
a00...000
la0...000
0la...000

0 SRR
000...a¢00
000...1«0
000...01 «

4. Conclusions

The dimension of the intersection group of the orthogonal complex groups corre-
sponding to two non-degenerate symmetric bilinear forms g, h is seen to depend
quadratically on the dimensions of the eigenspaces of the linear transformation L
associated to g, h, whenever L is semisimple. A computationally feasible procedure
to obtain the intersection is provided. A counterexample in arbitrary dimension to
the formula for the dimension of the intersection group in Theorem 2.1 when the
nilpotent part of L does not vanish, is also included.

Acknowledgements

R. Durdn Diaz and J. Munoz Masqué are supported by Ministerio de Educacién
y Ciencia (Spain) under grant MTM2005-00173, and L. Herndndez Encinas and
Seok-Zun Song are supported by Korean Science and Engineering Foundation (Ko-
rea) under grant F01-2007-000-10047-0.

References

[1] R. Durén Diaz, L. Herndndez Encinas, J. Mufioz Masqué, and A. Queiruga Dios, Generic intersection
of orthogonal groups, in International Conference on Computational and Mathematical Methods in
Science and Engineering, (CMMSE-2008), Murcia, Spain, 13-16 June 2008, pp. 231-235.

[2] M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic
Press, New York (1974).

[3] A. Iserles and A. Zanna, Efficient computation of the matriz exponential by generalized polar decom-
positions, SIAM J. Numer. Anal. 42, 5 (2005), pp. 2218-2256.

[4] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and Company,
London (1971).



