International Journal of Computer Mathematics Vol. 00, No. 00, Month 200x, 1–6

RESEARCH ARTICLE

Dimension of the intersection of a pair of orthogonal groups

Seok-Zun Song^a, R. Durán Díaz^b, L. Hernández Encinas^{c*}, J. Muñoz Masqué^c, and A. Queiruga Dios^d

 ^aDepartment of Mathematics, Cheju National University, Jeju 690-756, Republic of Korea
 ^bDepartamento de Automática, University of Alcalá, Campus Universitario N-II, km.
 33,600, 28871-Alcalá de Henares, Madrid, Spain; ^cDepartment of Information Processing and Coding, Applied Physics Institute, CSIC, C/ Serrano 144, 28006-Madrid, Spain; ^dDepartment of Applied Mathematics, E.T.S.I.I., University of Salamanca, Avda. Fernández Ballesteros 2, 37700-Béjar, Salamanca, Spain

(July 2008)

Let $g, h: V \times V \to \mathbb{C}$ be two non-degenerate symmetric bilinear forms on a finite-dimensional complex vector space V. Let G (resp. H) be the Lie group of isometries of g (resp. h). If the endomorphism $L: V \to V$ associated to g, h is diagonalizable, then the dimension of the intersection group $G \cap H$ is computed in terms of the dimensions of the eigenspaces of L.

Keywords: Diagonalizable endomorphism, Isometry, Matrix exponential, Orthogonal group, Symmetric bilinear form.

AMS Subject Classification: 15A57, 15A63, 22E10, 22E60.

1. The group of isometries

This paper is an extended version of a preliminary statement of Theorem 2.1, which was presented [1] without proof. Here, we also include a counterexample showing that the hypothesis in the theorem cannot be improved.

Let V, W be two complex vector spaces of finite dimension and let $\mathcal{L}(V, W)$ be the space of \mathbb{C} -linear mappings from V into W. We write $\mathfrak{gl}(V) = \mathcal{L}(V, V)$ and we denote by GL(V) the linear group of V, i.e., the group of invertible elements in $\mathfrak{gl}(V)$.

DEFINITION 1.1 An element $A \in GL(V)$ is said to be an isometry of a symmetric bilinear form $g: V \times V \to \mathbb{C}$ if the following equation holds:

$$g(A(x), A(y)) = g(x, y), \quad \forall x, y \in V.$$

$$(1)$$

LEMMA 1.2 Let $g: V \times V \to \mathbb{C}$ be a symmetric bilinear form on an n-dimensional complex vector space V and let V', V'' be vector subspaces such that,

- (1) $g|_{V'}$ is non-degenerate,
- (2) $g(v, v'') = 0, \forall v \in V, \forall v'' \in V'',$

ISSN: 0020-7160 print/ISSN 1029-0265 online © 200x Taylor & Francis DOI: 10.1080/0020716YYxxxxxx http://www.informaworld.com

^{*}Corresponding author. Email: luis@iec.csic.es

2

Seok-Zun Song et al.

(3) $V = V' \oplus V''$. Then, every isometry $A \in GL(V)$ of g can be written as

$$A = \begin{pmatrix} A' & \mathbf{O} \\ B & C \end{pmatrix}, \quad B \in \mathcal{L}(V', V''), \ C \in \mathfrak{gl}(V''),$$

and A' is an isometry of $g|_{V'}$.

Proof We set $A = \begin{pmatrix} A' D \\ B C \end{pmatrix}$, with $A' \in \mathcal{L}(V', V')$, $B \in \mathcal{L}(V', V'')$, $C \in \mathfrak{gl}(V'')$, $D \in \mathcal{L}(V'', V')$. If v_1, \ldots, v_n is a basis for V such that $v_1, \ldots, v_{n'}$, $n' = \dim V'$, is a basis for V' and $v_{n'+1}, \ldots, v_n$ is a basis for V'', then A is an isometry if and only

if the following equations hold:

$$g(A(v_i), A(v_j)) = g(v_i, v_j), \quad i, j = 1, \dots, n.$$
(2)

If i = 1, ..., n', then $A(v_i) = A'(v_i) + B(v_i)$, with $A'(v_i) \in V'$, $B(v_i) \in V''$, and according to the item (2), for i, j = 1, ..., n' from the equation (2) we obtain

$$g(A(v_i), A(v_j)) = g(A'(v_i), A'(v_j)) + g(A'(v_i), B(v_j)) + g(B(v_i), A'(v_j)) + g(B(v_i), B(v_j)) = g(A'(v_i), A'(v_j)) = g(v_i, v_j),$$

thus proving that $A' = A|_{V'}$ is an isometry for $g|_{V'}$.

Similarly, if i = n' + 1, ..., n, then $A(v_i) = D(v_i) + C(v_i)$ with $D(v_i) \in V'$, $C(v_i) \in V''$. Again from the item (2), we obtain

$$0 = g(v, v_i) = g(A(v), A(v_i)) = g(A(v), D(v_i) + C(v_i)) = g(A(v), D(v_i)),$$

for every $v \in V$. As A is an isomorphism this in particular implies $g(v', D(v_i)) = 0$ $\forall v' \in V'$, and we can conclude D = 0 by applying the item (1).

Consequently, the structure of the set of isometries of a degenerate symmetric bilinear form g can be recovered from the non-degenerate part of g. Because of this, below we confine ourselves to consider only non-degenerate symmetric bilinear forms. In this case, the equation (1) implies det $A = \pm 1$, and the set of all isometries of g is a subgroup of GL(V), which is denoted by G. By choosing an orthonormal basis in V, every element of G is represented by an orthogonal matrix and an isomorphism holds, $G \cong O(n, \mathbb{C})$. The Lie algebra of $O(n, \mathbb{C})$ is denoted by $\mathfrak{o}(n, \mathbb{C})$. We also remark on the fact that G is a closed subgroup in GL(V) and hence, G is a Lie subgroup of the linear group of V, the Lie algebra of which is denoted by \mathfrak{g} .

2. The dimension of the intersection group

THEOREM 2.1 Let V be an n-dimensional complex vector space and let g, h be two non-degenerate symmetric bilinear forms on V. Let G, H be the groups of isometries of g, h, respectively and let $L: V \to V$ be the endomorphism associated to g, h, i.e., 11:59

 $g(x, L(y)) = h(x, y), \forall x, y \in V.$ If L is diagonalizable, then

$$\dim(G \cap H) = \sum_{i=1}^{r} \binom{m_i}{2}.$$

where m_i , i = 1, ..., r, are the dimensions of the eigenspaces of L.

Proof Let α_i , $i = 1, \ldots, r$, be the distinct eigenvalues of L and let $E(\alpha_i)$ be the eigenspace attached to α_i . As L is diagonalizable, we have $V = \bigoplus_{i=1}^r E(\alpha_i)$. We claim that $E(\alpha_i)$ and $E(\alpha_j)$ are orthogonal with respect to both metrics for $i \neq j$. In fact, if v_i (resp. v_j) is a non-vanishing eigenvector for α_i (resp. α_j), then taking account of the fact that L is symmetric, we obtain

$$\alpha_j g(v_i, v_j) = g\left(v_i, L(v_j)\right) = g\left(L(v_i), v_j\right) = \alpha_i g(v_i, v_j).$$

Hence, $(\alpha_i - \alpha_j) g(v_i, v_j) = 0$. As $\alpha_i \neq \alpha_j$, we conclude $g(v_i, v_j) = 0$. In addition, from the definition of L, we have $h(v_i, v_j) = g(v_i, L(v_j)) = \alpha_j g(v_i, v_j) = 0$. Therefore $E(\alpha_i)$ and $E(\alpha_j)$ are also *h*-orthogonal.

As a consequence of the g-orthogonality of the eigensubspaces we deduce that every $E(\alpha_i)$ is non-singular with respect to both bilinear forms g and h.

By choosing a g-orthonormal basis for every subspace $E(\alpha_i)$ and collecting all theses bases, we obtain a basis (v_1, \ldots, v_n) of eigenvectors for L which is also g-orthonormal. Hence the matrices of g and h in this basis are as follows:

$$M_g = I_n = n \times n$$
 identity matrix,
 $M_h = \text{diagonal}\left(\alpha_1, \stackrel{(m_1, \alpha_1, \dots, \alpha_r, \stackrel{(m_r, \alpha_r)}{\dots}, m_1 + \dots + m_r = n\right)$

Let \mathfrak{g} (resp. \mathfrak{h}) be the Lie algebra of G (resp. H). The map exp: $\mathfrak{g} \to G$ induces a diffeomorphism from a neighborhood of the origin in \mathfrak{g} onto a neighborhood of the unit element in G ([4, Theorem 3.31]). Hence dim $(G \cap H) = \dim(\mathfrak{g} \cap \mathfrak{h})$, and we are led to determine the Lie algebra of the intersection subgroup. Moreover, as $\mathfrak{g} = \{A \in \mathfrak{gl}(V) : g(x, A(y)) + g(A(x), y) = 0, \forall x, y \in V\}$, and similarly for \mathfrak{h} , we conclude that $\mathfrak{g} \cap \mathfrak{h}$ can be identified to the subspace of $n \times n$ skew-symmetric matrices $A = (a_{ij})$ such that,

$$A^t M_h + M_h A = 0. ag{3}$$

We decompose A in blocks as follows:

$$A = \begin{pmatrix} A_{11} \dots A_{1r} \\ \vdots & \ddots & \vdots \\ A_{r1} \dots & A_{rr} \end{pmatrix},$$

each A_{ij} being a $m_i \times m_j$ matrix for i, j = 1, ..., r, and the equation (3) transforms into the following system: $\alpha_i A_{ij} + \alpha_j A_{ji}^t = 0, i, j = 1, ..., r$. As A is skew-symmetric, we have $A_{ij} + A_{ji}^t = 0$. Hence this system is equivalent to saying $(\alpha_i - \alpha_j)A_{ij} = 0$ for $1 \le i < j \le r$.

Accordingly, $A_{ij} = 0, i \neq j$, and the submatrices A_{11}, \ldots, A_{rr} are arbitrary. As $\dim \mathfrak{o}(m, \mathbb{C}) = \binom{m}{2}$, we can conclude.

COROLLARY 2.2 Let S^2V^* be the space of symmetric bilinear forms on V and let

4

Seok-Zun Song et al.

 $\mathcal{U} \subset S^2 V^*$ be the subset of non-degenerate forms. The pairs $(g,h) \in \mathcal{U} \times \mathcal{U}$ for which the conclusion of the theorem above holds, is a dense subset in $\mathcal{U} \times \mathcal{U}$.

Proof The map $\theta: \mathcal{U} \times \mathcal{U} \to \mathfrak{gl}(V), \ \theta(g,h) = L$, is analytic and the result follows taking [2, Chapter 7, Theorem 1] into account.

Remark 1 According to the proof of the previous theorem, the matrices of the form $\exp(\tilde{A}_{11})\cdots\exp(\tilde{A}_{rr})$, with $A_{ii} \in \mathfrak{o}(m_i, \mathbb{C})$ for $1 \leq i \leq r$, and

$$\tilde{A}_{ii} = \begin{pmatrix} O_{\mu_i,\mu_i} & O_{\mu_i,m_i} & O_{\mu_i,n-\mu_{i+1}} \\ O_{m_i,\mu_i} & A_{ii} & O_{m_i,n-\mu_{i+1}} \\ O_{n-\mu_{i+1},\mu_i} & O_{n-\mu_{i+1},m_i} & O_{n-\mu_{i+1},n-\mu_{i+1}} \end{pmatrix},$$

where $\mu_i = m_1 + \ldots + m_{i-1}$, $O_{\mu\nu}$ denoting the null $\mu \times \nu$ matrix, span the intersection group $G \cap H$. Hence the problem of computing the intersection group is feasible; in fact, it reduces (up to polynomial time) to exponentiate skew-symmetric matrices of sizes m_1, \ldots, m_r (see [3]).

Example 2.3 Assume dim V = n = 5, and that L has two distinct eigenvalues α, β such that dim $E(\alpha) = 2$, dim $E(\beta) = 3$. In this case, $\mathfrak{g} \cap \mathfrak{h}$ is identified to the matrices of the form

$$A = \begin{pmatrix} A_{11} & O \\ O & A_{22} \end{pmatrix}, \qquad A_{11} = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix}, A_{22} = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}$$

According to *Remark 1*, the intersection group is generated by $\exp \tilde{A}_{11} \exp \tilde{A}_{22}$. Exponentiating, we obtain

$$\exp \tilde{A}_{11} \exp \tilde{A}_{22} = \begin{pmatrix} \cos d \sin d \\ -\sin d \cos d \end{pmatrix} & O \\ & & \\ O & |v|^{-2} \begin{pmatrix} \lambda_{11} \lambda_{12} \lambda_{13} \\ \lambda_{21} \lambda_{22} \lambda_{23} \\ \lambda_{31} \lambda_{32} \lambda_{33} \end{pmatrix} \end{pmatrix},$$

where v = (a, b, c), and

$$\begin{split} \lambda_{11} &= c^2 + \left(a^2 + b^2\right) \cos(|v|), \\ \lambda_{12} &= a|v|\sin(|v|) + bc\left(\cos(|v|) - 1\right), \\ \lambda_{13} &= b|v|\sin(|v|) - ac\left(\cos(|v|) - 1\right), \\ \lambda_{21} &= -a|v|\sin(|v|) - bc\left(\cos(|v|) - 1\right), \\ \lambda_{22} &= b^2 + \left(a^2 + c^2\right)\cos(|v|), \\ \lambda_{23} &= c|v|\sin(|v|) + ab\left(\cos(|v|) - 1\right), \\ \lambda_{31} &= -b|v|\sin(|v|) + ac\left(\cos(|v|) - 1\right), \\ \lambda_{32} &= -c|v|\sin(|v|) - ab\left(\cos(|v|) - 1\right), \\ \lambda_{33} &= a^2 + \left(b^2 + c^2\right)\cos(|v|). \end{split}$$

3. A counterexample

The formula for the dimension of the intersection group $G \cap H$ given in the previous theorem is no longer true if the endomorphism L is not diagonalizable.

We provide a counterexample in arbitrary dimension as follows: For the metrics g, h with matrices given respectively by

$$M_{g} = \begin{pmatrix} \overbrace{\begin{pmatrix} k \\ 0 \dots 1 \\ \vdots \dots \vdots \\ 1 \dots 0 \end{pmatrix}}^{\binom{k}{2}} & O \\ \overbrace{\begin{pmatrix} 0 \dots 1 \\ \vdots \dots \vdots \\ 1 \dots 0 \end{pmatrix}}^{\binom{n-k}{2}} & O \\ \overbrace{\begin{pmatrix} 0 \dots 1 \\ \vdots \dots \vdots \\ 1 \dots 0 \end{pmatrix}}^{\binom{n-k}{2}} & M_{h} = \begin{pmatrix} \overbrace{\begin{pmatrix} 0 & 0 \dots 1 & \alpha \\ 0 & 0 \dots \alpha & 0 \\ \alpha & 0 \dots 0 & 0 \end{pmatrix}}^{\binom{n-k}{2}} & O \\ \overbrace{\begin{pmatrix} 0 & 0 \dots 1 & \alpha \\ 0 & 0 \dots \alpha & 0 \\ \vdots & \vdots \dots & \vdots \\ 1 & \alpha \dots 0 & 0 \\ \alpha & 0 \dots & 0 & 0 \end{pmatrix}}^{\binom{n-k}{2}} ,$$

we obtain dim $(\mathfrak{g} \cap \mathfrak{h}) = \min(k, n-k)$. In fact, assuming $k \leq n-k$, a computation shows that the $n \times n$ matrices A such that $A^t M_g + M_g A = 0$ and $A^t M_h + M_h A = 0$ are

$$A = \begin{pmatrix} O \ Y \\ Z \ O \end{pmatrix},$$

where

$$Y = -\overbrace{\left(\begin{array}{c} 0 \ \dots \ 1 \\ \vdots \ \dots \ \vdots \\ 1 \ \dots \ 0 \end{array}\right)}^{\binom{k}{2}} Z^t \overbrace{\left(\begin{array}{c} 0 \ \dots \ 1 \\ \vdots \ \dots \ \vdots \\ 1 \ \dots \ 0 \end{array}\right)}^{\binom{n-k}{2}}$$

and Z is the $(n-k) \times k$ matrix given by

$$Z = \sum_{h=1}^{k} \sum_{i=0}^{h-1} z_h E_{n-k-i,h-i}, \quad z_1, \dots, z_k \in \mathbb{C},$$

 (E_{ij}) being the standard basis of the matrix vector space. Moreover, dim $E(\alpha) = 2$, where α is the only eigenvalue of L. In fact,

 $\mathbf{6}$

4. Conclusions

The dimension of the intersection group of the orthogonal complex groups corresponding to two non-degenerate symmetric bilinear forms g, h is seen to depend quadratically on the dimensions of the eigenspaces of the linear transformation Lassociated to g, h, whenever L is semisimple. A computationally feasible procedure to obtain the intersection is provided. A counterexample in arbitrary dimension to the formula for the dimension of the intersection group in Theorem 2.1 when the nilpotent part of L does not vanish, is also included.

Acknowledgements

R. Durán Díaz and J. Muñoz Masqué are supported by Ministerio de Educación y Ciencia (Spain) under grant MTM2005–00173, and L. Hernández Encinas and Seok-Zun Song are supported by Korean Science and Engineering Foundation (Korea) under grant F01–2007–000–10047–0.

References

- R. Durán Díaz, L. Hernández Encinas, J. Muñoz Masqué, and A. Queiruga Dios, Generic intersection of orthogonal groups, in International Conference on Computational and Mathematical Methods in Science and Engineering, (CMMSE-2008), Murcia, Spain, 13–16 June 2008, pp. 231–235.
- [2] M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York (1974).
- [3] A. Iserles and A. Zanna, Efficient computation of the matrix exponential by generalized polar decompositions, SIAM J. Numer. Anal. 42, 5 (2005), pp. 2218–2256.
- [4] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and Company, London (1971).