RESEARCH ARTICLE

Dimension of the intersection of a pair of orthogonal groups

Seok-Zun Song ${ }^{\text {a }}$, R. Durán Díaz ${ }^{\text {b }}$, L. Hernández Encinas ${ }^{\text {c* }}$, J. Muñoz Masquéc, and A. Queiruga Dios ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, Cheju National University, Jeju 690-756, Republic of Korea ${ }^{\mathrm{b}}$ Departamento de Automática, University of Alcalá, Campus Universitario N-II, km. 33,600, 28871-Alcalá de Henares, Madrid, Spain; ${ }^{\text {c }}$ Department of Information Processing and Coding, Applied Physics Institute, CSIC, C/ Serrano 144, 28006-Madrid, Spain;
${ }^{\mathrm{d}}$ Department of Applied Mathematics, E.T.S.I.I., University of Salamanca, Avda. Fernández Ballesteros 2, 37700-Béjar, Salamanca, Spain

(July 2008)

Let $g, h: V \times V \rightarrow \mathbb{C}$ be two non-degenerate symmetric bilinear forms on a finite-dimensional complex vector space V. Let G (resp. H) be the Lie group of isometries of g (resp. h). If the endomorphism $L: V \rightarrow V$ associated to g, h is diagonalizable, then the dimension of the intersection group $G \cap H$ is computed in terms of the dimensions of the eigenspaces of L.

Keywords: Diagonalizable endomorphism, Isometry, Matrix exponential, Orthogonal group, Symmetric bilinear form.

AMS Subject Classification: 15A57, 15A63, 22E10, 22E60.

1. The group of isometries

This paper is an extended version of a preliminary statement of Theorem 2.1, which was presented [1] without proof. Here, we also include a counterexample showing that the hypothesis in the theorem cannot be improved.

Let V, W be two complex vector spaces of finite dimension and let $\mathcal{L}(V, W)$ be the space of \mathbb{C}-linear mappings from V into W. We write $\mathfrak{g l}(V)=\mathcal{L}(V, V)$ and we denote by $G L(V)$ the linear group of V, i.e., the group of invertible elements in $\mathfrak{g l}(V)$.

Definition 1.1 An element $A \in G L(V)$ is said to be an isometry of a symmetric bilinear form $g: V \times V \rightarrow \mathbb{C}$ if the following equation holds:

$$
\begin{equation*}
g(A(x), A(y))=g(x, y), \quad \forall x, y \in V \tag{1}
\end{equation*}
$$

Lemma 1.2 Let $g: V \times V \rightarrow \mathbb{C}$ be a symmetric bilinear form on an n-dimensional complex vector space V and let $V^{\prime}, V^{\prime \prime}$ be vector subspaces such that,
(1) $\left.g\right|_{V^{\prime}}$ is non-degenerate,
(2) $g\left(v, v^{\prime \prime}\right)=0, \forall v \in V, \forall v^{\prime \prime} \in V^{\prime \prime}$,

[^0](3) $V=V^{\prime} \oplus V^{\prime \prime}$.

Then, every isometry $A \in G L(V)$ of g can be written as

$$
A=\binom{A^{\prime} \mathrm{O}}{B}, \quad B \in \mathcal{L}\left(V^{\prime}, V^{\prime \prime}\right), C \in \mathfrak{g l}\left(V^{\prime \prime}\right),
$$

and A^{\prime} is an isometry of $\left.g\right|_{V^{\prime}}$.
Proof We set $A=\left(\begin{array}{ll}A^{\prime} & D \\ B & C\end{array}\right)$, with $A^{\prime} \in \mathcal{L}\left(V^{\prime}, V^{\prime}\right), B \in \mathcal{L}\left(V^{\prime}, V^{\prime \prime}\right), C \in \mathfrak{g l}\left(V^{\prime \prime}\right)$, $D \in \mathcal{L}\left(V^{\prime \prime}, V^{\prime}\right)$. If v_{1}, \ldots, v_{n} is a basis for V such that $v_{1}, \ldots, v_{n^{\prime}}, n^{\prime}=\operatorname{dim} V^{\prime}$, is a basis for V^{\prime} and $v_{n^{\prime}+1}, \ldots, v_{n}$ is a basis for $V^{\prime \prime}$, then A is an isometry if and only if the following equations hold:

$$
\begin{equation*}
g\left(A\left(v_{i}\right), A\left(v_{j}\right)\right)=g\left(v_{i}, v_{j}\right), \quad i, j=1, \ldots, n . \tag{2}
\end{equation*}
$$

If $i=1, \ldots, n^{\prime}$, then $A\left(v_{i}\right)=A^{\prime}\left(v_{i}\right)+B\left(v_{i}\right)$, with $A^{\prime}\left(v_{i}\right) \in V^{\prime}, B\left(v_{i}\right) \in V^{\prime \prime}$, and according to the item (2), for $i, j=1, \ldots, n^{\prime}$ from the equation (2) we obtain

$$
\begin{aligned}
g\left(A\left(v_{i}\right), A\left(v_{j}\right)\right) & =g\left(A^{\prime}\left(v_{i}\right), A^{\prime}\left(v_{j}\right)\right)+g\left(A^{\prime}\left(v_{i}\right), B\left(v_{j}\right)\right) \\
& +g\left(B\left(v_{i}\right), A^{\prime}\left(v_{j}\right)\right)+g\left(B\left(v_{i}\right), B\left(v_{j}\right)\right) \\
& =g\left(A^{\prime}\left(v_{i}\right), A^{\prime}\left(v_{j}\right)\right) \\
& =g\left(v_{i}, v_{j}\right),
\end{aligned}
$$

thus proving that $A^{\prime}=\left.A\right|_{V^{\prime}}$ is an isometry for $\left.g\right|_{V^{\prime}}$.
Similarly, if $i=n^{\prime}+1, \ldots, n$, then $A\left(v_{i}\right)=D\left(v_{i}\right)+C\left(v_{i}\right)$ with $D\left(v_{i}\right) \in V^{\prime}$, $C\left(v_{i}\right) \in V^{\prime \prime}$. Again from the item (2), we obtain

$$
0=g\left(v, v_{i}\right)=g\left(A(v), A\left(v_{i}\right)\right)=g\left(A(v), D\left(v_{i}\right)+C\left(v_{i}\right)\right)=g\left(A(v), D\left(v_{i}\right)\right),
$$

for every $v \in V$. As A is an isomorphism this in particular implies $g\left(v^{\prime}, D\left(v_{i}\right)\right)=0$ $\forall v^{\prime} \in V^{\prime}$, and we can conclude $D=0$ by applying the item (1).

Consequently, the structure of the set of isometries of a degenerate symmetric bilinear form g can be recovered from the non-degenerate part of g. Because of this, below we confine ourselves to consider only non-degenerate symmetric bilinear forms. In this case, the equation (1) implies $\operatorname{det} A= \pm 1$, and the set of all isometries of g is a subgroup of $G L(V)$, which is denoted by G. By choosing an orthonormal basis in V, every element of G is represented by an orthogonal matrix and an isomorphism holds, $G \cong O(n, \mathbb{C})$. The Lie algebra of $O(n, \mathbb{C})$ is denoted by $\mathfrak{o}(n, \mathbb{C})$. We also remark on the fact that G is a closed subgroup in $G L(V)$ and hence, G is a Lie subgroup of the linear group of V, the Lie algebra of which is denoted by \mathfrak{g}.

2. The dimension of the intersection group

Theorem 2.1 Let V be an n-dimensional complex vector space and let g, h be two non-degenerate symmetric bilinear forms on V. Let G, H be the groups of isometries of g, h, respectively and let $L: V \rightarrow V$ be the endomorphism associated to g, h, i.e.,
$g(x, L(y))=h(x, y), \forall x, y \in V$. If L is diagonalizable, then

$$
\operatorname{dim}(G \cap H)=\sum_{i=1}^{r}\binom{m_{i}}{2}
$$

where $m_{i}, i=1, \ldots, r$, are the dimensions of the eigenspaces of L.
Proof Let $\alpha_{i}, i=1, \ldots, r$, be the distinct eigenvalues of L and let $E\left(\alpha_{i}\right)$ be the eigenspace attached to α_{i}. As L is diagonalizable, we have $V=\oplus_{i=1}^{r} E\left(\alpha_{i}\right)$. We claim that $E\left(\alpha_{i}\right)$ and $E\left(\alpha_{j}\right)$ are orthogonal with respect to both metrics for $i \neq j$. In fact, if v_{i} (resp. v_{j}) is a non-vanishing eigenvector for α_{i} (resp. α_{j}), then taking account of the fact that L is symmetric, we obtain

$$
\alpha_{j} g\left(v_{i}, v_{j}\right)=g\left(v_{i}, L\left(v_{j}\right)\right)=g\left(L\left(v_{i}\right), v_{j}\right)=\alpha_{i} g\left(v_{i}, v_{j}\right)
$$

Hence, $\left(\alpha_{i}-\alpha_{j}\right) g\left(v_{i}, v_{j}\right)=0$. As $\alpha_{i} \neq \alpha_{j}$, we conclude $g\left(v_{i}, v_{j}\right)=0$. In addition, from the definition of L, we have $h\left(v_{i}, v_{j}\right)=g\left(v_{i}, L\left(v_{j}\right)\right)=\alpha_{j} g\left(v_{i}, v_{j}\right)=0$. Therefore $E\left(\alpha_{i}\right)$ and $E\left(\alpha_{j}\right)$ are also h-orthogonal.

As a consequence of the g-orthogonality of the eigensubspaces we deduce that every $E\left(\alpha_{i}\right)$ is non-singular with respect to both bilinear forms g and h.

By choosing a g-orthonormal basis for every subspace $E\left(\alpha_{i}\right)$ and collecting all theses bases, we obtain a basis $\left(v_{1}, \ldots, v_{n}\right)$ of eigenvectors for L which is also g-orthonormal. Hence the matrices of g and h in this basis are as follows:

$$
\begin{aligned}
& M_{g}=I_{n}=n \times n \text { identity matrix, } \\
& M_{h}=\operatorname{diagonal}\left(\alpha_{1}, \stackrel{\left(m_{1}\right.}{\cdots}, \alpha_{1}, \ldots, \alpha_{r}, \stackrel{\left(m_{r}\right.}{\cdot}, \alpha_{r}\right), m_{1}+\ldots+m_{r}=n
\end{aligned}
$$

Let \mathfrak{g} (resp. \mathfrak{h}) be the Lie algebra of G (resp. H). The map $\exp : \mathfrak{g} \rightarrow G$ induces a diffeomorphism from a neighborhood of the origin in \mathfrak{g} onto a neighborhood of the unit element in G ([4, Theorem 3.31]). Hence $\operatorname{dim}(G \cap H)=\operatorname{dim}(\mathfrak{g} \cap \mathfrak{h})$, and we are led to determine the Lie algebra of the intersection subgroup. Moreover, as $\mathfrak{g}=\{A \in \mathfrak{g l}(V): g(x, A(y))+g(A(x), y)=0, \forall x, y \in V\}$, and similarly for \mathfrak{h}, we conclude that $\mathfrak{g} \cap \mathfrak{h}$ can be identified to the subspace of $n \times n$ skew-symmetric matrices $A=\left(a_{i j}\right)$ such that,

$$
\begin{equation*}
A^{t} M_{h}+M_{h} A=0 \tag{3}
\end{equation*}
$$

We decompose A in blocks as follows:

$$
A=\left(\begin{array}{ccc}
A_{11} & \ldots & A_{1 r} \\
\vdots & \ddots & \vdots \\
A_{r 1} & \ldots & A_{r r}
\end{array}\right)
$$

each $A_{i j}$ being a $m_{i} \times m_{j}$ matrix for $i, j=1, \ldots, r$, and the equation (3) transforms into the following system: $\alpha_{i} A_{i j}+\alpha_{j} A_{j i}^{t}=0, i, j=1, \ldots, r$. As A is skewsymmetric, we have $A_{i j}+A_{j i}^{t}=0$. Hence this system is equivalent to saying $\left(\alpha_{i}-\alpha_{j}\right) A_{i j}=0$ for $1 \leq i<j \leq r$.

Accordingly, $A_{i j}=0, i \neq j$, and the submatrices $A_{11}, \ldots, A_{r r}$ are arbitrary. As $\operatorname{dim} \mathfrak{o}(m, \mathbb{C})=\binom{m}{2}$, we can conclude.
Corollary 2.2 Let $S^{2} V^{*}$ be the space of symmetric bilinear forms on V and let
$\mathcal{U} \subset S^{2} V^{*}$ be the subset of non-degenerate forms. The pairs $(g, h) \in \mathcal{U} \times \mathcal{U}$ for which the conclusion of the theorem above holds, is a dense subset in $\mathcal{U} \times \mathcal{U}$.

Proof The map $\theta: \mathcal{U} \times \mathcal{U} \rightarrow \mathfrak{g l}(V), \theta(g, h)=L$, is analytic and the result follows taking [2, Chapter 7, Theorem 1] into account.

Remark 1 According to the proof of the previous theorem, the matrices of the form $\exp \left(\tilde{A}_{11}\right) \cdots \exp \left(\tilde{A}_{r r}\right)$, with $A_{i i} \in \mathfrak{o}\left(m_{i}, \mathbb{C}\right)$ for $1 \leq i \leq r$, and

$$
\tilde{A}_{i i}=\left(\begin{array}{ccc}
O_{\mu_{i}, \mu_{i}} & O_{\mu_{i}, m_{i}} & O_{\mu_{i}, n-\mu_{i+1}} \\
O_{m_{i}, \mu_{i}} & A_{i i} & O_{m_{i}, n-\mu_{i+1}} \\
O_{n-\mu_{i+1}, \mu_{i}} & O_{n-\mu_{i+1}, m_{i}} & O_{n-\mu_{i+1}, n-\mu_{i+1}}
\end{array}\right)
$$

where $\mu_{i}=m_{1}+\ldots+m_{i-1}, O_{\mu \nu}$ denoting the null $\mu \times \nu$ matrix, span the intersection group $G \cap H$. Hence the problem of computing the intersection group is feasible; in fact, it reduces (up to polynomial time) to exponentiate skew-symmetric matrices of sizes m_{1}, \ldots, m_{r} (see [3]).

Example 2.3 Assume $\operatorname{dim} V=n=5$, and that L has two distinct eigenvalues α, β such that $\operatorname{dim} E(\alpha)=2, \operatorname{dim} E(\beta)=3$. In this case, $\mathfrak{g} \cap \mathfrak{h}$ is identified to the matrices of the form

$$
A=\left(\begin{array}{rr}
A_{11} & O \\
O & A_{22}
\end{array}\right), \quad A_{11}=\left(\begin{array}{rr}
0 & d \\
-d & 0
\end{array}\right), A_{22}=\left(\begin{array}{rrr}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)
$$

According to Remark 1, the intersection group is generated by $\exp \tilde{A}_{11} \exp \tilde{A}_{22}$. Exponentiating, we obtain

$$
\exp \tilde{A}_{11} \exp \tilde{A}_{22}=\left(\begin{array}{cc}
\left(\begin{array}{cc}
\cos d & \sin d \\
-\sin d & \cos d
\end{array}\right) & O \\
O & |v|^{-2}\left(\begin{array}{lll}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
\lambda_{21} & \lambda_{22} & \lambda_{23} \\
\lambda_{31} & \lambda_{32} & \lambda_{33}
\end{array}\right)
\end{array}\right)
$$

where $v=(a, b, c)$, and

$$
\begin{aligned}
& \lambda_{11}=c^{2}+\left(a^{2}+b^{2}\right) \cos (|v|) \\
& \lambda_{12}=a|v| \sin (|v|)+b c(\cos (|v|)-1) \\
& \lambda_{13}=b|v| \sin (|v|)-a c(\cos (|v|)-1) \\
& \lambda_{21}=-a|v| \sin (|v|)-b c(\cos (|v|)-1) \\
& \lambda_{22}=b^{2}+\left(a^{2}+c^{2}\right) \cos (|v|) \\
& \lambda_{23}=c|v| \sin (|v|)+a b(\cos (|v|)-1) \\
& \lambda_{31}=-b|v| \sin (|v|)+a c(\cos (|v|)-1) \\
& \lambda_{32}=-c|v| \sin (|v|)-a b(\cos (|v|)-1), \\
& \lambda_{33}=a^{2}+\left(b^{2}+c^{2}\right) \cos (|v|)
\end{aligned}
$$

3. A counterexample

The formula for the dimension of the intersection group $G \cap H$ given in the previous theorem is no longer true if the endomorphism L is not diagonalizable.

We provide a counterexample in arbitrary dimension as follows: For the metrics g, h with matrices given respectively by
we obtain $\operatorname{dim}(\mathfrak{g} \cap \mathfrak{h})=\min (k, n-k)$. In fact, assuming $k \leq n-k$, a computation shows that the $n \times n$ matrices A such that $A^{t} M_{g}+M_{g} A=0$ and $A^{t} M_{h}+M_{h} A=0$ are

$$
A=\left(\begin{array}{ll}
O & Y \\
Z & O
\end{array}\right),
$$

where
and Z is the $(n-k) \times k$ matrix given by

$$
Z=\sum_{h=1}^{k} \sum_{i=0}^{h-1} z_{h} E_{n-k-i, h-i}, \quad z_{1}, \ldots, z_{k} \in \mathbb{C}
$$

$\left(E_{i j}\right)$ being the standard basis of the matrix vector space. Moreover, $\operatorname{dim} E(\alpha)=2$, where α is the only eigenvalue of L. In fact,

4. Conclusions

The dimension of the intersection group of the orthogonal complex groups corresponding to two non-degenerate symmetric bilinear forms g, h is seen to depend quadratically on the dimensions of the eigenspaces of the linear transformation L associated to g, h, whenever L is semisimple. A computationally feasible procedure to obtain the intersection is provided. A counterexample in arbitrary dimension to the formula for the dimension of the intersection group in Theorem 2.1 when the nilpotent part of L does not vanish, is also included.

Acknowledgements

R. Durán Díaz and J. Muñoz Masqué are supported by Ministerio de Educación y Ciencia (Spain) under grant MTM2005-00173, and L. Hernández Encinas and Seok-Zun Song are supported by Korean Science and Engineering Foundation (Korea) under grant F01-2007-000-10047-0.

References

[1] R. Durán Díaz, L. Hernández Encinas, J. Muñoz Masqué, and A. Queiruga Dios, Generic intersection of orthogonal groups, in International Conference on Computational and Mathematical Methods in Science and Engineering, (CMMSE-2008), Murcia, Spain, 13-16 June 2008, pp. 231-235.
[2] M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York (1974).
[3] A. Iserles and A. Zanna, Efficient computation of the matrix exponential by generalized polar decompositions, SIAM J. Numer. Anal. 42, 5 (2005), pp. 2218-2256.
[4] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and Company, London (1971).

[^0]: * Corresponding author. Email: luis@iec.csic.es

