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Subharmonic stochastic synchronization and resonance in neuronal systems
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We study the response of a model neuron, driven simultaneously by noise and at least two weak periodic
signals. We focus on signals with frequencies componentsk f0 ,(k11) f 0 , . . . (k1n) f 0 with k.1. The neu-
ron’s output is a sequence of pulses spaced at random interpulse intervals. We find an optimum input noise
intensity for which the output pulses are spaced;1/f 0, i.e., there is a stochastic resonance~SR! at a frequency
missing in the input. Even higher noise intensities uncover additional, but weaker, resonances at frequencies
present in the input. This is a different form of SR whereby the most robust resonance is the one enhancing a
frequency, which is absent in the input, and which is not possible to recover via any linear processing. This can
be important in understanding sensory systems including the neuronal mechanism for perception of complex
tones.
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Excitable dynamics underlies the behavior of many b
logical systems, chemical reactions as well as cardiac
nerve cells@1#. In these systems, while a small input pr
duces no response, a perturbation large enough elicits a
sient large amplitude pulse or ‘‘firing.’’ Over the last decad
the dynamic of these systems in response to periodic de
ministic forcing has been studied extensively@1–3#. The in-
terplay of stochastic and deterministic forces was explore
well @4#, including the case of stochastic resonance~SR! @5#.
In the regime of SR some characteristics of the input sig
~signal-to-noise ratio, degrees of coherence, etc.! at the out-
put of the system are optimally enhanced at some opti
noise level. For the case of neurons SR manifest itsel
maximum coherence between the period of the input sig
and the intervals between ‘‘firings.’’

Works on neuronal SR have dealt with inputs compo
either by a single harmonic component@6–9# or, in the other
extreme by aperiodic signals@10–12# with no discrete spec
tral peaks. However, signals impinging on sensory neur
often have multiple discrete spectral lines, as for exampl
the cases of human speech and musical tones. It is the
important issue to understand how neurons respond to
inputs. In this paper we analyze the response of a mo
neuron driven by noise and by a weak signal composed
the sum of at least two periodic tones. Despite its overs
plification, it will be shown that this setting already produc
a rich dynamics that we judge has relevant connections w
various biological problems.

The system considered is a nondynamical threshold
vice already discussed in the literature@13#. Instead of the
dynamical equation the system is reduced to the set of r
comparingx(t) with Uth like x(t).Uth or ,Uth . Whenever
x(t) crosses the fixed threshold~dotted line in Fig. 1! Uth
51, the system emits a ‘‘spike,’’ i.e., a rectangular pulse
relatively short fixed duration, emulating in a very simplifie
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way the neuronal ‘‘firing.’’ The only relevant quantity here
the timing of these spikes, as in most biological neuro
@14#.

The signals considered here are

x~ t !5A~sin f 12pt1sin f 22pt1•••1sin f n2pt !1/n1j~ t !,
~1!

where f 15k f0 , f 25(k11) f 0 , . . . ,f n5(k1n21) f 0, and
k.1. The termj(t) is a zero mean Gaussian distribute
white noise with variances.

Let us choose first a signal composed of two perio
terms with f 152 Hz and f 253 Hz. The amplitude of the
deterministic term is set such that for zero noise there are
firings ~see Fig. 1!, which is the case usually considered
classical SR. It is important to note, from simple visual i

FIG. 1. Snapshot ofx(t) ~lower trace! for a signal constructed
by adding two sinusoidal terms of frequenciesf 152 Hz and f 2

53 Hz. For illustration purposes, the noise amplitude is set tos
50 during the initial 3 sec ands50.075 thereafter. Note that th
signal is subthreshold in the noise-free condition. Each no
induced threshold crossing produces a pulse~upper trace! which is
the output of the neuron. The interpulses interval ‘‘t ’’ is the quantity
of interest.
©2002 The American Physical Society02-1
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spection, that the signal reveals the very well known effec
linear superposition of waves: when two or more perio
waves come together, they will interfere with each oth
Two waves will add wherever a peak from one matche
peak from the other, that is constructive interference. Wh
ever a peak from one wave matches a trough in ano
wave, they will partially cancel each other out, that is d
structive interference. For thef 1 and f 2 values selected her
the highestpeaks of constructive interference repeats atf 0
51 Hz. This is relevant to understand the dynamics beca
these peaks are the closest points to threshold implying
there will be some optimum noise intensity at which a lar
number of threshold crossings will be occurring at interv
;1/f 0. It is important to keep in mind that the input energ
at f 0 is zero, despite our immediate visual impression wh
analyzing Fig. 1.

We proceed to simulate numerically the system Eq.~1!.
The results are presented in Fig. 2. The top three pa
correspond to the density distribution of firing intervals co
puted from simulations using relatively low, intermedia
and high noise intensities, respectively. Notice that for
intermediate noise variance, all firing intervals are spaced
;1 sec, corresponding to the firings in phase with the s
cessive peaks discussed above. For relatively low noise
tensity ~left panel! spikes also occur at the peaks of the d
terministic signals but with random ‘‘skipping’’ of one o

FIG. 2. Top panels: Density distribution of interspike intervalt
in the system Eq.~1! for three noise intensities. Bottom pane
Signal-to noise ratio computed as the probability of observing
interspike interval of a givent(1/2Dt) as a function of noise
variances estimated at the two input signals’ time scales:f 1 ~stars!
and f 2 ~filled circles! as well as forf 0 ~empty circles!. The largest
resonance is for thef 0, i.e., a subharmonic which is not prese
in the input. (A50.9, f 051 Hz, f 152 Hz, f 253 Hz, Dt
50.051/f with f 5 f 0 , f 1, or f 2.)
05090
f
c
r.
a
r-
er
-

se
at

e
s

n

ls
-
,
e
y

c-
n-
-

more cycles, as described for conventional SR@6#. For even
larger noise levels, shortest intervals are observed~right
panel!; the most frequent interspike intervals correspond
ther to 1 sec or tot51/f 251/3 or its multiples. Thus, as a
function of noise intensity neural firings become more or le
coherent to different time scales. This is better shown by
plot in the bottom panel of Fig. 2. Each of the three curv
represent the probability of observing an interspike inter
equal or near to 1/f 0 , 1/f 1, or 1/f 2, respectively, computed a
the ratio between the number of spikes with intervals with
the time scale of interest and all other intervals. From
plot, it is immediately clear that the strongest resonance
the one that enhancesf 0 ~open circles!, a time scale not
present in the input. Further increase leads to a second
weaker resonance for the highest frequency (f 2) of the input
pair. Finally the weakest resonance, occurring at even hig
noise intensity, is forf 1.

We have verified that for signals composed of harmo
components, the frequency of the strongest resonance alw
corresponds to the differencef n112 f n , ~independently of
the relative phases of the components!. However, we are
about to see that the resonance at the difference frequen
just a singular case of a more general phenomenon. Sig
are often comprised of individual components~sometimes
called ‘‘partials’’! that are not integer multiples of a uniqu
fundamental. In this case the wave form is aperiodic. T
type of complex signals are said to be ‘‘inharmonic.’’ Let u
construct such a signal by shifting all components of
originally harmonic complex by the same amount. We fi
that the frequency of the main resonance shifts linearly
spite the fact that the frequency difference between suc
sive partials remains constant. Specifically, the perio
terms are shifted multiples off 0 ~the absent fundamenta!
and partials are labeled:f 15k f01D f ; f 25(k11) f 0
1D f , . . . ,f n5(k1n21) f 01D f .

The results of simulating Eq.~1! with two periodic com-
ponents for a wide range off 1 frequencies~1.5 Hz to 7 Hz!
are presented in Fig. 3. The noise amplitude is fixed at
optimum value for the strongest resonance shown in Fig
For presentation purposes, the computed interspike inter
are plotted in two ways: in the top panel the data is plotted
instantaneous frequency of pulse firingf p ~i.e., 1/t) while in
the bottom panel as the input-firing frequency ratios (f 1 / f p).
The probability of observing a spike with a given rate
represented using a gray scale. It can be seen that in resp
to the simultaneous frequency shift of both partials the n
ron firing rate changes in a peculiar way. This is bet
visualized in the bottom panel where it is seen that
input-output ratios cluster around the nearest integer appr
mating f 1 / f 0. It is clear that there is ‘‘locking’’ or stepwise
synchronization~in a statistical sense! between the input fre-
quency and the output frequency. A simple argument sho
that these resonances are expected at a frequency

f r5 f 01
D f

k11/2
. ~2!

Let us assume that the nonlinear stochastic thresholding
ply detects the position of thehighestpeaks produced by

n
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constructive interference of the two sinusoidal signals
frequencies f 1 and f 2 and equal amplitudes. Note tha
sin(2p f 1t)1sin(2p f 2t)52 sin(2p( f 2/2)t)cos(2p( f 1/2)t),
i.e., the linear superposition is equivalent to modulate in a
plitude a carrier of frequencyf 1/25( f 21 f 1)/2 with a sinu-
soid of frequencyf 2/25( f 22 f 1)/2, the well known beating
phenomenon. A careful inspection shows that the inter
between the two most prominent peaks is equal to the nea
integer numbern, of half-periods of the carrier lying within a
half-period of the modulating signal. For the case of a cou
of harmonically related signals satisfyingf 15k f0 and f 2
5(k11) f 0 we getn5 f 1/ f 252k11 the corresponding in
terval isn/ f 151/ f 0, the period of the composed signal. O
the other hand, for a shifted inharmonic complex,n will
remain constant as long as the shift is small enough, and
most probable interval will be given bynT15n/ f 15(2k
11)/((2k11) f 012D f ) leading to Eq.~2!. Figure 3 shows
the agreement of this expression with the numerical data
addition, notice the effects of the constant in the denomina
of the expression: even though the data points are mo
clustered near the integers, there is a systematic devia
from zero slope, more notorious at the lowk values.

A similar resonance phenomenon occurs in neurons
sponding to signals with more than two components. Fig
4 shows,~using the same format of Fig. 3! the results ob-
tained from simulations using three sinusoidal terms spa
by f 051 Hz, and shifted in the same way as for the tw
components. The similarity with the results for two comp
nents is immediately apparent. The difference is in the slo
of the average shift of the output instantaneous firing ra
While in the two components case this goes;1/(k11/2) in
the three-frequencies case goes;1/(k11).

FIG. 3. Main resonances for two-frequencies signals. Top pa
The probability~as gray scale! of observing a spike with a given
instantaneous firing frequencyf p ~in the ordinate! as a function of
the frequencyf 1 of the lowest of two components of the inpu
signal~abscissa!. Family of lines is the theoretical expectation@Eq.
~2!# for k51 –7. Bottom panel: The same data from the top pa
are replotted as input-output frequency ratio vs input frequencyf 1

(A50.9, s50.12, f 051 Hz).
05090
f

-

al
est

le

he

In
or
tly
on

e-
e

d

-
es
e.

In fact, a generalization of the argument above shows
for stimuli composed ofN sinusoidal signals of frequencie
k f01D f ,(k11) f 01D f •••(k1N21) f 01D f , resonances
would occur at frequencies given by

f r5 f 01
D f

k1~N21!/2
. ~3!

We have verified numerically that the neuron model respo
accurately follows this prediction forN as large as 10; the
numerical results are simple translations of Figs. 3 and 4
expected from Eq.~3!. Thus, the plots in Fig. 3 are represe
tative ~after proper ordinate translation! of the response to
signals composed of evenN partials and those in Fig. 4 o
signals with oddN partials. Notice that the caseN51 ac-
counts for the known case of a neuron responding wit
subharmonic frequency when driven by just one subthre
old sinusoidal signal. ForN52 this formula is identical to
the one obtained in@19# for the main three-frequency~deter-
ministic! resonance of an oscillator subject to this kind
stimulation. ForN53 the formula accounts for the resul
displayed in Fig. 4. All results reported here were also r
licated using the FitzHugh-Nagumo neuron model.

In summary, we have shown the existence of a form of
whereby a frequency absent in the input is enhanced in
system response, a type of phenomenon not possible w
the framework of linear signal processing. The phenome
is eminently nonlinear and amounts also to the first repor
manifestation of a SR of subharmonic character. We h
provided a general expression predicting the strongest r
nant response of the neuron model to an important rang
possible wave forms. The scenario discussed in this le
resembles other problems including the analysis of interc

l:

l

FIG. 4. Main resonances for three-frequencies signals.
panel: The probability~as gray scale! of observing a spike with a
given instantaneous firing frequencyf p as a function of the fre-
quencyf 1 of the lowest of the three components of the input sign
Family of lines is the theoretical expectation@i.e., Eq. ~3! with N
53# for k51 –7. Bottom panel: The same data from the top pa
are replotted as input/output frequency vs input frequencyf 1 (A
50.9, s50.12, f 051 Hz!.
2-3
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tion of two pulse trains investigated sporadically over the l
50 years by Richards@15#, Miller @16# and more recently
@17# in the context of radar warning receivers. It is also co
nected with the recent proposal of~deterministic! three-
frequencies resonances@18# involved on the perception o
sound pitch@19#. The pitch of a complex sound is the su
jective place that we judge is on the musical scale. H
perception of complex tones occurs is still an unsettled is
despite extensive experimental and theoretical work. So
of the results presented here resemble both the psychop
cal data in the literature@20#, as well as its analysis publishe
recently @19#, in particular our results in Fig. 3 agree ve
J,

.

nc

o

l.
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well with the scaling presented in@19#. The stochastic non-
linear detection described here can be the basis of the
ronal mechanism underlying detection of pitch of compl
sounds in the auditory periphery. Cariani and Delgutte@21#
experimental results provide many objective clues supp
ing this contention which can be further investigated.
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