
 1

FISH GELATIN: A RENEWABLE MATERIAL FOR DEVELOPING ACTIVE 

BIODEGRADABLE FILMS 

 

Gómez-Guillén, M.C.*; Pérez-Mateos, M.; Gómez-Estaca, J., López-Caballero, E.; 

Giménez, B. & Montero, P. 5 

 

Instituto del Frío (CSIC), C/ José Antonio Nováis 10, 28040 – Madrid, Spain 

 

*Author for correspondence: M. C. Gómez-Guillén (cgomez@if.csic.es) 

10 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36028876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

ABSTRACT 

Most films used to preserve foodstuffs are made from synthetic plastic materials. 

However, for environmental reasons, attention has recently turned to biodegradable 

films. Gelatin has been extensively studied for its film forming capacity and applicability 

as an outer covering to protect food against drying, light, and oxygen. Moreover, it is 5 

one of the first materials proposed as a carrier of bioactive components. Gelatins from 

alternatives to mammalian species are gaining prominence, especially gelatins from 

marine fish species. Because of their good film-forming abilities, fish gelatins may be a 

good alternative to synthetic plastics for making films to preserve foodstuffs. The 

mechanical and barrier properties of these films depend largely on the physical and 10 

chemical characteristics of the gelatin, especially the amino acid composition, which is 

highly species specific, and the molecular weight distribution, which depends mainly 

on processing conditions. Different film formulations can be developed to extend the 

films' physical and chemical properties and to add new functional attributes. This paper 

reviews the most recent scientific literature dealing with films based on gelatins from 15 

different fish species and considers various strategies intended to improve the physical 

properties of such films by combining fish gelatins with such other biopolymers as soy 

protein isolate, oils and fatty acids, and certain polysaccharides. The use of 

plasticizers and cross-linking agents is also discussed. Specific attributes, such as 

antimicrobial and antioxidant activities, may be also conferred by blending the gelatin 20 

with chitosan, lysozyme, essential oils, plant extracts, or vitamin C to produce an 

active packaging biomaterial. 

 

Key words: biodegradable films, fish gelatin, antioxidant, antimicrobial, physical 

properties 25 
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Introduction 

Besides serving marketing and consumer information purposes, packaging places a 

physical barrier between food products and the outside environment, thereby ensuring 

hygiene and extending the lifetimes of perishable items, especially those susceptible to 

oxidative and microbiological deterioration. The most common materials used for 5 

packaging are paper, fibreboard, plastic, glass, steel, and aluminium. Oil-derived 

synthetic plastics are commonly used, because they afford various advantages over 

other packaging materials in terms of sturdiness and low weight. However, they pose a 

serious global environmental problem by generating large volumes of non-

biodegradable waste (Kirwan & Strawbridge, 2003). Moreover, in addition to safety and 10 

environmental issues, recycling of plastics is complicated for technical and economic 

reasons (Aguado & Serrano, 1999). 

 

Thus, new biodegradable films made from edible biopolymers from renewable sources 

could become an important factor in reducing the environmental impact of plastic waste 15 

(Tharanathan, 2003). Proteins, lipids, and polysaccharides are the main biopolymers 

employed to make edible films and coatings. Which of these components are present 

in which proportions determines the properties of the material as a barrier to water 

vapour, oxygen, carbon dioxide, and lipid transfer in food systems. Films composed 

primarily of proteins or polysaccharides have suitable overall mechanical and optical 20 

properties but are highly sensitive to moisture and exhibit poor water vapour barrier 

properties (Guilbert, Gontard & Gorris, 1996). This may represent a drawback when 

they are applied to food products with high moisture contents, because the films may 

swell, dissolve, or disintegrate upon contact with the water. Films composed of lipids 

are more moisture-resistant, but they are usually opaque, relatively stiff, and more 25 

vulnerable to oxidation. For these reasons the current trend in designing biodegradable 

materials for food packaging is to combine different biopolymers (Bertan, Tanada-

Palmu, Siani & Grosso, 2005; Cao, Fu & He, 2007a; Colla, Sobral & Menegalli, 2006; 
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Jagannath, Nanjappa, Das Gupta & Bawa, 2003; Le Tien et al., 2000; Lee, Shim & 

Lee, 2004; Li, Kennedy, Jiang & Xie, 2006; Longares, Monahan, O'Riordan & 

O'Sullivan, 2005; Tapia-Blácido, Mauri, Menegalli, Sobral & Añón, 2007), plasticizers 

(Arvanitoyannis, Nakayama & Aiba, 1998a; Thomazine, Carvalho & Sobral, 2005; 

Vanin, Sobral, Menegalli, Carvalho & Habitante, 2005), cross-linking agents (Bigi, 5 

Cojazzi, Panzavolta, Rubini & Roveri, 2001; Hernandez-Munoz, Villalobos & Chiralt, 

2004; Lai & Chiang, 2006; Tang, Jiang, Wen & Yang, 2005), and even inorganic 

particles (Sinha Ray & Okamoto, 2003; Sorrentino, Gorrasi & Vittoria, 2007) to fulfil a 

number of specific functional requirements (moisture barrier and gas barrier features, 

water or lipid solubility, colour and appearance, as well as mechanical and rheological 10 

attributes) so as to obtain properties, as far as possible, similar to those of non-

biodegradable plastics.  

Furthermore, enriching these films with functional additives allows nutritional and 

aesthetic quality aspects to be enhanced without affecting the integrity of the food 

product (Guilbert et al. 1996). In this connection, a number of recent studies have dealt 15 

with extending the functional properties of biodegradable films by adding natural 

substances with antioxidant or antimicrobial activities in order to yield an active 

packaging biomaterial (Kim, Ko, Lee, Park & Hanna, 2006; Ku & Song, 2007; 

Oussalah, Caillet, Salmiéri, Saucier & Lacroix, 2004; Seydim & Sarikus, 2006; 

Zivanovic, Chi & Draughon, 2005). 20 

 

Gelatin has been extensively studied on account of its film-forming ability and its 

usefulness as an outer film to protect food from drying and exposure to light and 

oxygen (Arvanitoyannis, 2002). In addition, gelatin was one of the first materials used 

as a carrier of bioactive components (Gennadios, McHugh, Weller & Krochta, 1994). 25 

Large volumes of gelatin are used annually by the food industry worldwide, and the 

amount is growing yearly due to its abundance, relatively low cost, and excellent 

functional properties. Worldwide production of gelatin in 2007 was 326 000 tonnes, of 
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which 121 800 t were produced in Europe. Annual growth in gelatin production in the 

past seven years has been put at around 3-4 %. The most abundant sources of gelatin 

are pig skin (46 %), bovine hide (29.4 %) and pork and cattle bones (23.1 %). Other 

sources, which include fish gelatin, accounted for around 1.5 % of total gelatin 

production in 2007. It is worth noting, however, that this percentage has doubled 5 

compared with market data for 2002, indicating that the production of gelatin from 

alternatives to mammalian species is growing in importance (GME, 2007). Skins and 

bones, consisting primarily of collagen, make up about 30 % of the waste from fish 

filleting in the seafood industry. The rising interest in putting by-products from the fish 

industry to good use is one of the reasons why the industrial production of fish gelatin 10 

has been growing in recent years (Gómez-Guillén, Turnay, Fernández-Díaz, Ulmo, 

Lizarbe & Montero, 2002; Muyonga, Cole & Duodu, 2004a). Moreover, socio-culturally, 

marine gelatins are regarded as an alternative to terrestrial mammalian (bovine and 

porcine) gelatins, since pork consumption is forbidden by certain religions (Judaism 

and Islam). 15 

 

As a rule, the physical properties of gelatin films depend chiefly on the properties of the 

raw materials extracted from the different animal species and on the processing 

conditions of gelatin manufacturing. They also depend on the physical parameters 

used in film processing, such as temperature and drying time (Menegalli, Sobral, 20 

Roques & Laurent, 1999), and on formulation ingredients, such as the inclusion of 

plasticizers (Lukasik & Ludescher, 2006a,b; Vanin et al., 2005) or cross-linkers (Bigi et 

al., 2001; Cao, Fu & He, 2007b). Sorbitol and glycerol are the plasticizers most 

commonly used in producing gelatin-based films. Cuq, Gontard, Cuq & Guilbert (1997) 

reported that hydrophilic, low-molecular-weight molecules like glycerol and sorbitol 25 

could easily fit into protein networks and form hydrogen bonds with the reactive groups 

on amino acid residues, thereby reducing protein-protein interactions. Normally, 

increasing plasticizer concentration in a film-forming solution produces a film that is 
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less stiff, less rigid, and more stretchable by reducing the interactions between the 

biopolymer chains (Arvanitoyannis, 2002). According to Thomazine et al. (2005), 

gelatin films plasticized with glycerol are quite water sensitive, not as strong, and more 

stretchable than films that contain sorbitol, while a mixture of glycerol and sorbitol 

yielded films with intermediate mechanical, viscoelastic, and water vapour barrier 5 

properties compared to films plasticized with glycerol or sorbitol alone. Other 

plasticizers like propylene glycol, diethylene glycol, and ethylene glycol have also been 

found to be compatible with gelatin, but in terms of the resulting functional properties, 

they were less efficacious than glycerol and less effective plasticizers as well (Vanin et 

al., 2005). 10 

 

Edible films can be formed by two main processes, i.e., casting and extrusion 

(Hernandez-Izquierdo & Krochta, 2008). The film-formation process most often 

reported in the scientific literature is the casting method. Briefly, it involves dissolving 

the biopolymer and blending it with plasticizers and/or additives to obtain a film-forming 15 

solution, which is cast onto plates and then dried by driving off the solvent. The 

extrusion method relies on the thermoplastic behaviour of proteins at low moisture 

levels. Films can be produced by extrusion followed by heat-pressing at temperatures 

that are ordinarily higher than 80 ºC. This process may affect film properties, but its use 

would enhance the commercial potential of films by affording a number of advantages 20 

over solution-casting, e.g., working in a continuous system with ready control of such 

process variables as temperature, moisture, size/shape, etc. In a recent study Park, 

Scott, Whiteside & Cho (2008) compared the properties of pig-skin gelatin films 

produced either by extrusion/heat-pressing or by casting and found that extruded films 

had lower tensile strength and higher elongation and water vapour permeability (WVP) 25 

values than the corresponding cast films. They explained these differences in terms of 

the moisture evaporation rate, which was lower in the cast films, and the presence of 

microvoids in the extruded films. 
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Most of the scientific literature on edible and/or biodegradable gelatin films has dealt 

with commercial mammalian gelatins (Arvanitoyannis et al., 1998a; Bertan et al.,2005; 

Chambi & Grosso, 2006; de Carvalho & Grosso, 2004; Lim, Mine & Tung, 1999; 

Menegalli et al., 1999; Simon-Lukasik & Ludescher, 2004; Sobral & Habitante, 2001; 5 

Vanin et al, 2005). Studies on the production and characterization of films using fish 

gelatins are quite recent, and all fish gelatins have been observed to exhibit good film-

forming properties, yielding transparent, nearly colourless, water soluble, and highly 

extensible films (Avena-Bustillos et al., 2006; Carvalho, Sobral, Thomazine, Habitante, 

Giménez, Gómez-Guillén & Montero, 2008; Gómez-Guillén, Ihl, Bifani, Silva & 10 

Montero, 2007; Jongjareonrak, Benjakul, Visessanguan, Prodpran & Tanaka, 2006a; 

Zhang, Wang, Herring & Oh, 2007).  

 

The high hygroscopic nature of gelatin represents the main drawback in gelatin films, 

because they tend to swell or dissolve in contact with the surface of foodstuffs with high 15 

moisture content. To avoid this, the application of edible coatings based on gelatin may 

constitute an alternative to prolong the shelf life of fresh meat (Antoniewski, Barringer, 

Knipe, & Zerby, 2007), fish patties (López-Caballero, Gómez-Guillén, Pérez-Mateos & 

Montero, 2005) or post-harvest avocado (Aguilar-Méndez, San Martín-Martínez, 

Tomás, Cruz-Orea & Jaime-Fonseca, 2008). Nevertheless, the current trends are more 20 

focused on the formulation of gelatin films with improved water resistance. 

 

This paper reviews the most recent scientific literature dealing with fish gelatins and 

films made from the gelatins of different fish species and considers various strategies 

for improving the physical properties of these films and conferring specific attributes, 25 

such as antioxidant and antimicrobial activity, to produce a renewable, active, 

packaging biomaterial of marine origin. 
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Fish gelatin 

Gelatin is a protein obtained by hydrolyzing the collagen contained in bones and skin. 

Source, animal age, collagen type, and manufacturing method all greatly affect the 

physical and chemical properties of the gelatin (Ledward, 1986). To convert insoluble 

native collagen into gelatin requires pre-treatment to break down the non-covalent 5 

bonds and disorganize the protein structure, allowing swelling and cleavage of intra 

and intermolecular bonds to solubilize the collagen (Stainsby, 1987). Subsequent heat 

treatment cleaves the hydrogen and covalent bonds to destabilize the triple helix, 

resulting in helix-to-coil transition and conversion into soluble gelatin (Djabourov, 

Lechaire & Gaill, 1993). The degree of conversion of the collagen into gelatin is related 10 

to the severity of both the pre-treatment and the extraction process, depending on the 

pH, temperature, and extraction time (Johnston-Banks, 1990). Two types of gelatin are 

obtainable, depending on the pre-treatment. These are known commercially as type-A 

gelatin, obtained in acid pre-treatment conditions, and type-B gelatin, obtained in 

alkaline pre-treatment conditions. Industrial applications call for one or the other gelatin 15 

type, depending on the degree of collagen cross-linking in the raw material, in turn 

depending on a number of factors, such as collagen type, tissue type, species, animal 

age, etc. 

 

Collagenous material from fish skins is characterized by a low degree of intra and 20 

interchain covalent cross-linking, mainly involving lysine and hydroxylysine (Hyl) 

residues, along with aldehyde derivatives (Montero, Borderías, Turnay & Leyzarbe, 

1990). Accordingly, a mild acid pre-treatment is normally used for type-A gelatin 

extraction from fish skins (Norland, 1990). In the past 10 years considerable effort has 

been expended on studying gelatin extraction from different fish species, e.g., cod 25 

(Gudmundsson & Hafsteinsson, 1997), tilapia (Jamilah & Harvinder, 2002), megrim 

(Montero & Gómez-Guillén, 2000), sole and squid (Gómez-Guillén et al. 2002; 

Giménez, Gómez-Estaca, Alemán, Gómez-Guillén & Montero, 2008), pollock (Zhou & 
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Regenstein, 2004), Nile perch (Muyonga, Cole & Duodu, 2004b), yellowfin tuna (Cho, 

Gu & Kim, 2005; Rahman, Al-Saidi & Guizani, 2008), Atlantic salmon (Arnesen & 

Gildberg, 2007), skipjack tuna (Aewsiri, Benjakul, Visessanguan & Tanaka, 2008); 

shark (Cho et al., 2004), skate (Cho, Jahncke, Chin & Eun, 2006), grass carp 

(Kasankala, Xue, Weilong, Hong & He, 2007), bigeye snapper and brownstripe red 5 

snapper (Jongjareonrak, Benjakul, Visessanguan & Tanaka, 2006b) and channel 

catfish (Yang, Wang, Jiang, Oh, Herring & Zhou, 2007; Zhang et al., 2007). Table 1 

summarizes the gel strength and thermal stability (gelling and melting temperatures) of 

different gelatins extracted from the skins of several fish species and squid, indicating 

shortly some details of both pre-treatment and water extracting conditions. Strict 10 

comparisons are difficult since methodologies may differ considerably from one work to 

another. However, for standardizing purposes, measurement s are frequently 

performed at a given gelatin concentration (6.67%) and temperature (around 10ºC), 

which allows in some cases to express the gel strength in the normalized “bloom” value 

(Wainewright, 1977). Extraction processes have been modified to improve rheological 15 

properties or extraction yields, for instance by using different organic acids for pre-

treatment of the skins (Giménez, Turnay, Lizarbe, Montero & Gómez-Guillén, 2005a; 

Gómez-Guillén & Montero, 2001; Songchotikunpan, Tattiyakul & Supaphol, 2008), 

different salts for washing the skins (Giménez, Gómez-Guillén & Montero, 2005b), 

high-pressure treatment (Gómez-Guillén, Giménez & Montero, 2005), and pepsin-20 

aided digestion (Nalinanon, Benjakul, Visessanguan & Kishimura, 2008; Giménez et 

al., 2008). The influence of the method used to preserve the fish skins (freezing or 

drying) on gelatin properties has also been examined. Freezing flounder skins has 

been reported to affect the molecular composition of the resulting gelatins by 

decreasing the amount of high-molecular-weight polymers and β and γ components 25 

extracted. This effect decreased gel strength and reduced the subsequent renaturation 

ability of the corresponding gelatin and grew more severe with frozen storage 

temperature (−12 °C vs. −20 °C) (Fernández-Díaz, Montero & Gómez-Guillén, 2003). 
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In contrast, drying Dover sole skins with glycerol, ethanol or dry salt, slightly lowered 

the viscoelastic properties and the gelling and melting points, but neither the 

viscoelastic properties nor gel strength appeared to undergo any appreciable changes 

over the course of storage at room temperature for 160 days (Giménez, Gómez-Guillén 

& Montero, 2005c). 5 

 

The physical properties of gelatin depend to a large extent on two factors: (i) the amino 

acid composition, which is highly species specific (see Table 2), and (ii) the molecular 

weight distribution, which results mainly from processing conditions (Gómez-Guillén et 

al., 2002). Marine gelatins have long been known to have worse rheological properties 10 

than mammalian gelatins, particularly in the case of gelatins from cold-water fish 

species, such as cod, salmon or Alaska pollack (Gudmundsson & Hafsteinsson, 1997; 

Haug, Draget & Smidsrød, 2004; Leuenberger, 1991; Zhou, Mulvaney & Regenstein, 

2006). This has mainly been attributed, especially in cold-water fish, to the lower 

number of Pro+Hyp rich collagen regions that are most likely involved in the formation 15 

of nucleation zones conducive to the formation of triple helical structures (Ledward, 

1986). Nevertheless, recent studies have indicated that certain fish gelatins (from 

yellowfin tuna, tilapia, and catfish, for example), while not superior to mammalian 

gelatins, might afford similar levels of quality, depending on the species from which the 

gelatin is extracted and on processing conditions (Cho et al., 2005; Choi & Regenstein, 20 

2000; Yang et al., 2007; Zhou et al., 2006). In this respect, warm-water fish species like 

sole, tilapia, and grass carp are well known to yield gelatins that have better 

thermostability and rheological properties than the gelatins obtained from such cold-

water fish species as cod, salmon, or Alaska pollack (Avena-Bustillos et al., 2006; 

Gómez-Guillén et al., 2002; Jamilah & Harvinder, 2002; Kasankala et al., 2007) (see 25 

Table 1). 

 

Fish gelatin-based films 
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Data from the scientific literature are not readily comparable because of differences in 

film preparation, plasticizer type and concentration, gelatin type, measurement 

methods, etc. Having said this, it seems to be accepted that mammalian gelatins yield 

stronger films, whereas fish gelatins yield more deformable films (Avena-Bustillos et al., 

2006; Gómez-Guillén et al., 2007; Sobral & Habitante, 2001; Thomazine et al., 2005). 5 

However, as already mentioned above when discussing gelatin properties, there may 

be appreciable differences depending on the fish species and habitat. For example, 

films made from gelatin extracted from the skins of the Nile perch, a warm-water fish 

species, have been reported to exhibit breaking and elongation values similar to those 

of bovine-bone gelatin (Muyonga et al., 2004b). Similarly, films made from gelatin from 10 

channel catfish have also exhibited mechanical and water vapour barrier properties 

comparable to those of films made from a commercial mammalian gelatin (Zhang et al., 

2007). 

 

Avena-Bustillos et al. (2006) reported the water vapour permeability (WVP) of cold-15 

water fish gelatin films to be significantly lower than that of films made from warm-water 

fish gelatin or mammalian gelatin and explained the tendency of fish-gelatin films to 

exhibit lower WVP values than land animal-gelatin films in terms of the amino acid 

composition, since fish gelatins, especially cold-water fish gelatins, are known to 

contain higher amounts of hydrophobic amino acids and lower amounts of 20 

hydroxyproline. Similarly, using equivalent procedures and plasticizing conditions 

(sorbitol or glycerol, 25-30 % of gelatin content), the WVP of halibut-skin gelatin films 

(Carvalho et al., 2008) and tuna-skin gelatin films (Gómez-Guillén et al., 2007) was 

also reported to be lower than that of mammalian gelatin films (Sobral & Habitante, 

2001; Vanin et al., 2005). Plasticizer type and concentration is a critical factor, and due 25 

to their hydrophilic -OH groups sorbitol and glycerol molecules are known to increase 

the water vapour permeability of gelatin films irrespective of gelatin source, and this 
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effect is directly related to plasticizer concentration (Jongjareonrak, Benjakul, 

Visessanguan & Tanaka, 2006c; Sobral & Habitante, 2001). 

 

Effect of gelatin attributes on film properties 

As already mentioned, the molecular weight distribution and amino acid composition 5 

are the main factors influencing the physical and structural properties of gelatin, and 

therefore they are also believed to play a key role in the rheological and barrier 

properties of the resulting films. Examining the molecular weight distribution, Muyonga 

et al., (2004a,b) compared the physical and chemical properties of films made from 

gelatins extracted from the skins and bones of the Nile perch following mild acid pre-10 

treatment with 0.01 M sulphuric acid and subsequent heating in water at varying 

temperatures (from 50 to 70 ºC). They observed that the gelatin extracted from Nile 

perch bones, which consisted of a higher proportion of low-molecular-weight fractions 

as a result of the more severe heating needed for extraction, had considerably lower 

tensile strength but higher percentage elongation than the corresponding films made 15 

from gelatin extracted from the skins. Since the amino acid compositions were found to 

be similar, the differences in the functional properties between the skin and bone 

gelatin films were attributed to differences in the molecular weight distribution of the 

corresponding gelatins (Muyonga, Cole & Duodu, 2004a,b). 

 20 

In a later study, different quality gelatins from catfish skins were prepared using various 

acidic and/or alkaline pre-treatment methods followed by gelatin extraction in warm 

water at 50 ºC (Zhang et al., 2007). Combined alkaline (0.25 M sodium hydroxide) / 

acid (0.09 M acetic acid) pre-treatment yielded a gelatin preparation with appreciably 

higher molecular weight fractions that displayed two major protein bands, which were 25 

ascribed to collagen α and β-chains. The corresponding films exhibited higher tensile 

strength and lower elongation values compared to films obtained from gelatins 

containing more low-molecular-weight fragments. 
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Recently, Carvalho et al. (2008) reported that adding a concentration step by 

evaporating at 60 °C before spray drying the gelatin from Atlantic halibut (Hippoglossus 

hippoglossus) skin resulted in sizeable differences in the physical properties of the 

corresponding films. Differences in the mechanical behaviour of these films were 5 

attributed to slight differences in the molecular weight distributions of the two types of 

gelatin, caused by protein heat degradation during the evaporation step, with the loss 

of β and γ components and breakdown of the native 2α1:α2 ratio. As a result, these 

authors concluded that gelatin having a predominance of lower-molecular-weight 

fractions underwent greater plasticization by the sorbitol molecules, culminating in 10 

greater breaking elongation and lower tensile strength of the resulting films.  

 

The role of the molecular weight distribution in the gelatin in determining the rheological 

properties of the films may also depend on the presence and concentration of 

plasticizer in the formulation. All the studies cited above included plasticizers, i.e., 15 

glycerol (Muyonga et al, 2004a; Zhang et al., 2007) or sorbitol (Carvalho et al., 2008). 

Accordingly, for a given concentration of plasticizer, films made using a lower-

molecular-weight biopolymer could be plasticized to a higher degree, because the 

plasticizer:biopolymer molar ratio was higher (Thomazine et al., 2005). 

 20 

The effect of plasticizer type and concentration on fish-gelatin films have been also 

examined. In films from both bigeye snapper or brownstripe red snapper skin gelatin, 

glycerol was found to yield the greatest breaking elongation, while films plasticized 

using ethylene glycol exhibited the highest tensile strength (Jongjareonrak et al., 

2006c). The tensile strength of both these fish-skin gelatin films decreased with the 25 

glycerol or sorbitol concentration, whereas the breaking elongation increased as 

plasticizer concentration increased from 25 to 75 % of protein content. Both gelatins 

presented a similar imino acid (Pro+Hyp) content, but in terms of the molecular weight 
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distribution, bigeye snapper-skin gelatin was characterized by lower concentrations of 

high-molecular-weight fractions, with a concomitant increase in degradation peptides, 

compared with brownstripe red snapper-skin gelatin (Jongjareonrak, Benjakul, 

Visessanguan, Prodpran & Tanaka, 2006b). Tensile strength of the films prepared from 

the bigeye snapper-skin gelatin was lower than that of the brownstripe red snapper-5 

skin gelatin films. As previously described, the predominance of high-molecular-weight 

fractions in the gelatin was the main factor increasing the strength of the resulting films, 

although in this study the elongation values for the two gelatins were quite similar. 

 

In another study comparing the physical and chemical properties of films made from 10 

tuna and halibut-skin gelatins, both following mild acid pre-treatment (0.05M acetic 

acid) and subsequent extraction by heating in water at 45ºC, the lower mean molecular 

weight of the halibut gelatin was found to be a major factor responsible for the lower 

breaking strength and appreciably higher deformation value of the corresponding films, 

both plasticized with 15-25 % sorbitol (Habitante, Montero, Gómez-Guillén, Sobral & 15 

Carvalho, 2005).  

 

When gelatins come from different fish species, attention must be paid not only to the 

molecular weight distribution but also to the amino acid composition, especially that of 

the most characteristic amino acids in gelatin, Gly, Pro, and Hyp (triplets of these 20 

amino acids being clearly predominant in collagen molecules). The pyrrolidine rings of 

the imino acids may impose conformational constraints, imparting a certain degree of 

molecular rigidity that can affect film deformability. A recent study compared films made 

from tuna (Thunnus thynnus) skin gelatin and bovine-hide gelatin in identical conditions 

(Gómez-Estaca, Montero, Fernández-Martín, Alemán & Gómez-Guillén, 2008). Both 25 

films were plasticized with a mixture of glycerol and sorbitol and had similar maximum 

breaking strength values, but the tuna-skin gelatin films had breaking deformation 

values around 10 times higher than the values for the bovine-hide gelatin films. The 
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Pro+Hyp content was higher in the bovine-hide gelatin (210/1000 residues) than in the 

tuna-skin gelatin (185/1000 residues). Both gelatins contained appreciable amounts of 

high-molecular-weight (>200 kDa) polymers. There were considerably more β 

components in the fish gelatin, whereas the <100 kDa polypeptide fraction was more 

abundant in the bovine-hide gelatin. The viscoelastic properties of the film-forming 5 

solutions revealed the bovine-hide gelatin's greater gelling capacity, to be expected 

from the amino acid profile, richer in Pro+Hyp. However, this difference was not 

enough to impart significantly higher strength to the mammalian-gelatin films, probably 

because the stabilizing role of water molecules and cold temperature is less important 

in the films than it is in the hydrogels. In this connection, the triple helical structure 10 

content has been shown to decrease upon isothermal dehydration of films (Wetzel, 

Buder, Hermel & Huttner, 1987). In addition, the larger amounts of β components in 

fish gelatins could also appreciably strengthen the corresponding films. However, in the 

case discussed here, the considerably higher deformation values for the tuna-skin 

gelatin could not be explained in terms of the molecular weight distribution, since the 15 

bovine-hide gelatin had larger amounts of hydrolyzed peptide fractions, which readily 

interact with plasticizer molecules. Thus, the lower imino acid content of the tuna-skin 

gelatin was put forward as the most likely explanation for the higher film deformability. 

 

All these studies have confirmed that in addition to differences in film-making 20 

procedures, plasticizer type and concentration, etc., the physical and chemical 

properties of the gelatin, especially with regard to the amino acid composition and the 

molecular weight distribution, play a key role in determining the physical properties of 

the films. 

 25 

Blends of fish gelatin and other biopolymers 

The mechanical and barrier properties of fish-gelatin films can be enhanced by 

producing composite films using such different biopolymers as proteins, lipids, and 
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polysaccharides. Apart from technical aspects, there may also be economic reasons 

for contemplating the production of composite films by blending gelatin with other 

biopolymers. 

 

As an animal protein, gelatin is more expensive than other proteins of plant origin, such 5 

as soy protein isolate (SPI), which is a mixture of a number of albumins and globulins, 

including the 7S and 11S fractions, respectively making up about 37 % and 31 % of the 

total extractable protein (Ziegler & Foegeding, 1990). The physical properties of 

composite bovine-bone gelatin and soy protein isolate (SPI) films have been described 

by Cao et al. (2007a), who found that increasing the proportion of SPI in the film 10 

lowered the tensile strength, breaking elongation, and swelling ability of the films. 

Indeed, SPI films are well known to be rather brittle and to have relatively poor 

mechanical properties (Rhim, Gennadios, Handa, Weller & Hanna, 2000). In a later 

study using cod-skin gelatin, composite films were obtained by adding differing 

proportions of a laboratory-prepared SPI (0, 25, 50, 75, 100 % w/w) and a glycerol-15 

sorbitol mixture as plasticizer (Denavi, Pérez-Mateos, Añon, Montero, Mauri & Gómez-

Guillén, 2007). The formulation comprising 25 % SPI / 75 % cod-skin gelatin was found 

to have a higher maximum breaking strength (≈7 N) compared to the 100-% gelatin 

and the 100-% SPI films (1.8 and 2.8 times higher, respectively). Moreover, this 

formulation afforded the same high percentage deformation values as the 100-% 20 

gelatin film (≈80 %) and the same relatively low water vapor permeability as the 100-% 

SPI film (2x10-8 g·mm·h-1·cm-2·Pa-1). Thus, composite films made from gelatin and SPI 

may benefit from the most advantageous properties of each separate protein 

component. 

 25 

The hydrophilic character of gelatin films can be a drawback in certain applications, 

hence there is interest in developing blends using such components as oils or waxes to 

augment the hydrophobic regions in the films and thus reduce the WVP and water 
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solubility. There are two main methods of adding oil to the film formulation, namely, 

either by emulsifying the film-forming solutions (Jongjareonrak, Benjakul, 

Visessanguan & Tanaka, 2006d) or by making bilayer films (Morillon, Debeaufort, 

Blond, Capelle & Voilley, 2002). Jongjareonrak et al. (2006d) blended bigeye snapper 

and brownstripe red snapper-skin gelatins with fatty acids (FAs) (palmitic acid and 5 

stearic acid) or the sucrose esters (FASEs) of those same FAs. The resulting 

composite films underwent an appreciable reduction in the WVP. Adding the FAs 

lowered the tensile strength, while adding the FASEs progressively increased the 

tensile strength. A marked increase in breaking elongation was also recorded when 

either FAs or FASEs were added to the films in a proportion of 25 %. 10 

 

Emulsified film-forming solutions made with cod-skin gelatin and increasing proportions 

of sunflower oil (0, 0.3, 0.6, and 1 % w/w) have been reported to yield white, opaque 

composite films, also with lowered WVP values (Pérez-Mateos, Montero & Gómez-

Guillén, 2009). The maximum breaking strength decreased by 30-60 %, depending on 15 

the amount of oil added. These researchers also reported that the higher the oil 

concentration in the film, the lower the protein fraction in the water-soluble matter, most 

likely the outcome of gelatin-oil interactions in the film resulting in protein 

insolubilization. Lipid-protein interactions (hydrogen bonds, ester formation) as well as 

early oil oxidation observed by Fourier transform infrared (FTIR) spectroscopy were 20 

related to alterations in the structure of the composite gelatin-oil films. The changes 

were more pronounced after storage of the film at room temperature for one month and 

caused a slight decrease in the rheological and water vapour permeability. It is worth 

noting that cod-skin gelatin films, which were almost completely soluble in water, 

became rather insoluble with storage time. High solubility of edible films newly made 25 

from cod-skin gelatin was also reported by Piotrowska, Kolodziejska, Januszewska-

Jozwiak & Wojtasz-Pajak (2005). 
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Fish gelatin has also been blended with a number of polysaccharides, such as gellan 

and kappa-carrageenan (Pranoto, Lee & Park, 2007), pectin (Liu, Liu, Fishman & 

Hicks, 2007) or chitosan (Kołodziejska, Piotrowska, Bulge & Tylingo, 2006). Adding 

gellan or kappa-carrageenan increased the tensile strength and water vapour barrier 

properties of tilapia-skin gelatin films but at the same time made the films slightly 5 

darker (Pranoto et al., 2007). These researchers reported a low elongation value (5 %) 

for the tilapia-gelatin film, lower than that for mammalian-gelatin films. However, it 

should be noted that they made no mention of the use of any plasticizers, and in any 

case, elongation increased slightly on adding either gellan or kappa-carrageenan. 

Thermal (DSC) and FTIR analysis demonstrated effective interaction between the 10 

gelatin molecules and the polysaccharides, with the gellan being better at enhancing 

the films' mechanical and water barrier properties. 

 

Composite films have also been prepared from type-B fish gelatin and citrus pectin, 

seeking to improve the physical properties of pectin-based edible films (Liu et al., 15 

2007). Compared with pectin films, the composite films exhibited higher strength and 

lower water solubility and water transmission rate. The mechanical properties and 

water resistance were considerably improved by treating the composite films with 

glutaraldehyde/methanol, which brought about a reduction in the interstitial spaces 

among the macromolecules due to extensive chemical cross-linking. 20 

 

The use of different cross-linking agents has been also reported for fish gelatin films. 

Yi, Kim, Bae, Whiteside & Park (2006) prepared films using a commercial high-

molecular-weight cold-water fish gelatin plasticized with sorbitol by inducing enzymatic 

cross-linking with a microbial transglutaminase (MTGase). The tensile strength and 25 

oxygen permeability of the MTGase-modified films increased, while elongation 

decreased. The mechanical and barrier properties of the gelatin films were explainable 

in terms of the total free volume of the film matrix. Thanks to the triple-helix structures 



 19

present in gelatin molecules, the gelatin matrix is usually compact, resulting in low 

oxygen permeability. The intra and intermolecular covalent bonds formed by MTGase 

could increase the free volume of the polymer matrix by hindering helical structure 

formation. The lower number of helical structures could decrease the flexibility of the 

gelatin matrix, while the higher degree of cross-linking could increase its strength. 5 

 

The chemical and enzymatic cross-linking induced, respectively, by 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) and MTGase has been shown to lower the 

solubility of cod gelatin-chitosan films, with chemically induced cross-linking being more 

effective than the enzymatic treatment (Kołodziejska et al., 2006; Kołodziejska & 10 

Piotrowska, 2007). Furthermore, enzymatic cross-linking increased the brittleness of 

the films, making the use of plasticizers necessary. In later work these same authors 

reported that adding glycerol in concentrations of up to 30 % did not change the 

solubility or WVP of MTGase-modified films but decreased tensile strength sharply 

while concomitantly increasing elongation (Kołodziejska & Piotrowska, 2007). The 15 

hydrophilic nature of the added plasticizers could raise the WVP and mask the effect of 

the cross-linking induced by the MTGase. These cross-linked gelatin-chitosan films are 

deemed to be completely biodegradable, since they have been found to be susceptible 

to degradation by proteinase N from Bacillus subtilis, a representative naturally 

occurring microorganism (Sztuka & Kołodziejska, 2008). 20 

 

Chitosan has also been put forward as a valuable component for use in producing 

biodegradable packaging films, since it has been proved to be non-toxic, 

biodegradable, and biocompatible (Coma, Martial-Gros, Garreau, Copinet, Salin & 

Deschamps, 2002). This polymer of N-acetyl-D-glucosamine is obtained from natural 25 

chitin, one of the most abundant natural polymers in living organisms, present in 

crustaceans, insects, and fungi. A number of studies combining gelatin and chitosan 

(normally from crustacean shells) to produce edible films have been carried out 
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(Arvanitoyannis, Nakayama & Aiba, 1998b; Kołodziejska et al., 2006; Sztuka & 

Kołodziejska, 2008). Gelatin and chitosan have been found to interact mainly by means 

of ionic and hydrogen bonds (Taravel & Domard, 1995), thereby affecting the physical 

properties of the mixtures and giving rise to new potential medical and pharmaceutical 

applications for developing a new generation of prosthetic implants, wound dressings, 5 

artificial skin, contact lenses, controlled release drugs, surgical sutures, and the like 

(Sionkowska, Wisniewski, Skopinska, Kennedy & Wess, 2004). 

 

Gelatin extracted from tuna skins by the procedure reported by Montero & Gómez-

Guillén (2000) was used to produce a composite film with chitosan (95 % deacetylated) 10 

obtained from shrimp-shell chitin in a proportion of gelatin:chitosan of 2:1.5. The films 

were plasticized with glycerol + sorbitol (30 g sorbitol + glycerol per 100 g of gelatin + 

chitosan) (Gómez-Estaca, 2007). Dynamic analysis of viscoelasticity performed on the 

film-forming solutions showed appreciable interaction between the polymers, yielding 

stronger films with the tuna-skin gelatin than with a bovine-hide gelatin used for 15 

comparison. This interaction resulted in increased strength and decreased 

deformability and water solubility of the composite film as compared to a pure-gelatin 

film, though the WVP remained unaltered. 

 

Blends of fish gelatin and antimicrobial or antioxidant compounds 20 

To date chitosan has been widely used, not only because of its film-forming capabilities 

but also because of its antioxidant and antimicrobial properties (Coma et al., 2002; 

Huang, Mendis & Kim, 2005). A pig-skin gelatin and chitosan-based edible film was 

employed to enhance the storage life of cold-smoked sardine (Sardina pilchardus) 

(Gómez-Estaca, Montero, Giménez & Gómez-Guillén, 2007). Use of the film reduced 25 

both aerobic plate counts and H2S-producing microorganisms by 2-3 log cycles over 

the course of storage at 5 ºC for 20 days compared with cold-smoked sardine not 

protected by the film. However, this film did not prevent lipid oxidation as measured by 
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the TBARs (thiobarbituric acid reactive substances) method and by the peroxide value. 

Chitosan films have been reported to inhibit both primary and secondary lipid oxidation 

in herring and Atlantic cod (Jeon, Kamil & Shahidi, 2002), mostly as a result of their 

good oxygen barrier properties. In addition, Xue, Yu, Hirata, Terao & Lin (1998) 

reported that the antioxidant mechanism of chitosan could be chelating action of metal 5 

ions and/or bonding with lipids. Thus, presumably both these antioxidant mechanisms 

could be hindered as a result of chitosan-gelatin interactions in composite films. 

 

A coating made from a blend of chitosan and megrim-skin gelatin was applied to chilled 

cod patties to assess the coating's potential as a preservative (López-Caballero et al., 10 

2005). Under refrigeration, the recommended storage conditions for fish patties, this 

blend was able to form a strong gel that acted as a thin protective barrier that melted 

away on cooking. The effect of the coating on rancidity was not conclusively 

determined due to the low TBARs values recorded in the untreated cod. However, the 

coating did prevent against spoilage of the cod patties as reflected by a lower total 15 

volatile basic nitrogen value and by lower microbial counts, in particular counts of 

Gram-negative bacteria. The authors concluded that the coating provided good 

sensory properties and delayed fish spoilage. 

 

Essential oils have been included in edible film formulations prepared from various film-20 

forming polymers such as chitosan (Zivanovic et al., 2005) and milk proteins (Oussalah 

et al., 2004) and have shown promising results as antimicrobials for food packaging. 

Essential oils have also been included in fish-gelatin films in an attempt to improve the 

antimicrobial attributes of the films. Gómez-Estaca, López de Lacey, Gómez-Guillén, 

López-Caballero, & Montero, (2009a) prepared films from a commercial catfish gelatin 25 

admixed with chitosan and clove essential oil and achieved good antimicrobial results 

against Pseudomonas fluorescens, Lactobacillus acidophilus, Listeria innocua and 
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Escherichia coli in vitro. This same formulation also delayed the total bacterial counts 

by 2 log cycles when used for storing raw sliced salmon chilled at 2 ºC for 11 days. 

 

Edible films with antimicrobial properties have been made from cold-water fish-skin 

gelatins with added lysozyme, a food-safe antimicrobial enzyme (Bower, Avena-5 

Bustillos, Olsen, McHugh & Bechtel, 2006). The lysozyme-enhanced films appeared to 

exhibit a slight increase in water vapour permeability compared with control films, and 

they proved effective against Gram-positive bacteria like Bacillus subtilis and 

Streptococcus cremoris. However, these films did not inhibit the growth of Escherichia 

coli, because lysozyme is known not to penetrate the lipopolysaccharide layer of 10 

Gram-negative bacteria (Masschalck & Michiels, 2003). 

 

Rancid off-flavors and undesirable chemical compounds in foods result mostly from 

lipid oxidation, deteriorating quality and shortening shelf life. Because of “clean 

labelling” concerns, there is growing interest in using plant extracts as natural sources 15 

of polyphenolic compounds for food preservation in place of synthetic antioxidants. 

Polyphenols readily mix with edible gelatin-based film formulations to make active 

packaging materials. For instance, the germ plasm of murta (Ugni molinae Turcz), a 

wild shrub growing in southern Chile, has recently been characterized as a source of 

polyphenol antioxidants (Rubilar, Pinelo, Ihl, Scheuermann, Sineiro & Nuñez, 2006). 20 

Two aqueous extracts from the leaves of different murta ecotypes (Soloyo Grande and 

Soloyo Chico) were added to tuna-skin gelatin films (Gómez-Guillén et al., 2007). The 

high phenolic content of these extracts was found to tint the resulting composite films 

yellow-brown and to enhance their light barrier properties as determined by exposing 

the films to light at wavelengths ranging from 690 to 200 nm and measuring absorption. 25 

The higher polyphenol content of the Soloyo Chico ecotype increased the antioxidant 

activity of the film as measured by the FRAP (Ferric Reducing Ability of Plasma) 
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method but decreased the film's mechanical properties because of greater interaction 

between the polyphenols and the proteins. 

 

Another study was performed using aqueous extracts of oregano (Origanum vulgare) 

and rosemary (Rosmarinus officinalis) prepared from freeze-dried leaves (Gómez-5 

Estaca, Bravo, Gómez-Guillén, Alemán & Montero, 2009b). The films were prepared 

from tuna-skin gelatin, and the oregano and rosemary extracts were added to similar 

phenol concentrations. The extracts substantially increased the antioxidant activity of 

the films as measured by the FRAP method, and the oregano extract produced levels 

1.7 times higher than the rosemary extract. Since the total phenol concentrations were 10 

similar, the difference was attributed to the qualitative composition of the extracts. For 

instance, rosmarinic acid, the most abundant polyphenol in both extracts, was found to 

be more concentrated in the oregano extract than in the rosemary extract. The oregano 

extract also contained appreciable quantities of gallic acid and protocatechuic acid, 

whereas the rosemary extract contained chlorogenic acid. These differences affected 15 

both the antioxidant activity of the extracts themselves as well as the degree of gelatin-

polyphenol interaction, which, based on determinations of the total quantities of 

phenolics in the films, was higher in the gelatin-rosemary film. In consequence, the 

potential antioxidant activity of the films containing the rosemary extract was lower than 

that of the films containing the oregano extract.  20 

 

To ascertain the effect of gelatin-based films enriched with aqueous extracts of either 

oregano or rosemary on the shelf life of fish, an experiment was performed using cold-

smoked sardine (Sardina pilchardus) under high pressure (300MPa/20ºC/15min), alone 

or in combination with the active film (Gómez-Estaca et al., 2007). The uncovered fish 25 

exhibited a certain resistance to oxidation ensuing from the deposition of phenols 

during smoking. The phenol content and the resistance to oxidation of the smoked fish 

increased when the product was covered with the films containing the oregano or 
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rosemary extract. The effect was more pronounced when the films were used in 

association with high pressure, probably because of greater migration of antioxidant 

substances from the films. In conclusion, the edible films with the added plant extracts 

were found to be effective at reducing lipid oxidation levels in cold-smoked sardine 

during chilled storage. It is worth noting that the enrichment of gelatin films with vegetal 5 

extracts, especially those from the leaves of aromatic plants, may give certain flavor to 

the smoked fish, however, from an organoleptic point of view, it could be quiet 

acceptable for these kind of products. 

 

In addition to polyphenolic plant extracts, there has also been growing interest in using 10 

other natural antioxidants, such as vitamin E (α-tocopherol), in food systems. In this 

connection Jongjareonrak, Benjakul, Visessanguan & Tanaka (2008) characterized 

films with antioxidant properties made from bigeye snapper and brownstripe red 

snapper-skin gelatin that incorporated α-tocopherol or BHT (butylated-hydroxy-

toluene). For identical additive concentrations (200 ppm), the films containing α-15 

tocopherol displayed appreciably higher radical scavenging capacity (DPPH method) 

than the films containing BHT. FTIR analysis of the composite films revealed that the 

interactions between the two types of gelatin and the additives were different, resulting 

in different alterations in the secondary structure of the protein. In the case of the α-

tocopherol, these interactions brought about reductions in the mechanical properties 20 

and WVP. The films were also used to study their preventive effect on lard oxidation. 

The fish-skin gelatin films were postulated as functioning as a barrier to oxygen 

permeability at the lard’s surface. In any case, no differences in TBARs values were 

observed between lard samples covered with gelatin films with and without 

antioxidants, which was attributed to low levels of additive release from the films. 25 

 

Conclusions 
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The physical properties of fish-gelatin films are highly dependent on gelatin attributes, 

which are in turn dependent not only on intrinsic properties related to the fish species 

used but also on the process employed to manufacture the gelatin. Appreciable 

differences in mechanical and water vapour barrier properties have been reported for 

gelatins made from cold-water (cod, salmon or Alaska Pollack) and warm-water 5 

(tilapia, carp or catfish) fish species, largely as a consequence of differing amino acid 

compositions, in particular the imino acid content (which is higher in warm-water 

species), which may govern overall film strength and flexibility. To this respect, films 

based on fish gelatin are usually more deformable than those based on mammalian 

gelatin. The molecular weight distribution, greatly affected by the gelatin manufacturing 10 

process, is also a key factor in determining mechanical properties. As a rule, the 

predominance of low-molecular-weight fragments in a given gelatin preparation will 

yield weaker, more highly deformable films, especially when plasticizers like sorbitol or 

glycerol are present in the film formulation.  

 15 

Film properties can be enhanced by adding a number of substances to the fish gelatin. 

Various proteins (soy protein isolate), oils (sunflower oil, fatty acids, essential oils), 

polysaccharides (gellan, kappa-carrageenan, pectin, chitosan) and cross-linkers 

(glutaraldehyde, MTGase, EDC) have been used to improve the rheological properties, 

barrier properties, and water resistance of composite fish-gelatin films. Furthermore, 20 

adding active compounds (chitosan, clove essential oil, lysozyme, aqueous extracts of 

murta, oregano or rosemary, α-tocopherol) may confer specific antioxidant and/or 

antimicrobial capabilities that can be used to design active biodegradable packaging 

materials. In such cases, however, special attention needs to be paid to possible 

interactions within the film matrix, which may influence the release of active 25 

components and in consequence could potentially impair the antioxidant and 

antimicrobial properties of the resulting film. 
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Table 1.- Extracting conditions and some gel properties (at 6.67% concentration) of skin gelatin from several marine species. 

 
Species Gel 

strength (g) 
Gelling 

temperature 
(ºC) 

Melting 
temperature 

(ºC) 

Pre-treatment 
Extracting conditions 

Reference 

Atlantic Cod  
Gadus morhua 

95   0.3% Sulfuric acid/Citric acid 0.7% 
45ºC - overnight 

 

Gudmundsson & Hafsteinsson, 
1997 

Cod, Haddock, Pollack 
(Norland HMW fish 
gelatin) 

 41 
101 

131 
161 

Commercial type A gelatin Haug et al., 2004 

Atlantic Cod 
Gadus morhua 

71 10  0.12M Sulfuric acid/0.005M Citric 
acid 

56ºC – 2h 

Arnesen & Gildberg, 2007 

Atlantic salmon 
Salmo salar 

108 12  idem idem 

Alaska Pollack 
Theragra chalcogramma 

982 

2172 
 21.22

16.12 
0.1 M Calcium hydroxide/0.05M 

Acetic acid 
50ºC – 180 min 

Zhou et al., 2006 

Alaska Pollack 
Theragra chalcogramma 

1863 4.6  0.2N Sulfuric acid/0.7% citric acid 
45ºC - overnight 

Avena-Bustillos et al., 2006 

Alaskan pink salmon 
Oncorhynchus gorbuscha 

2163 5.3  idem idem 

Cod  
Gadus morhua 

72 12 13 0.05M acetic acid 
45ºC - overnight 

Gómez-Guillén et al., 2002 

Dover sole 
Solea vulgaris 

341 19 21 idem idem 

Megrim 
Lepidorhombus boscii 

353 17 21 idem idem 

Hake 
Merluccius merluccius 

103 11 15 idem idem 

Squid 
Dosidicus gigas 

10 13 19 idem idem 

Squid 
Dosidicus gigas 

147 12  17 Pepsin (1/8000, w/w) + 0.05M acetic 
acid 

60ºC – overnight 

Giménez et al., 2008 



Bigeye snapper 
Priacanthus macracanthus 

106   0.05 M Acetic acid 
45ºC – 12h 

Jongjareonrak et al., 2006c 

Brownstripe red snapper 
Lutjanus vitta 

219   idem idem 

Nile perch 
Lates niloticus 

2174 

2404 
  Concentrated (ns) Sulfuric acid 

50ºC - ns 
 

Muyonga et al., 2004 

Black tilapia 
Oreochromis mossambicus 

181  28.9 0.2% Sulfuric acid/1% citric acid 
45ºC – 12h  

Jamilah & Harvinder, 2002 

Red tilapia 
Oreochromis nilotica 

128  22.4 idem idem 

Shark (cartilage) 
Isurus oxyrinchus 

1125   1.6N Sodium hydroxide 
65ºC - 3.4h 

Cho et al., 2004 

Yellowfin tuna 
Thunnus albacares 

426 18.7 24.3 1.9% sodium hydroxide 
58ºC – 4.7h 

Cho et al., 2005 

Skipjack tuna 
Katsuwonus pelamis 

126   0.2M Acetic acid 
50ºC – 12h 

Aewsiri et al., 2008 

Skate  
Raja Kenojei 

74 16 19 1.5% Calcium hydroxide 
50º - 3h 

Cho et al., 2006 

Channel catfish 
Ictalurus punctatus 

2526   0.2M sodium hydroxide/0.115 M 
Acetic acid 

55ºC – 180min 

Yang et al., 2007 

Horse mackerel 
Trachurus trachurus 

230 18.87 
15.37 
11.87 
8.17 

 0.2% sulfuric acid/0.7% citric acid 
45ºC - overnight 

Badii & Howell, 2006 

Grass carp 
Catenopharyngodon idella 

267 19.5 26.8 1.2% HCl 
53ºC – 5h 

Kasankala et al., 2007 

Pork  2402 
3012 

 31.22 
30.92 

Commercial  Zhou et al., 2006 

Bovine 216 23.8 33.8 Commercial Cho et al., 2005 
(1) 10% and 30% gelatin solution, respectively 
(2) gels matured at 10ºC and 2ºC, respectively 
(3) gels matured at 2ºC 
(4) gelatin extracted from young and adult fish, respectively 
(5) expressed in kPa 
(6) 3.3% gelatin solution 



(7) 10%, 7%, 5% and 3% gelatin solution, respectively 
 ns: not specified  

 
 
 
 
 



 
 

Table 2.- Amino acid composition (expressed as No. residues/1000 residues) of several marine and mammalian gelatins  
 

Amino acid Atlantic 
Cod 

Atlantic 
salmon 

Alaska 
Pollack 

Halibut 
 

Dover 
sole 

Carp Tilapia Tuna 
 

Nile 
perch  

Giant 
Squid 

Bigeye 
snapper 

Brownstripe 
red snapper 

Bovine Pork 

Hyp 50 60 59 64 61 73 79 78 8.05 80 91 84 83 91 
Asx 52 54 54 51 48 47 48 44 5.91 65 61 56 46 46 
Thr 25 23 24 22 20 27 24 21 3.04 24 32 31 33 18 
Ser 64 46 65 69 44 43 35 48 3.34 37 38 39 39 35 
Glx 78 74 75 96 72 74 69 71 9.85 90 103 105 74 72 
Pro 106 106 96 86 113 124 119 107 12.0 95 134 141 127 132 
Gly 344 366 365 356 352 317 347 336 22.1 327 193 204 342 330 
Ala 96 104 114 108 122 120 123 119 10.1 89 103 108 113 112 
Val 18 15 11 19 17 19 15 28 2.35 21 21 17 19 26 
Met 17 18 12 7 10 12 9 16 1.58 13 17 15 4 4 
Ile 11 9 9 8 8 12 8 7 1.26 18 10 9 11 10 
Leu 22 19 19 20 21 25 23 21 2.83 32 27 25 24 24 
Tyr 3 3 2 3 3 3 2 3 0.86 6 6 5 4 3 
Phe 16 13 10 12 14 14 13 13 2.31 10 21 20 12 14 
His 8 13 6 6 8 4.5 6 7 1.10 8 12 9 4 4 
Hyl 6 nd nd nd 5 4.5 8 6 1.43 15 nd nd 5 6 
Lys 29 24 27 23 27 27 25 25 3.77 13 38 38 25 27 
Arg 56 53 51 50 55 53 47 52 8.15 57 92 94 52 49 
Reference (1) (2) (3) (4) (1) (5) (6) (7) (8) (1) (9) (9) (7) (3) 

 
(1) Gómez-Guillén et al., 2002 
(2) Arnesen & Gildberg , 2007 
(3) Zhou et al., 2006 
(4) Carvalho et al., 2008 
(5) Norland, 1990 
(6) Sarabia et al., 2000 
(7) Gómez-Estaca et al., 2008 
(8) Muyonga et al., 2004ª (expressed as g/ 100 g protein) 
(9) Jongjareonrak et al., 2006c 
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