Structures of electromagnetic type on vector bundles

E. REYES, V. CRUCEANU & P.M. GADEA

Abstract

Structures of electromagnetic type on a vector bundle are introduced and studied. The metric case is also defined and studied. The sets of compatible connections are determined and a canonical connection is defined.

1 Introduction

Structures of electromagnetic type (em-structures) and structures of metric electromagnetic type (mem-structures) on a manifold were progressively introduced in [9, 11, 7] (see also [6]) and studied in detail in [5, 7, 8, 13, 14]. In the present paper we define similar structures for the case of a vector bundle $\xi = (E, \pi, M)$, and relate them to product, complex, para-Hermitian, Hermitian, para-Kähler or indefinite Kähler, structures. (In the sequel, by a pseudo-Riemannian metric) structure a structure including a pseudo-Riemannian metric) structure a structure including a pseudo-Riemannian metric.) Then, we determine the set of connections on ξ compatible with those structures and we introduce a canonical connection. Considering an almost para-Hermitian (resp. indefinite Hermitian) structure of the bundle ξ , we prove that the corresponding diagonal lift of these structures, with respect to a connection on ξ , are mem-structures on the total space E. Finally, some properties of those mem-structures are established.

We recall the physical origin of the topic ([9, 11]). Let M^4 be a spacetime of general relativity, with gravitational tensor g of signature -+++. Let F be the electromagnetic field of type (0, 2), which is skewsymmetric, that is a 2-form. Setting F(X, Y) = g(JX, Y), the tensor field J so defined is the electromagnetic tensor field of type (1, 1) associated to F. We have g(JX, Y) + g(X, JY) = 0. The characteristic equation of J is det $(J - \lambda I) = 0$, which is satisfied by J, and we have

$$J^4 + 2kJ^2 + lI = 0, \qquad k = -\frac{1}{4} \operatorname{trace} J^2, \quad l = \det J.$$

If $x \in M^4$, it is said that J_x is of 1^{st} , 2^{nd} , or 3^{rd} class at x if, respectively,

$$l_x \neq 0, \qquad l_x = 0, \ k_x \neq 0, \qquad l_x = 0, \ k_x = 0.$$

It is said that J is of 1^{st} , 2^{nd} , or 3^{rd} class if it is of such class at every x. The characteristic polynomial of the second class is $J^2(J^2 + 2k)$, but the minimal polynomial is $J(J^2 + 2k)$, so that the condition $J(J^2 + 2k) = 0$ characterizes the second class. The field of an electromagnetic plane wave is of 3^{rd} class. The field of a moving electron is of 2^{nd} class. More complicated fields belong to the 1^{st} class. The equation one gets from the minimal polynomial in the 1^{st} class is

(1.1)
$$(J^2 - f^2)(J^2 + h^2) = 0.$$

with f, h nowhere-vanishing C^{∞} functions on M^4 . Such a tensor field J on a general manifold M determines a G-structure on M.

To handle the nonconstant local cross-section situation corresponding to (1.1), one can use the relationships among G-structures, related sections of an associated bundle and functions of certain kind on M, as follows: Let $(\mathcal{P}, \pi_P, M, H)$ be a principal bundle with group $H, H \times W \to W$ a left action of H on a manifold W, and $(E = \mathcal{P} \times_H W, \pi_E, M, W)$ the associated bundle. A J-subset S of W with corresponding group G, a subgroup of H, is defined by the conditions: (1) $S \subset$ fixpoint set of G, (2) $h \in H, h(S) \cap S \neq \emptyset \Rightarrow h \in G$. For instance, points are J-subsets with G the corresponding isotropy group. A cross-section K of π_E is a J-section if it can be locally represented as the "product" of a cross-section σ of π_P and a S-valued function \tilde{K} , so that

$$K_x = \sigma_x \cdot K_x =$$
 equivalence class of (σ_x, K_x) in E.

Then \widetilde{K} is globally defined, and the σ generate a principal subbundle of \mathcal{P} . K is a constant J-section if and only if \widetilde{K} is constant. Different sections can generate the same subbundle, and in fact, every principal subbundle can be generated by a constant J-section.

Now, let \mathcal{P} be the principal bundle of frames over M, so that $H = GL(n, \mathbb{R})$, and let W be a real vector space. If $J \in W$ is given with the conditions stated above, a J-section generates a J-structure with group G, which is a G-structure. The tensor K has in principle variable components in adapted frames. This is a slight generalization with respect to the usually considered G-structures, given by tensors with constant components, which here correspond to constant J-sections. Since every J-structure is generated by some constant J-section, this generalization is useless for the study of the J-structure itself; but if the emphasis shifts to the study of variable J-sections, the results are significant, specially with respect to the parallelizability of the tensors.

In the particular case of a (1, 1) tensor field J satisfying $(J^2 - f^2)(J^2 + h^2) = 0$, with characteristic polynomial $(x - p)^{r_1}(x - p)^{r_2}(x^2 + q^2)^s$, $r_1, r_2, s \ge 1$, $r_1 + r_2 + 2s = n = \dim M$, the J-subset consists of matrices of the form

$$\begin{pmatrix} pI_{r_1} & & & \\ & -pI_{r_2} & & \\ & & & -qI_s \\ & & & qI_s \end{pmatrix}$$

and the structural group is $G = GL(r_1, \mathbb{R}) \times GL(r_2, \mathbb{R}) \times GL(s, \mathbb{C})$. It is proved ([7]) that the G-structure defined by J above is also defined by a tensor field, say again J, satisfying $(J^2 - 1)(J^2 + 1) = 0$, that is, the relation $J^4 = 1$ considered in the present paper.

Notice that the G-structure is exactly the same, not an associated or equivalent one. In the 4-dimensional case the group reduces to $G = GL(1, \mathbb{R}) \times GL(1, \mathbb{R}) \times GL(1, \mathbb{C})$. It is also proved ([7]) that there exists an adapted Riemannian metric so that the group can be reduced to $G = O(r_1) \times O(r_2) \times U(s)$, and in the 4-dimensional case to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times U(1)$, that is, essentially to the unitary group U(1).

2 Structures of electromagnetic type on a vector bundle

Let $\xi = (E, \pi, M)$ be a C^{∞} vector bundle with total space E and projection map π over a connected paracompact base manifold M. The rank of E is the (common) dimension of the fibres. Let $C^{\infty}(M)$ denote the ring of real functions, $\mathcal{T}_q^p(M)$ the $C^{\infty}(M)$ -module of (p,q)-tensor fields, and $\mathcal{T}(M)$ the $C^{\infty}(M)$ -tensor algebra of M. We respectively denote by $\mathcal{T}_q^p(\xi)$ and $\mathcal{T}(\xi)$ the $C^{\infty}(M)$ -module of tensor fields of type (p,q) and the $C^{\infty}(M)$ -tensor algebra of the bundle ξ .

We recall that an almost product (resp. almost complex) structure on a manifold M is defined by a tensor field J of type (1, 1) satisfying $J^2 = I$ (resp. $J^2 = -I$). An almost para-Hermitian (resp. indefinite almost Hermitian) structure on M is defined by a couple (J, g), given by an almost product (resp. almost complex) structure J and a pseudo-Riemannian metric compatible with J in the sense that g(JX, Y) + g(X, JY) = 0, $X, Y \in \mathfrak{X}(M)$; that is, as an anti-isometry (resp. isometry). A para-Kähler (resp. indefinite Kähler) manifold is a manifold M endowed with an almost para-Hermitian (resp. indefinite almost Hermitian) structure such that the Levi-Civita connection of g parallelizes J.

Definition 2.1. A structure of electromagnetic type on $\xi = (E, \pi, M)$ is an *M*-endomorphism *J* of ξ satisfying

 $J^4 = I$,

with characteristic polynomial $(x-1)^{r_1}(x+1)^{r_2}(x^2+1)^s$, where r_1, r_2, s are constants greater than or equal to 1 such that $r_1 + r_2 + 2s = \operatorname{rank} E$.

Setting $P = J^2$, we have $P^2 = I$, so P is a product structure on ξ , admitting J as a "square root". Conversely, if P is a product structure admitting a "square root" J, then J is an em-structure on ξ . Denoting by ξ_1 and ξ_2 respectively the +1 and -1 eigen-subbundles of P, it is easy to see that ξ_1 and ξ_2 are invariant by J and that $J_1 = J|_{\xi_1}$ defines a product structure of ξ_1 and $J_2 = J|_{\xi_2}$ a complex structure of ξ_2 . So, one has

(2.1)
$$\xi = \xi_1 \oplus \xi_2, \qquad J = J_1 \oplus J_2$$

Conversely, if ξ_1 and ξ_2 are two supplementary subbundles of ξ , J_1 is a product structure of ξ_1 , and J_2 a complex structure of ξ_2 , then $J = J_1 \oplus J_2$ is an em-structure on ξ . Denoting by P_1 and P_2 the projections of ξ on ξ_1 and ξ_2 respectively, we obtain

$$P = P_1 - P_2, \qquad J = J_1 \circ P_1 + J_2 \circ P_2.$$

Summing up we have

Proposition 2.1. An em-structure on the vector bundle $\xi = (E, \pi, M)$ can be defined by each one of the following conditions:

- (1) An M-endomorphism J of ξ satisfying $J^4 = I$,
- (2) A product structure P of ξ admitting a "square root" J,

(3) Two supplementary subbundles ξ_1 and ξ_2 of ξ respectively endowed with a product structure and a complex structure.

Remark 2.1. A product structure P which admits a "square root" is a particular one because rank ξ_2 must be even.

Definition 2.2. A structure of metric electromagnetic type (mem-structure) on the vector bundle ξ is a pair (J,g), where J is an em-structure and g a pseudo-Riemannian metric on ξ satisfying the compability condition

(2.2)
$$g(JX, Y) + g(X, JY) = 0, \quad X, Y \in \xi.$$

Denoting by δ_J the derivation defined by J in the tensor algebra $\mathcal{T}(\xi)$, the relation (2.2) can be written as

 $\delta_J g = 0,$

from which it follows $g(PX, PY) = g(X, Y), X, Y \in \mathfrak{X}(M)$. Therefore, the pair (P, g) is a pseudo-Riemannian product structure of ξ and so the subbundles ξ_1 and ξ_2 are mutually orthogonal with respect to g. Denoting respectively by g_1 and g_2 the restrictions of g to ξ_1 and ξ_2 , from (2.2) we obtain

(2.3)
$$\delta_{J_1} g_1 = 0, \quad \delta_{J_2} g_2 = 0$$

which may be written

(2.4)

$$g_1(J_1X, J_1X) = -g_1(X, Y), \quad g_2(J_2X, J_2Y) = g_2(X, Y), \qquad X, Y \in \mathfrak{X}(\xi).$$

Hence (J_1, g_1) is a para-Hermitian structure of ξ_1 and (J_2, g_2) is an indefinite Hermitian structure of ξ_2 . Conversely, if ξ_1 and ξ_2 are two supplementary subbundles of ξ such that ξ_1 is endowed with a para-Hermitian structure (J_1, g_1) and ξ_2 with an indefinite Hermitian structure (J_2, g_2) , then considering J as given by (2.1) and setting

$$g=g_1\oplus g_2,$$

one obtains a mem-structure on ξ . So we have

Proposition 2.2. A mem-structure (J,g) on ξ is equivalent to a pair of supplementary subbundles ξ_1 and ξ_2 respectively endowed with a para-Hermitian structure (J_1, g_1) and an indefinite Hermitian structure (J_2, g_2) .

Remark 2.2. If (J, g) is a mem-structure on ξ , then we have: rank ξ_1 and rank ξ_2 are even; trace $J_1 = \text{trace } J_2 = 0$; sign $g_1 = 0$.

Setting for a mem-structure (J, g) on ξ :

$$\Omega(X,Y) = g(JX,Y), \quad \Omega_i(X,Y) = g_i(J_iX,Y), \qquad i = 1, 2,$$

it follows that Ω , Ω_1 , and Ω_2 are 2-forms which determine almost symplectic structures of ξ , ξ_1 and ξ_2 , so that

$$\Omega = \Omega_1 \oplus \Omega_2.$$

These 2-forms satisfy

(2.5)
$$\delta_J \Omega = 0, \qquad \delta_{J_1} \Omega_1 = 0, \qquad \delta_{J_2} \Omega_2 = 0.$$

Remark 2.3. The meaning of conditions (2.2), (2.3) and (2.5) is the following: The groups of automorphisms of $\mathfrak{X}(\xi_1)$, $\mathfrak{X}(\xi_2)$, and $\mathfrak{X}(\xi)$ given by

$$\alpha_t = I_1 \cosh t + J_1 \sinh t, \quad \beta_t = I_2 \cos t + J_2 \sin t, \quad \gamma_t = \alpha_t \oplus \beta_t$$

 $t \in \mathbb{R}$, determine actions on the tensor algebras $\mathcal{T}(\xi_1)$, $\mathcal{T}(\xi_2)$, and $\mathcal{T}(\xi)$, which respectively preserve the structures (J_1, g_1, Ω_1) , (J_2, g_2, Ω_2) , and (J, g, Ω) .

3 Compatible connections

3.1 The general case

Definition 3.1. A connection D on the vector bundle ξ is said to be *compatible* with an em-structure J if

$$(3.1) DJ = 0.$$

From this it follows DP = 0, hence D preserves the subbundles ξ_1 and ξ_2 , *i.e.*, for $X \in \mathfrak{X}(M)$, $Y_1 \in \mathfrak{X}(\xi_1)$, $Y_2 \in \mathfrak{X}(\xi_2)$, one has $D_X Y_1 \in \mathfrak{X}(\xi_1)$, $D_X Y_2 \in \mathfrak{X}(\xi_2)$. Setting then

$$D_X^1 Y_1 = D_X Y_1, \ D_X^2 Y_2 = D_X Y_2, \qquad X \in \mathfrak{X}(M), \ Y_1 \in \mathfrak{X}(\xi_1), \ Y_2 \in \mathfrak{X}(\xi_2),$$

we have that D^1 and D^2 are respectively connections on ξ_1 and ξ_2 , so that

(3.2)
$$D_X = D_X^1 \circ P_1 + D_X^2 \circ P_2, \quad D_X^1 J_1 = 0, \quad D_X^2 J_2 = 0, \qquad X \in \mathfrak{X}(M).$$

Conversely, if D^1 and D^2 are respectively connections on ξ_1 and ξ_2 , then D given as in (3.2) is a connection on ξ satisfying DP = 0. If D_1 and D_2 satisfy the respective conditions in (3.2), then D satisfies (3.1) too. Thus, it follows

Proposition 3.1. A connection D on ξ is compatible with the em-structure J if and only if there exist two connections D^1 on ξ_1 and D^2 on ξ_2 , respectively compatible with the product structure J_1 and the complex structure J_2 , so that

$$(3.3) D = D^1 \circ P_1 + D^2 \circ P_2.$$

Consider now on the subbundles ξ_i of ξ , the operators Φ_{J_i} and Ψ_{J_i} given by

$$(3.4) \ (\Phi_{J_i}D^i)_X = \frac{1}{2}(D_X^i + J_i^{-1} \circ D_X^i \circ J_i), \ (\Psi_{J_i}\mathcal{A}^i)_X = \frac{1}{2}(\mathcal{A}_X^i + J_i^{-1} \circ \mathcal{A}_X^i \circ J_i),$$

where $X \in \mathfrak{X}(M)$, D^i is a connection on ξ_i , and $\mathcal{A}^i \in \Lambda^1(M) \otimes \mathfrak{X}(\xi_i) \otimes \Lambda^1(\xi_i)$ (now and in the sequel we take i = 1, 2). From [1, 13] and Proposition 3.1 we obtain

Proposition 3.2. The set of connections on ξ compatible with the em-structure J is given by

$$D_X = \{ (\Phi_{J_1} D^{\circ 1})_X + (\Psi_{J_1} \mathcal{A}^1)_X \} \circ P_1 + \{ (\Phi_{J_2} D^{\circ 2})_X + (\Psi_{J_2} \mathcal{A}^2)_X \} \circ P_2,$$

where $X \in \mathfrak{X}(M)$ and $D^{\circ i}$ is an arbitrary fixed connection on ξ_i , \mathcal{A}^i denotes any element of $\Lambda^1(M) \otimes \mathfrak{X}(\xi_i) \otimes \Lambda^1(\xi_i)$, and Φ_{J_i} , Ψ_{J_i} are given by (3.4).

Definition 3.2. A connection D on ξ is said to be *compatible with the mem*structure (J, g) if

$$DJ = 0, \qquad Dg = 0,$$

From which it follows: DP = 0; $D = D^1 \circ P_1 + D^2 \circ P_2$, where D^i are the restrictions of D to ξ_1 and ξ_2 ; $D^i J_i = 0$; and $D^i g_i = 0$. Conversely, if D^1 and D^2 are connections on ξ_1 and ξ_2 , compatible with the para-Hermitian structure (J_1, g_1) and the indefinite Hermitian structure (J_2, g_2) respectively, then the connection D given by (3.3) is compatible with the mem-structure (J, g) on ξ . So, we have

Proposition 3.3. A connection D on ξ is compatible with the mem-structure (J,g) on ξ , if and only if there are two connections D^1 and D^2 on the subbundles ξ_1 and ξ_2 , respectively compatible with the para-Hermitian structure (J_1, g_1) and the indefinite Hermitian structure (J_2, g_2) , so that D is given by (3.3).

Setting then

$$(3.5) \ (\Phi_{g_i}D^i)_X = \frac{1}{2}(D_X^i + g_i^{-1} \circ D_X^i \circ g_i), \ (\Psi_{g_i}\mathcal{A}^i)_X = \frac{1}{2}(\mathcal{A}_X^i + g_i^{-1} \circ \mathcal{A}_X^i \circ g_i),$$

we obtain from [1], Prop. 3.3, and (2.4)

Proposition 3.4. The set of connections on ξ compatible with the mem-structure (J, g) is given by

$$D_X = \left\{ ((\Phi_{g_1} \circ \Phi_{J_1})D^{\circ 1})_X + ((\Psi_{g_1} \circ \Psi_{J_1})\mathcal{A}^1)_X \right\} \circ P_1 \\ + \left\{ ((\Phi_{g_2} \circ \Phi_{J_2})D^{\circ 2})_X + ((\Psi_{g_2} \circ \Psi_{J_2})\mathcal{A}^2)_X \right\} \circ P_2,$$

where $D^{\circ i}$ is an arbitrary fixed connection on ξ_i , $\mathcal{A}^i \in \Lambda^1(M) \otimes \mathfrak{X}(\xi_i) \otimes \Lambda^1(\xi_i)$, and Φ_{J_i} , Φ_{g_i} , Ψ_{J_i} , Ψ_{g_i} are given by (3.4) and (3.5).

3.2 The case of the tangent bundle

We now consider the case of ξ being the tangent bundle of the manifold M, *i.e.*, $\xi = (TM, \pi, M)$. In this case, for a mem-structure (J, g) on M, the pair (P, g) is a pseudo-Riemannian almost product structure on M, and $(J_1, g_1), (J_2, g_2)$, are respectively a para-Hermitian [4] and an indefinite Hermitian structure [10] on ξ_1 and ξ_2 . If ∇ is a linear connection on M, compatible with P, *i.e.*, $\nabla P = 0$, then its restrictions ∇^1 and ∇^2 to ξ_1 and ξ_2 are connections on these subbundles. If T is the torsion tensor of ∇ , we shall call *torsion tensor* of ∇^i to the tensor fields T^i given by $T^i = P_i \circ T|_{\xi_i}$, or in more detail

$$T^{i}(X_{i}, Y_{i}) = \nabla_{X_{i}} Y_{i} - \nabla_{Y_{i}} X_{i} - P_{i}[X_{i}, Y_{i}], \qquad X_{i}, Y_{i} \in \mathfrak{X}(\xi_{i}).$$

We call tensors of nonholonomy of the distributions ξ_1 and ξ_2 to the tensor fields $S^1 = P_2 \circ T|_{\xi_1}$ and $S^2 = P_1 \circ T|_{\xi_2}$, respectively. We obtain

$$S^{1}(X_{1}, Y_{1}) = -P_{2}[X_{1}, Y_{1}], \qquad S^{2}(X_{2}, Y_{2}) = -P_{1}[X_{2}, Y_{2}].$$

It follows

Proposition 3.5. The distribution ξ_1 (resp. ξ_2) is involutive if and only if $S^1 = 0$ (resp. $S^2 = 0$).

After some computations we obtain from [3, 10, 14]

Proposition 3.6. For a mem-structure (J,g) on a manifold M, there exists a unique linear connection ∇ with torsion tensor T, satisfying the conditions

(3.6)
$$\nabla P = 0, \quad T(PX, Y) = T(X, PY),$$

(3.7)
$$\nabla_{X_i}^i J_i = 0, \quad \nabla_{X_i}^i g_i = 0, \quad T^i(J_i X, I_i Y) = T^i(I_i X, J_i Y).$$

Definition 3.3. We shall call the *canonical connection* associated to the memstructure (J, g) on the manifold M to the connection given by the conditions (3.6) and (3.7).

Remark 3.1. Notice that this connection slightly differs from that given in Theorem 5.3 in [14].

For the canonical connection we obtain from (3.6):

$$\nabla^1_{X_2} Y_1 = P_1[X_2, Y_1], \qquad \nabla^2_{X_1} Y_2 = P_2[X_1, Y_2].$$

Denoting by ξ_1^1 , ξ_1^2 the eigen-subbundles of J_1 corresponding to $\varepsilon = +1$, $\varepsilon = -1$, by π_1^1 , π_1^2 the projection maps of ξ_1 on ξ_1^1 , and ξ_1^2 and by X_1^i , Y_1^i any elements of $\mathfrak{X}(\xi_1^i)$, we obtain from the first equation in (3.7)

$$\begin{split} \nabla^1_{X_1^2} Y_1^1 &= \pi_1^1 P_1[X_1^2, Y_1^1], \qquad \nabla^1_{X_1^1} Y_1^2 = \pi_1^2 P_1[X_1^1, Y_1^2], \\ g_1(\nabla^1_{X_1^1} Y_1^1, Z_1^2) &= X_1^1 g_1(Y_1^1, Z_1^2) - g_1([X_1^1, Z_1^2], Y_1^1), \\ g_1(\nabla^1_{X_1^2} Y_1^2, Z_1^1) &= X_1^2 g_1(Y_1^2, Z_1^1) - g_1([X_1^2, Z_1^1], Y_1^2). \end{split}$$

From the second equation in (3.7) above it results, exactly as in [14, Th. 5.1], the expression for $\nabla^2_{X_2} Y_2$.

For J and g we obtain

$$\begin{aligned} (\nabla_{X_1}J)Y_1 &= 0, \quad (\nabla_{X_2}J)Y_2 &= 0, \quad (\nabla_{X_1}J)Y_2 &= (\nabla_{X_1}^2J_2)Y_2, \\ (\nabla_{X_2}J)Y_1 &= (\nabla_{X_1}^1J_1)Y_1, \quad (\nabla_{X_1}g)(Y_1,Z_1) &= 0, \quad (\nabla_{X_2}g)(Y_2,Z_2) &= 0, \\ (\nabla_{X_2}g)(Y_1,Z_1) &= (L_{X_2}g)(Y_1,Z_1), \quad (\nabla_{X_1}g)(Y_2,Z_2) &= (L_{X_1}g)(Y_2,Z_2), \end{aligned}$$

where L stands for the Lie derivative.

4 Structures of electromagnetic type on the total space of a vector bundle

Let $\xi = (E, \pi, M)$ be a vector bundle and (x^j) , (y^a) , (x^j, y^a) , local coordinates in adapted charts on M, ξ , and E, respectively. We denote by (∂_j) , (e_a) , (∂_j, ∂_a) the corresponding local bases, where $\partial_j = \partial/\partial x^j$, $\partial_a = \partial/\partial y^a$, $j = 1, 2, \ldots, m$, $a, b, c = 1, 2, \ldots, n$ (see [2]). Setting for each $z = (x, y) \in E$, $V_z E = \text{Ker } \pi_{*z}$, we obtain the vertical distribution and so the vertical subbundle of TE, denoted by VE. Let $C^{\infty v} = \{f^v = f \circ \pi : f \in C^{\infty}(M)\}$ be the subring of $C^{\infty}(E)$ naturally isomorphic to $C^{\infty}(M)$. Setting for each $\mu \in \Lambda^1(\xi)$, locally given by $\mu(x) = \mu_a(z)e^a$,

$$\gamma(\mu)(z) = \mu_a(x)y^a,$$

we obtain a class of functions on E enjoying the property that every vector field $A \in \mathfrak{X}(E)$ is uniquely determined by its values on those functions. The mapping γ may be extended to tensor fields $S \in \mathcal{T}_1^1(\xi)$ by

$$(\gamma S)(\gamma(\mu)) = \gamma(\mu \circ S), \qquad \mu \in \Lambda^1(\xi).$$

If $S(x) = S_b^a(x)e_a \otimes e^b$, then $\gamma S(z) = S_b^a(x)y^b\partial_a$, *i.e.*, γS is a vertical vector field on E. Now, let D be a connection on ξ and $X \in \mathfrak{X}(M)$, $u \in \mathfrak{X}(\xi)$. Setting

$$X^{h}(\gamma\mu) = \gamma(D_X\mu), \quad u^{v}(\gamma\mu) = \mu(u) \circ \pi, \qquad \mu \in \Lambda^{1}(\xi),$$

we obtain two vector fields X^h and u^v on E, respectively called the *horizontal* lift of X and the vertical lift of u. We have the useful formulas [2]:

$$(fX)^{h} = f^{v}X^{h}, \ (fu)^{v} = f^{v}u^{v}, \ [X^{h}, Y^{h}] = [X, Y]^{h} - \gamma R_{XY}^{D}, \ [u^{v}, w^{v}] = 0,$$
$$[X^{h}, u^{v}] = (D_{X}u)^{v}, \qquad f \in \mathbb{C}^{\infty}(M), \ X, Y \in \mathfrak{X}(M), \ u, w \in \mathfrak{X}(\xi).$$

Now, putting

$$Q(X^h) = X^h, \quad Q(u^v) = -X^v, \qquad X \in \mathfrak{X}(M), \ u \in \mathfrak{X}(\xi),$$

we obtain an almost product Q structure on E whose +1 and -1 eigendistributions, are respectively called the *horizontal distribution* HE of the connection D and the *vertical distribution* VE of the bundle. For $f \in \mathcal{T}_1^1(M)$, $\varphi \in \mathcal{T}_1^1(\xi)$, $g \in \mathcal{T}_2(M)$, $\psi \in \mathcal{T}_2(\xi)$, we define the *horizontal* lift or the vertical lift $f^h, \varphi^v, g^h, \psi^v$, respectively by

$$\begin{aligned} (4.1) \quad f^{h}(X^{h}) &= f(X)^{h}, \quad f^{h}(u^{v}) = 0, \quad \varphi^{v}(X^{h}) = 0, \quad \varphi^{v}(u^{v}) = \varphi(u)^{v}, \\ g^{h}(X^{h}, Y^{h}) &= g(X, Y)^{v}, \quad g^{h}(X^{h}, u^{v}) = g^{h}(u^{v}, X^{h}) = g^{h}(u^{v}, w^{v}) = 0, \\ \psi^{v}(X^{h}, Y^{h}) &= \psi^{v}(X^{h}, u^{v}) = \psi^{v}(u^{v}, Y^{h}) = 0, \quad \psi^{v}(u^{v}, w^{v}) = \psi(u, w)^{v}, \\ X, Y \in \mathfrak{X}(M), \ u, w \in \mathfrak{X}(\xi). \end{aligned}$$

We then define the *diagonal lifts J* and G for the pairs (f, φ) and (g, ψ) by

(4.2)
$$J = f^h + \varphi^v, \qquad G = g^h + \psi^v.$$

From (4.1) and (4.2) we have

$$J^n(X^h) = (f^n(X))^h, \quad J^n(u^v) = (\varphi^n(u))^v, \qquad n \in \mathbb{N}^*.$$

So $J^4 = I$, that is J is an em-structure on E, if and only if $f^4 = I_1$ and $\varphi^4 = I_2$, that is, either f and φ are both em-structures or one is an em-structure and the other an almost product or almost complex structure, or finally f is an almost product (resp. almost complex) and φ is a complex (resp. product) structure on M and ξ respectively. In the sequel we only consider the last case.

Hence, let J be an em-structure on the total space E of ξ given by the diagonal lift in the first equation in (4.2) of an almost product (resp. almost complex) structure f on the base manifold M and a complex (resp. product) structure φ on the bundle ξ , that is, which satisfy

$$f^2 = \varepsilon I_1, \quad \varphi^2 = -\varepsilon I_2, \qquad \varepsilon = 1 \text{ (resp. } \varepsilon = -1\text{)},$$

with respect to a connection D on ξ . For the almost product structure P associated to J, we obtain $P = \varepsilon Q$, that is, P coincides up to the sign with the almost product structure Q above associated to D.

Now, let G be the diagonal lift in the second equation in (4.2), with respect to D, for the pair (g, ψ) of metrics on M and ξ . From (4.2) we obtain

$$\delta_J G = (\delta_f g)^h + (\delta_\varphi \psi)^v$$

and so $\delta_J G = 0$ if and only if $\delta_f g = 0$ and $\delta_{\varphi} \psi = 0$. It follows

Proposition 4.1. The pair (J, G) of diagonal lifts, with respect to a connection D on ξ , of an almost product (resp. almost complex) structure f on M and a complex (resp. product) structure φ of ξ , and the nondegenerate metrics g on M and ψ on ξ , is a mem-structure on the total space E of ξ if and only if the pair (f,g) is an almost para-Hermitian (resp. indefinite almost Hermitian) structure on M. The pair (φ, ψ) is an indefinite Hermitian (resp. para-Hermitian) structure on ξ .

Denoting by ω and τ the 2-forms associated to the structures (f, g) on M and (φ, ψ) on ξ , and by $\Omega_1, \Omega_2, \Omega$, the 2-forms associated to the structures (f^h, g^h) on HE, (φ^v, ψ^v) on VE and (J, G) on TE, we obtain

$$\Omega_1 = \omega^h, \qquad \Omega_2 = \tau^v, \qquad \Omega = \omega^h \oplus \tau^v.$$

From the hypotheses of Prop. 4.1 it follows

$$\delta_f g = 0, \quad \delta_f \omega = 0, \quad \delta_\varphi \psi = 0, \quad \delta_\varphi \tau = 0, \quad \delta_J G = 0, \quad \delta_J \Omega = 0$$

Remark 4.1. The groups of automorphisms of $\mathfrak{X}(M), \mathfrak{X}(\xi), \mathfrak{X}(E)$, given respectively for $\varepsilon = 1$ and $\varepsilon = -1$, by

$$\alpha_t = I_1 \cosh t + f \sinh t, \quad \beta_t = I_2 \cos t + \varphi \sin t, \quad \gamma_t = \alpha_t^h \oplus \beta_t^h, \qquad t \in \mathbb{R}, \\ \alpha_t = I_1 \cos t + f \sin t, \quad \beta_t = I_2 \cosh t + \varphi \sinh t, \quad \gamma_t = \alpha_t^h \oplus \beta_t^h, \qquad t \in \mathbb{R},$$

determine on the tensor algebras $\mathcal{T}(M), \mathcal{T}(\xi)$, and $\mathcal{T}(E)$, actions which preserve the structures (f, g, ω) , (φ, ψ, τ) and (J, G, Ω) .

For two connections ∇ on M and D on ξ , we define the *horizontal lift* ∇^h on the subbundle HE and the vertical lift D^v on the subbundle VE (each one with respect to the connection D), respectively by

$$\nabla^{h}_{X^{h}}Y^{h} = (\nabla_{X}Y)^{h}, \quad \nabla^{h}_{u^{v}}Y^{h} = 0, \quad D^{v}_{X^{h}}w^{v} = (D_{X}w)^{v}, \quad D^{v}_{u^{v}}w^{v} = 0.$$

Putting them

$$\mathcal{D}_A X = \nabla^h_A H X + D^v_A V X, \quad A, X \in \mathfrak{X}(E),$$

where H and V denote the horizontal and vertical projectors of TE on HEand VE, we obtain a linear connection \mathcal{D} on E, called the *diagonal lift* of the pair (∇, D) with respect to the connection D (see [2]), whose restrictions to the subbundles $\xi_1 = HE$ and $\xi_2 = VE$ are $\mathcal{D}_1 = \nabla^h$ and $\mathcal{D}_2 = D^v$. The nonvanishing components of the torsion and curvature tensors of \mathcal{D} are given by

(4.3)
$$\mathcal{T}(X^h, Y^h) = T^{\nabla}(X, Y)^h + \gamma R^D_{XY},$$
$$\mathcal{R}_{X^h Y^h} Z^h = (R^{\nabla}_{XY} Z)^h, \quad \mathcal{R}_{X^h Y^h} u^v = (R^D_{XY} u)^v,$$

.

where T^{∇}, R^{∇} , and R^D stand for the torsion tensor of ∇ and the curvature tensors of ∇ and D.

For the covariant derivatives, with respect to \mathcal{D} , of the horizontal lift of fand g, and the vertical lift of φ and ψ we obtain

$$\mathcal{D}_{X^h} f^h = (\nabla_X f)^h, \quad \mathcal{D}_{u^v} f^h = 0, \quad \mathcal{D}_{X^h} g^h = (\nabla_X g)^h, \quad \mathcal{D}_{u^v} g^h = 0,$$

$$\mathcal{D}_{X^h} \varphi^v = (D_X \varphi)^v, \quad \mathcal{D}_{u^v} \varphi^v = 0, \quad \mathcal{D}_{X^h} \psi^v = (D_X \psi)^v, \quad \mathcal{D}_{u^v} \psi^v = 0.$$

So, for the diagonal lifts J and G of the pairs (f, φ) and (g, ψ) , it follows

(4.4)
$$\mathcal{D}_{X^h}J = (\nabla_X f)^h + (D_X \varphi)^v, \qquad \mathcal{D}_{u^v}J = 0,$$
$$\mathcal{D}_{X^h}G = (\nabla_X g)^h + (D_X \psi)^v, \qquad \mathcal{D}_{u^v}G = 0.$$

Hence, $\mathcal{D}J = 0$ if and only if $\nabla f = 0$, $D\varphi = 0$; and $\mathcal{D}G = 0$ if and only if $\nabla g = 0$, $D\psi = 0$. From (4.3) and (4.4) it follows, for $P = J^2$, that $\mathcal{D}P = 0$ and $\mathcal{T} \circ P \times I = \mathcal{T} \circ I \times P$ for any connections ∇ on M and D on ξ . After that we have

$$\nabla^h_{X^h} g^h = (\nabla_X g)^h, \quad D^v_{u^v} \varphi^v = 0, \quad D^v_{u^v} \psi^v = 0,$$
$$\nabla^h_{X^h} f^h = (\nabla_X f)^h, \quad \mathcal{T}^1(f^h X, I_1 Y) = (T^{\nabla}(f X, I_1 Y))^h, \quad \mathcal{T}^2(\varphi^v X, I_2 Y) = 0,$$

where $\mathcal{T}^1 = H \circ \mathcal{T}|_{HE}$ and $\mathcal{T}^2 = V \circ \mathcal{T}|_{VE}$. So we obtain

Proposition 4.2. The diagonal lift \mathcal{D} on E, for the connections ∇ on M and D on ξ , is the canonical connection associated to the mem-structure (J, G) if and only if

$$\nabla f = 0, \quad \nabla g = 0, \quad T^{\nabla}(fX, Y) = T^{\nabla}(X, fY),$$

i.e., the connection ∇ is the canonical connection [2, 10] associated to the almost para-Hermitian (resp. indefinite almost Hermitian) structure (f, g) on M.

Also from (4.3) and (4.4) we obtain $\mathcal{D}G = 0$ and $\mathcal{T} = 0$ if and only if $\nabla g = 0$, $T^{\nabla} = 0$, $R^D = 0$ and $D\psi = 0$. Hence we have

Proposition 4.3. The diagonal lift \mathcal{D} of the pair of connections (∇, D) coincides with the Levi-Civita connection of G if and only if ∇ is the Levi-Civita connection of g, D has vanishing curvature and ψ is covariant constant.

For the Nijenhuis tensor of J,

$$N_J(A, B) = [JA, JB] + J^2[A, B] - J[JA, B] - J[A, JB], \quad A, B \in \mathfrak{X}(E),$$

we obtain

$$(4.5) \quad N_J(X^h, Y^h) = N_f(X, Y)^h + \gamma \left(\varepsilon R_{XY}^D - R_{fXfY}^D + \varphi \circ (R_{fXY}^D + R_{XfY}^D)\right),$$
$$N_J(X^h, u^v) = \left(D_{fX}\varphi u - \varepsilon D_X u - \varphi \circ (D_{fX}u + D_X\varphi u)\right)^v, \quad N_J(u^v, w^v) = 0.$$

It follows

Proposition 4.4. The mem-structure J is integrable (i.e., $N_J = 0$, see [8]) if and only if f is a product (resp. a complex) structure in M, the connection D has vanishing curvature and the complex (resp. product) structure φ on ξ is covariant constant.

For the exterior differential of the 2-form Ω associated to the mem-structure (J,G) we obtain

$$d\Omega(X^h, Y^h, Z^h) = d\omega(X, Y, Z)^v, \qquad 3d\Omega(X^h, Y^h, w^v) = -\gamma(i_w \tau \circ R_{XY}^D),$$

$$3d\Omega(X^h, u^v, w^v) = D_X \tau(u, w)^v, \qquad d\Omega(u^v, v^v, w^v) = 0.$$

Hence

Proposition 4.5. The almost symplectic structure Ω associated to the memstructure (J, G) on E is integrable (i.e., $d\Omega = 0$) if and only if the structure (f, g) is almost para-Kähler (resp. indefinite almost Kähler), the connection Dhas vanishing curvature, and the 2-form τ on ξ is covariant constant.

Finally we obtain

Proposition 4.6. For the mem-structure (J, G) on E, the structures J and Ω are simultaneously integrable if and only if the structure (f, g) is a para-Kähler (resp. indefinite Kähler) structure on M, D has vanishing curvature and the pair (φ, ψ) is covariant constant.

References

- V. Cruceanu, Connexions compatibles avec certaines structures sur un fibré vectoriel banachique, Czechoslovak Math. J. 24 (1974) 126–142.
- [2] V. Cruceanu, A new definition for certain lifts on a vector bundle, An. Ştiinţ. Univ. "Al. I. Cuza" Iaşi 42 (1996) 59–73.
- [3] V. Cruceanu & F. Etayo, On almost para-Hermitian manifolds, Algebras Groups Geom. (to appear in 1999).
- [4] V. Cruceanu, P. Fortuny & P.M. Gadea, A survey on Paracomplex Geometry, Rocky Mountain J. Math. 26 (1996) 83–115.
- [5] F. Etayo & E. Reyes, Normality and structure transfer in (J⁴ = 1)-manifolds, Rend. Sem. Fac. Sci. Univ. Cagliari 62 (1992) 1–7.
- [6] J.M. Hernando & P.M. Gadea, Sobre ciertas estructuras polinómicas, Act. VII Jornadas Hisp.-Lusit., S. Feliu de Guixols, vol. 1, 173–176 (1980).
- [7] J.M. Hernando, P.M. Gadea & A. Montesinos Amilibia, G-structures defined by a tensor field of electromagnetic type, Rend. Circ. Mat. Palermo (2) 34 (1985) 202–218.
- [8] J.M. Hernando, E. Reyes & P.M. Gadea, Integrability of tensor structures of electromagnetic type, Publ. Inst. Math. (Beograd) (N.S.) 37 (1985) 113–122.
- [9] V. Hlavatý, Geometry of Einstein's unified field theory, P. Noordhoff, 1958.
- [10] S. Kobayashi & K. Nomizu, Foundations of Differential Geometry, Intersc. Publ., 1963 and 1969.
- [11] R.S. Mishra, Structures in electromagnetic tensor fields, Tensor (N.S.) 30 (1976) 145–156.
- [12] R. Miron & M. Anastasiei, Vector bundles and Lagrange spaces with applications in Relativity, Balkan Soc. Geom. Monographs and Textbooks, n. 1, 1998.
- [13] E. Reyes, A. Montesinos Amilibia & P.M. Gadea, Connections making parallel a metric (J⁴ = 1)-structure, An. Ştiinţ. Univ. "Al. I. Cuza" Iaşi 28 (1982) 49–54.
- [14] E. Reyes, A. Montesinos Amilibia & P.M. Gadea, Connections partially adapted to a metric $(J^4 = 1)$ -structure, Colloq. Math. 54 (1987) 216–229.

Authors' addresses:

Encarna Reyes Iglesias: Department of Mathematics, E.T.S. of Architecture, University of Valladolid, Av. de Salamanca s/n, 47014–Valladolid, Spain. ereyes@cpd.uva.es Vasile Cruceanu: Department of Mathematics, University "Al. I. Cuza", 6600–Iaşi, Romania. cruv@uaic.ro

Pedro Martínez Gadea: Institute of Mathematics and Fundamental Physics, CSIC, Serrano 123, 28006–Madrid, Spain. pmgadea@iec.csic.es