HOMOGENEOUS KÄHLER AND SASAKIAN STRUCTURES RELATED TO COMPLEX HYPERBOLIC SPACES

P. M. GADEA \(^1\) AND J. A. OUBIÑA \(^2\)

\(^1\)Institute of Fundamental Physics, CSIC, Serrano 113-bis, 28006 Madrid, Spain (pmgadea@iec.csic.es)

\(^2\)Departamento de Xeometría e Topoloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain (ja.oubina@usc.es)

Abstract We study homogeneous Kähler structures on a non-compact Hermitian symmetric space and their lifts to homogeneous Sasakian structures on the total space of a principal line bundle over it, and we analyze the case of the complex hyperbolic space.

Keywords: Homogeneous Riemannian structures; homogeneous Kähler structures; homogeneous almost contact Riemannian manifolds; non-compact Hermitian symmetric spaces; Sasakian spaces

2000 Mathematics subject classification: Primary 53C30; Secondary 53C25, 53C35, 53C55

1 Introduction

The general theory of homogeneous Kähler manifolds is well-known, as well as the relation between homogeneous symplectic and homogeneous contact manifolds (see e.g. Boothby and Wang [6], Díaz Miranda and Reventós [9], and Dorfmeister and Nakajima [10]).

As is also widely known, a connected, simply connected and complete Riemannian manifold is a symmetric space if and only if its curvature tensor field is parallel. Ambrose and Singer [2] extended this result to obtain a characterization of homogeneous Riemannian manifolds in terms of the existence of a tensor field \(S \) of type \((1, 2)\) on the manifold, called a homogeneous Riemannian structure (see Tricerri and Vanhecke [26], where a classification of such structures is also given), satisfying certain properties (see (2.1); if \(S = 0 \) one has the symmetric case). Moreover, Sekigawa [24] obtained the corresponding result for almost Hermitian manifolds, defining homogeneous almost Hermitian structures, which were classified by Abbena and Garbiero in [1] (among them the homogeneous Kähler structures). Its odd-dimensional version, the almost contact metric case, has been also studied (see, for instance, [8, 11, 14, 19]).

In Section 2, we give the basic results about homogeneous Riemannian and homogeneous Kähler structures. In particular we consider these structures on Hermitian symmetric spaces of non-compact type. Besides the trivial homogeneous structure \(S = 0 \) associated to the description of one such space as a symmetric space, other structures can be obtained associated to other descriptions as a homogeneous space and, in particular, to its description as a solvable Lie group given by an Iwasawa decomposition (§ 2.2).
We also give a construction of homogeneous Sasakian structures on the bundle space of a principal line bundle over a Hermitian symmetric space of non-compact type, endowed with a connection 1-form that is the contact form of a Sasakian structure on the total space (Proposition 2.5).

The complex hyperbolic space $\mathbb{C}H(n) = SU(n, 1)/S(U(n) \times U(1))$ with the Bergman metric is an irreducible Hermitian symmetric space of non-compact type, and, up to homotheties, is the simply-connected complete complex space form of negative curvature. It has been characterized in [12] in terms of the existence of certain type of homogeneous Kähler structure on it, and in [7] a Lie-theoretical description of its homogeneous structure of linear type is found. In Section 3 we study the homogeneous Kähler structures on $\mathbb{C}H(n)$ from other point of view, which in particular provide an infinite number of descriptions of $\mathbb{C}H(n)$ as non-isomorphic solvable Lie groups. Moreover, we consider the principal line bundle over $\mathbb{C}H(n)$ with its Sasakian structure given in a natural way from a connection form on the bundle, and we obtain the families of homogeneous Sasakian structures on its bundle space following our previous general construction. Summarizing, we get:

(a) All the homogeneous Kähler structures on $\mathbb{C}H(n) \equiv AN$. They are given in terms of some 1-forms related by a system of differential equations on the solvable Lie group AN (Theorem 3.1).

(b) The explicit description of a multi-parametric family of homogeneous Kähler structures on $\mathbb{C}H(n)$, given by using the generators of $\mathfrak{a} + \mathfrak{n}$ (Proposition 3.6), and the corresponding subgroups of the full isometry group $SU(n, 1)$ of AN (Theorem 3.7).

(c) The explicit description of a one-parametric family of homogeneous Sasakian structures on the bundle space of the line bundle $\tilde{M} \to \mathbb{C}H(n)$, given in terms of the horizontal lifts of the generators of $\mathfrak{a} + \mathfrak{n}$ and the fundamental vector field ξ on \tilde{M} (Proposition 3.9), and their associated reductive decompositions (Propositions 3.11 and 3.12). One of them describes \tilde{M} as the complete simply connected φ-symmetric Sasakian space $S\mathbb{U}(n, 1)/SU(n)$, which is also a Sasakian space form.

On the other hand, complex hyperbolic space was the first target spacetime where Nishino’s [21] alternative (i.e., neither necessarily hyper-Kähler nor quaternion-Kähler) $N = (4, 0)$ superstring theory proved to work. This model has some interesting features, among them, not to have (which is a trait common to heterotic σ-models) the incompatibility between the torsion tensor and quaternion-Kähler manifolds found by de Wit and van Nieuwenhuizen [27]. Another peculiarity is that in this case, one of the two scalars of the relevant global multiplet is promoted to coordinates on $\mathbb{C}H(n)$, while the other plays the role of a tangent vector under the holonomy group $SU(n) \times U(1)$.

2 Homogeneous Riemannian Structures

Ambrose and Singer [2] proved that a connected, simply connected and complete Riemannian manifold is homogeneous if and only there exists a tensor field S of type $(1, 2)$ on M such that the connection $\tilde{\nabla} = \nabla - S$ satisfies the Eqs.

$$\tilde{\nabla}g = 0, \quad \tilde{\nabla}R = 0, \quad \tilde{\nabla}S = 0,$$ (2.1)
where \(\nabla \) is the Levi-Civita connection of \(g \) and \(R \) its curvature tensor field, for which we adopt the conventions \(R_{XY}Z = \nabla_{[X,Y]}Z - \nabla_X \nabla_Y Z + \nabla_Y \nabla_X Z, \quad R_{XYZW} = g(R_{XY}Z,W) \).

Such a tensor field \(S \) is called a homogeneous Riemannian structure ([26]). We also denote by \(S \) the associated tensor field of type \((0,3)\) on \(M \) defined by \(S_{XYZ} = g(S_XY,Z) \).

2.1 Homogeneous Kähler structures

An almost Hermitian manifold \((M,g,J)\) is said to be a homogeneous almost Hermitian manifold if there exists a Lie group of holomorphic isometries which acts transitively and effectively on \(M \). Sekigawa proved the following

Theorem 2.1. ([24]) A connected, simply connected and complete almost Hermitian manifold \((M,g,J)\) is homogeneous if and only if there is a tensor field \(S \) of type \((1,2)\) on \(M \) which satisfies Eqs. (2.1) and \(\nabla J = 0 \).

A tensor \(S \) satisfying the Eqs. (2.1) and \(\bar{\nabla} J = 0 \) is called a homogeneous almost Hermitian structure. The almost Hermitian manifold \((M,g,J)\) is Kähler if and only if \(J \) is integrable and the fundamental 2-form \(\Omega \) on \(M \), given by \(\Omega(X,Y) = g(X,JY) \), is closed, or equivalently \(\nabla J = 0 \). In this case, a homogeneous almost Hermitian structure is also called a homogeneous Kähler structure, and we have

Proposition 2.2. A homogeneous Riemannian structure \(S \) on a Kähler manifold \((M,g,J)\) is a homogeneous Kähler structure if and only if \(S \cdot J = 0 \), or equivalently \(S_{XYZ} = S_XJYJZ \) for all the vector fields \(X,Y,Z \) on \(M \).

Corollary 2.3. A connected, simply connected and complete Kähler manifold \((M,g,J)\) is a homogeneous Kähler manifold if and only if there exists a homogeneous Kähler structure on \(M \).

If \((M = G/H,g)\) is a homogeneous Riemannian manifold, where \(G \) is a connected Lie group acting transitively and effectively on \(M \) as a group of isometries and \(H \) is the isotropy group at a point \(o \in M \), then the Lie algebra \(\mathfrak{g} \) of \(G \) may be decomposed into a vector space direct sum \(\mathfrak{g} = \mathfrak{h} + \mathfrak{m} \), where \(\mathfrak{h} \) is the Lie algebra of \(H \) and \(\mathfrak{m} \) is an \(\text{Ad}(H) \)-invariant subspace of \(\mathfrak{g} \). If \(G \) is connected and \(M \) is simply connected then \(H \) is connected, and the condition \(\text{Ad}(H) \mathfrak{m} \subset \mathfrak{m} \) is equivalent to \([\mathfrak{h},\mathfrak{m}] \subset \mathfrak{m} \). The vector space \(\mathfrak{m} \) is identified with \(T_o(M) \) by the isomorphism \(X \in \mathfrak{m} \mapsto X^* \in T_o(M), \) where \(X^* \) is the Killing vector field on \(M \) generated by the one-parameter subgroup \(\{ \exp tX \} \) of \(G \) acting on \(M \). If \(X \in \mathfrak{g} = \mathfrak{h} + \mathfrak{m} \), we write \(X = X^* + X_m \), \((X^* \in \mathfrak{h}, X_m \in \mathfrak{m}) \). The canonical connection \(\bar{\nabla} \) of \(M = G/H \) (with regard to the reductive decomposition \(\mathfrak{g} = \mathfrak{h} + \mathfrak{m} \)) is determined by

\[
(\bar{\nabla}_X Y^*)_o = [X^*, Y^*]_o = -[X, Y]_o^* = -([X, Y]_\mathfrak{m})^* \quad , \quad X, Y \in \mathfrak{m}, \tag{2.2}
\]

and \(S = \nabla - \bar{\nabla} \) satisfies the Ambrose-Singer Eqs. (2.1), and it is the homogeneous Riemannian structure associated to the reductive decomposition \(\mathfrak{g} = \mathfrak{h} + \mathfrak{m} \). If \((M,g)\) is endowed with a compatible almost complex structure \(J \) invariant by \(G \) (so that \((M = G/H,g,J)\) is a homogeneous almost Hermitian manifold), restricting \(J \) to \(T_o(M) \equiv \mathfrak{m} \), we obtain a
linear endomorphism J_o of \mathfrak{m} such that $J_o^2 = -1$, and $J_o \text{ad}_\mathfrak{h} = \text{ad}_\mathfrak{h} J_o$. Moreover, J is integrable if and only if

$$[J_o X, J_o Y]_m - [X, Y]_m - J_o[X, J_o Y]_m - J_o[J_o X, Y]_m = 0$$

for all $X, Y \in \mathfrak{m}$ (\cite{18}, Ch. 10, Prop. 6.5).

Conversely, suppose that (M, g) is a connected, simply connected and complete Riemannian manifold, and let S be a homogeneous Riemannian structure on (M, g). We put $\mathfrak{m} = T_o(M)$, where $o \in M$. If \tilde{R} is the curvature tensor of the connection $\tilde{\nabla} = \nabla - S$, the holonomy algebra \mathfrak{h} of $\tilde{\nabla}$ is the Lie subalgebra of the Lie algebra of antisymmetric endomorphisms $\mathfrak{so}(\mathfrak{m})$ of (\mathfrak{m}, g_o) generated by the operators \tilde{R}_{XY}, where $X, Y \in \mathfrak{m}$. A Lie bracket is defined (Nomizu \cite{20}) in the vector space direct sum $\tilde{\mathfrak{g}} = \mathfrak{h} + \mathfrak{m}$ by

$$[U, V] = UV - VU, \quad U, V \in \mathfrak{h},$$

$$[U, X] = U(X), \quad U \in \mathfrak{h}, \quad X \in \mathfrak{m},$$

$$[X, Y] = \tilde{R}_{XY} + S_x Y - S_y X, \quad X, Y \in \mathfrak{m},$$

and $\tilde{\mathfrak{g}} = \mathfrak{h} + \mathfrak{m}$ is the reductive decomposition corresponding to the homogeneous Riemannian structure S. Let \tilde{G} be the connected simply connected Lie group whose Lie algebra is $\tilde{\mathfrak{g}}$ and \tilde{H} the connected Lie subgroup of \tilde{G} whose Lie algebra is \mathfrak{h}. Then \tilde{G} acts transitively on M as a group of isometries and M is diffeomorphic to \tilde{G}/\tilde{H}. If Γ is the set of the elements of \tilde{G} which act trivially on M, then Γ is a discrete normal subgroup of \tilde{G}, and the Lie group $\tilde{G} = \tilde{G}/\Gamma$ acts transitively and effectively on M as a group of isometries, with isotropy group $H = \tilde{H}/\Gamma$. Then M is diffeomorphic to G/H. Now, if J is a compatible almost complex structure on (M, g) and S is a homogeneous almost Hermitian structure, then the holonomy algebra \mathfrak{h} is a subalgebra of the Lie algebra $\mathfrak{u}(\mathfrak{m}) = \{ A \in \mathfrak{so}(\mathfrak{m}) : A \cdot J = 0 \}$ of the unitary group, and $M \approx \tilde{G}/H \approx G/H$ is a homogeneous almost Hermitian manifold.

2.2 Hermitian symmetric spaces of non-compact type

Suppose that $(M = G/K, g, J)$ is a connected Hermitian symmetric space of non-compact type, where $G = I_0(M)$ is the identity component of the group of (holomorphic) isometries and K is a maximal compact subgroup of G. Then M is simply connected and the Hermitian structure is Kähler. We consider a Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ of the Lie algebra \mathfrak{g} of G, and the Iwasawa decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}$, where \mathfrak{k} is the Lie algebra of K, $\mathfrak{a} \subset \mathfrak{p}$ is a maximal \mathbb{R}-diagonalizable subalgebra of \mathfrak{g}, and \mathfrak{n} is a nilpotent subalgebra. Let A and N be the connected abelian and nilpotent Lie subgroups of G whose Lie algebras are \mathfrak{a} and \mathfrak{n}, respectively. The solvable Lie group AN acts simply transitively on M, so M is isometric to AN equipped with the left-invariant Riemannian metric defined by the scalar product $\langle \cdot, \cdot \rangle$, induced on $\mathfrak{a} + \mathfrak{n} \cong \mathfrak{g}/\mathfrak{k} \cong \mathfrak{p}$ by a positive multiple of $B_{\mathfrak{p} \times \mathfrak{p}}$, where B is the Killing form of \mathfrak{g}.

Now, let \tilde{G} be a connected closed Lie subgroup of G which acts transitively on M. The isotropy group of this action at $o = K \in M$ is $H = \tilde{G} \cap K$. Then $M = G/K$ has also the description $M \equiv \tilde{G}/H$, and $o \equiv H \in \tilde{G}/H$. Let $\tilde{\mathfrak{g}} = \mathfrak{h} + \mathfrak{m}$ be a reductive decomposition of the Lie algebra $\tilde{\mathfrak{g}}$ of \tilde{G} corresponding to $M \equiv \tilde{G}/H$.

4
We have the isomorphisms of vector spaces
\[p \cong g / \mathfrak{k} \cong \hat{g} / \mathfrak{h} \cong m \cong T_o(M) \cong a + n, \]
with
\[\xi: p \xrightarrow{\sim} m, \quad \mu: m \xrightarrow{\sim} T_o(M), \quad \zeta: T_o(M) \xrightarrow{\sim} a + n, \]
given by
\[\xi^{-1}(Z) = Z_p, \quad \mu(Z) = Z_a^*, \quad \zeta^{-1}(X) = X_a^*, \quad Z \in m, \ X \in a + n. \]

For each \(X \in g \), we have \((X_p)^* = 0\) and \((\nabla(X_p)^*)_o = 0\), and since the Levi-Civita connection \(\nabla \) has no torsion, for each \(X, Y \in g \), we have
\[
(\nabla_X Y^*)_o = (\nabla_(X_p)(Y_p)^*)_o = [(X_p)^*, (Y_p)^*)_o = -[X_p, Y_p]^o. \quad (2.4)
\]

The reductive decomposition \(\hat{g} = \mathfrak{h} + m \) defines the homogeneous Riemannian structure \(S = \nabla - \tilde{\nabla} \), where \(\tilde{\nabla} \) is the canonical connection of \(M \equiv \hat{G} / H \) with respect to \(\hat{g} = \mathfrak{h} + m \), which is \(\hat{G} \)-invariant and uniquely determined by \((\nabla_X Y^*)_o = -[X, Y]^o\), for \(X, Y \in m \) (2.2). The tensor field \(S \) is also uniquely determined by its value at \(o \) because \(M \equiv \hat{G} / H \) and \(S \) is \(G \)-invariant. Since \(J \) is \(\hat{G} \)-invariant, from [18], Ch. 10, Prop. 2.7, it follows that \(\nabla J = 0 \), and by Theorem 2.1, \(S \) is a homogeneous Kähler structure.

We have
\[
(S_X Y^*)_o = (\nabla_X Y^*)_o + [X, Y]^o = \nabla_Y X^*, \quad X, Y \in m. \quad (2.5)
\]

By (2.4) and (2.5), \(S \) is given by
\[
S_{X_p} Y^*_o = [X_p, Y_p]^o, \quad X, Y \in m.
\]

Then, for each \(X, Y \in a + n \), we have
\[
S_{X_p} Y^*_o = S_{\xi(X_p)} : \xi(Y_p)^o = [[\xi(X_p)]_o, Y_p]^o.
\]

The complex structure \(J \) on \(M = G / K \) is defined by an element \(E_J \) in the center of \(\mathfrak{k} \), and it defines the complex structure \(J \in \text{End}(a + n) \) such that the following diagram is commutative, and \((a + n, (\ , \), J)\) becomes a Hermitian vector space isomorphic to \((T_o(M), g_o, J_o)\).

\[
\begin{array}{cccccc}
p & \xrightarrow{\xi} & m & \xrightarrow{\mu} & T_o(M) & \xrightarrow{\zeta} & a + n \\
\text{ad}_{E_J} & \downarrow & j_o & \downarrow & j_o & \downarrow & j \\
p & \xrightarrow{\xi} & m & \xrightarrow{\mu} & T_o(M) & \xrightarrow{\zeta} & a + n
\end{array}
\]

Let \(A \) and \(N \) be the connected abelian and nilpotent Lie subgroups of \(G \) whose Lie algebras are \(a \) and \(n \), respectively. The solvable Lie group \(AN \) acts simply transitively on \(M \). Then \(M \) is isometric to \(AN \) equipped with the left-invariant Riemannian metric defined by the scalar product induced on \(a + n \cong \mathfrak{g} / \mathfrak{k} \cong p \) by a positive multiple of \(B_{p \times p} \), where \(B \) is the Killing form of \(g \), so that \(AN \) equipped with the left-invariant almost complex structure defined by \(J \) is a Kähler manifold.
2.3 Homogeneous almost contact Riemannian manifolds

An almost contact structure on a \((2n + 1)\)-dimensional manifold \(M\) is a triple \((\varphi, \xi, \eta)\), where \(\varphi\) is a tensor field of type \((1,1)\), \(\xi\) a vector field (called the characteristic vector field) and \(\eta\) a differential 1-form on \(M\) such that

\[
\varphi^2 = -\text{id} + \eta \otimes \xi, \quad \eta(\xi) = 1.
\]

Then \(\varphi \xi = 0\), \(\eta \circ \varphi = 0\), and \(\varphi\) has rank \(2n\). If \(\bar{g}\) is a Riemannian metric on \(\bar{M}\) such that \(\bar{g}(\varphi X, \varphi Y) = \bar{g}(X, Y) - \eta(X)\eta(Y)\) for all vector fields \(X\) and \(Y\) on \(M\) then \((\varphi, \xi, \eta, \bar{g})\) is said to be an almost contact metric structure on \(\bar{M}\). In this case, \(\bar{g}(\bar{X}, \xi) = \eta(\bar{X})\). The 2-form \(\Phi\) on \(M\) defined by \(\Phi(X, Y) = \bar{g}(\bar{X}, \varphi Y)\) is called the fundamental 2-form of the almost contact metric structure \((\varphi, \xi, \eta, \bar{g})\). If \(d\eta(\bar{X}, \bar{Y}) = \bar{X}\eta(\bar{Y}) - \bar{Y}\eta(\bar{X}) - \eta([\bar{X}, \bar{Y}]) = 2\Phi(\bar{X}, \bar{Y})\), then \((\phi, \xi, \eta, \bar{g})\) is called a contact metric (or contact Riemannian) structure; in particular, \(\eta \wedge (d\eta)^n \neq 0\), that is, \(\eta\) is a contact form on \(\bar{M}\). If

\[
(D_X \varphi)Y = \bar{g}(X, Y)\xi - \eta(Y)\bar{X},
\]

where \(D\) is the Levi-Civita connection of \(\bar{g}\), then \((\varphi, \xi, \eta, \bar{g})\) is called a Sasakian structure, and the manifold \(\bar{M}\) with such a structure is a Sasakian manifold. Sasakian manifolds can also be characterized as normal contact metric manifolds and they are in some sense odd-dimensional analogues of Kähler manifolds (see Blair [3, 4]).

If \((\varphi, \xi, \eta, \bar{g})\) is an almost contact metric structure on \(\bar{M}\) and \((\bar{M} = \bar{G}/H, \bar{g})\) is a homogeneous Riemannian manifold such that \(\varphi\) is invariant under the action of the connected Lie group \(\bar{G}\) (and hence so are \(\xi\) and \(\eta\)) then \((\bar{M}, \varphi, \xi, \eta, \bar{g})\) is called a homogeneous almost contact Riemannian manifold ([8, 14, 19]). Let \(\bar{R}\) be the curvature tensor field of the Levi-Civita connection \(D\) of \(\bar{g}\). Let \(S\) be a homogeneous Riemannian structure on \(\bar{M}\), that is \(\bar{D}\bar{g} = 0, \bar{D}\bar{R} = 0\) and \(\bar{D}S = 0\), where \(\bar{D} = D - S\). If \(S\) satisfies the additional condition \(\bar{D}\varphi = 0\) (and hence \(\bar{D}\xi = 0\) and \(\bar{D}\eta = 0\)), then \(S\) is called a homogeneous almost contact metric structure on \((\bar{M}, \varphi, \xi, \eta, \bar{g})\). From the results of Kirichenko in [17] on homogeneous Riemannian spaces with invariant tensor structure, it follows

Theorem 2.4. A connected, simply connected and complete almost contact metric manifold \((\bar{M}, \varphi, \xi, \eta, \bar{g})\) is a homogeneous almost contact Riemannian manifold if and only if there exists a homogeneous almost contact metric structure on \(\bar{M}\).

A homogeneous almost contact metric structure on a Sasakian manifold will be also called a homogeneous Sasakian structure.

2.4 Principal 1-bundles over almost Hermitian manifolds

Let \((M, g, J)\) be an almost Hermitian manifold and let \(\bar{M}\) be the bundle space of a principal 1-bundle over \(M\). Let \(\eta\) be a connection (form) on the principal bundle \(\pi: \bar{M} \to M\), and let \(\xi\) be the fundamental vector field on \(\bar{M}\) defined by the element 1 of the Lie algebra \(\mathfrak{r}\) of the structure group of the bundle. Then \(\eta(\xi) = 1\). For each vector field \(X\) on \(M\), we denote by \(X^H\) the horizontal lift of \(X\) with respect to \(\eta\). If \(X\) is a vector field on \(M\), its vertical part is \(\eta(\bar{X})\xi\). Then, for any vector fields \(X\) and \(Y\) on \(M\), we have

\[
[X^H, Y^H] = [X, Y]^H + \eta([X^H, Y^H])\xi.
\]
Moreover, \([X^H, \xi] = 0\), because \(X^H\) is invariant under the action of the structural group. We define a tensor field \(\varphi\) of type \((1, 1)\) and a Riemannian metric \(\bar{g}\) on \(\bar{M}\) by

\[
\varphi X^H = (JX)^H, \quad \varphi \xi = 0, \quad \bar{g} = \pi^* g + \eta \otimes \eta, \tag{2.7}
\]

where \(X\) and \(Y\) are vector fields on \(M\). Clearly, \((\varphi, \xi, \eta, \bar{g})\) is an almost contact metric structure on \(\bar{M}\), and we have \(\bar{g}(X^H, Y^H) = g(X, Y) \circ \pi\), and \(\bar{g}(X^H, \xi) = 0\). Let \(\Phi\) be its 2-fundamental form. If \(\Omega\) is the fundamental 2-form of the almost Hermitian manifold \((M, g, J)\), then \(\pi^* \Omega = \Phi\).

If \(\nabla\) and \(D\) are the Levi-Civita connections of \(g\) and \(\bar{g}\), respectively, then (Ogieu [22])

\[
D_{X^H}Y^H = (\nabla_{X^H}Y^H)^H + \frac{1}{2} \eta([X^H, Y^H]) \xi = (\nabla_X Y)^H - \frac{1}{2} d\eta(X^H, Y^H) \xi,
\]

and \(D_{X^H} \xi = D_X \xi = -\varphi X^H\). Now, if \(2\Phi = d\eta\), Eq. (2.6) is satisfied as one can easily see by replacing \((\bar{X}, \bar{Y})\) by \((X^H, Y^H), (X^H, \xi),\) and \((\xi, Y^H)\), respectively. Then, if the almost contact metric structure \((\varphi, \xi, \eta, \bar{g})\) is a contact structure, it is also Sasakian.

Suppose now that the structural group of the principal 1-bundle \(\pi: \tilde{M} \to M\) is \(\mathbb{R}\) and that the base manifold is a 2n-dimensional connected Hermitian symmetric space of non-compact type \((M = G/K, g, J)\), so that \(M\) is isometric to the solvable Lie group \(AN\) as in \(\S\) 2.2. Then \(M\) is holomorphically diffeomorphic to a bounded symmetric domain, i.e., to a simply connected open subset of \(\mathbb{C}^n\) such that each point is an isolated fixed point of an involutive holomorphic diffeomorphism of itself ([15], Ch. VIII, Th. 7.1). Since \(\pi: \tilde{M} \to M\) is a principal line bundle over the paracompact manifold \(M\), then it admits a global section ([18], Ch. I, Th. 5.7), so there exists a diffeomorphism \(\tilde{M} \to M \times \mathbb{R}\), and the bundle space \(\tilde{M}\) may be identified with \(AN \times \mathbb{R}\), with \(\pi\) being the projection on \(AN\). On the other hand, since the fundamental 2-form \(\Omega\) associated to the Kähler structure \((g, J)\) is closed, \(\Omega = d\zeta\) for some real analytic 1-form \(\zeta\) on \(AN\). We consider the connection form \(\eta = 2\pi^* \zeta + dt\) on \(\tilde{M}\), where \(t\) is the coordinate of \(\mathbb{R}\). The vertical vector field \(\xi\) with \(\eta(\xi) = 1\) can be identified with \(\frac{\partial}{\partial t}\), and we consider \(\varphi\) and \(\bar{g}\) given by (2.7). Then \(2\Phi = 2\pi^* \Omega = 2\pi^* d\zeta = d\eta\), and hence \((\varphi, \xi, \eta, \bar{g})\) is a Sasakian structure on \(\tilde{M}\).

If \(\bar{S}\) is a homogeneous almost contact metric structure on \(\tilde{M}\), and \(\bar{D} = D - \bar{S}\), then \(\bar{D}\xi = 0\), and hence \(\bar{S}_{X^H} \xi = D_{X^H} \xi = -\varphi X^H\). We have

Proposition 2.5. Let \((M = G/K, g, J)\) be a connected Hermitian symmetric space of non-compact type. Let \(\pi: \tilde{M} \to M\) be a principal line bundle with connection form \(\eta\) such that the almost contact metric structure \((\varphi, \xi, \eta, \bar{g})\) on \(\tilde{M}\) defined by (2.7) is Sasakian.

(a) If \(S\) is a homogeneous Kähler structure on \(\tilde{M}\) then the tensor field \(\bar{S}\) on \(\tilde{M}\) defined by

\[
\bar{S}_{X^H} Y^H = (S_X Y)^H - \bar{g}(X^H, \varphi Y^H) \xi, \quad \bar{S}_{X^H} \xi = -\varphi X^H \bar{S}, \quad \bar{S} \xi = 0,
\]

for all vector fields \(X\) and \(Y\) on \(M\), is a homogeneous Sasakian structure on \(\tilde{M}\).

(b) \(\{S^t: t \in \mathbb{R}\}\) defined by

\[
S_{X^H}^t Y^H = -\bar{g}(X^H, \varphi Y^H) \xi, \quad S_{X^H}^t \xi = -\varphi X^H \bar{S}^t, \quad S^t \xi = 0,
\]

is a family of homogeneous Sasakian structures on \(\tilde{M}\).
Proof. (a) If \(\bar{D} = D - \bar{S} \), then since \(\bar{S}_{X^uY^uZ^u} = \bar{g}((S_XY)^H, Z^H) = g(S_XY, Z) \circ \pi = -g(Y, S_XZ) \circ \pi = -\bar{g}(Y^H, (S_XZ)^H) = -\bar{S}_{X^uY^uZ^u} \), and \(\bar{S}_{X^uY^u\xi} = -\bar{S}_{X^u\xi Y^u} \), the condition \(\bar{D}\bar{g} = 0 \) is satisfied. On the other hand, if \(\bar{\nabla} = \nabla - S \) we have
\[
\bar{D} X^uY^H = (\bar{\nabla} X Y)^H, \quad \bar{D} X^u\xi = \bar{D} \xi X^H = 0. \tag{2.8}
\]
We can identify \(M = G/K \) with the solvable Lie group \(AN \) in an Iwasawa decomposition \(G = KAN \) and consider the Lie algebra \(\mathfrak{a} + \mathfrak{n} \) of \(AN \). If \(U, \bar{V}, X, \bar{Y}, \bar{Z} \) are horizontal lifts of elements of \(\mathfrak{a} + \mathfrak{n} \) or some of them are the vertical vector field \(\xi \), then
\[
(\bar{D}_G R)_{\bar{X}\bar{Y}\bar{Z}\bar{V}} = -\bar{R}_{\bar{X}\bar{Y}\bar{Z}\bar{D}_G \bar{V}} + \bar{R}_{\bar{X}\bar{Y}\bar{V}\bar{D}_G \bar{Z}} - \bar{R}_{\bar{Z}\bar{V}\bar{X}\bar{D}_G \bar{Y}} + \bar{R}_{\bar{Z}\bar{V}\bar{Y}\bar{D}_G \bar{X}}, \tag{2.9}
\]
so since \(\bar{U}(\bar{R}_{\bar{X}\bar{Y}\bar{Z}\bar{V}}) = 0 \). Now, if \(X, Y, Z, V \in \mathfrak{a} + \mathfrak{n} \), then
\[
\bar{R}_{X^uY^uZ^uV^u} = (R_{XYZV} - 2g(X, JY)g(Z, JV))
+ g(X, JY)g(Y, JZ) - g(X, JZ)g(Y, JV)) \circ \pi,
\]
\[
\bar{R}_{X^uY^uZ^u\xi} = -\bar{g}([X, Y]^H, \varphi Z^H)
+ \bar{g}((\nabla_X Z)^H, \varphi Y^H) - \bar{g}((\nabla_Y Z)^H, \varphi X^H), \tag{2.10}
\]
By using (2.8) and (2.10), the conditions \(\bar{\nabla}R = 0 \) and \(\bar{\nabla}J = 0 \) for the homogeneous Kähler structure \(S \) on \(M \), and the formula \(\bar{R}_{\bar{X}\bar{Y}} \xi = \eta(\bar{X})\bar{Y} - \eta(\bar{Y})\bar{X} \) for the Sasakian manifold \(\tilde{M} \), \(\varphi, \xi, \eta, \bar{g} \) ([4], Prop. 7.3), one obtains from (2.9) that \(\bar{D}\bar{R} = 0 \). Now, \((\bar{D}_U \bar{S})_{X^uY^u} = (\bar{g}(\bar{u}, S_XY) \circ \pi) \), \((\bar{D}_U \bar{S})_{X^u\xi} = (\bar{g}(\bar{u}, S_X\xi) \circ \pi) \), and \(\bar{D}\bar{S} = 0 \). Moreover, \((\bar{D}_X^u\varphi)^Y = (\bar{g}(\bar{u}, \bar{S})) \), \((\bar{D}_X^u\varphi)\xi = 0 \), \(\bar{D}\varphi = 0 \), and \(\bar{S} \) is a homogeneous Sasakian structure on \(M \).

(b) If \(t = 1 \) the corresponding tensor \(S^1 \) coincides with \(\bar{S} \) in (a) for \(S = 0 \). For arbitrary \(t \), if \(\bar{D}^t = D - S^t \) we have \(\bar{D}^t \xi X^H = (t - 1)(JX)^H \), and we get \(\bar{D}^t \bar{g} = 0 \), \(\bar{D}^t R = 0 \), \(\bar{D}^t S^t = 0 \), \(\bar{D}^t \varphi = 0 \). \(\square \)

3 The Complex Hyperbolic Space \(\mathbb{CH}(n) \)

3.1 \(\mathbb{CH}(n) \) as a solvable Lie group

The complex hyperbolic space \(\mathbb{CH}(n) \), which may be identified with the unit ball in \(\mathbb{C}^n \) endowed with the hyperbolic metric of constant holomorphic sectional curvature \(-4\), may also be viewed as the irreducible Hermitian symmetric space of non-compact type \(SU(n, 1)/SU(n) \times U(1) \).

The Lie algebra \(\mathfrak{su}(n, 1) \) of \(SU(n, 1) \) can be described as the subalgebra of \(\mathfrak{sl}(n+1, \mathbb{C}) \) of all matrices of the form
\[
X = \begin{pmatrix} Z & P^T \\ P & ic \end{pmatrix}, \tag{3.1}
\]
where $Z \in \mathfrak{u}(n)$, $c \in \mathbb{R}$, and $P = (p_1, \ldots, p_n) \in \mathbb{C}^n$. The involution τ of $\mathfrak{su}(n, 1)$ given by $\tau(X) = -X^\tau$ defines the Cartan decomposition $\mathfrak{su}(n, 1) = \mathfrak{t} + \mathfrak{p}$, where

$$\mathfrak{t} = \left\{ \left(\begin{array}{cc} Z & 0 \\ 0 & ic \end{array} \right) : \text{tr} Z + ic = 0 \right\} \cong \mathfrak{g}(\mathfrak{u}(n) \oplus \mathfrak{u}(1)), \quad \mathfrak{p} = \left\{ \left(\begin{array}{cc} 0 & p^\tau \\ p & 0 \end{array} \right) \right\}.$$

The element A_0 of \mathfrak{p} defined by $P = (0, \ldots, 0, 1)$ generates a maximal \mathbb{R}-diagonalizable subalgebra \mathfrak{a} of $\mathfrak{su}(n, 1)$. Let f_0 be the linear functional on \mathfrak{a} given by $f_0(A_0) = 1$. If $n > 1$, the set of roots of $(\mathfrak{su}(n, 1), \mathfrak{a})$ is $\Sigma = \{ \pm f_0, \pm 2f_0 \}$, the set $\Pi = \{ f_0 \}$ is a system of simple roots, and the corresponding positive root system is $\Sigma^+ = \{ f_0, 2f_0 \}$. If $n = 1$, $\Sigma = \{ \pm 2f_0 \}$, and $\Pi = \Sigma^+ = \{ 2f_0 \}$.

Let E_{ij} be the matrix in $\mathfrak{g}(n, \mathbb{C})$ such that the entry at the i-th row and the j-th column is 1 and the other entries are all zero. The root vector spaces are

$$\mathfrak{g}_{f_0} = \langle Z_j, Z'_j : 1 \leq j \leq n - 1 \rangle \quad (\text{if } n > 1), \quad \mathfrak{g}_{-f_0} = \langle U_j, W_j : 1 \leq j \leq n - 1 \rangle \quad (\text{if } n > 1),$$

where

$$Z_j = E_{jn} - E_{n,j+1} + E_{n,j} - E_{n+1,j}, \quad Z'_j = i(E_{jn} - E_{j,n+1} + E_{nj} + E_{n+1,j}),$$

$$W_j = E_{jn} + E_{n,j+1} + E_{nj} + E_{n+1,j}, \quad W'_j = i(E_{jn} + E_{j,n+1} + E_{nj} - E_{n+1,j}),$$

$$U = i(E_{nn} - E_{n,n+1} + E_{n+1,n} - E_{n+1,n+1}),$$

$$V = i(E_{nn} + E_{n,n+1} - E_{n+1,n} - E_{n+1,n+1}).$$

If $n > 2$, the centralizer of \mathfrak{a} in \mathfrak{t} is $Z_\mathfrak{t}(\mathfrak{a}) = \langle C_r, f_{jk}, H_{jk} : r, j, k = 1, \ldots, n, j < k \rangle \cong \mathfrak{u}(n-1)$, where

$$C_r = 2iE_{rr} - iE_{nn} - iE_{n+1,n+1}, \quad F_{jk} = E_{jk} - E_{kj}, \quad H_{jk} = i(E_{jk} + E_{kj})$$

and $\mathfrak{su}(n, 1) = (Z_\mathfrak{t}(\mathfrak{a}) + \mathfrak{a}) + \sum_{f \in \Sigma} \mathfrak{g}_f$ is the restricted-root space decomposition. We also have the Iwasawa decomposition $\mathfrak{su}(n, 1) = \mathfrak{t} + \mathfrak{a} + \mathfrak{n}$, where $\mathfrak{n} = \mathfrak{g}_{f_0} + \mathfrak{g}_{-2f_0} = \langle U, Z_j, Z'_j : 1 \leq j \leq n - 1 \rangle$.

If $n = 2$, we put $C = C_{11} = \text{diag}(2i, -i, -i)$, $Z = Z_1$, $Z' = Z'_1$, and in this case C generates $Z_\mathfrak{t}(\mathfrak{a})$, and $\mathfrak{a} + \mathfrak{n} = \langle A_0, U, Z, Z' \rangle$. If $n = 1$, $Z_\mathfrak{t}(\mathfrak{a}) = 0$, we have the restricted-root space decomposition $\mathfrak{su}(1, 1) = \mathfrak{a} + (\mathfrak{g}_{2f_0} + \mathfrak{g}_{-2f_0}) = \langle A_0 \rangle + \langle U, V \rangle$, and the solvable part in the Iwasawa decomposition is $\mathfrak{a} + \mathfrak{n} = \langle A_0, U \rangle$.

By using the Cartan decomposition $\mathfrak{su}(n, 1) = \mathfrak{t} + \mathfrak{p}$, we express each element $X \in \mathfrak{su}(n, 1)$ as the sum $X = X_\mathfrak{t} + X_\mathfrak{p}$ ($X_\mathfrak{t} \in \mathfrak{t}, X_\mathfrak{p} \in \mathfrak{p}$). In particular, we have

$$U_\mathfrak{t} = i(E_{nn} - E_{n+1,n+1}), \quad U_\mathfrak{p} = i(E_{n+1,n} - E_{n,n+1}),$$

$$Z_j \mathfrak{t} = E_{jn} - E_{nj}, \quad (Z_j)_\mathfrak{p} = -(E_{n+1,j} + E_{j,n+1}),$$

$$Z'_j \mathfrak{t} = i(E_{jn} + E_{nj}), \quad (Z'_j)_\mathfrak{p} = i(E_{n+1,j} - E_{j,n+1}).$$

From the basis $\{ A_0, U, Z_j, Z'_j : 1 \leq j \leq n - 1 \}$ of $\mathfrak{a} + \mathfrak{n}$ and the generators of $Z_\mathfrak{t}(\mathfrak{a})$ above, we get the basis $\{ C_r, f_{jk}, H_{jk}, U_\mathfrak{t}, (Z_j)_\mathfrak{t}, (Z'_j)_\mathfrak{t} : r, j, k = 1, \ldots, n, j < k \}$ of \mathfrak{t}, and the basis $\{ A_0, U_\mathfrak{p}, (Z_j)_\mathfrak{p}, (Z'_j)_\mathfrak{p} : 1 \leq j \leq n - 1 \}$ of \mathfrak{p}. Notice that, if $n = 1$, $\mathfrak{t} = \langle U_\mathfrak{t} \rangle$ and $\mathfrak{p} = \langle A_0, U_\mathfrak{p} \rangle$, and if $n = 2$ we have $\mathfrak{t} = \langle C, U_\mathfrak{t}, Z_\mathfrak{t}, Z'_\mathfrak{t} \rangle$, and $\mathfrak{p} = \langle A, U_\mathfrak{p}, Z_\mathfrak{p}, Z'_\mathfrak{p} \rangle$. We
also decompose $\mathfrak{k} = \mathfrak{k}' + \mathfrak{c}$, where $\mathfrak{k}' = [\mathfrak{k}, \mathfrak{k}] = \langle C_r - U_t, F_{jk}, H_{jk}, (Z_r')_t, (Z_j')_t : r, j, k = 1, \ldots, n-1, j < k \rangle \cong \mathfrak{su}(n)$, and \mathfrak{c} is the center of \mathfrak{k}, which is generated by the element $E_I = \frac{1}{2n} (C_1 + \cdots + C_n + (n+1)U_t)$ such that $\text{ad}_{E_I} : \mathfrak{p} \to \mathfrak{p}$ defines the complex structure on $\mathbb{C}H(n)$. By the isomorphisms $\mathfrak{p} \cong \mathfrak{su}(n,1)/\mathfrak{k} \cong \mathfrak{a} + \mathfrak{n}$, we obtain the complex structure J acting on $\mathfrak{a} + \mathfrak{n}$ as follows.

$$J A_0 = -U, \quad JU = A_0, \quad JZ_r = Z'_r, \quad JZ'_r = -Z_r, \quad (3.2)$$

We consider the scalar product \langle , \rangle on $\mathfrak{a} + \mathfrak{n}$ defined by the isomorphism $\mathfrak{a} + \mathfrak{n} \cong \mathfrak{p}$ and $\frac{1}{4(n+1)} B_{\mathfrak{p} \times \mathfrak{p}}$. Then $(\mathfrak{a} + \mathfrak{n}, \langle , \rangle, J)$ is a Hermitian vector space, and the basis $\{ A_0, U, Z_r, Z'_r : 1 \leq r \leq n-1 \}$ of $\mathfrak{a} + \mathfrak{n}$ is orthonormal. We consider the solvable factor AN (with Lie algebra $\mathfrak{a} + \mathfrak{n}$) of the Iwasawa decomposition of $SU(n,1)$ with the invariant metric g and almost complex structure J defined by \langle , \rangle and J, respectively.

The Lie brackets of the elements of the basis of $\mathfrak{a} + \mathfrak{n}$ are given by

$$[A_0, U] = 2U, \quad [A_0, Z_j] = Z_j, \quad [A_0, Z'_j] = Z'_j, \quad [Z_j, Z'_j] = -\delta_{jr}2U, \quad [U, Z_j] = [U, Z'_j] = [Z_j, Z'_j] = [Z'_j, Z''_j] = 0.$$

The Levi-Civita connection ∇ is given by $2g(\nabla X,Y,Z) = g([X,Y],Z) - g([Y,Z],X) + g([Z,X],Y)$ for all $X, Y, Z \in \mathfrak{a} + \mathfrak{n}$. So, the covariant derivatives between generators of $\mathfrak{a} + \mathfrak{n}$ are given by

$$\nabla_{A_0} A_0 = \nabla_{A_0} U = \nabla_{A_0} Z_r = \nabla_{A_0} Z'_r = 0, \quad \nabla_U U = 2U, \quad \nabla_U Z_r = Z'_r, \quad \nabla_U Z'_r = -Z_r, \quad \nabla_{Z'_j} A_0 = -Z'_j, \quad \nabla_{Z'_j} Z_r = Z''_j, \quad \nabla_{Z'_j} Z'_r = -Z'_j, \quad (3.3)$$

The components of the curvature tensor field R are given by

$$R_{A_0U} A_0 = -4U, \quad R_{A_0U} U = 4A_0, \quad R_{A_0U} Z_r = 2Z'_r, \quad R_{A_0U} Z'_r = -2Z_r, \quad R_{A_0Z_j} A_0 = -Z'_j, \quad R_{A_0Z_j} Z_r = Z'_j, \quad R_{A_0Z'_j} Z_r = -\delta_{jr}A_0, \quad R_{A_0Z'_j} Z'_r = \delta_{jr}A_0, \quad R_{A_0Z'_j} Z''_j = \delta_{jr}U, \quad R_{A_0Z''_j} Z'_r = \delta_{jr}A_0, \quad R_{A_0Z''_j} Z''_j = \delta_{jr}U.$$

In particular we see that the invariant metric on AN has constant holomorphic sectional curvature -4.

3.2 Homogeneous Kähler structures on $\mathbb{C}H(n) \equiv AN$

We will determine the homogeneous Kähler structures on $\mathbb{C}H(n) \equiv AN$ in terms of the basis of left-invariant forms $\alpha, \beta, \gamma^j, \gamma'^j, 1 \leq j \leq n-1$, dual to A_0, U, Z_j, Z'_j. If S is
a homogeneous Riemannian structure on $A N$ and $\nabla = \nabla - S$, the condition $\nabla g = 0$ in (2.1) is equivalent to $S_{X Y Z} + S_{X Z Y} = 0$ for all $X, Y, Z \in a + n$. Moreover, $\nabla R = 0$ is equivalent to the condition

$$\left(\nabla X R\right)_{Y_1 Y_2 Y_3 Y_4} = -R_{X Y_1 Y_2 Y_3 Y_4} - R_{Y_1 Y_2 X Y_3 Y_4} - R_{Y_1 Y_2 Y_3 X Y_4} - R_{Y_1 Y_2 Y_3 Y_4} X_4,$$

for all $Y_1, Y_2, Y_3, Y_4 \in a + n$. Replacing (Y_1, Y_2, Y_3, Y_4) by $(A_0, U, A_0, Z_j), (A_0, U, A_0, Z_j')$, (A_0, U, Z_k, Z_j), and (A_0, U, Z_k, Z_j'), one gets that $S_{X U Z_j} = S_{X A_0 Z_j'}$, $S_{X U Z_j'} = -S_{X A_0 Z_j}$, $S_{X Z_k Z_j} = -S_{X Z_k Z_j'}$, and $S_{X Z_k Z_j'} = S_{X Z_k Z_j'}$, respectively. It is easy to see that the condition $\nabla R = 0$ holds if and only if the last four Eqs. are satisfied for all $X \in a + n$. These Eqs. also show (see (3.2)) that the condition $S \cdot J = 0$ of homogeneous Kähler structure (see Proposition 2.2) is fulfilled.

We put

$$\omega(X) = S_{X A_0 U}, \quad \sigma^j(X) = S_{X A_0 Z_j} = -S_{X U Z_j'}, \quad \tau^j(X) = S_{X A_0 Z_j'} = S_{X U Z_j}, \quad \theta^{kj}(X) = S_{X Z_k Z_j} = S_{X Z_k Z_j'}, \quad \psi^{kj}(X) = S_{X Z_k Z_j} = S_{X Z_k Z_j'}. \quad (3.4)$$

We have $\theta^{kj} = \theta^{kj}$ and $\psi^{kj} = -\psi^{kj}$. Now, we must determine the conditions for the 1-forms $\omega, \sigma^j, \tau^j, \theta^{kj}$ and ψ^{kj} under which the condition $\nabla S = 0$ in (2.1) is satisfied. By (3.3), (3.4) and (3.5), the connection $\nabla = \nabla - S$ is given by

$$\begin{align*}
\nabla X A_0 &= -2(\beta + \omega)(X) U - \sum_j (\gamma^j + \sigma^j)(X) Z_j - \sum_k (\gamma^k + \tau^k)(X) Z_j', \\
\nabla X U &= (2\beta + \omega)(X) A_0 - \sum_j (\gamma^j + \tau^j)(X) Z_j + \sum_k (\gamma^k + \sigma^k)(X) Z_j', \\
\nabla X Z_j &= (\gamma^j + \sigma^j)(X) A_0 + (\gamma^j + \tau^j)(X) U + (\beta - \theta^j)(X) Z_j' \\
&\quad + \sum_{k \neq j} (\psi^{kj}(X) Z_k - \theta^{kj}(X) Z_k'), \\
\nabla X Z_j' &= (\gamma^j + \tau^j)(X) A_0 - (\gamma^j + \sigma^j)(X) U + (\theta^j - \beta)(X) Z_j \\
&\quad + \sum_{k \neq j} (\theta^{kj}(X) Z_k - \psi^{kj}(X) Z_k').
\end{align*}$$

Now, replacing (V_1, V_2) in the Eq. $(\nabla X S)(W, V_1, V_2) = 0$ by $(A_0, U), (A_0, Z_j), (A_0, Z_j'), (Z_k, Z_j)$ and (Z_k, Z_j'), respectively, we obtain that the condition $\nabla S = 0$ is equivalent to the following conditions:

$$\begin{align*}
\nabla \omega &= 2 \sum_j ((\gamma^j + \sigma^j) \otimes \tau^j - (\gamma^j + \tau^j) \otimes \sigma^j), \\
\nabla \sigma^j &= -(\beta + \omega + \theta^j) \otimes \tau^j + (\gamma^j + \tau^j) \otimes (\omega + \theta^j) \\
&\quad + \sum_{k \neq j} ((\psi^{kj} \otimes \sigma^k - \theta^{kj} \otimes \tau^k + (\gamma^k + \tau^k) \otimes \theta^{kj} - (\gamma^k + \sigma^k) \otimes \psi^{kj}), \\
\nabla \tau^j &= (\beta + \omega + \theta^j) \otimes \sigma^j - (\gamma^j + \sigma^j) \otimes (\omega + \theta^j) \\
&\quad + \sum_{k \neq j} ((\theta^{kj} \otimes \sigma^k + \psi^{kj} \otimes \tau^k - (\gamma^k + \sigma^k) \otimes \theta^{kj} - (\gamma^k + \tau^k) \otimes \psi^{kj}), \\
\nabla \theta^{kj} &= (\gamma^j + \sigma^j) \otimes \sigma^k + (\gamma^k + \tau^k) \otimes \tau^j - (\gamma^j + \tau^j) \otimes \sigma^k - (\gamma^k + \tau^k) \otimes \sigma^j \\
&\quad + \sum_i \psi^{ik} \wedge \theta^{ij} + \sum_i \theta^{ik} \wedge \psi^{ij}, \\
\nabla \psi^{kj} &= (\gamma^j + \sigma^k) \otimes \sigma^j - (\gamma^j + \sigma^j) \otimes \sigma^k - (\gamma^k + \tau^k) \otimes \tau^j - (\gamma^j + \tau^j) \otimes \tau^k \\
&\quad + \sum_i \theta^{ik} \wedge \theta^{ij} - \sum_i \psi^{ik} \wedge \psi^{ij},
\end{align*}$$

where $\theta^j = \theta^{ij}$. Thus, from (3.4) and (3.5), we have
Theorem 3.1. All the homogeneous Kähler structures on $\mathbb{C}H(n) \equiv AN$ are given by

$$S = \omega \otimes (\alpha \wedge \beta) + \sum_{j=1}^{n-1} \left(\sigma^j \otimes (\alpha \wedge \gamma^j - \beta \wedge \gamma^j) + \tau^j \otimes (\alpha \wedge \gamma^j + \beta \wedge \gamma^j) + \theta^{kj} \otimes (\gamma^j \wedge \gamma^j) \right)$$

$$+ \sum_{1 \leq k < j \leq n-1} (\psi^{kj} \otimes (\gamma^k \wedge \gamma^j + \gamma^k \wedge \gamma^j) + \theta^{kj} \otimes (\gamma^k \wedge \gamma^j + \gamma^j \wedge \gamma^k)),$$

where ω, σ^j, τ^j, θ^{kj}, and ψ^{kj}, $(1 \leq k, j \leq n-1)$, are 1-forms on AN satisfying $\theta^{jk} = \theta^{kj}$, $\psi^{kj} = -\psi^{kj}$ and the Eqs. (3.6).

If $n = 2$, we put $\gamma = \gamma^1$, $\gamma' = \gamma'^1$, so that $\{\alpha, \beta, \gamma, \gamma'\}$ is the basis of left-invariant forms on $AN = \mathbb{C}H(2)$ dual to $\{A_0, U, Z, Z'\}$, and we have

Corollary 3.2. All the homogeneous Kähler structures on the complex hyperbolic plane $\mathbb{C}H(2) \equiv AN$ are given by

$$S = \omega \otimes (\alpha \wedge \beta) + \sigma \otimes (\alpha \wedge \gamma - \beta \wedge \gamma') + \tau \otimes (\alpha \wedge \gamma' + \beta \wedge \gamma) + \theta \otimes (\gamma \wedge \gamma'),$$

where ω, σ, τ and θ are 1-forms on AN satisfying

$$\tilde{\nabla} \omega = 2(\gamma + \sigma) \otimes \tau - 2(\gamma' + \tau) \otimes \sigma = \tilde{\nabla} \theta,$$

$$\tilde{\nabla} \sigma = -(\beta + \omega + \theta) \otimes \gamma + (\gamma' + \tau) \otimes (\omega + \theta),$$

$$\tilde{\nabla} \tau = (\beta + \omega + \theta) \otimes \sigma - (\gamma + \sigma) \otimes (\omega + \theta).$$

If $n = 1$, $\{\alpha, \beta\}$ is the basis of 1-invariant forms on the 2-dimensional solvable Lie group $AN = \mathbb{C}H(1)$ dual to the basis $\{A_0, U\}$ of $\mathfrak{a} + \mathfrak{n}$, and we have

Corollary 3.3. All the homogeneous Kähler structures on the complex hyperbolic line (or real hyperbolic plane) $\mathbb{C}H(1) \equiv AN$ are given by $S = \omega \otimes (\alpha \wedge \beta)$, where ω is a 1-form on AN satisfying $\tilde{\nabla} \omega = 0$.

Remark 3.4. If $S = \omega \otimes (\alpha \wedge \beta)$ is a homogeneous Kähler structure on $\mathbb{C}H(1)$, and $\omega = \lambda \alpha + \mu \beta$, where λ and μ are functions on $\mathbb{C}H(1)$, the condition $\tilde{\nabla} \omega = 0$ together with the structure Eq. $[A_0, U] = 2U$ gives $\lambda = \mu = 0$ or $\lambda^2 + \mu^2 = 4$, and we have that there are infinite homogeneous Kähler structures on $\mathbb{C}H(1)$. However (see [26], Th. 4.4), up to isomorphism, there are only two homogeneous structures on the real hyperbolic plane: one of them is $S = 0$ ($\lambda = \mu = 0$), and the other, which is given by $S_1 X = g(X, Y)\xi_0 - g(\xi_0, Y)X$, with $\xi_0 = 2A_0$ (for $X, Y \in \mathfrak{a} + \mathfrak{n} = \langle A_0, U \rangle$), corresponds to $S = \omega \otimes (\alpha \wedge \beta)$, with $\omega = -2\beta$ ($\lambda = 0$, $\mu = -2$).

Remark 3.5. For each $n > 0$, $S = 0$ is a homogeneous Kähler structure on $\mathbb{C}H(n) \equiv AN$, the corresponding canonical connection is $\tilde{\nabla} = \nabla$, its holonomy algebra is $\mathfrak{k} \cong \mathfrak{su}(n, 1)$, the associated reductive decomposition is the Cartan decomposition $\mathfrak{su}(n, 1) = \mathfrak{k} + \mathfrak{p}$, and it gives the description of $\mathbb{C}H(n)$ as symmetric space $\mathbb{C}H(n) = SU(n, 1)/SU(n) \times U(1))$.

12
Now, our purpose is to obtain nontrivial homogeneous Kähler structures on $\text{CH}(n)$, $n \geq 2$, their associated reductive decompositions, and the corresponding descriptions as homogeneous Kähler spaces.

We will seek for solutions for which $\sigma^j = -\gamma^j$, $\tau^j = -\gamma^j$. In this case, we have

$$\nabla \gamma^j = (\beta - \theta^j) \otimes \gamma^j + \sum_{k \neq j} (\psi^{k} \otimes \gamma^k - \theta^k \otimes \gamma^k),$$

$$\nabla \gamma^j = (\theta^j - \beta) \otimes \gamma^j + \sum_{k \neq j} (\theta^k \otimes \gamma^k + \psi^{k} \otimes \gamma^k).$$

(Obviously, the last summands on the right hand-side in each one of the two Eqs. above do not appear if $n = 2$.) By the second and third Eqs. in (3.6), we must have $\omega = -2\beta$, which also satisfies the first Eqs. in (3.6), because $\nabla \beta = (2\beta + \omega) \otimes \alpha - \sum_j (\gamma^j + \tau^j) \otimes \gamma^j + \sum_j (\gamma^j + \sigma^j) \otimes \gamma^j = 0$. If $n = 2$, by Corollary 3.2, we only have to determine θ such that $\nabla \theta = 0$. If we put $\theta = a \alpha + b \beta + c \gamma + c' \gamma'$, by using also the structure Eqs. of $a + n = \langle A_0, U, Z, Z' \rangle$, we obtain that $c = c' = 0$ and a and b are constant. For $n > 2$ we put $\theta^j = \theta^j = a_j \alpha + b_j \beta$, $\theta^k = c_k \alpha$, $\psi^k = p_k \alpha$, $(k \neq j)$, with $a_j, b_j, c_k, p_k \in \mathbb{R}$. Then, if $\sigma^j = -\gamma^j$, $\tau^j = -\gamma^j$, and $\omega = -2\beta$, Eqs. (3.6) are satisfied if and only if one has

$$p_k (b_k - b_j) = c_k (b_k - b_j) = 0.$$

Consequently, we get

Proposition 3.6. For $n > 2$, the space $\text{CH}(n)$ admits the multi-parametric family of homogeneous Kähler structures $S = S^{a_j, b_j, c_k, p_k}$, given in terms of the generators of $a + n$ by the following table.

<table>
<thead>
<tr>
<th>Table I</th>
<th>A_0</th>
<th>U</th>
<th>Z_j</th>
<th>Z'_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{A_0}</td>
<td>0</td>
<td>0</td>
<td>$a_j Z'j + \sum{l \neq j} (p_{jl} Z_l + c_{jl} Z'_l)$</td>
<td>$-a_j Z_j + \sum_{l \neq j} (p_{jl} Z'l - c{jl} Z_l)$</td>
</tr>
<tr>
<td>S_U</td>
<td>$-2U$</td>
<td>$2A_0$</td>
<td>$b_j Z'_j$</td>
<td>$-b_j Z_j$</td>
</tr>
<tr>
<td>S_Z_k</td>
<td>$-Z_k$</td>
<td>Z'_k</td>
<td>$\delta_{kj} A_0$</td>
<td>$-\delta_{kj} U$</td>
</tr>
<tr>
<td>$S_{Z'_k}$</td>
<td>$-Z'_k$</td>
<td>$-Z_k$</td>
<td>$\delta_{kj} U$</td>
<td>$\delta_{kj} A_0$</td>
</tr>
</tbody>
</table>

The complex hyperbolic plane $\text{CH}(2)$ admits the two-parametric family of homogeneous Kähler structures $S = S^{a, b}$, given in terms of the generators of $a + n$ by the following table.

<table>
<thead>
<tr>
<th>Table II</th>
<th>A_0</th>
<th>U</th>
<th>Z</th>
<th>Z'</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{A_0}</td>
<td>0</td>
<td>0</td>
<td>aZ'</td>
<td>$-aZ$</td>
</tr>
<tr>
<td>S_U</td>
<td>$-2U$</td>
<td>$2A_0$</td>
<td>bZ'</td>
<td>$-bZ$</td>
</tr>
<tr>
<td>S_Z</td>
<td>$-Z$</td>
<td>Z'</td>
<td>A_0</td>
<td>$-U$</td>
</tr>
<tr>
<td>$S_{Z'}$</td>
<td>$-Z'$</td>
<td>$-Z$</td>
<td>U</td>
<td>A_0</td>
</tr>
</tbody>
</table>

If $S = S^{a_j, b_j, c_k, p_k}$, with respect to the basis $\{ A_0, U, Z_j, Z'_j \}$ of $a + n$, the connection $\tilde{\nabla} = \nabla - S$ is given by

$$\tilde{\nabla}_{A_0} Z_j = -a_j Z'_j - \sum_{l \neq j} (p_{jl} Z_l + c_{jl} Z'_l), \quad \tilde{\nabla}_{U} Z_j = (1 - b_j) Z'_j,$$

$$\tilde{\nabla}_{A_0} Z'_j = a_j Z_j - \sum_{l \neq j} (p_{jl} Z'_l - c_{jl} Z_l), \quad \tilde{\nabla}_{U} Z'_j = (b_j - 1) Z_j,$$
with the rest vanishing. Hence, the components of the curvature tensor field are \(\bar{R}_{A_0 U} = -\bar{R}_{Z_k Z_k} = 2 \sum_j (1 - b_j)(Z'_j \otimes \gamma^j - Z_j \otimes \gamma^j) \), and the rest zero.

If \(b_j = 1 \) for all \(j = 1, \ldots, n-1 \), the holonomy algebra of \(\bar{\nabla} \) is trivial and the reductive decompositions associated to the homogeneous Kähler structures given in Proposition 3.6 are given by \(\bar{\mathfrak{g}}^{\lambda_j, c_{kj}, pk_j} = \{0\} + (\mathfrak{a} + \mathfrak{n}) \) with nonvanishing brackets, by (2.3), given by

\[
\begin{align*}
[A_0, U] &= 2U, \quad [A_0, Z_j] = Z_j + a_j Z'_j + \sum_{l \neq j} (p_{jl}Z_l + c_{jl}Z'_l), \\
[A_0, Z'_j] &= -a_j Z_j + Z'_j + \sum_{l \neq j} (p_{jl}Z'_l + c_{jl}Z_l), \quad [Z_j, Z'_j] = -2U.
\end{align*}
\]

(3.7)

On the other hand, the element \(\hat{A}_0 = \lambda_1 C_1 + \cdots + \lambda_{n-1} C_{n-1} + \sum_j (c_{kj}H_{jl} - p_{jl}F_{lj}) + A_0 \) of \(\mathfrak{su}(n, 1) \) generates a subspace \(\mathfrak{e}^{\lambda_j, c_{kj}, pk_j} \) of \(Z_{\mathfrak{g}}(\mathfrak{a}) + \mathfrak{a} \), and the structure Eqs. of the Lie subalgebra \(\mathfrak{e}^{\lambda_j, c_{kj}, pk_j} + \mathfrak{n} \) of \(\mathfrak{su}(n, 1) \) are

\[
\begin{align*}
[\hat{A}_0, U] &= 2U, \quad [\hat{A}_0, Z_j] = Z_j + (3\lambda_j + \sum_{l \neq j} \lambda_l) Z'_j + \sum_{l \neq j} (p_{jl}Z_l + c_{jl}Z'_l), \\
[\hat{A}_0, Z'_j] &= -(3\lambda_j + \sum_{l \neq j} \lambda_l) Z_j + Z'_j + \sum_{l \neq j} (p_{jl}Z'_l + c_{jl}Z_l), \quad [Z_j, Z'_j] = -2U.
\end{align*}
\]

(3.8)

with the rest vanishing. From (3.7) and (3.8), it follows that \(\bar{\mathfrak{g}}^{\lambda_j, c_{kj}, pk_j} \) is isomorphic to \(\mathfrak{e}^{\lambda_j, c_{kj}, pk_j} + \mathfrak{n} \).

Now, for the structure \(S = S^{a_j, b_j, c_{kj}, pk_j} \) in Table I, suppose that \(b_j \neq 1 \) for some \(j = 1, \ldots, n-1 \). Then, \(\rho = \bar{R}_{A_0 U} = -\bar{R}_{Z_k Z_k} = 2 \sum_j (1 - b_j)(Z'_j \otimes \gamma^j - Z_j \otimes \gamma^j) \) generates the holonomy algebra \(\bar{\mathfrak{h}}^{a_j, b_j, c_{kj}, pk_j} \) of \(\bar{\nabla} = \nabla - S \), and the reductive decomposition associated to \(S \) is \(\bar{\mathfrak{g}}^{a_j, b_j, c_{kj}, pk_j} = \bar{\mathfrak{h}}^{a_j, b_j, c_{kj}, pk_j} + (\mathfrak{a} + \mathfrak{n}) \) with structure Eqs., by (2.3), given by

\[
\begin{align*}
[\rho, A_0] &= [\rho, U] = 0, \quad [\rho, Z_j] = 2(1 - b_j)Z'_j, \quad [\rho, Z'_j] = 2(b_j - 1)Z_j, \\
[A_0, U] &= \rho + 2U, \quad [A_0, Z_j] = Z_j + a_j Z'_j + \sum_{l \neq j} (p_{jl}Z_l + c_{jl}Z'_l), \\
[A_0, Z'_j] &= -a_j Z_j + Z'_j + \sum_{l \neq j} (p_{jl}Z'_l + c_{jl}Z_l), \\
\end{align*}
\]

(3.9)

If \(\mathfrak{u} \cong \mathfrak{u}(1) \) is the subspace of \(Z_{\mathfrak{k}}(\mathfrak{a}) \) generated by \(C = C_1 + \cdots + C_{n-1} \), it is easy to see that the Lie algebra \(\bar{\mathfrak{g}}^{a_j, b_j, c_{kj}, pk_j} \) is isomorphic to the Lie subalgebra \(\mathfrak{u} + \mathfrak{e}^{\lambda_j, c_{kj}, pk_j} + \mathfrak{n} = (\mathfrak{C}, A_0, U, Z_j, Z'_j) \) of \(\mathfrak{su}(n, 1) \). We deduce

Theorem 3.7. Let \(S = S^{a_j, b_j, c_{kj}, pk_j} \) be the homogeneous Kähler structure on \(\mathbb{CH}(n) \), \(n > 2 \), given by Table I, and let \(\mathfrak{e}^{\lambda_j, c_{kj}, pk_j} \) be the subspace of \(Z_{\mathfrak{e}}(\mathfrak{a}) \) generated by

\[
A_0 = \sum_j \lambda_j C_j + \sum_{1 \leq j < l \leq n-1} (c_{jl}H_{jl} - p_{jl}F_{lj}) + A_0, \quad (\lambda_j = \frac{a_j - \sum_{l=1}^{l=n} a_l}{2n+2}),
\]

and \(\mathfrak{u} = (C_1 + \cdots + C_{n-1}) \). If \(b_j = 1 \) for all \(j = 1, \ldots, n-1 \), the corresponding group of isometries is the connected subgroup \(E^{\lambda_j, c_{kj}, pk_j} \) of \(SU(n, 1) \) whose Lie algebra is \(\mathfrak{e}^{\lambda_j, c_{kj}, pk_j} + \mathfrak{n} \). If \(b_j \neq 1 \) for some \(j = 1, \ldots, n-1 \), the corresponding group of isometries is the connected subgroup \(U(1)E^{\lambda_j, c_{kj}, pk_j} \) of \(SU(n, 1) \) whose Lie algebra is \(\mathfrak{u} + \mathfrak{e}^{\lambda_j, c_{kj}, pk_j} + \mathfrak{n} \).
If S^a,b is the homogeneous Kähler structure on the complex hyperbolic plane $\mathbb{CH}(2)$ given by Table II, $e^\lambda = (A_0), \lambda = \lambda C + A_0, (\lambda = a/3)$, and $u = (C)$, then the corresponding group of isometries is (i) the subgroup $E^\lambda N$ of $SU(2,1)$ generated by the Lie subalgebra $e^\lambda + n$ of $su(2,1)$, if $b = 1$; (ii) the subgroup $U(1)E^\lambda N$ of $SU(2,1)$ generated by $u + e^\lambda + n$, if $b \neq 1$.

Remark 3.8. Each structure $S^{a_j,b_j,c_{k_j},p_{k_j}}$, with $b_j = 1$ for all j, is also characterized by the fact that $\tilde{\text{Remark 3.8}}$. Each structure $S^{a_j,b_j,c_{k_j},p_{k_j}}$ is the canonical connection for the Lie group $E^{\lambda_j,c_{k_j},p_{k_j}} N$, which is the connection for which every left-invariant vector field on $E^{\lambda_j,c_{k_j},p_{k_j}} N$ is parallel. Each one of these groups acts simply transitively on $\mathbb{CH}(n)$ and it provides a description of the corresponding group of isometries is given in Theorem 3.7 defines a homogeneous Sasakian structure $(\bar{\mathbb{M}}, \bar{\mathbb{G}})$ given in Theorem 3.7 defines a homogeneous Sasakian structure $\bar{\mathbb{M}}$ on $\bar{\mathbb{M}}$ which gives a description of $\bar{\mathbb{M}}$ as either the connected subgroup $E^{\lambda_j,c_{k_j},p_{k_j}} N \times \mathbb{R}$ of $SU(n,1) \times \mathbb{R}$ (if $b_j = 1$ for all $j = 1, \ldots, n - 1$), or as the homogeneous space $(U(1)E^{\lambda_j,c_{k_j},p_{k_j}} N \times \mathbb{R})/U(1)$.

On the other hand, from (b) of Proposition 2.5, it follows

Proposition 3.9. The bundle space $\bar{\mathbb{M}}$ of the line bundle $\pi: \bar{\mathbb{M}} \to \mathbb{CH}(n)$ admits the family of homogeneous Sasakian structures $\{S^t : t \in \mathbb{R}\}$ given, in terms of the horizontal lifts of the generators of $\mathfrak{su}(n)$ and the fundamental vector field ξ, by the following table.

<table>
<thead>
<tr>
<th>Table III</th>
<th>A^H_0</th>
<th>U^H</th>
<th>Z^H_λ</th>
<th>Z^l_H</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^a_{A^H_0}$</td>
<td>0</td>
<td>$-\xi$</td>
<td>0</td>
<td>0</td>
<td>U^H</td>
</tr>
<tr>
<td>$S^a_{U^H}$</td>
<td>ξ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-A^H$</td>
</tr>
<tr>
<td>$S^a_{Z^l_H}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\delta_{k_j}\xi$</td>
<td>$-Z^l_H$</td>
</tr>
<tr>
<td>$S^a_{Z^H_k}$</td>
<td>0</td>
<td>0</td>
<td>$-\delta_{k_j}\xi$</td>
<td>0</td>
<td>Z^H_k</td>
</tr>
<tr>
<td>S^a_{ξ}</td>
<td>tU^H</td>
<td>$-tA^H$</td>
<td>$-tZ^l_H$</td>
<td>tZ^H_k</td>
<td>0</td>
</tr>
</tbody>
</table>

Remark 3.10. For each $p \in \bar{\mathbb{M}}$, if $c_{12}(S^t)^p$ is the map from the tangent space $T_p(\bar{\mathbb{M}})$ to its dual given by $c_{12}(S^t)^p(\bar{X}) = \sum_{i=1}^{2n+1} S^t_{e_i, e_j, \bar{X}}$, then $\{e_i\}$ is an orthonormal basis
of $T_p(M)$, then $c_{12}(S^r)_{p}$ vanishes for every $t \in \mathbb{R}$. According to Tricerri-Vanhecke’s classification of homogeneous Riemannian structures in [26], each S^r is of type $T_2 \oplus T_3$. Moreover, if $t = -1$, we have $S_X Y + S_Y X = 0$, then S^{-1} is of type T_3, which means that M is a naturally reductive Riemannian space. If $t = 2$, then each cyclic sum $\mathfrak{g} \mathfrak{g}^2 S \mathfrak{g} \mathfrak{g}^2$ vanishes, and hence M is of type T_2, which may be also expressed by saying that M is a cotorsionless manifold (see [13]).

We will construct the reductive decomposition $\mathfrak{g}_t = \mathfrak{h}_t + \mathfrak{m}$ associated to each homogeneous Sasakian structure S^r, where $\mathfrak{m} = T_o(M)$, with $o \in M$, is generated by $\tilde{A} = (A^H_0)_o$, $\tilde{U} = (U^H)_o$, $\tilde{Z}_j = (Z^H_j)_o$, $\tilde{Z}_j' = (Z_1^H)_o$, $\tilde{\xi} = \xi_o$, $(1 \leq j \leq n - 1)$, and \mathfrak{h}_t is the holonomy algebra of the connection $D^t = D - S^t$. Each connection D^t is given by

<table>
<thead>
<tr>
<th>Table IV</th>
<th>A^H_0</th>
<th>U^H</th>
<th>Z^H_j</th>
<th>Z^H_j'</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{D}^t_{A_0^H}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\tilde{D}^t_{U^H}$</td>
<td>$-2U^H$</td>
<td>$2A^H_0$</td>
<td>Z^H_j</td>
<td>$-Z^H_j'$</td>
<td>0</td>
</tr>
<tr>
<td>$\tilde{D}^t_{Z^H_j}$</td>
<td>$-Z^H_j$</td>
<td>Z^H_j'</td>
<td>$\delta_{kj}A^H_0$</td>
<td>$-\delta_{kj}U^H$</td>
<td>0</td>
</tr>
<tr>
<td>$\tilde{D}^t_{Z^H_j'}$</td>
<td>$-Z^H_j'$</td>
<td>$-Z^H_j$</td>
<td>$\delta_{kj}U^H$</td>
<td>$\delta_{kj}A^H_0$</td>
<td>0</td>
</tr>
<tr>
<td>\tilde{D}^t_{ξ}</td>
<td>$(1-t)U^H$</td>
<td>$(t-1)A^H_0$</td>
<td>$(t-1)Z^H_j$</td>
<td>$(t-1)Z^H_j'$</td>
<td>0</td>
</tr>
</tbody>
</table>

Let \tilde{D}^t be the curvature of D^t, and let $\{ \tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}, \tilde{\gamma}^j, \tilde{\gamma}^j_k, \tilde{\gamma}^j_k' \}$ be the basis dual to the basis $\{ \tilde{A}, \tilde{U}, \tilde{Z}_j, \tilde{Z}_j', \tilde{\xi} \}$ of \mathfrak{m}. The holonomy algebra \mathfrak{h}_t of D^t is generated by the curvature operators $\rho_0, \rho_r, \varphi_r, \psi_r, \sigma_{jk}, \tau_{jk}$ ($r, j, k = 1, \ldots, n - 1, j < k$), given by

$$
\rho_0 = \tilde{R}^t_{A_0^H} = 2(t - 3)(\tilde{\alpha} \otimes \tilde{U} - \tilde{\beta} \otimes \tilde{A}) + 2(2 - t) \sum_{j=1}^{n-1} (\tilde{\gamma}^j \otimes \tilde{Z}_j' - \tilde{\gamma}^j \otimes \tilde{Z}_j),
$$

$$
\rho_r = \tilde{R}^t_{2Z_r} = 2(2 - t)(\tilde{\alpha} \otimes \tilde{U} - \tilde{\beta} \otimes \tilde{A}) + 2(t - 3)(\tilde{\gamma}^j \otimes \tilde{Z}_j' - \tilde{\gamma}^j \otimes \tilde{Z}_j)
$$

$$
+ 2(t - 2) \sum_{j \neq r} (\tilde{\gamma}^j \otimes \tilde{Z}_j' - \tilde{\gamma}^j \otimes \tilde{Z}_j),
$$

$$
\varphi_r = \tilde{R}^t_{\tilde{A}Z_r} = -\tilde{R}^t_{\tilde{U}Z_r} = -\tilde{\alpha} \otimes \tilde{Z}_r - \tilde{\beta} \otimes \tilde{Z}_r' + \tilde{\gamma}^j \otimes \tilde{Z}_j - \tilde{\gamma}^j \otimes \tilde{Z}_j',
$$

$$
\psi_r = \tilde{R}^t_{\tilde{U}2Z_r} = -\tilde{\alpha} \otimes \tilde{Z}_r - \tilde{\beta} \otimes \tilde{Z}_r' + \tilde{\gamma}^j \otimes \tilde{U} + \tilde{\gamma}^j \otimes \tilde{A},
$$

$$
\sigma_{jk} = \tilde{R}^t_{\tilde{Z}_j2Z_k} = \tilde{R}^t_{\tilde{Z}_k2Z_j} = -\tilde{\gamma}^j \otimes \tilde{Z}_k - \tilde{\gamma}^j \otimes \tilde{Z}_k' + \tilde{\gamma}^k \otimes \tilde{Z}_j + \tilde{\gamma}^k \otimes \tilde{Z}_j',
$$

$$
\tau_{jk} = \tilde{R}^t_{\tilde{Z}_j2Z_k} = \tilde{R}^t_{\tilde{Z}_k2Z_j} = -\tilde{\gamma}^j \otimes \tilde{Z}_k + \tilde{\gamma}^j \otimes \tilde{Z}_k' + \tilde{\gamma}^k \otimes \tilde{Z}_j + \tilde{\gamma}^k \otimes \tilde{Z}_j.
$$

(If $n = 2$, the operators σ_{jk} and τ_{jk} do not appear, that is $\tilde{h}_t = \langle \rho_0, \rho_r, \varphi_r, \psi_r \rangle$, and if $n = 1$, \mathfrak{h}_t is generated by $\rho_0 = \tilde{R}^t_{A_0} = 2(t - 3)(\tilde{\alpha} \otimes \tilde{U} - \tilde{\beta} \otimes \tilde{A})$.) The Lie structure of $\mathfrak{g}_t = \mathfrak{h}_t + \mathfrak{m}$ is defined by the Eqs. (2.3). If $t \neq (2n + 1)/n$, the subalgebra \mathfrak{h}_t is isomorphic to the Lie algebra $\mathfrak{g} = \mathfrak{su}(n) + \mathfrak{u}(1)$ in \mathfrak{g} in § 3.1, via the map $h: \mathfrak{h}_t \to \mathfrak{t}$ given by $h(\rho_0) = 2U_t$, $h(\rho_r) = -(C_r + U_t)$, $h(\varphi_r) = (Z_{k \ell})_r$, $h(\psi_r) = (Z'_r)_r$, $h(\sigma_{jk}) = F_{jk}$, $h(\tau_{jk}) = -H_{jk}$. If we put $\rho_0 = \frac{1}{3}(\rho_0 - 2\xi)$, $\rho_r = -\frac{1}{2} \rho_0 - \rho_r - \xi$, then $\mathfrak{su}(n, 1) = \langle \rho_0, \rho_r, \varphi_r, \psi_r, \sigma_{jk}, \tau_{jk}, A, U, Z_r, Z'_r \rangle$ is an ideal of \tilde{h}_t, and the map h extends to a Lie algebra isomorphism $h: \mathfrak{su}(n, 1) \to \mathfrak{su}(n, 1) = \mathfrak{t} + \mathfrak{p}$, given by $h(\rho_0) = U_t$, $h(\rho_r) = C_r$, $h(\varphi_r) = (Z_r)_t$, $h(\psi_r) = (Z'_r)_t$, $h(\sigma_{jk}) = F_{jk}$, $h(\tau_{jk}) = -H_{jk}$.
\[\hat{h}(A) = A_0, \hat{h}(U) = U_p, \hat{h}(Z) = (Z_r)_p, \hat{h}(Z') = (Z'_r)_p. \] Moreover, \(\tilde{g}_t \) is the semidirect product of \(\mathfrak{su}(n, 1) \) and the line generated by \(\xi \) under the homomorphism \(\delta_t : (\xi) \to \text{Der}(\mathfrak{su}(n, 1)) \), given by \(\delta_t(\xi)(A) = (t - 1)A, \delta_t(\xi)(U) = (1 - t)A, \delta_t(\xi)(Z) = (1 - t)Z_r, \delta_t(\xi)(Z'_r) = (1 - t)Z'_r, \) and \(\delta_t(\xi)((\rho_0, \rho_r, \varphi, \psi_r, \sigma_{jk}, \tau_{jk})) = 0. \) So, we have

Proposition 3.11. The reductive decomposition associated to the homogeneous Sasakian structure \(S^t, t \neq (2n + 1)/n \), on the total space of the line bundle \(M \to \mathbb{C}H(n) \) is \(\tilde{g}_t = h_t + m, \) where \(h_t \cong \mathfrak{su}(n) + \mathfrak{u}(1) \cong \mathfrak{su}(n, 1), \) and \(m = p + (\xi) = \langle A_0, U_p, (Z_r)_p, (Z'_r)_p, \xi : 1 \leq r \leq n - 1 \rangle. \) Moreover, \(\tilde{g}_t \) is the semidirect product \(\mathfrak{g}_t = \mathfrak{g}_0 \ltimes \mathfrak{su}(n, 1), \) where \(\delta_t(\xi)(A_0) = (t - 1)U_p, \delta_t(\xi)(U_p) = (1 - t)A_0, \delta_t(\xi)((Z_r)_p) = (1 - t)(Z'_r)_p, \delta_t(\xi)((Z'_r)_p) = (1 - t)(Z'_r)_p, \) and \(\delta_t(\xi)((h_t)) = 0. \)

If \(n \geq 2 \) and \(t = (2n + 1)/n, \) then it is easy to see that \(\rho_0 = \rho_1 + \cdots + \rho_{n - 1}, \) and we put \(\rho_r = \frac{1}{t} (\rho_0 + \rho_r), 1 \leq r < n - 1. \) In this case, \(\tilde{g}_{2n+1} = h_{2n+1} + m \) coincides with the reductive decomposition \(\mathfrak{su}(n, 1) = \mathfrak{t}' + \mathfrak{m}', \) where \(\mathfrak{t}' = [\mathfrak{t}, \mathfrak{t}] \cong \mathfrak{su}(n), \) and \(\mathfrak{m}' = \mathfrak{p} + (c), \) being \(c \) the center of \(\mathfrak{t}, \) which is generated by the element \(E_J \) such that \(\text{ad}_{E_J} : \mathfrak{p} \to \mathfrak{p} \) defines the complex structure of \(\mathbb{C}H(n). \) In fact, we have the isomorphism \(f : \tilde{g}_{2n+1} \to \mathfrak{su}(n, 1) \) given by \(f(\rho_r) = \frac{1}{t} (U_r - C_r), f(\varphi_r) = (Z_r)_p, f(\psi_r) = (Z'_r)_p, f(\sigma_{rk}) = F_{rk}, f(\tau_{rk}) = -H_{rk}, f(A_0) = (A_0, U_p, f(\tilde{Z}_r) = (Z'_r)_p, \) and \(f(\xi) = -\frac{n + 1}{m} E_J = -\frac{1}{2n}(C_1 + \cdots + C_{n - 1} + (n + 1)U) \), and, in particular, \(f(\tilde{h}_{2n+1}) = \mathfrak{t}' \) and \(f(m) = \mathfrak{m}'. \) If \(n = 1 \) and \(t = 3, \) then \(\rho_0 = 0. \) In this case, \(\tilde{h}_3 = 0, \mathfrak{t}' = [\mathfrak{t}, \mathfrak{t}] = 0, \) \(c = \langle E_J \rangle, E_J = \frac{1}{2} U_t, \tilde{h}_3 = \{0\} + m \) is the reductive decomposition \(\mathfrak{su}(1, 1) = \{0\} + \mathfrak{m}', \) where \(m = \langle A, U, \xi \rangle, m' = \langle A_0, U_0, U_t \rangle, \) and \(f : \tilde{h}_3 \to \mathfrak{su}(1, 1) \) such that \(f(A) = A_0, f(U) = U_0, f(\tilde{E}) = -U_t. \) Hence, we have obtained

Proposition 3.12. The reductive decomposition associated to the homogeneous Sasakian structure \(S^t, \) with \(t = (2n + 1)/n, \) on the total space of the line bundle \(M \to \mathbb{C}H(n) \) is \(\mathfrak{su}(n, 1) = \mathfrak{t}' + \mathfrak{m}', \) where \(\mathfrak{t}' = [\mathfrak{t}, \mathfrak{t}] \cong \mathfrak{su}(n), \) and \(\mathfrak{m}' = \mathfrak{p} + c, c = \langle E_J \rangle \) being the center of \(\mathfrak{t}. \)

Remark 3.13. The reductive decomposition \(\mathfrak{su}(n, 1) = \mathfrak{t}' + \mathfrak{m}' \) associated to the homogeneous Sasakian structure \(S^t, \) with \(t = (2n + 1)/n, \) provides the description of \(M \) as the homogeneous space \(\widetilde{SU}(n, 1)/K', \) where \(\widetilde{SU}(n, 1) \) is the universal covering of \(SU(n, 1), \) and \(K' \cong SU(n) \) is the connected subgroup of \(\widetilde{SU}(n, 1) \) whose Lie algebra is \(\mathfrak{t}' \cong \mathfrak{su}(n). \) (In particular, if \(n = 1, \widetilde{M} \) is the universal covering space of \(SU(2, \mathbb{R}). \)) These spaces appear in the classification by Jiménez and Kowalski [16] of complete simply connected \(\varphi \)-symmetric Sasakian manifolds, and they are also Sasakian space forms (they have constant \(\varphi \)-sectional curvature \(-7). \) Notice that for a Sasakian manifold, the condition of being a locally symmetric space is too strong, because in this case it is a space of constant curvature (Okumura [23]). For this reason, Takahashi [25] introduced \(\varphi \)-symmetric spaces in Sasakian geometry as generalizations of Sasakian space forms. They are also analogues of Hermitian symmetric spaces. A \(\varphi \)-symmetric space is a complete connected regular Sasakian manifold \(\widetilde{M} \) that fibers over a Hermitian symmetric space \(M \) so that the geodesic involutions of \(M \) lift to involutive automorphisms of the Sasakian structure on \(\widetilde{M}. \) Moreover, each complete simply connected \(\varphi \)-symmetric space is a naturally reductive homogeneous space (Blair and Vanhecke [5]).
Acknowledgments
Partially supported by the Ministry of Science and Innovation, Spain, under Project MTM2008-01386.

References

