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Abstract:  We study how the magneto-optical activity in polar 
configuration of continuous Au/Co/Au trilayers is affected by the excitation 
of localized plasmon resonances of an array of Au nanodiscs fabricated on 
top of them over a dielectric SiO2 spacer. We show that the effect of the 
nanodiscs array is twofold. First, it optimizes the absorption of light at 
specific photon energies corresponding to the localized surface plasmon 
excitation of the array, modifying the reflectivity of the system (we define 
this effect as the purely optical contribution). Second, upon localized 
plasmon resonance excitation, the electromagnetic field in the whole system 
is redistributed, and an enhanced magneto-optical activity occurs at those 
energies where the electromagnetic field in the magnetic layer is increased 
(this effect is identified as the purely magneto-optical contribution of the 
nanodiscs array). 
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1. Introduction 

Surface plasmons are electromagnetic modes localized at interfaces between two media with 
permittivity of opposite sign, such as those formed by a dielectric and a metal. For some 
particular geometries, photons can couple to such surface plasmon modes, modifying the 
optical response of the system. For example, localized surface plasmon (LSP) modes are 
responsible for the peaks observed in the absorption spectra of metallic nanoparticles [1,2], 
and propagating surface plasmon polariton (SPP) modes in a thin metallic layer on a dielectric 
substrate are the cause of the strong angular dependence of film reflectivity when measured in 
specific conditions [3]. Also, nanoperforated metallic films show an enhanced optical 
transmission due to the excitation of surface plasmon modes [4]. Surface plasmon excitation 
is associated with a strong electromagnetic field enhancement at the metal/dielectric interface 
[3], which is responsible of phenomena such as surface-enhanced Raman scattering [5,6], 
enhanced fluorescence emission [7] or high-harmonic generation [8]. 

Moreover, the excitation of the surface plasmon modes may also affect the magneto-
optical (MO) response of metal-dielectric systems. For example, a strong enhancement of the 
Kerr rotation and ellipticity has been predicted in nanoparticle metallic layers due to the 
localized surface plasmon resonances of the nanoparticles [9]. Similarly, theoretical studies 
have shown that the extraordinary optical transmission of nanoperforated thin metallic films 
could be controlled by applying a magnetic field [10,11]. Most of these studies are based on 
noble metals whose intrinsic MO activity is however very small and thus require an extremely 
high magnetic field (tens of Tesla) to observe the predicted phenomena. The value of the 
needed magnetic field can be highly reduced when using instead ferromagnetic metals with 
large MO activity. For example a strong reduction of the magneto-optical activity has been 
observed in nanoperforated Co films in the spectral region corresponding to the anomalous 
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optical transmission [12]. On the other hand, a strong enhancement of such MO activity has 
been observed in Co nanoparticles and arrays of Ni nanowires, which has been attributed to 
the localized surface plasmon resonances of the metallic nanostructures [13-15].  

Nevertheless, an important drawback for the use of plain ferromagnetic metals is their 
high absorption losses, since they manifest themselves as a strong damping of the surface 
plasmon features. A feasible way to reduce such damping without losing MO activity is to 
combine noble and ferromagnetic metals, forming thus a so-called magnetoplasmonic system. 
This way, it has been possible to obtain enhanced MO activity upon surface plasmon 
excitation in Au/Co/Au continuous layers when SPPs are excited under Kretschmann-Raether 
configuration [16-18], and also on Au/Co/Au nanodiscs [19] where localized resonances are 
excited at a specific wavelength. In these cases, the plasmon excitation mainly arises from the 
noble metal component of the system (Au), and produces an increase of the amount of 
electromagnetic field located in the MO active material of the system (Co) giving rise to an 
overall MO activity enhancement. Therefore all the components play a crucial role in the 
plasmonic and in the MO activity of the magnetoplasmonic material. 

However, in principle it is not necessary that the plasmon excitation responsible for this 
enhanced MO activity occurs in intimate contact with the ferromagnetic layer. In fact, the 
enhancement is expected to remain as long as the evanescent field of the plasmon excitation 
extends long enough to reach the MO active layer. In this paper, we demonstrate this 
hypothesis by analyzing a set of magnetoplasmonic structures in which the MO active 
component and the plasmonic excitation are spatially separated. The MO region, consisting of 
Au/Co/Au continuous trilayers grown by magnetron sputtering, is coupled to an array of Au 
nanodiscs via a thin SiO2 layer (see Fig. 1). We investigate the influence of the LSP of the Au 
nanodiscs on the magneto-optical response of the trilayer and we analyzed the role of the 
different system parameters. Varying the thickness of the dielectric spacer allows us 
controlling the coupling between the MO and the plasmonic components, while the density of 
nanodiscs allows controlling the light absorbed by the system via localized plasmon 
excitation. 

It is important mentioning here that, in purely plasmonic media, a periodic structure placed 
on top of a continuous metallic layer can be used to excite the SPP of the layer at normal 
incidence [20,21]. In the system under consideration here this effect is very weak due to the 
high absorption introduced by the Co, making the interpretation more straightforward.  

2. Experimental 

Au/Co/Au trilayers, of thickness 16nm/10nm/6nm, were deposited by magnetron sputtering 
on glass substrates. A thickness of 10 nm for the Co layer guarantees the magneto-optical 
response of the trilayer [17]. On top of it, a SiO2 layer of thickness d (d=20, 50 or 80 nm) has 
been deposited by means of electron beam evaporation. Finally, arrays of Au nanodiscs were 
fabricated on top of these layers by means of electron beam lithography and lift-off. The 
nanodiscs diameter, determined by SEM imaging, is about 110 nm, the height is 20 nm, and 
the array periodicity, a, has been varied between 250 and 400 nm. Figure 1 shows a sketch of 
the fabricated structures. 

Fig. 1. Sketch of the analyzed structures, consisting of a Au/Co/Au continuous layer with 
magneto-optical properties separated by a SiO2 spacer of thickness d from a layer of Au 
nanodiscs sustaining localized surface plasmon resonances. The Au nanodiscs, of diameter D, 
form a square array of period a. 
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The localized surface plasmon resonances of the nanodiscs have been determined by 
measuring the extinction spectra in a conventional optical microscope coupled to a 
spectrometer through an optical fiber. The magneto-optical characterization has been carried 
out by means of a Kerr spectrometer in the polar configuration. This system, described 
elsewhere [22], allows obtaining both the Kerr rotation and ellipticity spectra. The sample, 
placed inside an electromagnet that applies a magnetic field perpendicular to its surface high 
enough to saturate it, is illuminated at normal incidence by a monochromatic beam coming 
from a Xe lamp followed by a monochromator. By modulating the beam polarization with a 
photoelastic modulator, the Kerr rotation and ellipticity for each wavelength are determined. 

3. Results 

In a first step, we are interested in determining the LSP associated with the nanodiscs. 
Moreover, as it has been previously mentioned, the structures proposed in this work are 
similar to those used to excite SPP in a continuous underlying Au or Ag layer given that the 
nanodiscs array acts as a grating. To measure then the LSP and explore to what extent the SPP 
are excited in the Au/Co/Au trilayers, the extinction spectra of the whole system, normalized 
with that of a region without discs, have been measured. Figure 2 shows the corresponding 
extinction results for (a) two different samples with equivalent disc array periodicity (a = 300 
nm) but different SiO2 thickness (d = 20 and 50 nm), and (b) for two samples with equivalent 
SiO2 separation (d = 50 nm) but two array periods (a = 250 and 350 nm). In both cases, only a 
single peak is observed between 1.75 and 2 eV corresponding to the Au nanodiscs LSP 
resonance. No peak corresponding to the SPP in the continuous trilayer is observed for any 
value of SiO2 thickness or disc periodicity. This is associated with the presence of the Co, 
which highly damps the SPP. However, the presence of the metal trilayer below the Au 
nanodiscs affects the LSP position due to dipolar coupling effects which take place for very 
short distances between the metallic particles and the layer [23,24]. This can be seen from the 
dependence of the normalized absorption peak on the dielectric spacer thickness (Fig. 2(a)). 
First, the resonance peak shifts from 1.79 eV for 20 nm to 1.83 eV for 50 nm SiO2 thickness, 
but it does not shift for further increase in the dielectric spacer (data not shown here) 
indicating that the interaction decreases with the distance. Second, the intensity of the 
absorption peak decreases when reducing the spacer thickness, indicating that the proximity of 
the continuous trilayer makes less effective the LSP excitation. 

Fig. 2. Extinction spectra of the studied systems, normalized by the transmission signal through 
the Au/Co/Au/SiO2 continuous layers. (a) Period of the nanodiscs array, a = 300 nm and SiO2 
layer thickness d variable. (b) SiO2 layer thickness d = 50 nm and nanodiscs array period a 
variable. The nanodiscs diameter is about 110 nm in all cases. 
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On the other hand, Fig. 2(b) shows the effect of the disc separation for a fixed SiO2 
thickness. In this case, the interaction between each of the discs and the continuous trilayer is 
kept constant and the change in the array periodicity modifies the energy coupled to the SPP. 
However, the peak position is found to be the same in both cases (1.83 eV), corroborating the 
fact that no SPP excitation is observed in these systems under normal incidence. (The 
differences in the intensity of the absorption peaks in this case are due to the change in discs 
density). 

Next, the MO properties of the fabricated structures were measured in polar configuration. 
In this configuration, normal incidence is used to measure the change in the state of 
polarization of the light reflected by the structure at the magnetic saturation state when the 
magnetic field is perpendicular to the sample surface. In Fig. 3 we present representative polar 
Kerr rotation and ellipticity spectra for a structure with an array period of 300 nm and a SiO2 
thickness of 50 nm. Each magnitude was measured in areas with and without discs on top of 
the SiO2/trilayer structures. The strongest differences between the two zones appear in the 
spectral region corresponding to the LSP excitation of the Au nanodiscs (see Fig. 2). 

Fig. 3. Kerr rotation and ellipticity spectra, in polar configuration (see upper sketch), for a 
structure with a nanodiscs array period a = 300 nm and a SiO2 thickness of 50 nm. The dotted 
lines correspond to areas of the sample with discs on top of the SiO2/trilayer and the continuous 
lines to areas without Au discs. 
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ppps rri , where rps and rpp are the diagonal and non-diagonal elements of the 

reflectivity matrix 

ss sp

ps pp

r r

r r
. 

Here, rps is the non-diagonal element of the reflectivity matrix and reflects the polarization 
conversion induced by the magneto-optical properties and rpp is the diagonal element for p-
polarized light. At normal incidence, as is the case in the measurements shown here, the 
elements of the reflectivity matrix satisfy rpp = rss; rsp = – rps. On the other hand, the modulus 

of the complex Kerr rotation ppps rr22
 allows studying in a single magnitude 

all the MO activity of the system. 
Considering these definitions, the observed modifications of the Kerr rotation and 

ellipticity can be due either to a modification of the optical part of the MO properties (rpp), the 
magnetic part (rps), or both. To have a clearer picture on the origin of the observed effects, in 

Fig. 4 we present the spectral dependence of the MO activity  obtained from the 
experimentally measured rotation and ellipticity (Fig. 4 (a)), the reflectivity rpp experimentally 

measured without magnetic field applied (Fig. 4 (b)) and the reflectivity rps obtained as rpp. 
These magnitudes are normalized to that of the system without discs on top to isolate the 
contribution to the MO activity originating from the localized surface plasmons. 

Fig. 4. (a) Complex Kerr rotation, (b) reflectivity rpp and (c) non-diagonal element of the 
reflectivity matrix rps determined for the structure with dielectric thickness d = 50 nm and array 
periodicity a = 300 nm. The obtained values are normalized to those of the area of the sample 
without discs on top. 
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activity smaller in the region with nanodiscs than in the region without discs) in the high 
energy side of the absorption peak. The reflectivity ratio shown in Fig. 4(b) evidences a strong 
decrease of reflectivity in the spectral region of the LSP peak, as expected from the excitation 
of the localized plasmon resonance. The purely magnetic component rps, shown in Fig. 4(c), 
features a strong dip located in the energy region corresponding to the excitation of the LSP 
resonance, indicating that, in addition to a reduction of the reflectivity (increase of the 
absorption) of the system, the nanodisc array also induces a noticeable modification of the 
“purely magnetic part” of the MO activity. The dependence of the optical absorption with 
spacer thickness and disc separation shown previously in Fig. 2 must have then a resemblance 
in that of rps. This is shown in Fig. 5 where, again, the variation of the spacer thickness 
(Fig. 5(a)) gives rise to an spectral shift of the dip in rps in agreement with that observed in the 
optical absorption, whereas the variation of array periodicity at constant spacer thickness 
(Fig. 5(b)) does not affect the dip position.  

Fig. 5. Non-diagonal element of the reflectivity matrix, rps, for (a) two structures with the same 
array periodicity (a = 300 nm) but different dielectric spacer thickness and (b) for two 
structures with the same spacer thickness (d = 50 nm) but different array periodicity. 
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Fig. 6. (a) Calculated absorption spectra for a structure with Au nanodiscs array periodicity a = 
300 nm and different spacer thickness d. (b) Calculated non-diagonal element of the reflectivity 
matrix for the same system as in (a). 
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Fig. 7. (a) Non-diagonal element of the reflectivity matrix rps (magneto-optical contribution), 
for the structure with array periodicity a = 300 nm and dielectric thickness dSiO2 = 50 nm. 
(b) Calculated distribution of the electromagnetic field inside the Au/Co/Au continuous trilayer 
for the system with Au discs on top (red dashed line) and without nanodiscs (black solid line) 
at energy 1.62 eV (position of the maximum magneto-optical enhancement associated with the 
presence of the discs, rps(discs)/rps(no discs)). (c) Same as in (b) but at energy 1.82 eV 
(minimum magneto-optical contribution associated with the presence of the discs). (d) Spectral 
dependence of the ratio of the electromagnetic field inside the Co layer for the continuous 
SiO2/trilayer system with and without nanodiscs on top. (Note: Calculations are done by 
substituting the Au nanodiscs array layer by an effective medium layer using the Maxwell-
Garnett approximation.) 

 

4. Conclusions 

The results shown here validate the fact that the magneto-optical properties of a magnetic 
layer can be enhanced by plasmonic resonances spatially separated as far as the 
electromagnetic field associated with the resonances penetrates in the magnetic region. 
Through an appropriate design of the structure to sustain an even higher electromagnetic field 
in the magnetic layer at the desired energies, the magneto-optical properties of the system 
could be further “boosted”. 
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