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Abstract

We propose a simple polynomial expression for neutral density and nutrients as a func-

tion of potential temperature, pressure and salinity. The expression is applied to the 1988

North Atlantic A16 WOCE meridional section and the polynomial coefficients are calcu-

lated using an inverse technique. The resulting polynomials show good skill in reproducing

the nutrients and density structure, as verified through an analysis of variance (ANOVA)

test. The large-scale changes in the polynomial coefficients occur between equatorial (E),

tropical (T), subtropical (ST), and subpolar (SP) waters. The temperature and pressure

coefficients experience substantial changes at all transitions (E-T, T-ST, and ST-SP),

while the salinity ones only have major variations at the T-ST transition. Mesoscale-like

oscillations occur all along the section but are relatively small, except between about 40

and 50◦N, in a region of rough bottom topography. The density field is reconstructed us-

ing individual and group coefficients, and the contribution of each coefficient is identified.

The method is also applied to analyze the neutral density distribution in a nearly iden-

tical 2003 section, removing near-surface density values that may be related to different

warming/cooling of the surface layer. The results show close resemblances but also some

significant variations, which are discussed in terms of interdecadal variability. Hence,

we argue that the set of calculated coefficients provides good integral descriptors for the

vertical structure of the ocean.

Keywords: inverse model, WOCE A16 section, nutrients, neutral density, water

mass, interdecadal changes, ocean descriptor.
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1 Introduction

Oceanographers are faced with the task of finding simple descriptors for the complex

temporal and spatial changes in the structure of the ocean. Large-scale variations, for ex-

ample, are commonly described in terms of water masses, which result from atmospheric

forcing over a significant portion of the ocean. The water-type concept is used to charac-

terize each water mass with just a few temperature and salinity pairs, in essence providing

a descriptor of the ocean’s response to the forcing mechanisms.

Our aim here is to use an inverse model, inspired by standard property-property dia-

grams, to obtain such integral descriptors of the thermodynamic structure of the ocean.

Inverse models are skillful at estimating the best possible parameters that adjust geophysi-

cal models to actual observations, hence becoming a synthesis tool. In oceanography these

models have been used in different cases, as in acoustic tomography (Munk and Wunsch,

1979) and in general circulation (Wunsch, 1977). Nevertheless, to our knowledge they

have not yet been applied to objectively determine simple descriptors for the ocean’s

vertical structure.

The fundamental idea is to use a simple relation for one dependent variable as a func-

tion of several independent hydrographic variables, either thermodynamic or chemical-

biological variables. The relation becomes a geophysical model and its coefficients, which

change in time and space, are integral parameters that respond to the ocean’s internal

organization. If the relation is left simple enough, then its predictive skill rests on the

coefficients’ (spatial and temporal) variability.

The desired simplicity contrasts with other examples of geophysical models, such as

the equation of state (density ρ as a function of temperature T , pressure p, and salinity
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S). Another example is neutral density γ, where the compressing effect of pressure is fully

removed (McDougall, 1987; Jackett and McDougall, 1997). Neutral density is expressed

in terms of three fully independent variables, S, p and potential temperature (θ), in the

sense that a process leading to changes in one of the three variables would not produce

modifications in the other two. In both examples the geophysical model is very complex:

it has full predictive skill, as it describes the ocean as composed of infinite possible states,

but zero descriptive content.

Here we test the descriptive content of simple models for three nutrients (nitrates

N , phosphates P , and silicates Si) and neutral density γ (henceforth simply referred as

density). The models for the dependent variables are linear polynomial expressions as

a function of the triad (θ, p, S). The coefficients are chosen to minimize the difference

between observations and predictions. They change smoothly with horizontal coordinates

(hereafter stations or positions, characterized by one oceanographic station), restrained

by weights imposed from oceanographic information. Hence, the polynomial becomes a

simplified model for the ocean and the values of the coefficients are characteristic of its

structure at each position. As this structure depends on the large-scale dynamics, we

expect that changes in the coefficients should be indicative of variations in the forcing

mechanisms and the ocean’s internal organization.

In the next section we briefly describe the data sets selected to test the model. In Sec-

tion 3 we explain the main details of an inverse model, proposed as a tool to obtain simple

descriptors of the ocean structure, emphasizing the importance of the proper selection of

a reference level. In Section 4 we apply the method to the WOCE A16N section and

present the main results, while in Section 5 we analyze the model’s skill at reproducing
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the observations, with special attention to the significance of the coefficients. In Section

6 we apply the model to two realizations of the same section, taken 15 years apart, and

briefly discuss the observed changes, and in Section 7 we presents the conclusions.

2 Data

In order to test the model we have selected the eastern North Atlantic A16 WOCE merid-

ional section (Figure 1), which consists of 116 casts down to the sea floor taken between

the Equator and 64◦N in July-August 1988, roughly along 20◦W (Tsuchiya et al., 1992).

A16N WOCE section was revisited in June-August 2003, occupying nearly exactly the

same locations as in the 1988 cruise (Johnson et al., 2005). The temperature, salinity and

nutrients data for both sections are available from the Clivar and Carbon Hydrographic

Data Office. The number of observations used to determine the coefficients changes with

the depth of the station and also depends on the variable considered (i.e., density or

nutrients). For deep stations there are roughly 500 observations for density (values are

averaged over 10 m depth intervals) and some 24 nutrient observations along the water

column, so the coefficients are obtained using very different numbers of equations (between

about 24 and 500).

The panels in Figure 2 present the meridional distribution of potential temperature,

salinity, density and nutrients as a function of depth. The isothermals (top left panel)

and isohalines (middle left panel) illustrate the presence of several transition bands in

the upper-ocean. A low-latitude band is located roughly at 6-10◦N, at about the location

where the upper-ocean’s isothermals and isohalines rise, linked to the North Equatorial

Counter-Current, in the equatorial-tropical transition (E-T) (Stramma and Schott, 1999).
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A middle-latitude band is found between about 15 and 20◦N, where the S and θ isolines

sink in association with the North Equatorial Current, just north of the Cape Verde

frontal zone, in what constitutes the tropical-subtropical margin (T-ST) (Zenk et al.,

1991). Finally, a high-latitude band is found after the shallow summits around 42-50◦N,

near the subtropical-subpolar margin (ST-SP) (Tsuchiya et al., 1992; Lozier et al., 1995).

On the other hand, the isoneutrals (third left panel) are fairly horizontal in the tropical

and subtropical ocean, from the Equator to 30◦N, down to about 3000 m. Major slopes,

reflecting the formation of deep-waters, are found only in the subpolar gyre (> 42◦N)

waters.

The right three panels in Figure 2 display the nitrate, phosphate and silicate distribu-

tions. All nutrients are depleted at the sea surface by biological consumption. Nitrates

and phosphates have similar distributions, with both nutrients increasing up to a sub-

surface maximum. In the subtropical and subpolar gyres this maximum occurs in the

nutrient bearing stratum (e.g. Pelegŕı and Csanady, 1991), at depths of 600-800 m within

North Atlantic Central Waters (NACW), and in equatorial and tropical waters as a tongue

of Antarctic Intermediate Water (AAIW) located at some 800-900 m depth (e.g. Mach́ın

et al., 2006). The intrusion of Antarctic Bottom Water (AABW) is the cause of a sec-

ond deep maximum, below 4000 m depth (e.g. Holfort and Siedler, 2001). In contrast,

silicates present a rather different distribution along the water column, with a continuous

increase below 2000 m depth, so that the AAIW and AABW tongues do not stand out

as much as those for nitrates and phosphates. All panels in Figure 2 are characterized

by the presence of substantial mesoscale-like fluctuations between about 38 and 52◦N,

apparently associated with the rough bottom topography in this region.
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3 Inverse model

3.1 Polynomial relation

As mentioned in the Introduction, we explore the following model:

I = a0 + a1(θ − θr) + a2(θ − θr)
2 + ... + al(θ − θr)

l +

+ b1(p − pr) + b2(p − pr)
2 + ... + bn(p − pr)

n + (1)

+ c1(S − Sr) + c2(S − Sr)
2 + ... + cm(S − Sr)

m,

where I is the dependent variable, either density or nutrient concentration. The polyno-

mial coefficients are ai, bi, and ci, and the order of the polynomial is set by l, n and m.

The independent variables are taken relative to some reference potential temperature θr,

pressure pr and salinity Sr reference levels, and their specification is discussed in the next

section.

We want the polynomial degree to be a compromise between simplicity and predictive

skill. For this purpose we have explored, for all dependent variables, all possible com-

binations of polynomial degrees on θ, p, and S varying from zero to six. For each case

we have used an ANOVA test to evaluate how much of the total variability (TV) in the

observations along the A16 line is explained by the variability between simulations (VBS)

and the variability within each simulation (VWS). We base our choice on the values given

by the adjusted-R2 (R2

a), defined as the ratio between the variability explained by each

simulation and the total variability in γ:

R2

a(l, n,m) =
V BS

TV

N − 1

K − 1
(2)

where N is the number of observations and K is the number of cases considered.
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Figure 3 shows the R2

a distribution for density and nutrients as a function of the order

of the polynomial: (l, n, m) for (θ, p, S). In all cases, high polynomial degrees are needed

for one single variable to obtain a high R2

a, while the degrees are drastically reduced after

combining variables. For example, in the central panel (upper row) we observe that on its

own θ needs a sixth degree to explain 0.998 of the γ variability, while for this same degree

salinity on its own only explains 0.95 of the variability. However, when both variables are

allowed to work together, a variability above 0.999 is achieved for l = 2 and n = 1 (while

maintaining m = 0). Similar results are obtained for the nutrient polynomials, with the

skill at predicting nutrient variability improving rapidly as we move from one to three

independent variables.

Following the simplicity versus predictability compromise, we use a model that pre-

dicts each dependent variable (density or any nutrient) through a second degree polyno-

mial on all three independent variables, l = m = n = 2. Such a set of degrees is capable of

explaining nearly 100% of the variability in either dependent variable. Hence we express

I by a second order polynomial function on θ, p and S as

I = a0 + a1(θ− θr) + a2(θ− θr)
2 + b1(p− pr) + b2(p− pr)

2 + c1(S −Sr) + c2(S −Sr)
2. (3)

Expression (3) is applied to observations from the sea surface to the bottom, along

constant pressure levels. It can be written in matrix form as I = Ex + r, where x

contains the model coefficients and r considers the model residuals, the latter induced

by noise in the observations and inaccuracies in the model formulation. This expression

constitutes a grossly overdetermined system and its solution is obtained by a fit in a

least squares sense. A weighted tapered least squares adjustment is used to minimize the

residuals (Menke, 1984; Wunsch, 1996). Weights incorporate oceanographic information
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and constrain the system to produce a solution coherent with the a priori information.

This is done in two ways: (1) by making each polynomial term produce a similar response

in the dependent variable; and (2) by taking into account the variability of the dependent

variables (estimated as the standard deviation in the observations) at each pressure level,

i.e. the importance of each equation is inversely proportional to the dispersion of the

corresponding density or nutrient concentration at that level.

3.2 Reference level

In the model we have added physical content by introducing reference variables (θr, Sr and

pr), as if we were examining how much the different points in the water column deviate

from some reference state. The reference variables are those that define the reference

neutral density γr ≡ γ(θ = θr, p = pr, S = Sr), i.e. θr(x, y) ≡ θ(γ = γr), pr(x, y) ≡

p(γ = γr), and Sr(x, y) ≡ S(γ = γr). In this way each independent variable corresponds

to the deviation from a reference value and if the model has perfect predictability, i.e.

equation (3) becomes an identity for all observations, then a0 = γr.

The selection of γr is a key aspect of the model, as it determines the reference levels in

the inverse model. A physically meaningful γr should embrace one single water mass, with

roughly constant potential temperature and salinity values. The independent polynomial

coefficients hence become the variables that specify the characteristics of this water mass.

Strictly speaking we should use an analogous procedure to get references values for

each nutrient. In contrast to density, however, these variables are not uniquely defined

at each position, as a given value of nutrient concentration may be found in more than

one level in the water column. Hence, we have maintained the same reference values
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as those obtained by setting a density reference. This sets some reference nutrients,

Nr(x, y) ≡ N(γ = γr), Pr(x, y) ≡ P (γ = γr), and Sir(x, y) ≡ Si(γ = γr), which must be

checked for consistency.

As a sensitivity test we examine how the coefficients and reference variables vary

as a function of the selected reference density, for each station, by running the inverse

model with reference densities spanning the water column from the sea surface to the sea

floor. Figure 4 shows the meridional distribution of the reference variables and polynomial

coefficients obtained for predicting density. Both θr and Sr respond to the different water

masses from the equator to the subpolar gyre. A reference level in central (γr < 27.3)

and intermediate waters (27.3 < γr < 27.9) produces substantial changes in the reference

variables, while deep waters (γr > 27.9) induce much less variability. For instance, the

effect of the northward penetrating Antarctic Intermediate Water can be observed at

lower latitudes centered on γr = 27.5, as it induces relatively low Sr values. Likewise, the

presence of Mediterranean Water clearly affects both θr and Sr in the region from 20◦N

to 40◦N, as it induces relatively high θr and Sr. This contrasts with a reference density

located within deep waters, characterized by one single water mass, which results in little

variations of the reference variables.

Figure 4 also shows the meridional dependence of the density coefficients on the

reference-density selection. As expected, a0 remains near constant latitudinally for any

given reference density. The lineal coefficients a1 and c1 show significant variations with

both reference-density and latitude, while the main dependence of b1 is on latitude. All

quadratic coefficients (a2, b2 and c2) only change significantly with latitude.

Figure 5 presents the meridional and depth distribution of the thermal expansion
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and salinity contraction coefficients, respectively defined as ρα ≡ −∂ρ/∂θ|S,p and ρβ ≡

∂ρ/∂S|θ,p. Changes in these expansion coefficients are significant throughout the WOCE

section, with similar patterns but different signs, reflecting their opposite effect on density.

It may be appreciated that a1 and c1 (Figure 4) have absolute values that are similar

(but not equal) to the depth-mean values of ρα and ρβ, respectively. The fact that the

polynomial coefficients differ from the depth-mean expansion coefficients is an expected

result, as the inverse model processes much more information than just a simple depth-

average; nevertheless, the similarity gives confidence about the model’s good behavior.

A second simple sensitivity test for the model is carried out by changing the density

variability from 0.1 to 10 times the standard deviation at each pressure level. We find

that the inverse solution is very robust as the reference values and coefficients depend

little on this selection, with variations nowhere greater than 10% (not shown).

When using the polynomials to retrieve the independent variable, we find that obser-

vations are always well reproduced, regardless of the reference density used. The absolute

value of the difference between observations and predictions has a near-surface maximum

of 0.03 kg m−3 but its mean-depth standard deviation is much smaller, ranging between

0.0002 kg m−3 and 0.0010 kg m−3.

Following the above sensitivity calculations, hereafter we use the polynomials with a

reference density γr = 28.072, which is located in the deep water masses at nearly 3000 m.

We skip those shallow stations that do not reach this value, most of them located between

52 and 58◦N. For these stations we would require a shallower reference density but, in a

long transoceanic section, such a level would not meet the criterion of belonging to one

single water-mass.
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4 Results

4.1 Coherence tests

To assess the goodness of the model we first check for geometrical coherence in the den-

sity results. A plot of neutral density as a function of one variable (θ, p, or S) would

immediately suggest the sign of the lineal (slope) and quadratic (curvature) coefficients.

With this check in mind we run the inverse model for three different cases, using the

data from all stations. In each case we use a second-order polynomial to examine the

dependence on one single variable. In the first case a0, a1 and a2 are calculated but all

other lineal and quadratic coefficients are set to zero; in the second case a0, b1 and b2 are

the calculated variables; and in the last case the system is solved only for a0, c1 and c2.

The results obtained this way are coherent with the geometrical interpretation (Figure 6).

Relatively large absolute values of the lineal coefficient (e.g. negative a1) indicate high

stratification with respect to the corresponding variable (θ) as a result of the influence of

the other two variables (p and S). Similarly, the quadratic coefficient indicates whether

the stratification in the corresponding variable is relatively high at deep (e.g. negative

a2) or shallow (positive a2) density levels.

The good behaviour of the model is also reflected by the reference values of the inde-

pendent variables, θr, pr and Sr, (Figure 7) as well as by the nutrient reference values, Nr,

Pr and Sir (Figure 8). The independent reference variables are roughly constant, with θr

and Sr slowly increasing with latitude, and pr remaining nearly constant at 3000 m until

about 52◦N, where the reference density finds the sea floor. The nutrient concentrations

at the reference density level decrease significantly with latitude, from tropical to subpo-
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lar regions, due to the influence of AABW (Figure 2). The independent coefficients for

nutrients remain close to the corresponding reference levels, hence validating the method

used for the selection of these levels.

4.2 Density coefficients

Figure 8 shows the latitudinal distribution for the reference variables and coefficients,

now obtained from the full density model, for γr = 28.072. The constant coefficient a0

remains everywhere very close to the selected γr. The lineal and quadratic coefficients

are substantially modified from the above geometrical check cases, in some cases even

changing sign. All coefficients display smooth, large-scale trends, with some minor short-

scale (1 − 2◦ latitude) variations. Three major transition bands may be identified, which

appear related to the potential temperature and salinity distributions in the upper-ocean

(Figure 2). A low-latitude band is located in the E-T transition, a middle-latitude band

is found in the T-ST margin, and a high-latitude band is found at about the ST-SP limit.

All coefficients for the density model display substantial changes at both the E-T and

T-ST transitions (the changes in the pressure coefficients are less clear because of the

compressed vertical axis, as a consequence of including the shallow northern waters). In

contrast, the ST-SP transition becomes evident only in the salinity coefficients (c1 and

c2). The subtropical gyre displays remarkable behaviour in the salinity coefficients (c1

decreases and c2 increases) which is not visible in the coefficients for the other variables,

and which might possibly be related to the major influence of the Mediterranean Wa-

ter outflow. Finally, the ST-SP transition zone also displays mesoscale-like variability,

most visible in the potential temperature coefficients and probably linked to the rough
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topography.

4.3 Nutrient coefficients

Figure 8 also shows the results for all three nutrients. The constant coefficients derived

from the nutrient models decrease with latitude, closely following the reference nutrient

concentrations. Changes in the lineal and quadratic coefficients may be related to the

presence of transition bands in the nutrient distributions (Figure 2), as discussed in ref-

erence to density. The latitudinal variability is similar for N and P . Bands E-T and

T-ST appear in all coefficients but c2, which only contains the T-ST band. ST-SP band is

present in the a1, a2, b1 and b2 coefficients. For Si the situation is quite different: the E-T

transition band is observed for a1 and c1 coefficients, while the T-ST and ST-SP transi-

tions occur in the three linear coefficients (a1,b1, and c1). A similar latitudinal variability

is observed for a1 and b1, anticorrelated with a2 and b2, respectively.

The analogous behaviour of the N and P coefficients, in contrast to the Si ones, is

a coherent result given the close correspondence in the cycles of these nutrients. This

supports the idea that the calculated coefficients are good integral descriptors of the

structure of the water column.

5 Model skill: partial and full reconstructions

Figure 9 shows the differences between neutral-density observations and predictions, as a

function of pressure, as reconstructed with the polynomial coefficients shown in Figure 8.

As a reference, in the left panel we also show the standard deviation from the mean

density at each pressure level. This deviation is maximum in the surface mixed-layer,
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0.03 kg m−3, and decreases from 10−2 to 10−6 kg m−3 with depth. The accuracy of

the model, or difference between predictions and observations, is typically one order of

magnitude better than the standard deviation in the density variations. Similar results

are obtained for nutrients (not shown).

Once we have obtained a set of reference variables and polynomial coefficients, we

may wonder about the relative importance of each coefficient on the solution. Figure 10

presents eight different density reconstructions on section A16N, in all cases with a mean

density (obtained using the latitudinal-mean coefficients and reference variables) as the

vertical axis. The figure has been prepared to visualize the role played by each individual

term of the polynomial expansion, i.e. each panel shows whether the density predicted

using a particular set of local coefficients is greater or less than that expected from the

mean coefficients. In the upper-right panel the density is obtained using all local coef-

ficient and reference values, i.e. to obtain the best possible reconstruction. Within the

remaining rows, in the left and center panels the density is calculated using the latitudinal

mean coefficients and reference values except for the indicated polynomial term, for which

both the coefficient and the corresponding reference variable are allowed to change with

latitude. In the remaining right panels we have respectively used the independent term

a0 plus all potential temperature (ai), pressure (bi), and salinity (ci) coefficients. Note

that in all cases the coefficients are those calculated using the full model.

The individual and group reconstructions evidence the existence of the E-T, T-ST

and ST-SP transitions described above. The full reconstruction (upper-right panel) shows

the presence of the E-T and T-ST transitions in the upper ocean, characterized by the

shallowing isoneutrals. It also illustrates that the intermediate isoneutrals shallow until
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some latitude within the subtropical gyre (about 35◦N), from where they deepen again.

The deep waters remain quite independent of latitude.

The remaining reconstructions are very informative about the role played by an in-

dividual coefficient, or group of coefficients. The E-T and T-ST transitions are clearly

reflected in the lineal temperature and salt coefficients (a1 and c1) and, to a lesser degree,

in the quadratic temperature and salinity ones (a2 and c2). The ST-SP transition appears

to be mainly associated with both lineal and quadratic pressure and salinity coefficients,

with the pressure ones reproducing the reduced stratification at high latitudes.

The northern subtropical waters and the ST-SP transition zone are characterized by

small mesoscale-like changes associated with all coefficients. This occurs at all depths,

but most clearly in the upper and intermediate water strata. These oscillations may be

related to the presence of Mediterranean Water outflow within the subtropical gyre and

the rough bottom topography in the transition zone.

6 Tool for assessing temporal variability

In order to asses the impact of the surface mixed-layer on the latitudinal variability

of the coefficients, we have re-analyzed the data but now discarding observations with

density less than 26.85 (roughly in the upper 50 to 200 m, see Fig. 2). The new set

of coefficients (Figure 11, left panels) have latitudinal changes which are similar to those

obtained from observations spanning the entire water column, in particular identifying the

same transition bands (Figure 8). Despite this, there are some differences which indicate

that different surface waters may have an impact on the coefficients.

The above result shows that removal of data from surface layers, which are subject to
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seasonal variations, becomes essential if we wish to use the method to assess long-term,

e.g. interannual or interdecadal, variability in the structure of the ocean. This is true

even if we want to compare hydrographic sections obtained during the same season, in

different years, as the surface mixed-layer is prone to rapid variations that result from

changes in atmospheric forcing.

To illustrate the method’s potential for studying long-term variability, we have applied

it to the density distribution corresponding to the 2003 A16N homologous cruise, again

removing data with densities less than 26.85 (Figure 11, right panels). From Figure 11

we appreciate that applying the inverse model to both realizations (1988 and 2003) leads

to coefficients that, as expected, have similar distributions. However, there are some

significant differences that deserve special attention.

Figure 12 presents a comparison of the density data and calculated coefficients between

both realizations. The top panel shows the density-difference distribution, calculated as

the 1988 value subtracted from the 2003 one. The largest neutral density changes, above

0.1, occur at high latitudes, north of roughly 35◦N, with a generalized increase of density

in the top 700-800 m and alternation of positive and negative values between these depths

and some 1500 m. At lower latitudes changes are always less than 0.1 except in the tropics,

where the near-surface waters have increased their density.

The subsequent panels in Figure 12 illustrate the relative difference in the coefficients,

calculated as the 2003 value minus the 1998 value divided by the latter. As the abso-

lute value of coefficients changes substantially with latitude, it is this relative difference,

rather than the absolute one, that will tell us where significant changes are taking place.

Since pairs of coefficients are associated with different variables (a1 and a2 with potential
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temperature, b1 and b2 with pressure, and c1 and c2 with salinity), changes in their values

may be interpreted as indicative of the contributions of these variables to density changes.

The relatively large changes in the salinity coefficients appear to be related to vari-

ations in freshwater content between the late 1980s and the early 2000s in the North

Atlantic. Freshening has occurred in the whole water column north of about 45◦N, which

is reflected in the c1 values, while salinification has happened in the permanent thermo-

cline of subtropical and tropical regions (Boyer et al., 2005), with major changes in c2 at

about 40◦N (top 1500 m) and between 10 and 20◦N (down to some 800 m).

In the North Atlantic major warming has also occurred during these same periods

(Boyer et al., 2007). Between the late 1980s and the end of the millennium, warming was

greatest in the subtropical and tropical waters, while cooling was restricted to latitudes

around 60◦N (Johnson et al., 2005; Levitus et al., 2005). These changes may be reflected

in the distributions of the temperature coefficients, which experience large changes in the

subpolar (above 45◦N) and tropical (less than 20◦N) latitudes. In particular, variations

are clear at latitudes less than 10◦N and between 15 and 20◦N, but are simultaneous with

pressure coefficients, suggesting that in these regions temperature changes are associated

with both meridional and vertical displacements of the isotherms. However, the increase

in near-surface density between 3 and 5◦N seems to be related solely to temperature

changes.

Between 20 and 25◦N the pressure coefficients display changes that are larger than the

relative changes in the other two sets of coefficients, and have little effect in the density

values. This is the position of the Cape Verde frontal zone, a density compensating

region that experiences substantial lateral intrusions (e.g. Pastor et al., 2008). These
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intrusions imply depth changes in the position of water masses, while the temperature-

salinity relation remains unmodified.

7 Conclusions

We diagnose the state of the ocean in terms of a set of polynomial coefficients. In this

manner each horizontal position is characterized by a set of coefficients, which become

integral descriptors of the ocean’s vertical structure. The main virtue of the model here

presented is its skill in reproducing the density structure, with smooth variations in the

coefficients as we move between adjacent stations. The model is extended to nutrient

observations and shows that nitrate and phosphate, which have similar biochemical be-

havior, produce coefficients with comparable latitudinal variability, while silicate leads to

quite different latitudinal patterns. This suggests that the polynomial coefficients respond

to the internal organization of the ocean as described by any of those variables (neutral

density and biochemical tracers), and that their values have true physical significance.

In the case of neutral density the coefficients are related but not equal to mean-depth

averages of classical thermodynamic variables such as the thermal expansion coefficient

and the saline contraction coefficient.

The size of the lineal coefficient responds to the degree of stratification with respect to

the corresponding variable, e.g. a large-negative a1 indicates large stratification with θ,

as a result of the influence of the other two independent variables. Similarly, the sign and

magnitude of the quadratic coefficient indicates how much and where the stratification

occurs as a function of the corresponding variable, e.g. a large-positive a2 indicates that

the upper/lower portion of the water column is strongly/weakly stratified with θ, as
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induced by the other variables. Further work, particularly with sections through frontal

regions, is required to improve our understanding of the coefficients’ significance and how

they depend on the choice of reference neutral-density.

The methodology may be applied to different dependent variables, such as chemical

or biological ones, as shown for nutrients. It could also be extended to different domains,

e.g. by replacing the dependence on depth z with dependence on latitudinal distance y

and doing the analysis at different depth-positions. In the North Atlantic, where at depth

we find water masses generated at high latitudes, we could expect that the depth and

latitudinal coefficients would have similar patterns.

The potential of the methodology relies on its capacity for classifying an oceanic re-

gion in terms of a set of coefficients. To illustrate this potential we present an application

to the A16N WOCE meridional line, which was carried out in 1988 and the transect re-

peated in 2003. The results show the existence of substantial changes in the values of the

coefficients, which are in conformity with studies of interdecadal variability in the North

Atlantic.
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