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ABSTRACT
An ensemble Kalman filter (EnKF) is used to assimilate data onto a non-linear chaotic model, coupling two kinds of
variables. The first kind of variables of the system is characterized as large amplitude, slow, large scale, distributed in
eight equally spaced locations around a circle. The second kind of variables are small amplitude, fast, and short scale,
distributed in 256 equally spaced locations. Synthetic observations are obtained from the model and the observational
error is proportional to their respective amplitudes. The performance of the EnKF is affected by differences in the
spatial correlation scales of the variables being assimilated. This method allows the simultaneous assimilation of all the
variables. The ensemble filter also allows assimilating only the large-scale variables, letting the small-scale variables to
freely evolve. Assimilation of the large-scale variables together with a few small-scale variables significantly degrades
the filter. These results are explained by the spurious correlations that arise from the sampled ensemble covariances. An
alternative approach is to combine two different initialization techniques for the slow and fast variables. Here, the fast
variables are initialized by restraining the evolution of the ensemble members, using a Newtonian relaxation toward the
observed fast variables. Then, the usual ensemble analysis is used to assimilate the large-scale observations.

1. Introduction

Current short-term (e.g. seasonal) climate predictions require
the initialization of coupled models that exhibit a wide range
of dynamic, and thermodynamic, phenomena interacting at var-
ious time- and space-scales (Meehl et al., 2001). The range of
phenomena may even increase because of the growing aware-
ness about the need to increase the resolution of coupled models
to improve the skill of seasonal predictions (Saha et al., 2006).
In such a context, assimilation of synoptic features or other
small-scale features may become difficult, as they may evolve
uncorrelated to observed parameters or features. Therefore, un-
derstanding the abilities of different data assimilation techniques
to simultaneously reconstruct information at different scales is
of importance for climate predictions.

Initialization of short-term climate or numerical weather pre-
diction (NWP) models is currently performed using variational,
either three- or four-dimensional, and/or via ensemble covari-
ance estimations (see Kalnay et al., 2007 and references therein).
The specific difficulties of ensemble methods to simultaneously

∗Corresponding author.
e-mail: joaquim@icm.csic.es
DOI: 10.1111/j.1600-0870.2009.00400.x

reconstruct information at different scales are suggested by
Lorenc (2003), based on the fact that finite-size ensembles can
only fit a number of observations not larger than the number of
ensemble members. Lorenc (2003) argues that, in the context of
local analyses (usual strategy to deal with the spurious telecon-
nections that frequently taint sampled covariances), the size of
the local domain must be large enough to facilitate the dynamic
balance of large-scale fields such as temperature. As the anal-
ysis domain increases, fitting the observations could fail if: (1)
small-scale fields, such as humidity, are thoroughly sampled and
(2) the ensemble is not large enough. Failure to simultaneously
fit all the observations will reduce the accuracy of the analy-
sis and, then, the accuracy of forecasts (Lorenc, 2003). Such a
concern differs from the usual initialization problem in NWP,
which focuses on the identification of the balanced component
(the slow manifold) in model initial states to filter out the detri-
mental development of fast gravity waves or other unbalanced
components (the fast manifold).

The goal here is to asses, and increase if necessary, the ac-
curacy of analyses when both large- and small-scale variables
are simultaneously assimilated. More precisely, this work in-
vestigates the ability of an ensemble method to simultaneously
identify the state of a strongly non-linear chaotic system with
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540 J. BALLABRERA-POY ET AL.

two separated spatio-temporal scales, when the small-scale sig-
nal is severely undersampled.

The ensemble Kalman Filter (EnKF) and the dynamic model
are introduced are introduced in Section 2. The results of the
data assimilation experiments are described in Section 3. The
result of combining two different initialization methods (one for
the large-scale variables and another for the short-scale ones)
are shown in Section 4. Finally, Section 5 includes a summary
and final remarks.

2. Methods

2.1. The ensemble Kalman Filter

Sequential data assimilation methods, based on the Kalman Fil-
ter (Kalman and Bucy, 1960), are being used in oceanography
and meteorology either by closely following its original formula-
tion but in coarse resolution models (e.g. Miller and Cane, 1989)
or in reduced-dimensional subspaces in high resolution models
(e.g. Cane et al., 1996; Evensen, 1994). Either way, transmission
of the information from the innovation vector to the model space
is given in a statistical manner:

xa
k = xb

k + Pb
kHT

k

[
HkPb

kHT
k + Rk

]−1 (
yo

k − Hkxb
k

)
. (1)

See Kalnay (2003) and references therein for a detailed deriva-
tion and discussion of eq. (1). The convention used here is to
write matrices as uppercase and vectors as lowercase. Moreover,
x represents a n-dimensional vector (the state vector) defining
the analysis space, y is the p-dimensional vector with the avail-
able observations; and H is the forward observation operator
that maps the analysis space onto the observation space. The
subscript k refers to the time step, the superscript b stands for
the background (i.e. our knowledge of the state of the system in
absence of observations) and superscript a stands for the anal-
ysis. The innovation vector, d = yo − Hxb, accounts for the
fraction of the information in the observations not being ac-
counted for by the background field. The difference between
the analysis and the background is the analysis update. Thus,
eq. (1) estimates the analysis update as the weighted combina-
tion of the innovation vector, where the weights depend on the
estimated background error covariance, Pb, and the estimated
observational error covariance, R.

The EnKF applied here closely follows the singular evolutive
extended Kalman (SEEK) filter applied to a non-linear system
(Ballabrera-Poy et al., 2001) and the local ensemble Kalman
transform Kalman filter (LETKF) developed by Hunt et al.
(2007). At each analysis step time tk, the algorithm estimates
the most probable state of the system through the average of an
ensemble of r solutions of the model, Xk = (x1

k , x2
k , . . . , xr

k) ∈
Rn×r , whose spread is proportional to the degree of uncertainty
associated with the current state of the system

Pb
k =

ρ

r − 1

(
Xk − X̄k

) (
Xk − X̄k

)T
. (2)

The overline indicates the average over the ensemble. The
constant ρ is known as forgetting factor or covariance inflation.
The algorithm does not explicitly evaluate the error covariance
matrix, but extensively exploits its definition:

HPb
kHT ≈

ρ
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) (
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,
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)T
. (3)

Equation (3) assume that the forward observation operator,
H, and the average operator permute (which is indeed the case
when the forward observation operator is linear). Making use of
eq. (2) and the Sherman–Morrison–Woodbury formula, eq. (1)
may be written as

xa
k = xb

k + Ek�
a (HEk)T R−1

k

(
yo

k − Hkxb
k

)
,

�a =
[

r − 1

ρ
I + (HEk)T R−1

k (HEk)

]−1

, (4)

where xb
k = X̄k and Ek = Xk − X̄k . Notice that large covariance

inflation coefficients reduce the size of the term being added
to the diagonal, this effect being more noticeable for small en-
sembles. Thus, although the first term inside the bracket does
increase the diagonal weight of a matrix (reducing the condition
number of the matrix to be inverted), large covariance inflations
reduce the conditionality of the matrix inversion in eq. (4). On
the other hand, and following Hunt et al. (2007), the matrix in-
version of eq. (4) is done through the eigenvalue factorization of
the right-hand side of the second equation:

�a = �b−1 = �a �aT

,

�a = �bW−1/2,

�b =
r − 1

ρ
I + (H Ek)T R−1

k (H Ek) = �b W �bT

.

(5)

Matrices �b and W contain the eigenvectors and eigenvalues
of �b, respectively. The square form of eq. (5) guarantees that�a

has indeed the properties of a covariance matrix. The covariance
of the analysis error is

Pa
k = Ek�

aET
k = Ek�

a (Ek�
a)T , (6)

which can be written as

Pa
k =

1

r − 1
Ea

kEaT

k (7)

by defining the directions of the analysis error as

Ea
k = (r − 1)1/2Ek�

a. (8)

As noted by Hunt et al. (2007), eq. (8) guarantees that the
ensemble defining the analysis error is unbiased by respect the
ensemble mean. Finally, the new ensemble is given by

Xa
k = xa

k + Ea
k, (9a)

where xa
k is given by eq. (4). The ensemble of analysis states

given by (9a) is being used as initial conditions of the model
to dynamically propagate the members of the ensemble up to
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the next analysis time, tk+1, where eqs. (2)–(9a) will provide the
new estimation of the state of the system and its expected error.
As in Corazza et al. (2007), random initial perturbations may
also be applied after every analysis step to allow the ensemble
to explore the error growth on a space larger than the one given
by the r-directions of the analysis space:

Xa
k = xa

k + Ea
k + σ s • η, (9b)

In this equation, s • η is the Schur product between η ∈ N(0, 1),
a normal random variable of zero mean and unit variance, and s,
the vector containing the appropriate scaling for each component
of the state vector (defined in Section 3.2). The amplitude of the
random noise is determined by the coefficient σ . Equation (9b)
is, thus, used instead of eq. (9a).

To emphasize the importance of the background error co-
variance matrix (either in its full version or estimated from a
finite-size ensemble), eq. (1) may be rewritten, dropping the
time subscript, as

xa = xb + Pb xd,

xd = HT
[
H Pb HT + R

]−1
d.

(1b)

Here, xd is the n-dimensional vector, constructed by mapping
the weighted innovation vector from the observation locations
back to the analysis space, via the transpose of the forward
observation operator. The components of the vector xd are all
zeros except for those components that directly map onto the
observation space. The key role of the Pb is clearly understood
by considering the case in which a single observation (corre-
sponding to the Kth component of the state vector, xK) is being
assimilated. In this case, all the components of the vector xd

are zero, except for its Kth component, which is equal to (yo −
xb
K )/(Pb

KK + R). Equation (1b) evidences that the spatial distribu-
tion of the analysis update is obtained by statistically projecting
the information from the component K to the rest of the space
via the covariances between the background error at K with the
background error of all the other points of the system. If the point
K were statistically uncorrelated with the rest of the system, no
components other than K would be corrected by eq. (1).

2.2. The model

The equations of the model are

dXi

dt
= Xi−1 (Xi+1 − Xi−2) − Xi + F + Gi, i = 1, . . . , I ,

dYj,i

dt
= cbYj+1,i

(
Yj−1,i − Yj+2,i

)

− cYj+1,i + Hi, j = 1, . . . , J ,

Gi = −h c

b

J∑
j=1

Yj,i ,

Hi = h c

b
Xi.

(10)

Fig. 1. Spatial representation of the model. The system is given as
eight periodic cells diving a circle. Each cell has an associated X
variable representing a climate average. Each one of these cells
includes 32 gridpoints, over which a small-scale variable Y is defined.

The dynamic equations for X are based on the model of Lorenz
and Emanuel (1998), which has been profusely used for testing
methodological approaches in data assimilation (see, among oth-
ers, Lorenz and Emanuel, 1998; Anderson, 2001; Whitaker and
Hamill, 2002; Ott et al., 2004; Descamps and Talagrand, 2007).
The dynamic equations for X have an additional term, Gi, that
links the time evolution of Xi with the average value of Yj,i ,
j = 1, . . . , J. The ‘spatial’ distribution of these variables is
shown in Fig. 1. The X variables are cyclic, and each ‘X-cell’
contains 32 Y-variables; so the total number of model variables
is 264 = 8 + 8 × 32. Equations for Y are formally the same than
for X, with the only differences being the side of the advection
term and the nature of the forcing term. In both sets of equa-
tions, the non-linear term simulates advection while conserving
the energy of X and Y. As stated by Lorenz and Emanuel (1998),
these equations may be looked at as the evolution of an unspec-
ified scalar meteorological variable, as vorticity or temperature,
around a latitude circle with no latitude or vertical dependence.
The values used in this work are I = 8, J = 32, b = 10, c =
10, h = 1 and F = 18. The value of c = 10 indicates that Y
decays 10 times faster than X. The relative size of both kinds
of variables is controlled by the amount of energy drawn from
the slow variables to the fast variables, that is, the value of the
coefficient h.

The time units were defined by Lorenz and Emanuel (1998)
to be such that 0.05 units correspond to 6 h. The time step of
the model is 0.01 units, equivalent to 20 time steps per day. A
fourth-order Runge–Kutta scheme is used to advance the time
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Fig. 2. (a) Snapshot of the spatial distribution of a solution at an
arbitrary time. (b) Time evolution of the variables of the first cell.

steps of the model. The system is initialized from random initial
conditions and spun up for 10 yr (of 360 d). Then, a reference
simulation is run for an additional 10-yr period, from which the
statistical properties of the model are evaluated. On the other
hand, the first year of the reference solution is sampled to build
a set of observations to be assimilated on the model.

A snapshot of the model is shown in Fig. 2a, and the time
evolution of the variables in the first segment (i.e. X1 and Y ∗,1)
is shown in Fig. 2b. In both cases, the thick line corresponds
to X and the thin lines correspond to Y. The amplitude of the
slow variable is one order of magnitude larger than the ampli-
tude of the fast variables (the average of the standard deviation
of variables X is 4.5, whereas the average standard deviation of
Y is 0.29). These plots show that the amplitude of the envelope
of the fast variables is modulated by the amplitude of the slow
one. The average autocorrelation for both types of variables is
shown in Fig. 3. The decorrelation time is simply estimated as
the e-folding timescale, that is, the scale for which the correla-

Fig. 3. Average of the autocorrelation of the variables of the model
(the horizontal dotted line represents the e-folding value).

tion becomes smaller than 0.37. Thus, the decorrelation time of
variables X is of about 20 d. Variables Y have a decorrelation
time of about 2 d. The results shown in Fig. 3 allows concluding
that although some variables Y may have a close value at some
given time (gridpoints 100–140 in Fig. 2b), their time evolution
is such that they rapidly become uncorrelated from each other.

The spatial cross-correlations (X1, X∗) and (X1, Y ∗,∗)are dis-
played in Figs. 4a and b. The thick grey line indicates (X1,
X∗), and the thin black line corresponds to (X1, Y ∗). Again, e-
fold lines are superposed to identify non-significant correlations.
Thus, Fig. 4a indicates that X1 displays long-range correlations
while being uncorrelated with all the Y variables outside its own
segment. The correlations (Y1,1, X∗) and (Y1,1,Y∗,∗) are shown
in Fig. 4b. The thick grey lines indicate correlation against X
variables, and the think black lines indicate correlation against
the Y variables. The variable Y1,1 shows no correlation with any
other variable other than the X from its own segment.

Therefore, the system described by eqs. (10) couples two
variables with different spatial and temporal scales. The large-
amplitude variables are slow and display long-range correla-
tions, whereas the small-amplitude variables decorrelate rapidly
and are uncorrelated from each other (either if they belong to
the same segment or if they belong to different segments).

3. Experiments

3.1. Set up and observational error

The experimental set up is based on twin experiments in which
the trajectory to reconstruct comes from the model itself. The
period of the data assimilation experiments is 1 yr. The first
year of the reference simulation described in Section 2.2 is de-
fined as the truth. Observations are obtained by sampling the
truth and adding a random observational error. Observations are
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Fig. 4. (a) Spatial correlation of X1 with all the variables of the system.
(b) Spatial correlation of Y1,1 with all the variables of the system.
Thick lines indicate correlation with X variables and thin lines are
correlations with Y variables.

assimilated every 6 h, that is, every five time steps. The spa-
tial distribution of observations in each assimilation experiment
will be specified later. A false initial condition is used to initial-
ize the data assimilation experiment. For each data assimilation
experiment, comparison is made with the experiment where no
observations are assimilated. Assessment of the ability of the as-
similation to bring the system toward the truth is given separately
for each kind of variable (slow and fast).

The amplitude of the observational noise is taken proportional
to the amplitude of the signal, using the same ratio for both kinds
of variables. However, different approaches may be used to es-
timate the range of each kind of variable. Let X and Y be the
matrices obtained by pooling together all Xji and Yji variables,
respectively. If the amplitude of the signal were defined by its
range (i.e. difference between the maximum and the minimum),
the amplitudes of X and Y would be 20.67 and 2.62, indicating
that slow variables are almost eight times larger than the fast

ones. However, the standard deviation of X and Y are 4.54 and
0.29, respectively, whose ratio is twice (15.6) the one calculated
from their ranges. This disparity indicates that the range strongly
overestimates the size of the fast variables, which would result
as an artificially large error for them. As an alternative, the in-
terquartile range (IQR, i.e. the difference between the 75 and the
25 percentiles) is used here to define the amplitude of the signal.
In the case under consideration, the IQR values are 7.21 and
0.31. Finally, the amplitude of the noise is taken, approximately,
as the 15% of the IQR, being 1.0 for X and 0.05 for Y.

3.2. Filter initialization

The EnKF requires an initial ensemble, whose ensemble average
represents the first guess and whose spread parametrizes the
expected error of the first guess. For the experiments below,
the algorithm is initialized using the mean state of the 10-yr
reference simulation and the variance around the mean during
the same period. Notice that variance of the system gives a
measure of the faithfulness of the mean in representing the true
state of the system. For example, regions where the variance is
near zero indicates regions where all the solutions of the model
are very close to the same value and the long-term mean is a
good guess about the state of the system at that region. On the
contrary, regions with a large variance are regions where the
value of the model has a large spread and the mean is a less
accurate representation of the state of the system.

The initial ensemble is constructed from the multivariate em-
pirical orthogonal functions (MEOFs) of the daily averaged out-
puts of the model for the 10 yr of the reference simulation. The
multivariate vector zk = (sxXk, syYk) ∈ R264 is constructed by
gathering all the 264 model variables and scaling them by the
inverse of their standard deviation (4.54 for all the slow variables
and 0.292 for all the fast ones). This multidimensional vector is
written as zk = s • xk , where xk = (Xk, Yk). The first 250 MEOFs
are retained and rescaled to reintroduce the variance lost by this
truncation. The initial ensemble, with r members, is given by

Xij = x̄i + s−1
i

250∑
k=1

√
DkSikηkj ,

i = 1, . . . , 264, j = 1, . . . , r, (11)

where z̄ is the long-term mean of the multivariate vector, D
is the diagonal matrix with the eigenvalues, S is the rectan-
gular matrix with the eigenvectors and ηkj ∈N(0, 1); so, ηηT /

(r − 1) ≈ I.

3.3. Measuring the performance of the assimilation

One of the advantages of twin experiments is that they confer
a perfect knowledge about the state to be reconstructed, simpli-
fying the measure of the performance of the assimilation. The
results of the data assimilation will be given separately for the
slow variables and the fast ones. For each kind of variables, the
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distance between the analysis will be given in terms of the root
mean square (rms) of the difference between the true value and
the reconstructed one:

rms X =

[
1

I

I∑

i=1

(
Xi − Xt

i

)2

]1/2

,

rms Y =




1

I · J

J,I∑

j=1
i=1

(
Yji − Y t

ji

)2




1/2

(12)

Although the rms varies with time, the results reported below
correspond to the average value over the last half of the experi-
ment (i.e. the average over the last 6 months) in the expectation
that the life of any initial transient is shorter than 6 months.
The resulting rms values are compared with the rms of a free-
evolving simulation starting from the same initial condition and
no data assimilation. Comparison against the free-evolving sim-
ulation allows to account for those situations where the model
might converge, by itself, towards the true solution.

3.4. Assimilation of all observations (EN1)

During a first set of experiments observations at all gridpoints
are assimilated (i.e. H = I) every 6 h. These experiments are
used to study the sensitivity of the assimilation to the various
choices for the ensemble size, r; the covariance inflation, ρ, and
the amplitude of the added random fluctuations, σ . The results
are evaluated in terms of the rms analysis error, normalized by
the rms error from no assimilation. Figure 5 indicates that the
ensemble size and the amplitude of the random perturbation
have a larger impact on the rms of the reconstructed states than
the amplitude of the covariance inflation. Figure 5a shows the
6-month average rms as a function of the ensemble size. For
small ensembles, large-scale variables have a smaller rms than
the short-scale variables. Ensembles of size 50 allow a similar
degree of convergence for both kinds of signals. Larger ensem-
bles provide little reduction of the error. Figure 5b illustrates the
low sensitivity of the rms error to the value of the covariance
inflation (r = 50). The amplitude of the noise has a large im-
pact on the performance of the filter (Fig. 5c). The largest errors
are obtained when σ = 0 and diminish as the amplitude of the
noise increases, until a minimum is reached (around the value of
0.08). Note that the error obtained using σ = 1 (i.e. an order of
magnitude larger than the optimal value) is about 60% smaller
than when the ensemble is integrated without adding any noise
(σ = 0).

Figure 6 shows the rms for the slow (6a) and fast (6b) vari-
ables, when all data are assimilated using r = 50, ρ = 1.0,
σ = 0.10 in an experiment called Ensemble 1 (EN1). The fig-
ures compare the analysis error from the assimilation with the
error of the free-evolving simulation (FREE experiment) start-
ing from the same initial field. Also superposed is the observa-
tional error (i.e. 1.0 and 0.05 for X and Y). Table 1 displays the

Fig. 5. Six-month average of the rms error of the assimilation as a
function of: (a) ensemble size; (b) covariance inflation and (c) the size
of the random perturbations. Results are normalized by the rms of the
error of the free simulation.

6-month average of the analysis error and the error of the FREE
experiment. The analysis error, for either slow or fast variables,
is smaller than the corresponding observational error, indicating
that the assimilation algorithm allows constraining both kinds of
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DATA ASSIMILATION IN A SYSTEM WITH TWO SCALES 545

Fig. 6. The rms error after each analysis step for the X (a) and Y (b)
variables. All variables are assimilated. The thin straight line indicates
the amplitude of the corresponding observational error. Dashed lines
indicate the error of the free simulation.

variables with the similar accuracy level, although it seems as if
the slow variables are better reconstructed. Figure 6 shows that
no trends are present in the time evolution of the error, suggesting
the stability of the implemented EnKF. As a summary, when all
the observations are assimilated, no differences appear in the
behaviour of the reconstructed variables due to their differences
in the length of the decorrelation scale or amplitude. In the
context of the problem pointed out by Lorenc (2003), it indicates
that a 50-member ensemble (small compared with the size of the
system) may still simultaneously fit large- and small-scale fields
when small-scale fields are exhaustively sampled.

3.5. Assimilation of X observations (EN2)

The next experiment of ensemble assimilation, called EN2, only
assimilates X observations (i.e. p = 8). The rms of the error

Table 1. The rms of the error of the free run (FREE)
and the five assimilation experiments described in
the text

EXP rmsX rmsY

FREE 6.18 0.41
EN1 0.60 0.05
EN2 0.47 0.29
EN3 0.65 0.39
CI1 0.48 0.02
CI3 0.48 0.27

Fig. 7. Six-month averaged rms error after each analysis step as a
function of the ensemble size. Only X variables are assimilated.

(Table 1) indicates that the reconstruction of the fast signal has an
error 60 times larger than when all observations are assimilated.
Although this does not come as a surprise, it is interesting to
note that the lack of convergence of the fast signal does not
deteriorate the reconstruction of the slow signal. On the contrary,
the analysis error of the X variable is smaller when X observations
are assimilated alone. In the same vein, Fig. 7 shows that an
ensemble with only 10 members is already able to make the
slow signal converge. This fact contrasts with the sharp increase
of the error shown in Fig. 5a, when the size of the ensemble is
reduced. These results can be explained in terms of overfitting,
as the number of observations to be fit is reduced whereas the
number of degrees of freedom of the filter is kept constant.

3.6. Assimilation of all X but oversampled Y
observations (EN3)

The next batch of experiments, called EN3, assimilates all the
large-scale variables (eight observations) together with a few ob-
servations of the high frequency variables (16 evenly distributed
observations), i.e. p = 24. The assimilation experiment with r =
50, ρ = 1.0, σ = 0.10 fails because one of the members of the
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Fig. 8. Background covariance between X1 (dashed) and Y1

(continuous) and all the X variables (a) and Y variables (b). Obtained
from the ensemble members at day 360 from experiment EN3.

ensemble becomes unstable and dies. The assimilation fails for
all the experiments in which σ < 0.12. The filter becomes stable
again, once the amplitude of the noise is larger than 0.13. Defin-
ing strategies to ensure the stability of the filter by replacing
unstable members is beyond the scope of this work, and results
are shown for those combinations of parameters for which the
filter is stable. Experiment EN3 shown in Table 1 corresponds
to σ = 0.15.

A surprising feature of the values in Table 1 is that the rms of
the error is significantly worse for both X and Y than the errors
obtained from EN2 (no assimilation of Y observations). Such an
error increase cannot be explained by the arguments of Lorenc
(2003), because the 50-member ensemble was previously able
to fit sets of 264 and 8 observations in experiments EN1 and
EN2, respectively. Moreover, although increasing the ensemble
size reduces the error (Fig. 4a indicates a monotonous decrease
of the error as the ensemble size increases), the performance of

EN3 (even when 200 members are used) is always lower than
the performance of EN2.

Figure 8a shows the background error covariance between
slow variables and both X1 and Y 1,1 estimated from the ensem-
ble spread at the end of the assimilation experiment (day 360).
Similarly, Fig. 8b shows the respective covariances of X1 and
Y 1,1 with the fast variables. There are differences between Figs.
4 and 8. Whereas the correlations shown in Fig. 4 are estimated
using 72 000 outputs of the model, correlations in Fig. 8 are
estimated with only 50. On the other hand, Fig. 4 measures
the degree of association between the temporal evolution of the
variables of the model. By neglecting correlations between the
dashed lines, the conclusion to be drawn from Fig. 4 is that short-
scale variables evolve independent of each other. In contrast, Fig.
8 gives a measure of the correlation of the background error at
different locations. However, because of the results shown in
Fig. 4, no correlation between the background errors in the fast
variables should exist. Accordingly, it must be noticed that the
ordinate-axis scale in Fig. 8b is one order of magnitude smaller
than in Fig. 8a. Thus, the correlation from Fig. 8 indicates that
observing Y 1,1 would have a small contribution on both the
large- and small-scale variables (compared with the impact that
X1 would have had) except in the case of large innovation. If the
model deviates from the observations for a fast-scale variable,
the non-zero spurious correlation will propagate it to the rest of
the system.

A retrospective analysis of the results of EN1, EN2 and EN3
is that the simultaneous assimilation using the EnKF of slow
and fast variables always hurts the slow variables, suggesting
that the cumulated effect of the spurious covariances from the
fast variables not only fails to improve the performance of the
assimilation but even increases the risk of filter failure.

4. Alternative initialization (CI)

The results of the previous section show that assimilation of
uncorrelated variables is prone to the errors associated with spu-
rious covariances and may degrade the results of the filter. This
could be prevented by damping the amplitude of the spurious
covariances. However, setting these covariances to zero means
that no information of the fast variables would propagate to the
rest of the system, and these observations would just correct the
value at the observation location. However, although variables
may be statistically independent one from the others, they are
dynamically linked. For example, Fig. 9 shows the temporal
evolution, during an assimilation cycle, of an anomaly of a fast
variable. After 6 h, the anomaly has dynamically propagated
to the neighbouring locations. This indicates that although se-
quential assimilation algorithms (either global or local) may fail
to assimilate these data, other methods based on the dynamic
propagation of the signal might be an alternative. One candidate
is the adjoint variational approach that, in its simplest imple-
mentation, intends to identify the initial condition for which
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Fig. 9. Time evolution, during one assimilation cycle, of an Y anomaly
initially located at gridpoint 33 (the dotted line indicates its initial
position).

the system evolves the closest to the observations. Here, a much
simpler technique is investigated, based on a combination of two
initialization techniques: the EnKF and Newtonian Relaxation
or Nudging (Anthes, 1974). In Nudging, assimilation is done
by introducing, in the dynamic equations, an additional term,
pulling the model solutions toward the observed values.

In the combined initialization experiments, here called CI,
the ensemble is being used to initialize the large-scale variables,
as in experiment EN2. As noted before, the reduced number of
observations allows the filter to closely fit the data, providing an
error smaller than the one obtained when all observations (both
X and Y) are being simultaneously assimilated. The initialization
of the fast components is done by constraining their evolution
using the nudging technique to pull the fast components toward
their observed values (Fig. 10). In this setting, implementation
of the Newtonian Relaxation is straightforward, as the decorre-
lation scale of the fast variables (1.5 d) is much larger than the
period between analyses (6 h). The experiment with CI with 24
observations is called CI3 (as it uses the same set of observa-
tions as the EnKF experiment EN3). The results are shown in
Table 1. The performance of the CI has been found to be robust
for a large range of values of the nudging coefficient (which is

Fig. 10. Diagram illustrating differences between constrained and
unconstrained trajectories of an ensemble during one assimilation
period.

the same for all Y observations). Values for the nudging coef-
ficient have been explored by increasing them from zero, up to
a value for which the model explodes. The smallest value of
the coefficient providing a significant reduction of the error of
the fast variables is chosen as the nudging coefficient. In CI3,
the amplitude of the coefficient is 100, which corresponds to
a half-day relaxation timescale. The results shown in Table 1
indicate that CI3 does not dramatically reduce the error from
EN2. However, notice that coupled initialization has been able
to slightly reduce the overall error of fast variables, without any
degradation of the slow variables reconstruction. Thus, they are
significantly better than the results from EN3. Moreover, when
this approach is applied to assimilate all the variables (called
CI1 as it represents the CI of the same observations used in the
ensemble assimilation EN1), the error is 0.48 and 0.023 for X
and Y, respectively (Fig. 11). The CI reduces, by half, the error of
the fast variables reported by EN1, indicating that constraining
the dynamic evolution of the ensemble is doing a better job than
trying to assimilate the fast variables with a sequential filter.

5. Summary

Assimilation of variables whose evolution is uncorrelated with
the rest of variables of the system is found to degrade the perfor-
mance of an EnKF. This result has been obtained by assimilating
synthetic data in a non-linear coupled model with two different
kinds of variables. The variables in the model may represent pro-
cesses with separate spatial-/timescales, for example, synoptic
waves and convection. In this coupled model, the evolution of the
small-scale variables is not correlated either with the other small-
scale variables or with the large-scale variables from which they
draw their energy. The detrimental effect of the assimilation of
small-scale variables with the EnKF has been observed either
when all of them are assimilated or when they are oversampled,
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Fig. 11. As Fig. 6. All X variables are assimilated using an ensemble
filter and all Y variables are used to constrain the evolution of the
ensemble members. Grey lines show the error when all variables are
being assimilated with EN1 (Fig. 6).

and little improvement is gained by increasing the size of the
ensemble.

This absence of correlation translates to ‘locally’ diagonal
covariance matrices, which do not support the statistical propa-
gation of the information from the observed locations to the rest
of the model variables. The spurious sample covariance matrix
using a finite ensemble sample is the prime suspect to explain
the decrease of the performance of the EnKF when assimilat-
ing a strongly undersampled set of these uncorrelated variables.
The scenario investigated in this manuscript differs from the
scenario drawn by Lorenc (2003), about the limits of EnKFs
to assimilate a rich set of observations of small-scale variables.
These scenarios are of interest for any data assimilation system
(operational or process oriented) dealing with multivariate sets
of observations, as they point out the importance of a proper

characterization of the statistical properties of each observed
variable before accepting it in their data assimilation system.

As a conclusion, this work suggests that in a system with
multiple scales, different initialization methods should be com-
bined: one method for the slow component and another method
for the fast one. Ensemble techniques are suited to reconstruct
the large scale or both scales when all the system is observed
(as long as the ensemble size is large enough as pointed out
by Lorenc, 2003) but may not be suited to simultaneous recon-
struct large and small signals from an undersampled small-scale
signal. As an example of the combination of two initialization
methods, fast variables have been assimilated using Newtonian
relaxation, that is, a technique that exploit the dynamic con-
straints of the model. The time evolution of the members of the
ensemble has been modified by introducing a relaxation term to
constrain the evolution of the system by pulling the fast variables
to their observed values. The EnKF is then used to assimilate
only the correlated variables. This approach is simple to imple-
ment, it does not increase the numerical cost of the ensemble
simulations; and it has been found to be stable for a large range
of relaxation coefficients. When all the observations are assimi-
lated, it provides an analysis error smaller than the error obtained
when all the observations are simultaneously assimilated using
the original EnKF. When only few uncorrelated variables are
assimilated, the new approach does not show the harmful effect
of including the uncorrelated variables discussed in Section 3.6.
Moreover, the errors of the overall fast variables is reduced from
the error obtained when only large-scale variables are being as-
similated (Section 3.5), indicating that some information from
the short-scale variables is being now indeed propagated to the
other short-scale variables. Although encouraging, the useful-
ness of this CI approach should be validated with other coupled
models and even with the same model but with different coupling
strength.
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