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ABSTRACT. The diffusion domain approach is a general framework for the understanding, 

interpretation and prediction of the response of microelectrode arrays. This work exposes some of its 

limitations, particularly when dealing with nanoelectrode arrays of a few microns in size. This article 

provides an overview of the principles and assumptions underpinning the diffusion domain approach, 

and then applies it to the study of nanoelectrode arrays. The apparent disagreement between theory and 

experimental data, due to the importance of radial diffusion to nanoelectrode arrays compared to 

microelectrode arrays, is explained using simulations and experiments. The principle that an array of 

micro- or nano-electrodes eventually behaves as if the entire array were a single electrode of the size of 

the array, with its corresponding properties, applies always. However, while microelectrode arrays tend 

to behave as macroelectrodes, nanoelectrode arrays on the other hand may behave as microelectrodes. 

For the case of arrays of small numbers of electrodes, or array sizes of microns or less in size, this 

compromises one of the key assumptions of the diffusion domain approach, namely that inner electrodes 

in an array are equivalent, which may lead the unaware to erroneous conclusions. 

KEYWORDS. Electrochemistry; microelectrode arrays; nanoelectrode arrays; Diffusion domain 

approach; voltammetry. 

 

MANUSCRIPT TEXT. 

1. Introduction 

Nanoelectrodes and nanoelectrode arrays are the natural next step in electrode miniaturization after 

microelectrodes and their arrays. However, only recent advances in nanofabrication techniques and 

metrology have enabled the controlled fabrication of such devices. This, together with the fact that such 

techniques are very costly and not so widely available, has limited the number of publications to date in 

this field. Early reports date back to the late 1990’s, but the field did not seem to boom until fifteen 
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years later with the works of Arrigan et al. 1-3, White 4, 5 and Murray 6 who reported on the mass transport 

properties of nanoelectrodes of various geometries and their arrays. 

One common and intriguing feature of the results presented in these works is the sigmoidal shape of 

the voltammograms recorded at nanoelectrode arrays even at moderate and low scan rates. This may 

seem striking if we draw an analogy between the mass transport behavior of nanoelectrode arrays and 

microelectrode arrays. Compton et al. have pointed to four main regimes of behavior affecting 

diffusional transport to microelectrode arrays. According to the relationship between size of the 

individual diffusion layer thicknesses, δ, microelectrode size described by their radius, r, and the inter-

centre distance between microelectrodes, d 7, 8, and with increasing diffusion layer thickness, these four 

regimes are: (i) planar diffusion to each microelectrode as δ<<r, (ii) radial diffusion to each 

microelectrode as δ=r<d, (iii) a transition zone when r<δ=<d and (iv) planar diffusion to the 

microelectrode array when δ>>>d. Regime-ii is the optimum one and it corresponds to the case when 

the response of the whole array is equivalent to that of a single microdisk, times the number of 

microelectrodes integrating the array. Regime-iv, on the other hand, consists in a complete overlap of 

individual diffusion layers that results in the array behaving as an electrode of the size of the entire 

micro- or nano-electrode array. Hence for most microelectrode arrays steady-state currents are observed 

in regime-ii, and then as the diffusion layer grows the current tails off in regime-iv. However, 

nanoelectrode arrays are a special case because their size is typically a few microns, so they show 

steady-state currents corresponding to microelectrode behavior, regardless of the extent of overlap 

between adjacent diffusion layers. 

This motivated us to study diffusion at nanoelectrode arrays in more detail, combining simulations 

and experiments with nanoelectrode arrays fabricated using electron-beam lithography 9. We first 

attempted to simulate the behavior of nanoelectrode arrays using the diffusion domain approach that has 

been so helpful in the study of microelectrode arrays. However, the results cast by this approach 

conflicted with the empirical observations reported in the past and, as we will show here, also with our 
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own experimental data. 

Models of nanoelectrode arrays were built based on three-dimensional domains and the results 

compared with those from two-dimensional models and the available experimental data. The three-

dimensional simulations were in agreement with the experimental results, and showed that 

nanoelectrode arrays working under regime-iv behave as single microelectrodes under most conditions. 

The main reason why a two-dimensional approach fails to correctly model the behavior of such 

nanoelectrode arrays is because it considers the particular case of a micro –or nano- electrode 

completely surrounded by other electrodes like itself, and ideally far from the edges of the array. In 

other words, the diffusion domain approach is best suited for large micro- and nanoelectrode arrays with 

significantly more microelectrodes in inner than in perimetric positions. This is partly why the diffusion 

domain approach fails to simulate the response of small nanoelectrode arrays in regime iv accurately. 

Perhaps another constraint should be added when dealing with small nanoelectrode arrays, regarding the 

size of the array vis-à-vis the size of the diffusion layer at the array. Since diffusion at microelectrodes 

is radial, supply of material to each nanoelectrode in an array of micrometric dimensions depends 

heavily on its position. Inner positions are characterised by being completely surrounded by 

neighbouring microelectrodes, and hence less material is able to reach them by diffusion compared to 

perimetric electrodes. Edge effects are magnified at small nanoelectrode arrays, where the hemispherical 

nature of the diffusion layer corresponding to the whole array is not accurately accounted for by this 

two-dimensional domain approach. 

Therefore, in this work we alert of the risks entailed by the indiscriminate application of the diffusion 

domain approach to nanoelectrode arrays regardless of their size. We show that while the behavior of 

nanoelectrode arrays is to some extent analogous to that of microelectrode arrays, different approaches 

ought to be used to model them depending on their overall size. Our conclusion is that while the 

diffusion domain approach is a powerful technique, it can only be applied to nanoelectrode arrays 

occupying a large area, such as large ensembles of interdigitated nanoband electrodes or nanopatterned 
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electrodes as the ones described in 10. 

2. Experimental:  

2.1 Chemicals and instrumentation 

KCl (99%) and K4Fe(CN)6.3H2O (99%) were purchased from Sigma-Aldrich. They were ACS 

analytical grade and were used as received without any further purification. Solutions were prepared 

using pure de-ionized water (18MΩ·cm). All electrochemical measurements were performed using a 

three-electrode configuration and a CHI700C bipotentiostat (CH Instruments, Texas, USA) connected to 

a PC. All electrodes were made from gold, A Pt ring was used as auxiliary electrode and a Metrohm 

Ag/AgCl (3M KCl) was used as reference electrode. Nanoelectrode geometry was characterized by 

atomic force microscopy (AFM) 9, 11 using a Veeco Dimension 3100 (Veeco Instruments) in Tapping 

Mode. 

2.2 Fabrication of disk nanoelectrode arrays 

Nanoelectrode arrays were fabricated over gold microband electrodes that had previously been made 

using standard photolithographic techniques as described previously in 12, 13. Chips containing gold 

microbands were spin-coated with a 100nm layer of PMMA 950K. The exposure was done in a RAITH 

150TWO. Conditions of exposure were: dose=0.016pC for the 0.25um pitch dots and 0.02pC for the 

1.5um pitch dots; accelerating voltage=10kV and at WD=10mm. Development was carried out in a 

standard MIBK:IPA (1:3) solution during 30sec and stopped with IPA during 30sec. 

3. Theory 

The current response of micro- and nano-electrode arrays was simulated in two- and three-

dimensional domains using the commercial finite element software package Comsol Multiphysics 3.3 

(COMSOL, SE) in combination with Matlab (The Mathworks, Inc.). 

We simulated the one-electron reduction process of a species in solution, corresponding to: 
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where kf and kb are heterogeneous rate constants defined by Butler-Volmer kinetics. 14 
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ks is the standard kinetic rate constant and indicates the degree of a system lability. In the present case 

a value of 10-2 ms-1, representing a fast system, was used in the simulations. For the sake of comparison, 

experimental values are usually between 10-2 and 10-7 ms-1 14, 15; α is the charge transfer coefficient –

assumed to be 0.5 in our simulations- 16, Eo’ is the formal potential of the redox couple, which we fixed 

at 0.25V to facilitate later comparison with experimental data. Finally, F is the Faraday constant, R is 

the gas constant and T is absolute temperature, set at 298 K in our simulations. 

We wanted to emphasize the importance of electrode geometry on diffusional transport alone, and 

therefore convection and migration were disregarded in our simulations. Only Fickian diffusion towards 

the electrodes was considered according to: 
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where c is the concentration and D the diffusion coefficient of the species in solution. The diffusion 

coefficient used in the models was 6.5·10-10 m2s-1, which corresponds to ferrocyanide in 0.1M KCl 14.  

The convergence of our solutions was heavily influenced by the quality of the mesh. Therefore, for 

each set of boundary conditions, we progressively refined the mesh until a convergence better than 1% 

between two consecutive solutions was obtained. While this did not represent a particular problem in the 

case of two-dimensional domains, it turned the solution of three-dimensional cases extremely time 

consuming. Accuracy, on the other hand, was affected by the size of the domains, which we set large 

enough to ensure bulk-like conditions at the boundaries. Given the recessed nature of our nanoelectrode 

arrays 2, 3, 17, 18, made by electron beam lithography over a thin polymethyl-methylacrilate (PMMA) layer, 
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the current was not compared with the expression for the steady-state current at an inlaid microdisk, 

namely I=4nFcDr. Instead, we used the expression for recessed microelectrodes19: 
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where n is the number of transferred electrons, ro is the radius of the electrode, and L is the value of 

the recess height. 

4. Results and Discussion  

4.1 Nanoelectrode arrays and the diffusion domain approach 

It is known that the size and shape of the diffusion layer at an electrode array depends on several 

factors such as: (a) experimental timescale, (b) microelectrode geometry, (c) inter-electrode distance and 

(d) diffusion coefficient of the electroactive species involved 7. The diffusion domain approach is a 

widely used technique to simulate disk microelectrode arrays 7, 8, 20. It consists in assigning its own space 

to each microelectrode in an array, so that it is diffusionally independent from its neighbours, as 

outlined in Figure 1. The main advantage is that it enables the accurate simulation of diffusional 

transport to a three-dimensional array of microelectrodes solving the mass transport problem in a two-

dimensional domain which solution is then integrated around the Z axis to obtain the current at a single 

microdisk. Last, this current is multiplied by the number of electrodes in the array to obtain the total 

current. 

 

Figure 1 Schematic representation of diffusion domain approach. The final dimensional plane represents 
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one microdisk electrode within an array of microdisks. 

 

This approach works well both for regular 7, 8, and random arrays 21 of microelectrodes as well as for 

partially blocked electrodes 22, 23. However, our results suggest that it is not suitable for the general 

simulation of nanometric-scale systems. In fact, this approach may be inaccurate in the case of disk 

nanoelectrode arrays where the footprint of the whole array is only a few microns square. 

To show this, we used the diffusion domain approach 20 and solved two-dimensional models for the 

reduction of species O, over square-lattice arrays of micro- and nano- disk electrodes. Figure 2A shows 

linear sweep voltammograms obtained for the case of a 5 µm radius inlaid microelectrode separated by 

100 µm from its closest neighbors. The scan rates range from 5mVs-1 up to 1Vs-1. Figure 2B, on the 

other hand, shows the results for the case of a 50 nm radius nanodisk separated by 1 µm from its 

immediate neighbors at scan rates going from 1Vs-1 up to 1000Vs-1. For fixed solution composition and 

centre-to-centre distance in the array, the degree of overlapping of the diffusion layers mainly depends 

on the scan rate used 7, 8. 

 

 

Figure 2 Simulated linear sweep voltammograms at different disk electrodes within an array, using the 

diffusion domain approach. (A) Microdisk radius of 5 µm and an inter-center distance of 100 µm for 

0.005, 0.01, 0.05, 0.1, 0.5 and 1 Vs-1. (B) Nanodisk radius of 50 nm and an inter-center distance of 1 µm 
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for 1, 5, 10, 50, 100, 250, 500 and 1000 Vs-1. In both cases Eo’=0.25V, D=6.5·10-10m2s-1 and [O] =1mM. 

 

Our simulation results for the microelectrode array (Figure 2A) agreed with previous results presented 

in 8. The transition across the different regimes can be seen in the figure, and further confirmation may 

be obtained using Einstein’s relation   ! = 2Dt = 2D"E / # , where a value of 0.150 V may be used for ΔE, 

and ν is the scan rate in Vs-1. Thus, at scan rates faster than 1 Vs-1 the voltammograms show a peak 

associated to planar diffusion governing mass transport to the microelectrodes (Figure 2A). As the scan 

rate decreases, diffusion becomes hemispherical. Around 50 mVs-1 the microelectrodes still behave 

independently from each other and the current recorded by the array corresponds to the limiting current 

of a single microelectrode times the number of elements in the array. As the scan rate continues to 

decrease, the degree of overlapping between diffusion layers increases and eventually the array behaves 

as a macroelectrode of the same area as that occupied by the array. 

In the case of nanoelectrode arrays the diffusion domain approach casts a similar landscape, and it 

would seem that the only difference is that, for the nanoelectrodes in the array to be diffusionally 

independent, faster scan rates would be required (50 Vs-1 or higher in our example). This seems 

perfectly normal, but it does not fit with the available experimental results reported by several authors 1-

3, 24-26. These works show clearly sigmoidal voltammograms obtained at moderate-to-low scan rates 

using nanoelectrode arrays. 

We believe that when the electrode geometry shifts from the micro- into the nano-scale, all other 

parameters –diffusion coefficients, concentrations and experiment duration- being the same, special 

attention needs to be paid to the concentration profiles across the diffusion layer of the whole array. This 

means that voltammetric peaks might be observed for species with sufficiently low diffusion 

coefficients, such as ionic liquids, but also for nanoelectrode arrays occupying an area of millimeter 

dimensions. 

The four different behavior cases of microelectrode arrays, which depend on the overlapping of the 
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individual diffusion layers, were presented in 7, 8. Usually, the different regimes may be reached by 

changing either the inter-electrode distance or the duration of the experiment for a given analyte. In the 

case of microelectrode arrays, which occupy areas in the order of a few square millimetres, the diffusion 

domain approach works because the consumption of material is large enough to change the 

concentration profiles very significantly in the vicinity of the array. Nanoelectrodes on the other hand, 

present a much smaller area and hence the amount of material that they are able to electrolyse is also 

very small to affect the solution composition to a great extent, even if they operate long enough to result 

in the complete overlap of their diffusion layers –at least so long as the footprint of the array is of 

micrometric dimensions!-. In fact, the sigmoidal voltammograms reported in the literature 1-3, 24-26 appear 

almost independent of scan rate. 

To test these ideas we performed another kind of two-dimensional simulations. We modeled a 

sectional plane containing the central row of electrodes in a 10x10 array. Again, the domain was drawn 

large enough to avoid misleading results due to the proximity of the boundaries and the mesh was duly 

refined. Figure 3 shows close-up images of the concentration maps in the vicinity of the micro- (3A) and 

the nano-electrode array (3B). They are clearly different. Figure 3A corresponds to a microelectrode 

array sweeping the potential at 5 mVs-1; the diffusion layers of the individual electrodes clearly overlap, 

and diffusion to the array is nearly planar. This is within reasonable agreement with the diffusion 

domain approach, which predicts a planar diffusion layer under these conditions.  

On the other hand, the concentration map for the nanoelectrode array sweeping at 1 Vs-1, shown in 

Figure 3B, suggests that the diffusion domain approach, which according to Figure 2B pointed to mildly 

planar diffusion, was inaccurate. Figure 3B shows that the diffusion layer for the array, where the 

diffusion layers of the individual nanoelectrodes are completely overlapped, is actually hemispherical 6. 

We believe that this is why the data shown in Figure 2B and the experimental results presented in 

bibliography 1-3, 24-26 differ. The implication is that while the domains of each nanoelectrode may be 

diffusionally independent, it would be wrong to assume that these nanoelectrodes are equivalent. This is 
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particularly so for arrays occupying an area of micrometric dimensions, where the consumption on the 

part of the nanoelectrodes is so little that the solution bulk can readily supply fresh material to the 

diffusion layer so that the concentration in the vicinity of the array remains very close to the bulk value. 

Therefore, the contribution of radial diffusion to nanoelectrode arrays is more important than it is of 

microelectrode arrays 6. 

We believe that very large nanoelectrode arrays would be required for the diffusion domain approach 

to predict the behavior of the system as accurately as in the case of microelectrode arrays. However, a 

system like that may be treated as a partially blocked electrode rather than as an array of nanoelectrodes. 

 

Figure 3 Details from 2D simulations of a plane perpendicular to a row of disk electrodes within an 

array of 10x10 electrodes. (A) 10x10 microdisks of 5 µm of radius at 100 s (r) and 100 µm of 

intercenter distance at 0.5 s (d) (B) 10x10 nanodisks of 50 nm of radius and 1 µm of intercenter 

distance. In both cases [O] =1mM and D=6.5·10-10m2s-1.  

 

4.2  3D Modelling of recessed-disk nanoelectrode arrays  

It seems that the consumption of electroactive species by the nanoelectrodes is so small that diffusion 

from the bulk quickly replenishes the consumed material. The result is that the nanoelectrodes in the 

array are no longer equivalent and reducing the system dimensions from 3D to 2D for the sake of 

modeling becomes inadequate. Radial contribution is so high in these systems that it is necessary to 

introduce 3D-domain models because the diffusion domain approach cannot simulate these devices 
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accurately. Therefore we built three-dimensional models of nanoelectrode arrays and used them to study 

the effect, on the system response, of scan rate, nanoelectrode separation and nanoelectrode population. 

In all cases, the nanoelectrodes were disks of 50 nm radius that were recessed 100 nm in an insulating 

material. We chose these values because they are easy to achieve using standard nanofabrication 

techniques such as electron beam lithography (EBL) or focused ion beam (FIB) 9.  

In all cases, the diffusion coefficient used was 6.5·10-10 m2s-1, corresponding to ferrocyanide in 0.1M 

KCl 14. The simulated concentration of species O was 20mM in all cases to facilitate direct comparison 

with experimental data. 

4.2.1  Effect of scan rate 

Figure 4 shows the results of two 6x6 nanoelectrode arrays with different intercenter distances, 250nm 

and 1.5µm, for scan rates ranging from 0.1 up to 5000 Vs-1. As the scan rate increased, the resulting 

currents for both distances seemed to converge. In other words, the nanoelectrodes in the array were 

gradually becoming diffusionally independent and hence closer to being equivalent to each other. The 

effect was more manifest with decreasing inter-nanoelectrode distance because overlapping of 

neighboring diffusion layers at low scan rates was more significant. 

It is important to point out that for scan rates below 1Vs-1, where overlap of adjacent diffusion layers 

was complete, the current still presented stationary values and the voltammograms were sigmoidal, as 

shown in Figure 5. This result is in agreement with the experimental observations from other authors 1-3, 

24-26, and differs from the typical behavior that a microelectrode array would show. That is, when the 

diffusion layers of neighboring microelectrodes in an array overlap completely, the behavior of the array 

becomes that of a macroelectrode and the voltammograms tail off due to planar diffusion. The low scan 

rate behavior of nanoelectrode arrays, on the other hand, resembles that of a microelectrode. 
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Figure 4 Simulation results for steady state current at (E-Eo)=-0.25V vs scan rate for a 6x6 nanodisks 

array of 50 nm of radius, 100 nm of recess and an intercenter distance of 1.5 µm (●) and 0.250 µm (■). 

In both cases [O] =20mM and D=6.5·10-10m2s-1. A logarithmic axis is used in order to represent a wide 

range of scan rates. 

4.2.2 Effect of nanoelectrode separation 

The second parameter studied was the centre-to-centre distance between nanoelectrodes. The 

simulated results for a 6x6 nanoelectrode array at 1Vs-1 are showed in Figure 6. As the intercenter 

distance increases the steady state current is close to the theoretical current, equation (0.5), multiplied by 

the number of electrodes in the array (36 electrodes). This raises questions regarding the practical 

aspects of nanoelectrode array design: is it really necessary to ensure diffusional independence between 

nanoelectrodes? And, if so, are those nanoelectrode arrays still true nanometric devices? Taking our 6x6 

nanoelectrode array, if diffusional independence was to be achieved at a scan rate of approximately 1Vs-

1, then the nanoelectrodes would have to be separated at least 3µm from each other -about 30 times their 

size!-. This would lead us to a device 18 x 18 µm, equivalent to an approximately 10 micron radius 

microelectrode, except for the fact that the current at the 10 micron radius electrode would be higher. 
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Under these circumstances, nanoelectrode arrays should contribute with other advantages such as 

decreased capacitive currents and the possibility to work in even more resistive media than a 

conventional microelectrode, which might be of interest in fast voltammetry or in-vivo studies. 

 

Figure 5 Simulated voltamograms at 1Vs-1 for a 6x6 nanodisks array of 50 nm of radius, 100 nm of 

recess and two intercenter distances (d): 1.5 µm and 0.250 µm. In both cases [O] =20mM and D=6.5·10-

10m2s-1. 
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Figure 6 Simulation results for steady state current at (E-Eo)=-0.25V and 1 Vs-1 vs intercenter distance 

(d) for a 6x6 nanodisks array of 50 nm of radius and 100 nm of recess. In both cases [O] =20mM and 

D=6.5·10-10m2s-1. The logarithmic axis is used in order to represent a wide range of scan rates. The 

dotted line represents the theoretically expected current at an array of diffusionally independent 

nanoelectrodes as per equation (0.5). 

4.2.3 Effect of nanoelectrode population 

Finally, we considered nanoelectrode population as the last parameter affecting the behavior of 

nanoelectrode arrays. Figure 7 shows the results for three different nanoelectrode arrays (3x3, 6x6 and 

9x9) for scan rates ranging between 0.1 and 5000 Vs-1. For the sake of comparison, the simulated 

steady-state currents were normalized with respect to the number of electrodes in each array. These 

normalized currents were regarded as the average current observed by each nanoelectrode in the array. 

This is only an approximation because, as we showed earlier, the nanoelectrodes in an array are far from 

equivalent. Figure 7 also depicts, as a dotted line, the theoretical current for an infinitely isolated 
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nanoelectrode of identical geometry, based on equation 0.5. It was found that the normalized current 

approached the theoretical value for the isolated electrode as the scan rate increased, independently from 

the number of electrodes integrating the array. These were obvious results that reminded of the behavior 

of microelectrode arrays. As the scan rate increases, the degree of overlap between adjacent diffusion 

layers decreases and the current recorded by each nanoelectrode in the array approaches the theoretical 

response of a single nanoelectrode, regardless of the population size of the nanoelectrode array. At slow 

scan rates, on the other hand, the average current was found to depend heavily on the number of the 

nanoelectrodes in the array. The simulations showed that as the nanoelectrode population in an array 

increased, the average current per nanoelectrode decreased. This is also in line with the behavior 

observed at microelectrode arrays; as the number of electrodes in an array increases, there are more 

electrodes at inner positions competing for the diffusing material. These inner positions are actually 

diffusionally equivalent and the ones that we believe are successfully modelled by the diffusion domain 

approximation. The situation is different in the case of those electrodes located around the edges of the 

array. Not being completely surrounded by other electrodes, they face less competition for the diffusing 

species and hence they experience higher current densities than inner electrodes. The trend to observe 

less and less current (per nanoelectrode) as nanoelectrode population in the array increases also has a 

limit. Hypothetically, this limit is reached when the nanoelectrodes inside the array far outnumber 

perimetric ones.  
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Figure 7 Simulation results for normalized steady state current at (E-Eo)=-0.25V vs scan rate for a 3x3 

nanodisks array (■), 6x6 nanodisks array (●) and 9x9 nanodisks array (▲). It is normalized to the total 

number of electrodes per array. In all cases r= 50 nm, L=100 nm, d=250 nm,  [O] =20mM and 

D=6.5·10-10m2s-1.  

 

4.3 Experimental results 

The three kinds of nanoelectrode arrays described earlier in section 2.2 were used in cyclic 

voltammetry experiments to study their mass transport properties compared to microelectrode arrays. 

Also, the experimental results were of great help to validate our three-dimensional models. 

Nanoelectrode arrays presenting different inter-nanoelectrode separations and nanoelectrode populations 

were produced, and Table 1 provides a summary of their main geometric features, measured using by 

AFM. Figure 8 shows AFM pictures from two arrays presenting inter-nanoelectrode separations of 1.5 

µm and 0.250 µm, respectively.  
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Figure 8 AFM image of an array of (A)1.5 µm and (B) 250 nm of intercenter distance. 

 

Table 1 Geometric features for each array configuration. Errors are calculated based on 10 

measurements. 

Number of electrodes Diameter / nm Recess height/ nm  Intercenter distance  

6x6 array 114±8  152±5  1.5 µm 

31x31 array 133±8  156±10 250 nm 

61x61 array 180±14 73±6 250 nm 

 

Although the nanoelectrodes described in table 1 present important differences in their size and recess 

height, they were of the same magnitude and could be qualitatively compared with the simulated 

currents reported in the previous section. 

Figure 9 shows the voltamograms at 100mVs-1 for each array in a 20 mM ferrocyanide solution. It is 

remarkable that all voltamograms are sigmoidal and reach a steady-state current. This is so even for the 

densely populated arrays B and C, where the diffusion layers of the individual nanoelectrodes are 

certainly overlapping, and the number of inner nanoelectrodes (3721) is far greater than that of 

perimetric (240) nanoelectrodes for the 61x61 array. This clearly points to the importance of radial 

diffusion to these devices, likely explained by the overall size of the array, which occupies a 15x15 
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micron square area. This is roughly the area of a microelectrode of 8.5-micron radius. 

 

 

Figure 9 Experimental voltamogragrams for each array configuration at 100 mVs-1 in 20 mM 

ferrocyanide / 0.1 M KCl solutions  (A) 6x6 nanoarray, (B) 31x31 nanoarray and (C) 61x61 nanoarray. 

Three measurements are shown to demonstrate reproducibility.  

 

We then took the data obtained from the 6x6 nanoelectrode array and compared them to our 

simulations. The other two arrays were too large and their simulation was abandoned because we were 

unable to solve models of that size. 

Figure 4 shows the average steady-state currents per electrode, measured at different scan rates for a 

3D-modelled 6x6 nanoelectrode array with an intercenter distance of 1.5 µm. At 100 mVs-1 the 

simulated current was 1.76 nA, which compared very favorably with an experimental value of 1.7±0.1 

nA at the same scan rate.  This experimental value was obtained from triplicate measurements 

conducted at five different nanoelectrode arrays of this kind.  

Figure 10 shows the experimental steady-state currents for the other two nanoarray configurations. 

Again, the data have been normalized with respect to the number of electrodes in each array. The figure 

shows that at higher scan rates the two sets of data deviate from each other, as each is affected to a 

different extent by capacitive currents. The more nanoelectrodes in the array, the higher its capacitive 

currents will be. This was sistematically found when comparing the 61x61 array to the 31x31, even at 

the lowest scan rates. This can also be seen in figures 9C and 9B. Nevertheless, when we compared 
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Figure 10 and Figure 7 we reached the following conclusions. First, the normalized current values at 

low scan rates are very similar in both arrays, around 15 nA and, as expected, they are also considerably 

lower than the values obtained for the simulated arrays of 3x3, 6x6 and 9x9 (Figure 7). The coincidence 

in average current per nanoelectrode found for arrays 61x61 and 31x31 can be explained by the fact that 

in both cases there are many more inner nanoelectrodes than perimetric ones.  

At higher scan rates, the shape of the experimental results followed the same trend as predicted by the 

simulations. This means that, as the scan rate increases, the individual diffusion layers overlap less and 

less until they eventually become independent from each other (Figure 7), and this upper limit may be 

estimated using equation (0.5). 

 

Figure 10 Experimental results for normalized steady state current at E=0V vs scan rate for a 31x31 

nanodisks array (■) and 61x61 nanodisks array (●). It is normalized to the total number of electrodes per 

array. Concentration of ferrocyanide used is 20 mM. Error bars are calculated using 4 different 

nanoarrays for each configuration and measurements were done in triplicate for each scan rate.  
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Our experimental results are in high concordance with previous results published by several authors 1-

3, 24-26. In all these works the behavior for the their nanoelectrode arrays was sigmoidal, even working at 

quite low scan rates. Furthermore, our experimental results also corroborated the modeled results 

described in the previous section.  

5. Conclusions 

We have shown that diffusion to nanoelectrode arrays depends very much on the size of the array. 

Thus, nanoelectrode arrays occupying areas of a few micron square observe steady state even if the 

diffusion layers of adjacent nanoelectrodes overlap completely. In this case, the magnitude of the 

observed current is expected to be slightly lower than that experienced by a microelectrode of 

comparable dimensions, which experiences radial diffusion when Dt>r2. 

This has important implications related to the design and characterisation of this kind of 

nanoelectrode-based devices. For example, theoretical paradigms that are valid to explain the behavior 

of microelectrode arrays and nanopatterned macroelectrodes are very likely unsuitable for the study of 

nanoelectrode arrays. We have shown this using several two- and three-dimensional models together 

with recessed-nanoelectrode arrays fabricated by electron beam lithography. 

We have shown the effect of inter-nanoelectrode spacing and also nanoelectrode population in 

different regular arrays arranged in a square lattice. The currents observed at nanoelectrode arrays seem 

to have an upper and a lower limit. Drawing an analogy to microelectrode arrays, the upper limit is 

reached at short operation times and corresponds to regimes i and ii. The lower current limit is reached 

for regime-iv, when the diffusion layers of adjacent nanoelectrodes are completely overlapped and the 

array effectively behaves as a microelectrode. This means that radial diffusion to nanoelectrode arrays is 

more important than in microelectrode arrays, and hence theoretical approaches that were valid for the 

latter may be no longer applicable to nanoelectrode arrays of micrometric size. If this is the case then 

new theoretical approaches are needed to model these devices and improve our understanding of them. 
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