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Abstract 

In this study, we evaluated the activity of short antimicrobial peptides against 

different fungal isolates that cause postharvest decay of fresh fruits. The 

previously identified hexapeptides PAF19, PAF26 and LfcinB4-9 inhibited the in 

vitro growth of isolates from Penicillium digitatum and P. italicum, and from 

Alternaria and Geotrichum genera, being no active against Rhizopus, Mucor 

and Aspergillus. The results extend our previous observations on the specific 

and distinct activity profiles of PAFs. In addition, peptide activities were 

compared with that of two fungicides used for citrus fruit preservation, 

thiabendazol (TBZ) and imazalil (IMZ). We observed a lack of correlation 

between peptide and fungicide sensitivity among different species. Importantly, 

P. digitatum and P. italicum isolates resistant to fungicides were susceptible to 

peptides, and our data suggest that common multiple drug resistance 

mechanisms are not active against this class of peptides. The in vitro peptide 

inhibition was correlated with a retard of the decay caused by Penicillium on 

citrus fruits, and this effect was comparable for both fungicide-resistant and -

sensitive isolates. Comparison of PAF26 and TBZ in vitro MIC values and their 

in vivo effect on citrus decay indicated that PAF26 performed in vivo better than 

TBZ. 

 

Keywords: antimicrobial peptides, fungicides, Penicillium, Citrus fruits, 

postharvest. 
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1. Introduction 

There is an obvious need to search for alternative strategies/compounds to 

control fungal plant diseases (Knight et al., 1997). A paradigm is postharvest 

storage, wherein losses are controlled, mainly, through massive application of 

toxic chemical fungicides (Barkai-Golan, 2001). Antimicrobial peptides have 

potential as food-grade additives (Delves, 1990; Schillinger et al., 1996), and it 

has been proposed their use to fight phytopathogens in agriculture (Rao, 1995; 

van der Biezen, 2001) and postharvest conservation (López-García et al., 

2000). The design of new synthetic non-natural peptides could circumvent some 

of the problems associated with certain antimicrobial peptides (for instance, 

toxicity or stability). A chimerical gene coding for a peptide hybrid of cecropin 

and melittin has been successfully expressed in planta (Osusky et al., 2000), 

and another such hybrid with known antimicrobial properties against fungal 

pathogens (Cavallarin et al., 1998; Ali and Reddy, 2000) was produced in 

Sacharomyces, which was applied to Colletotrichum-inoculated tomato fruits 

(Jones and Prusky, 2002). In previous works, we used combinatorial chemistry 

to design a group of hexapeptides with specific antifungal activity against 

selected phytopathogens, so-called PAFs (Peptide and AntiFungal). Two of 

these peptides were further characterized and are PAF19 (López-García et al., 

2000) and PAF26 (López-García et al., 2002), with similar sequences (Table 1), 

albeit distinct potency.  

The two major postharvest diseases of citrus are green and blue rots, caused 

by Penicillium digitatum Sacc. and P. italicum Wehmer, respectively (Eckert and 

Ogawa, 1985; Barkai-Golan, 2001). Geotrichum candidum and Alternaria spp. 
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have lower incidence but might become problematic whenever Penicillium rots 

are successfully controlled. Fungicides belonging to the benzimidazole 

[thiabendazole (TBZ) and benomyl] and imidazol [imazalil (IMZ)] groups are 

commercially applied to control postharvest citrus decay, although they are 

ineffective (or less effective) against Geotrichum spp., Rhizopus spp. or 

Alternaria spp. Also, resistant strains have been described (Eckert, 1988; Bus, 

1992), mainly because of intensive fungicide use. TBZ and IMZ are systemic 

fungicides that act on specific targets in such a way that mutations in the 

corresponding genes might develop resistance. TBZ and benomyl act avoiding 

tubulin polymerization and inhibit mitosis. IMZ is an inhibitor of ergosterol 

biosynthesis. Many fungi develop resistance to multiple unrelated chemicals, 

the so-called multidrug resistance (MDR), and ATP-binding cassette (ABC) 

membrane transporters have been shown to play a role in MDR and/or 

pathogenesis (Nakaune et al., 1998; Urban et al., 1999; Schoonbeek et al., 

2001). 

PAFs have promising activities against P. digitatum and P. italicum. In order 

to assess their potential use in postharvest treatments, it is necessary to 

evaluate PAF activities against broad collections of isolates and, importantly, to 

compare them with that of commercial fungicides. The present study was 

conducted with this double objective, by assaying PAF19, PAF26, TBZ and IMZ 

against isolates belonging to Penicillium, Geotrichum, Rhizopus, Mucor, 

Alternaria, and Aspergillus genera. Also, we had previously noted that the 

antibacterial core of lactoferricin, the L-amino acid hexapeptide LfcinB4-9 (Table 

1), has strong sequence similarities with PAF19 (López-García et al., 2000); this 
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peptide was included to test whether this resemblances are reflected in similar 

antifungal properties. 

2. Materials and methods 

2.1. Fungal isolates.  

In this study, we used a collection of fungal isolates, all of them related with 

citrus postharvest pathogenesis (Table 2). Fungi were cultured on potato 

dextrose agar (PDA) (Difco, Detroit, USA) plates at 24ºC. Conidia were 

collected by adding sterile water to the surface of the mycelium and gently 

scrubbing with a glass rod, or by scraping them from the agar with a sterile 

spatula and transferring to sterile water. Conidia were then filtered, and titrated 

with a hemacytometer. 

2.2. Peptides and fungicides. 

Peptides (Table 1) were synthesized in-house by solid-phase methods using 

N-(9-fluorenyl) methoxycarbonyl (Fmoc) chemistry (Fields and Noble, 1990) and 

purified by preparative reverse phase high-pressure liquid chromatography (RP-

HPLC), as previously described in detail (López-García et al., 2000). Their 

identities were confirmed by MALDI-TOF (matrix-assisted laser 

desorption/ionization time-of-flight) mass spectrometry. Stock solutions of each 

peptide were prepared at 1 mM in 5 mM 3-(N-morpholino)-propanesulfonic acid 

(MOPS) pH 7 buffer. Peptide concentrations were determined by measuring the 

absorbance at 280 nm and re-checked before each experiment. 
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Fungicides used were thiabendazole (TBZ) (Purity 99.5%, Sigma, St. Louis, 

USA) and imazalil (IMZ) (Purity 99.9%, Riedel-de-Haën, Seelze, Germany). 

Stock solutions of each fungicide were prepared at 1 mg/ml in 5 % ethanol. 

2.3. In vitro antimicrobial activity assays. 

Fungi were grown at 24ºC on sterile 96-well microtiter plates (Nunc, 

Roskilde, Denmark) in a final volume of 200 μl and growth was determined by 

measuring the absorbance at 492 nm with a Titertek Multiskan PLUS reader 

(Labsystems, Helsinki, Finland) as previously described (López-García et al., 

2000). In the assay mixture, 130 μl of potato dextrose broth (PDB) (Difco, 

Detroit, USA) containing 0.003% (wt/vol) chloramphenicol was combined with 

50 μl of PDB containing 105 conidia/ml of each fungi and 20 μl of each peptide 

or fungicide, added from 10x stock solutions. Final peptide molar concentrations 

used were 10, 20, 40, 60, and 80 μM. Final fungicide concentrations for 

experiments shown in Table 2 were 1, 5, 10, 50 and 100 μg/ml. Fungicide 

concentrations were subsequently transformed to molar concentration for data 

presentation (molecular weights 201.20 for TBZ and 297.18 for IMZ). In all the 

experiments, each treatment was carried out as triplicate samples (three wells 

in the plate) and the mean and standard deviation (SD) (after background 

subtractions) were calculated for each. The experiments were replicated at least 

twice for each fungal strain. The MIC was defined as the lowest compound 

concentration that showed no growth at the end of the experiment (usually after 

3 days of incubation). The IC50 was calculated as described previously (López-

García et al., 2000). For this purpose, the final concentrations in the case of 

fungicides were 10, 50, 100, 150, 200, 250, 300, 400, 500, 750 and 1000 ng/ml. 
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2.4. Fruit decay tests. 

Experiments were carried out on freshly harvested orange fruits (Citrus 

sinensis L. Osbeck cv. Navelina). Fruits were submerged for 5 min in a 5% 

commercial bleach solution (equivalent to 0.25% free chlorine), washed 

subsequently with tap water and allowed to dry. Fruits were wounded by making 

punctures (approximately 5 mm in depth) with a nail at four sites around the 

equator. Fungal strains used in these experiments were P. digitatum PHI-26 

and PHI-41, and P. italicum PHI-1 and PHI-52. Inoculums contained 104 

conidia/ml and antifungal compounds (either peptides or TBZ, at desired final 

concentrations), and 10 μl of the inoculum were applied onto each wound. For 

each treatment, three replicas (five fruits per replica, four wounds per fruit) were 

prepared in each experiment. Fruits were maintained at 20ºC and 90% RH. 

Symptoms were scored at different days post inoculation (dpi) as the number of 

infected wounds in each replica. The percentage of infected wounds and mean 

values ± SD for each treatment were subsequently calculated. Statistical 

analyses were carried out with the software package StatGraphics Plus 4.0 

(Manugistics Inc., Rockville, USA). The F test was applied to test if difference 

between the treatment means was significant, and the Turkey's honestly 

significant difference (HSD) procedure was used for mean separation. 

3. Results 

3.1. Inhibition of in vitro growth of natural fungal isolates. 

Synthetic hexapeptides previously identified as antimicrobials were assayed 

against a collection of fungal isolates (Table 2). These hexapeptides were 
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PAF19 and PAF26 identified in our group by a combinatorial chemistry 

approach (López-García et al., 2000; López-García et al., 2002), and the active 

center of lactoferricin B (LfcinB4-9) (Tomita et al., 1994), a peptide of natural 

origin whose sequence has resemblances of PAF19 (López-García et al., 2000) 

(Table 1). Our results confirmed that PAFs are active against distinct isolates of 

the most important fungi causing postharvest decay in citrus fruits, Penicillium 

digitatum and P. italicum, and demonstrated also the activity of LfcinB4-9. Other 

Penicillium spp. were found that were less affected or even insensitive to PAFs 

(i.e. PHI-8 and PHI-65). 

The spectra of action of PAFs and the lactoferricin peptide were equivalent. 

MIC values of LfcinB4-9 and PAF19 were similar among the different strains 

tested, while PAF26 showed consistently stronger activity (i.e., lower MIC 

values). LfcinB4-9 cationic charge and amino acid sequence are more related to 

PAF19 than to PAF26, which could explain its antifungal properties. It is worth 

noting, in addition, that LfcinB4-9 used in this work was synthesized with the 

natural L-enantiomers of amino acids. It has been reported that the PAF19 

sequences synthesized with either D- or L-amino acids share comparable 

activities, albeit the former is more resistant to proteolytic degradation (López-

García et al., 2000).  

The data obtained with the hexapeptides were compared with the fungicides 

TBZ and IMZ (Table 2). Some natural isolates of Penicillium with reduced 

sensitivity to TBZ and IMZ were detected in our collection. It has been reported 

that IMZR isolates of P. digitatum were frequent in California packing-houses, 

while resistant P. italicum were rare (Holmes and Eckert, 1999). Our study, 

although with a much lower number of isolates, would confirm this previous 
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study. Importantly, we did not find a correlation between sensitivity to PAFs and 

sensitivity to either TBZ or IMZ. For instance, the fungicide-resistant 

P. digitatum and P. italicum isolates were sensitive to PAFs (i.e. PHI-35, PHI-41 

and PHI-52). The opposite sensitivity behaviour was also observed; the PHI-8, 

a PAFR Penicillium sp., was as sensitive to fungicides as P. digitatum or 

P. italicum.  

In our assays, we also included some isolates of other fruit pathogens 

(mainly of citrus) belonging to the genera Geotrichum, Rhizopus, Mucor, 

Aspergillus and Alternaria. Both IMZ and TBZ are known to be ineffective 

against sour rot caused by Geotrichum candidum (Eckert and Ogawa, 1985), 

and our data confirmed absence of in vitro inhibition. Two isolates of 

Geotrichum sp. were inhibited by PAF26 at the highest concentration tested 

(80 μM). Benzimidazol fungicides are not active against Alternaria, and although 

IMZ has been reported to suppress decay caused by this fungus (Spalding, 

1980; Prusky and Ben-Arie, 1981) it does not control it effectively on citrus 

probably due to its low sensitivity to this fungicide (Table 2). Interestingly, 

Alternaria sp. show a sensitivity to PAFs very similar to P. italicum, as noted in 

comparisons of the MIC data of the peptides against the isolates PHI-2, PHI-4 

and PHI-6, with the data against Alternaria PHI-44, for instance. We also 

confirmed, with natural isolates different to the collection strains reported 

previously (López-García et al., 2000), that Rhizopus spp. and Aspergillus spp. 

were not sensitive to PAFs. Thus, our results demonstrate activity of PAFs 

against some fungi not effectively controlled by some of the current chemical 

fungicides, and also against isolates of P. digitatum and P. italicum that have 

developed resistance to fungicides. Indirectly, data presented also confirm and 
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extend previous observations on the specific and distinct activity profiles of 

PAFs. As an internal control of our assays, the inactive P20 peptide (López-

García et al., 2000) (Table 1) showed no activity against any of the tested fungi 

(data not shown). 

On the other hand, we observed no synergy (i.e. additive interactions), 

between fungicides (TBZ or IMZ) and PAF26 on the growth inhibition of 

P. digitatum PHI-26 in experiments designed following the Abbot approach 

(Abbot, 1925), as described recently (Gisi, 1996) (data not shown). 

Four classes of fungi were identified among all the Penicillium tested 

(representative of the different susceptibilities to PAFs and fungicides), and 

further characterization was carried out by calculating the IC50 values of the 

compounds against them (Table 3): (i) isolates sensitive to both PAFs and 

fungicides (such as P. digitatum PHI-26 and P. italicum PHI-1), (ii) isolates 

sensitive to PAFs and resistant to fungicides (PHI-41 and PHI-52), (iii) isolates 

resistant to PAFs and with lower sensitivity to fungicides (the unidentified 

Penicillium PHI-8), and (iv) an isolate resistant to PAFs and TBZ (PHI-65). 

3.2. Effect of PAFs on infection of citrus fruits by P. digitatum. 

Since PAFs are able to inhibit the in vitro growth of fungi which are 

unaffected by fungicides, we designed experiments to compare the effect of 

hexapeptides on the infection caused by isolates of P. digitatum and P. italicum 

that were either fungicide sensitive (PHI-1 and PHI-26) or resistant (PHI-41 and 

PHI-52). A representative experiment (Fig. 1) shows that the in vitro growth 

inhibition was correlated with an effect on the in vivo infection, confirming also 

that PAF26 has a more potent antifungal activity than PAF19. It is remarkable 
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that both fungicide resistant and sensitive isolates were affected by PAFs to the 

same extent. 

We also compared the in vivo antifungal activities of PAFs and fungicides (as 

example, TBZ) under comparable laboratory inoculations (Fig. 2). Noteworthy, a 

concentration 3 times the MIC of TBZ was not enough to affect the in vivo 

infection, while a concentration (50 μM) of PAF26 that is 2-3 times higher than 

its MIC retards the infection of P. digitatum PHI-26. It was necessary roughly 

150 times the MIC of TBZ to control the infection to the same extent as PAF26 

at 50 μM. 

4. Discussion 

The postharvest application of short synthetic antimicrobial peptides is an 

attractive alternative to fungicides (López-García et al., 2000; Jones and 

Prusky, 2002; López-García et al., 2002). In this context, it is important (i) the 

assessment of peptide antifungal properties against collections of field isolates 

from natural populations, and (ii) the comparison of peptide activity with that of 

commercial fungicides.  

We describe the comparison of the activity of PAF19 and PAF26 with that of 

the hexapeptide LfcinB4-9 (Tomita et al., 1994), and two fungicides, TBZ and 

IMZ, against a collection of postharvest fungal isolates, as representative of the 

populations found in citrus packinghouses from our industrial environment. An 

emphasis was made to include P. digitatum and P. italicum isolates that were 

not only sensitive but also resistant to these common fungicides. Isolate origins 

included rotten fruits (oranges, mandarins or lemons, either fungicide-treated or 

non-treated), the surfaces from healthy non-treated fruits, contact plates from 
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surfaces of packing-house equipment, or water from drenchers containing high 

doses of fungicides (Table 2). 

We have found a new application for the antibacterial core of bovine 

lactoferricin in the control of postharvest fungal infections. Lactoferrins are iron-

chelating proteins present in the milk of mammals, and Lactoferricin B is a 25-

residue antibacterial peptide isolated after cleavage of the bovine lactoferrin 

(Bellamy et al., 1992). Its residues 4-9 (LfcinB4-9) have been characterized as its 

active core and when the C-terminus is amidated have been show to be as 

potent as the longer peptide (Tomita et al., 1994). In our study, this peptide was 

synthesized with L-estereoisomers of amino acids (and also with both termini 

protected, for a better comparison with PAF19 and PAF26), and was found to 

have potency and spectrum of action similar to PAF19 (Table 2).  

An important issue that must be addressed as related to the use of this class 

of peptides is the evaluation of their potential toxicity or allergenicity effects. The 

absence of toxicity of PAF19 and PAF26 to bacteria and yeast (López-García et 

al., 2000; López-García et al., 2002), and their sequence (Table 1) and activity 

(Table 2) similarities with the antimicrobial center of a natural protein found in 

mammals look very promising in this regard. Moreover, human lactoferrin has 

been successfully expressed in potato plants and antibacterial activity against 

human pathogens was recovered from tubers (Chong and Langridge, 2000). 

Our report also confirms that P. italicum is less susceptible in vitro to PAFs 

than P. digitatum (Tables 2 and 3). It remains to be determined whether this 

behavior indicates that P. italicum has overall less susceptibility to antimicrobial 

peptides/proteins, or is rather a consequence of the fact that the initial 

combinatorial design of PAFs was targeted to P. digitatum. A paradox, however, 
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is that PAF protection against blue mold caused by P. italicum seems better 

than against green mold (Fig. 1). This is probably related with the lower 

virulence in vivo of P. italicum (i.e., lower progression of infection) as compared 

with P. digitatum, when equal number of conidia are inoculated under the same 

conditions (Fig. 1, and unpublished observations). Therefore, we relate a lower 

virulence with a higher apparent PAF sensitivity in vivo. We observed the same 

trend in in vitro growth experiments in 5% PDB (instead of 100% PDB), in which 

a much lower growth rate of the fungi lowered the apparent MIC and IC50 values 

of PAFs (data not shown). This observation points to the need of 

standardization whenever peptide activities are compared among different 

laboratories. 

Our data demonstrate a lack of correlation between peptide and fungicide 

sensitivity. A relevant finding is that PAFs are capable of inhibiting fungi that are 

unaffected by frequently used fungicides (as Alternaria sp), or that have 

developed fungicide resistance, likely because of the high selection pressure 

encountered in packinghouses. Several of the P. digitatum and P. italicum 

isolates assayed were resistant to fungicides and sensitive to PAF26 in vitro 

(Table 2). These data are enforced by the very recent demonstration of in vitro 

activity of other short peptides against TBZ-resistant strains of another 

unrelated fungus, Fusarium sambucinum (González et al., 2002). Moreover, the 

infection of our fungicide resistant isolates was delayed by co-inoculation with 

the peptide, to the same extent as that of fungicide sensitive ones (Fig. 1). 

These observations demonstrate that the underlying mechanisms that confer 

PAF/fungicide sensitivity are independent. Also, double-resistant isolates to the 

unrelated TBZ and IMZ (i.e. P. digitatum PHI-35, PHI-41 and PHI-66) have 
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likely developed a MDR-like type of resistance, based on the extrusion of toxic 

compounds mediated by ABC transporters, as already showed in P. digitatum 

(Nakaune et al., 1998). Since these isolates are sensitive to PAFs, our data 

would indicate that such MDR mechanism(s) are not effective against PAFs. 

We have determined experimentally that a primary consequence of peptide 

action is the disruption of cell membrane (manuscripts in preparation), as was 

previously reported for other antimicrobial peptides (Reed et al., 1997; 

Thevissen et al., 1999; Oren et al., 1999; González et al., 2002). 

Our controlled inoculation experiments could seem discouraging at a first 

sight, since co-inoculation of fungi with PAFs at concentrations close to their in 

vitro MIC only achieved a delay in disease progression (Fig. 2), as we already 

had reported and attributed it to germinating mycelia growing out of the 

inoculation site, where peptide is absent. Two important facts must be 

considered, however. The inoculum dose used was very aggressive and 

rendered nearly 100% of infection at 4-6 dpi. Also, in the comparison with 

fungicides it must be considered that they are commercially applied onto the 

entire fruit surface and at concentrations that are orders of magnitude higher 

than their in vitro MIC value, in order to attain effective protection. In the 

experiments shown here, the peptides were only applied at the inoculation site. 

Parallel experiments with TBZ (Fig. 2) demonstrated that under equal conditions 

PAF26 and TBZ performed similarly when concentrations are expressed on a 

weight per volume basis, while the result favours PAF26 when the effective 

molar concentration and its relation to the MIC value are considered.  

We found Penicillium isolates unaffected by PAF26 (i.e., PHI-8 and PHI-65) 

and, strikingly, they were not identified as P. digitatum or P. italicum, the two 
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pathogens of citrus. In fact, PHI-8 is unable to infect orange fruits (unpublished 

results). Further experiments will be set to explain this observation. Overall, our 

results provide evidence to support the investigation and development of the 

use of PAFs as an alternative to fungicides for controlling postharvest diseases 

and maintaining food quality. 
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Figure Captions 

Fig. 1. Effect of hexapeptides on the infection of citrus fruits by P. digitatum 

PHI-26 and PHI-41, and P. italicum PHI-1 and PHI-52. Orange fruits were 

inoculated with 104 conidia/ml either alone (hatched bars), or in the presence 

of 50 μM of hexapeptide PAF19 (white bars) or hexapeptide PAF26 (black 

bars). Bars show the mean values of the percentage of infected wounds ± 

SD at 4 days post inoculation. There was a statistically significant difference 

between the means of the three treatments for the fungi PHI-41, PHI-1 and 

PHI52, at the 95.0% confidence (F test), and bars labelled with the same 

letter do not differ at the 95.0% confidence (Turkey's HSD procedure). In the 

case of PHI-26, the mean of the PAF26 treatment was different from the 

control at the 95.0% confidence (t-student test). 

Fig. 2. Effect of hexapeptide PAF26 and fungicide TBZ on the fungal infection 

of citrus fruits. Orange fruits were inoculated with 104 conidia/ml of 

P. digitatum PHI-26 alone (hatched bars), or in the presence of PAF26 at 

50 μM (black bars), or TBZ at 5 μM (white bars) and 250 μM (grey bars). 

Results are shown as the mean of the percentage of infected wounds ± SD 

for each treatment and day post inoculation. There was a statistically 

significant difference between the means of the four treatments for each dpi, 

at the 95.0% confidence (F test), and bars labelled with the same letter do 

not differ at the 95.0% confidence (Turkey's HSD procedure). 



López-García et al. (2002)    -  21 

Table 1 

Amino acid sequences of peptides a

PAF19 Ac- r k t w f w -NH2

PAF26 Ac- r k k w f w -NH2

P20 Ac- r k t p f w -NH2

LfcinB4-9 Ac- R R W Q W R -NH2

a The L-amino acids are shown in capital letters, and 

the D-amino acids are shown in lower case. The 

N-terminus of the peptides was acetylated and the C-

terminus was amidated. 
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Table 2 
Minimum inhibitory concentration (MIC) of peptides and fungicides against fungal isolates from 

different origins 

MIC (μM) 
Identification Isolate Origin Year 

PAF19 PAF26 LfcinB4-9 TBZ IMZ 

P. digitatum PHI-26 Rotten orange 1999 60 20 60 1.5 0.8 

P. digitatum PHI-35 Rotten mandarin 
(TBZ-treated) 

2000 80 40  >497 a 33.6 

P. digitatum PHI-41 Water from 
drencher with IMZ 

1999 80 40 80 NI 33.6 

P. digitatum PHI-42d Water from 
drencher with IMZ 

1999 60 20  5 3.4 

P. digitatum PHI-43 Fruit surface 1999 60 20  5  

P. digitatum PHI-66 Rotten lemon 2000 >80 a 40  NI 33.6 

P. italicum PHI-1 Rotten mandarin 1997 60 40 60 1.5 1 

P. italicum PHI-2 Rotten orange 1998 >80 40  5 3.4 

P. italicum PHI-4 Rotten orange 1998 >80 40  5 3.4 

P. italicum PHI-6 Rotten orange 1998 >80 40  5 3.4 

P. italicum PHI-36 Rotten mandarin 
(TBZ-treated) 

2000 80 40  25  

P. italicum PHI-42i Water from 
drencher with IMZ 

1999 80 60  NI 3.4 

P. italicum PHI-52 Rotten orange 2000 >80 60 80 NI 3.4 

P. italicum PHI-53 Rotten orange 2000 >80 60    

P. expansum PHI-65 Rotten lemon 2000 NI b NI NI NI 1.3 

Penicillium sp. PHI-8 Contact plate from 
packing-house 

1999 NI NI NI 2.5 1.7 

Rhizopus sp. PHI-39 Orange surface 1999 NI NI  NI  

Alternaria sp. PHI-44 Orange surface 1999 >80 40  NI 168 

Alternaria sp. PHI-48 Rotten orange 1999 >80 60 >80 >497 168 

Alternaria sp. PHI-49 Rotten orange 2000 >80 60 >80 NI 168 

Geotrichum sp. PHI-55 Rotten orange 2000 >80 80 NI NI 336 

Geotrichum sp. PHI-56 Rotten orange 2000 >80 80 NI NI 336 

 
Mucor sp. PHI-50 Rotten orange 2000 NI >80 NI NI NI 

A. niger PHI-67 Rotten grape 2001 NI NI NI >497 >336 
 

a The symbol ‘>’ denotes some (but not complete) inhibition of growth at the maximum 
concentration used of peptide or fungicide (80 μM peptide, 497 μM TBZ, or 336 μM IMZ). 

b Not inhibitory (i. e., no significant effect observed on growth) at the maximum concentration 
used of peptide or fungicide. 
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Table 3 

IC50 of the peptides PAF19 y PAF26 and the commercial fungicides TBZ and IMZ 

against selected isolates of the genus Penicillium. 

  IC50 (μM) 

  PAF19 PAF26 TBZ IMZ 

PHI-26 P. digitatum   38 ± 5 12 ± 2 0.88 ± 0.10 0.49 ± 0.03 

PHI-41 P. digitatum   39 ± 3 12 ± 2 NI 17.57 ± 1.21 

PHI-1 P. italicum 40 ± 5 20 ± 5 0.87 ± 0.10 0.57 ± 0.01 

PHI-52 P. italicum 58 ± 4 31 ± 2 NI 0.66 ± 0.06 

PHI-8 Penicillium sp. NI a NI 1.58 ± 0.02 1.25 ± 0.29 

PHI-65 P. expansum NI NI NI 0.65 ± 0.01 

a Not inhibitory (i. e., no significant effect observed on growth) at 100 μM 

peptide or 336.5 μM TBZ. 
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