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Abstract 

The reduction of anthropogenic CO2 emissions to address the consequences of climate 

change is a matter of concern for all developed countries. In the short term, one of the 

most viable options for reducing carbon emissions is to capture and store CO2 at large 

stationary sources. Adsorption with solid sorbents is one of the most promising options. 

In this work, two series of materials were prepared from two commercial activated 

carbons, C and R, by heat treatment with gaseous ammonia at temperatures in the 200-

800 ºC range. The aim was to improve the selectivity and capacity of the sorbents to 

capture CO2, by introducing basic nitrogen functionalities into the carbons. The sorbents 

were characterised in terms of texture and chemical composition. Their surface 

chemistry was studied through temperature programmed desorption tests and X-ray 

photoelectron spectroscopy. The capture performance of the carbons was evaluated by 

using a thermogravimetric analyser to record mass uptakes by the samples when 

exposed to a CO2 atmosphere. 

Keywords: Activated carbon, Surface modification, Thermal analysis, CO2 capture, 

Adsorption. 

INTRODUCTION 
 
The growing awareness of the international community with regard to climate change, 

has led to the search for technologies designed to reduce greenhouse gas emissions. The 

growth in energy demand makes it impossible to reduce, in the near term, the use of 

fossil fuels, which constitute the main source of greenhouse gas emissions. In the short 
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term, one of the most viable options for reducing carbon emissions consists in capturing 

and storing CO2 at large stationary sources, such as power stations, cement plants, 

refineries, etc. 

The current methods of CO2 capture from flue gas include absorption, adsorption, 

cryogenic distillation and membrane separation. Adsorption is considered one of the 

most appealing options for CO2 capture [1, 2]. However, the efficient capture of CO2 

based on adsorption requires solid adsorbents with a high CO2 selectivity and capacity. 

The development of a new generation of materials that can efficiently adsorb CO2, will 

undoubtedly enhance the competitiveness of adsorptive separation in flue gas 

applications. 

Porous materials, such as molecular sieves and zeolites, as well as activated carbons, are 

suitable materials for CO2 capture by solid sorbent adsorption due to their highly 

developed porous structure [3, 4]. Activated carbons, in particular, have well developed 

micro and mesoporosities which are applied in a wide range of industrial and 

technological processes [5]. 

The adsorption properties of a solid sorbent are determined by its porous structure and 

surface chemistry. It has been shown that the capacity of activated carbons to adsorb 

CO2 -which is based on physical adsorption- can be increased by introducing nitrogen 

functional groups into their structure [6-13]. The incorporation of these functionalities 

may be achieved by two techniques: impregnating the surface with appropriate 

chemicals or introducing nitrogen into the carbon structure. Impregnation is frequently 

used although this could lead to the blockage of the porous structure, which would 

reduce the adsorption capacity of the activated carbon [12]. Nitrogen can be 

incorporated into the carbon structure by preparing activated carbon from N-containing 

polymers [7, 14-16] or by heat treatment of the carbons with gaseous ammonia [17, 18].  
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Reaction with ammonia can be expected to take place at carboxylic acid sites formed by 

the oxidation of side groups and the ring system. Ammonia decomposes at high 

temperatures with the formation of radicals, such as NH2, NH and H [18, 19]. These 

radicals may react with the carbon surface to form functional groups, such as –NH2-, 

-CN, pyridinic, pyrrolic, and quaternary nitrogen [19]. In this work two commercial 

activated carbons were modified by treating them with gaseous ammonia at different 

temperatures. The aim was to assess the effect of such modifications on the capacity of 

the carbons to capture CO2. 

EXPERIMENTAL 

Two commercial activated carbons supplied by Norit -here referred to as C and R- were 

chosen as starting material for the preparation of CO2 capture adsorbents. C is a wood-

based granular carbon manufactured by a phosphoric acid activation process. R, a 

peat-based steam activated extruded carbon with a diameter of 3 mm, possesses a 

superior mechanical hardness that makes it suitable for removing low concentrations of 

contaminants from gases. 

Ammonia Heat Treatment 

In this work, the activated carbons were treated with gaseous ammonia at different 

temperatures in a vertical tube furnace. Around 3 g of carbon -dried overnight at 100ºC- 

was placed in a quartz reactor and held under a flow rate of 50 cm3 min-1 of N2 for 30 

min. When the furnace reached the desired temperature –values between 200 and 900 

ºC- the quartz reactor was introduced. Once the sample had reached the desired 

temperature the flow was switched from N2 to NH3 (50 cm3 min-1) and then held for 2 h. 

Next, the sample was removed from the furnace and cooled to 100 ºC under a flow of 

ammonia. Finally the flow was changed back to N2 until room temperature was reached. 
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The modified carbons were denoted as CN and RN, respectively, followed by the 

temperature used in the treatment with ammonia, i.e., CN600, RN600. 

Chemical and textural characterisation of the samples 

Ultimate analysis was carried out in order to determine the amount of nitrogen 

incorporated into the carbons. The acid/basic character of the samples was estimated by 

means of the Point of Zero Charge (pHPZC). A mass titration method adapted from Noh 

and Schwarz was used for this purpose [20]. Helium density was measured in an 

Accupyc 1330 at 35 ºC. N2 and CO2 adsorption isotherms at -196 ºC and 0 ºC, 

respectively, were carried out in a Micromeritics Tristar 3000. The samples were 

outgassed at 100 ºC under vacuum for 24 h prior to the density and adsorption 

measurements. The apparent surface areas (SBET) were calculated from the physical 

adsorption of N2 using the BET equation in the linear form proposed by Parra et al. 

[21], and the total pore volumes (Vp) were evaluated using Gurvitch’s rule (p/p0 = 0.99). 

Mesopore volume (Vmeso) comprises pores between 2 and 50 nm according to the 

IUPAC classification. In this work the mesopore volumes were calculated by applying 

the DFT method to the N2 isotherms, assuming slit shaped pores and non-regularisation 

[22, 23]. The average pore width (D) of the adsorbents was estimated by means of the 

expression 4V/SBET. The micropore volumes (W0) were calculated by the Dubinin-

Radushkevich (DR) method [24] from the CO2 adsorption isotherms (assuming an 

affinity coefficient of 0.36), and the average width of the micropore system (L0) was 

determined by using the Stoeckli-Ballerini expression [25]. 

X-ray Photoelectron Spectroscopy (XPS) analysis was performed to characterise the 

nitrogen functionalities on the ammonia modified carbons. XPS spectra were recorded 

on a SPECS photoelectron spectrometer equipped with a hemispherical PHOIBOS 100 

energy analyser, using MgKα radiation (energy 1253.6 eV). An X-ray power of 150 W 
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(11.81 kV) was employed for all the analyses. The vacuum pressure in the analysis 

chamber was kept below 5×10-9 mbar. Pass energies of 50 and 10 eV were used for the 

low and high resolution scans, respectively. N1s, C1s and O1s envelopes were fitted 

into Gaussian-Lorentzian component profiles using CasaXPS software. 

Temperature-Programmed Desorption (TPD) tests 

The ammonia-treated samples were subjected to TPD tests in a Setaram TGA 92 

thermogravimetric analyser (TG) coupled to a Nicolet Nexus Fourier Transform 

Infrared (FTIR) spectrometer. 20 mg of sample was heated at 15 ºC min-1 up to 1000 ºC 

under an Argon flow rate of 50 cm3 min-1. The final temperature was maintained for 30 

min. The evolved gases were transferred through a heated interface to the FTIR for 

analysis. 

CO2 adsorption capacity experiments  

The CO2 adsorption-desorption performance of the samples was evaluated in the TG 

analyser. The CO2 adsorption capacity of the samples was determined from the mass 

uptake recorded when exposed to pure CO2. Prior to the adsorption measurements, the 

samples were dried at 100 ºC in 50 cm3 min-1 of Ar for 1h, and allowed to cool to 25 ºC. 

Afterwards Ar was changed to 50 cm3 min-1 of CO2 and the temperature was held at 

25 ºC for 1 h. The temperature was then increased at a heating rate of 0.5 ºC min-1 up to 

100 ºC, and the mass change was recorded to evaluate the influence of temperature on 

CO2 capture capacity. The sample was kept at 100 ºC for 1 h and finally the flow was 

switched to Ar to regenerate the sample. 

RESULTS AND DISCUSSION 

Ultimate analysis and point of zero charge 

The results of the ultimate analysis and the pHPZC of the parent carbons and the 

ammonia-modified carbons are presented in Table 1. In the case of the C carbons the 
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product yields decrease as the temperature of the ammonia treatment increases. This 

indicates that gasification with ammonia takes place at higher temperatures. However, R 

carbons do not exhibit significant gasification, as shown by the product yields which 

remain constant with temperature. Ammonia treatment increases the nitrogen content of 

the carbons, particularly for C-treated carbons, where nitrogen contents of up to 8 wt.% 

were achieved for the carbon treated at 700 ºC. Temperature also influences the degree 

of nitrogen present in the carbons. The nitrogen content increases with temperature, 

reaching a maximum at 700 ºC for C carbons and 800 ºC for R carbons. Higher 

temperatures resulted in less nitrogen being incorporated into the C-treated samples. 

The NH3-carbon reaction can be expected to take place at acidic sites, formed mainly by 

surface oxides and this reaction may involve carboxylic groups and other oxygen 

functionalities. The presence of oxygen in the parent carbons plays an important role in 

determining the extent of the ammonia treatment, as demonstrated by the differences in 

nitrogen incorporation between the C and R-treated carbons –the oxygen content being 

13.7 wt.% for C and only 4.2 wt.% for R-. These results suggest that C is more sensitive 

to treatment with NH3.  

The acid/basic character of the samples, assessed by the pHPZC, show that reaction with 

ammonia changed the strong acidic character of C to basic in the C-treated carbons. 

However, in the case of R, which was already a basic carbon, basicity is not 

significantly altered by treatment with gaseous ammonia. In addition, no direct link is 

observed between the pHPZC values obtained for the C and R treated carbons and the 

nitrogen content of the samples: the highest pHPZC values obtained for the C and R-

treated carbons do not correspond to the samples with the largest nitrogen contents. 

Textural characterisation 
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The N2 adsorption isotherms at -196 ºC are presented in Figures 1a and 1b. The C 

carbons show type IV isotherms, with characteristic hysteresis loops at relative 

pressures above 0.4, and exhibit both meso and microporosity. The R carbons show 

type I isotherms which are characteristic of mainly microporous materials. Treatment of 

the parent carbon C with ammonia gas results in a decrease in the volume of N2 

adsorbed by the C-treated carbons while for R-treated carbons it increases. Table 2 

contains the helium densities (dHe) measured at 35 ºC and the textural parameters 

calculated from the N2 and CO2 adsorption isotherms at -196  C and 0 ºC, respectively. 

Carbon C presents a helium density of 1.54 g / cm3, which is significantly lower than 

that of R, 2.14 g / cm3. This difference could be due to their fabrication processes: C is 

produced by activation with phosphoric acid only at 550 ºC, while R is produced 

through steam activation at temperatures above 800 ºC [26, 27]. Thus, heat treatment at 

temperatures above 600 ºC increases the helium densities of the ammonia-treated C 

carbons but does not alter those of the R carbons. The modification of carbon C by 

ammonia treatment results in lower BET apparent surface areas, lower total pore (Vp) 

and mesopore (Vmeso) volumes and lower average pore widths (D) compared to the 

parent material. An analysis of the values obtained for the ammonia-treated C carbons 

shows that these parameters decrease up to 700 ºC but at 800 ºC the samples appear to 

recover some porosity, probably due to partial gasification of the carbon by ammonia at 

higher temperatures. The micropore volumes (W0) assessed from the CO2 adsorption 

isotherms of the ammonia treated samples at 0 ºC are lower than that of the parent 

carbon, C, except for sample CN800, for which a similar value is obtained. The average 

micropore widths (L0) calculated for the ammonia-treated C carbons follow the same 

trend. Ammonia treatment seems to partially block the porous structure of the samples 

at temperatures up to 700 ºC. This effect has generally been attributed to partial 
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blockage of the microporous system by decomposed products generated during heat 

treatment with ammonia [18]. At higher temperatures, gasification with ammonia 

allows the samples to recover porosity.  

In order to study the effect of the ammonia-carbon reaction on the texture of the 

samples, a carbon denoted as C800 was prepared by heat treatment at 800 ºC under an 

inert atmosphere of N2 instead of NH3. C800 has the smallest SBET value and pore 

volume of the C series, which shows that heat treatment alone acts to the detriment of 

textural development. A comparison of the textural parameters (see Table 2) calculated 

for C800 (heat-treated under an inert atmosphere) and for CN800 (heat-treated under 

ammonia flow) shows that ammonia gas promotes the development of porosity in the 

samples through partial gasification of the carbons.  

Modification of carbon R with ammonia increases the BET apparent surface areas and 

total pore volumes in the ammonia-treated R carbons, except for the sample treated at 

400 ºC where no significant textural changes with respect to the parent carbon R are 

observed. Mesopore volumes are negligible in the parent carbon R and the treated 

samples and the average pore widths remain practically unchanged. On the other hand, 

the micropore volumes and average micropore widths decrease with temperature. Thus, 

the observed increase in total pore volume for the ammonia-treated R carbons could be 

ascribed to an increase in wide microporosity, which cannot be assessed by W0. It 

appears, therefore, that when partial gasification with ammonia takes place, it acts 

preferentially on narrow microporosity, thereby creating a wider microporosity. 

Nitrogen functionalities introduced by treatment with ammonia gas at different 

temperatures 

Temperature-programmed desorption (TPD) tests were carried out in order to study the 

thermal stability of the N-functionalities introduced into the carbon. The only nitrogen-
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containing compounds detected for the ammonia-modified carbons were NH3 and HCN. 

As expected, in the case of the parent carbons, C and R, no nitrogen compounds were 

detected.  

Figure 2 presents the NH3 and HCN profiles analysed by FTIR for the ammonia-

modified C carbons at different temperatures. The gas intensities have been normalised 

by the sample mass for comparison purposes. The C samples show different NH3 and 

HCN profiles depending on the temperature of the ammonia treatment they have 

undergone. It is assumed, therefore, that different nitrogen functionalities have been 

incorporated into the modified C carbons depending on the treatment temperature. The 

samples treated at the lowest temperatures (i.e., 200 and 400 ºC) present the largest NH3 

and HCN emissions. Four main temperature ranges can be distinguished in the NH3 

profiles: low (ca. 300 ºC), medium-low (around 400 ºC), medium-high (around 650 ºC) 

and high temperature (ca. 800 ºC). For each sample two characteristic peaks are 

observed: CN200 shows a maximum at low temperature, followed by an elbow in the 

medium-high temperature range; for CN400 a maximum occurrs in the medium-high 

temperature range preceded by a peak at low temperature. The first CN600 and CN800 

peaks have shifted towards higher temperatures, appearing in the medium-low 

temperature range, and in the case of CN800 the first peak is followed by a second one 

in the medium-high interval. CN700 presents two peaks in the low and high temperature 

ranges, respectively. In addition, the samples modified with ammonia at the lower 

temperatures (i.e., CN200 and CN400) exhibit the highest NH3 emissions, suggesting 

that the nitrogen incorporated into the carbons treated at these temperatures is associated 

with more labile functionalities.  

HCN profiles were only detected for the samples treated at 200, 400 and 700 ºC. This 

compound evolves from 300 ºC for CN200, from 600 ºC for CN400 and from 750 ºC 
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for CN700. Single characteristic peaks, occurring at higher temperatures than in the 

NH3 profiles are obtained at around 750 ºC for CN200 and CN400, and around 900 ºC 

for CN700. 

From these results it can be concluded that nitrogen functionalities with different 

thermal stabilities have been introduced into the carbons as a result of treatment with 

ammonia gas at different temperatures. At least four types of different nitrogen 

functionalities may be responsible for NH3 evolution during the TPD tests, while for 

HCN only two components can be identified. The nitrogen-containing groups in the C 

carbons that were treated at the higher temperatures (T> 600 ºC) appear to be strongly 

bound, as can be deduced from the maxima of the NH3 and HCN desorption profiles.  

Increasing the temperature of the ammonia treatment seems to promote the introduction 

of more stable nitrogen-functionalities into the carbons possibly because the 

incorporated N functionalities are transformed with temperature. Upon reaction with 

ammonia at 200 ºC, a number of surface groups on the carbons, but especially the 

oxygenated ones, may react with NH3, possibly leading to the formation of amides, 

imides, imines, amines and nitriles. The addition of ammonia to a carbon double bond 

only takes place at temperatures of approximately 250 ºC and then only to a small 

extent [27]. It was mentioned above that ammonia gas is thought to decompose at 

higher temperatures, freeing radicals, such as NH2, NH and atomic hydrogen [18, 19]. 

These radicals may attack the carbon with the result that it is gasified to form methane, 

hydrogen cyanide and cyanogen [18]. Meldrum et al. [28] proved by an in situ FTIR 

study, that the reaction of an oxidised activated carbon with gaseous ammonia converts 

surface cyclic anhydride groups to amide and ammonium carboxylate species. At high 

temperatures amide would decompose to nitrile through a reversible dehydration 

reaction. Moreover, amine and alcohol groups may be formed by the reaction of the 
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ammonia with the epoxide groups that are usually present on oxidised carbon surfaces. 

The reaction of ammonia with one or more carboxylic acids may lead to amides, 

lactams and imides. The dehydration, decarboxylation, or decarbonylation of such 

functional groups may result in pyrroles and pyridines, probably with the formation of 

nitriles as an intermediate step [17]. It seems clear that oxygenated functionalities on the 

carbon surface play a determinant role in the incorporation of nitrogen into the carbon 

surface by ammonia treatment. TPD tests of the R ammonia-treated samples did not 

show any nitrogen compound evolution. The lower oxygen content of R (4.2 wt.%) may 

partially explain the lower amount of nitrogen incorporated into the R-modified carbons 

(up to 2.1 wt. % N). However, it can be seen from the oxygen contents of the samples 

treated with ammonia (ca. 3 wt. % O) that not all the oxygen is able to react with 

ammonia. What type of oxygen functionality it is will also play a significant role.  

In order to obtain more information about the oxygen functionalities on the carbon 

surfaces, CO and CO2 profiles were also recorded during the TPD tests. Figures 3 and 4 

show the CO and CO2 emissions analysed by FTIR during the TPD tests of the samples. 

CO2 emissions start at earlier temperatures for the R samples, even though significantly 

lower intensities per milligram of sample are obtained compared to the C samples. In 

addition, C presents a main CO2 peak at around 700 ºC with a smooth shoulder at 

approximately 300 ºC, while R shows a CO2 profile with two distinct peaks at around 

200 and 500 ºC, respectively, and a shoulder at 700 ºC. As expected, with the decrease 

in oxygen content the ammonia treated samples drastically reduce their CO and CO2 

emissions during the TPD tests. CO2 emissions are negligible for carbons treated at 

higher temperatures (T > 600 ºC), particularly for the R-treated samples. Lower 

temperature ammonia treatment (T < 600 ºC) results in lower CO2 intensities compared 

to the parent carbons and the CO2 profiles shift towards lower temperatures. This 
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suggests that oxygen-functionalities in the parent carbon which evolve CO2 at higher 

temperatures (T> 700 ºC) during the TPD experiments, react mainly with ammonia 

during the heat-treatment at lower temperatures, while ammonia heat-treatment at 

higher temperatures involves all the CO2-evolving functionalities in the parent carbons. 

CO emissions for the parent carbons C and R follow similar profiles with characteristic 

peaks at around 950 ºC and with shoulders at around 800 ºC and 850 ºC for R and C, 

respectively. CO profiles for the ammonia-treated samples shift towards lower 

temperatures compared to the parent carbons. It is also worth noting that the C-modified 

carbons CN200 and CN400 show CO emissions at lower temperatures (at around 

700 ºC), outside the temperature range of the parent carbon CO profile. These CO 

emissions that occur simultaneously with NH3 and HCN evolution during the TPD tests, 

result from the decomposition of the labile amide or lactam-like groups formed during 

the ammonia treatment at lower temperatures. For the remaining C-treated carbons and 

the R-treated samples the shift of the CO profiles towards lower temperatures, 

compared to the respective parent carbons, suggests that oxygen functionalities which 

evolve CO at higher temperatures (T > 900 ºC) are more reactive towards ammonia.  

It is generally accepted that CO2 results from the decomposition of carboxylic acids at 

low temperatures or from lactones at higher temperatures and that carboxylic 

anhydrides generate both CO2 and CO, while phenols, ethers, carbonyls and quinones 

-i.e. functional groups with one oxygen atom- generate CO. In general, the TPD spectra 

obtained from carbon materials show composite CO and CO2 peaks which can be 

attributed to the contribution of different functionalities [29]. The ammonia heat 

treatment of C carbon at temperatures lower than 600 ºC results in the simultaneous 

evolution of CO and CO2 at higher temperatures, together with the evolution of CO at 

700 ºC. The evolution of CO at 700 ºC is probably associated with nitrogen-containing 
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groups like amides (NH3 also evolves in the same temperature range). At temperatures 

higher than 600 ºC ammonia heat treatment results in the loss of the majority of the 

oxygen functionalities in the parent carbon and the incorporation of nitrogen into more 

stable functionalities, such as cyclic imides and lactams and/or aromatic rings. 

The presence of carboxylic-like functionalities on the parent carbon, R, may be justified 

by the first CO2 peak at low temperature (T ≈ 200 ºC). However, ammonia treatment of 

the R carbons appears to be less effective for the incorporation of surface nitrogen 

functionalities at any temperature. 

An XPS analysis was carried out to study the nature of the surface groups present on the 

carbons. Low-resolution XPS spectra of the ammonia modified carbons at T > 600 ºC 

indicate the presence of three main peaks due to carbon, nitrogen and oxygen. For 

reference purposes the spectra of the parent carbons, C and R, were also recorded. For 

the R carbons, low-resolution XPS spectra showed small contributions of oxygen and 

nitrogen. Thus high resolution scans were only conducted on the C carbons. 

Figure 5 shows the N1s spectra of the ammonia modified C carbons, CN600, CN700 

and CN800. The shape of the N1s envelopes of the analysed samples suggests the 

presence of two main components in all of them. A comparison of the spectra of the 

different samples shows that, as the ammonia treatment temperature increases, the 

components become better defined and differentiated from each other. The spectra were 

curve fitted in order to assess the contributions of specific nitrogen surface groups. The 

best fit for each spectrum was obtained with two peaks centred at binding energies of 

around 398.3 and 400.0 eV, respectively (see Table 3). With increasing temperature the 

binding energies of the fitted peaks #2 of the N1s spectra shift to higher values while 

those of the fitted peaks #1 hardly move. Low binding energies may suggest the 

presence of negatively-charged nitrogen species. According to the literature, peak #1 
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binding energies probably correspond to pyridine-like structures while peak #2 could be 

assigned to pyrrole and/or pyridone-like moieties. For peak #2, binding energies vary 

between 399.9 eV for CN600 and 400.1 eV for CN800, suggesting the possible 

contributions of different nitrogen structures in each sample. Amide-like moieties (B.E. 

≈ 399.6-399.9 eV) are rather unstable but lactams and imides (B.E. ≈ 399.7 eV) are 

more persistent [18, 30, 31]. 

The curve fittings of the C1s and O1s XPS spectra are also presented in Table 3. The 

curve fitting of the C1s spectra yielded four main components with binding energies at 

284.5, 285.6, 286.2-286.7 and 288.8-289.1 eV. These contributions can be assigned to 

graphitic carbon (284.5 eV), the carbon present in phenolic, alcohol or ether groups 

(286.1 eV), carbon-nitrogen structures (286.3-287.5 eV), carbonyl groups (287.3 eV), 

and ester or carboxyl groups (288.7 eV–289.3 eV), respectively [32, 33]. Globally, C 

carbons present the same type of carbon functionalities, graphitic carbon being the 

major component.  

O1s spectra for the C carbon samples displayed two components with binding energies 

at 531.5 and 533.3 eV. These binding energies could correspond to oxygen singly 

bonded to carbon in aromatic rings, in phenols and ethers (533.2-533.8 eV), or to 

oxygen doubly bonded to carbon in quinone-like structures (531.3 eV) [31-33]. The 

majority of the O1s envelopes lie between 531 eV and 534 eV. A shift in the signal to 

higher binding energies may indicate a decrease in functional groups of the carboxylic 

acid and amide type or it may indicate an increase in groups such as hydroquinones and 

ethers. 

The ammonia heat treatment of the C treated carbons reduce the concentration of 

surface oxides, mainly phenol and ether-like groups, and simultaneously increase the 
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number of surface nitrogen moieties and pyridinic and pyrrole-like functionalities, the 

groups responsible for the strong basic character of the C treated samples.  

From the data provided by the XPS analysis and TPD tests valuable information about 

the fate of nitrogen in the ammonia-treated samples is obtained. Firstly, the temperature 

of the ammonia treatment determines the type of nitrogen functionalities incorporated 

into the carbons: below 600 ºC amides, imides, imines, amines and nitriles are formed, 

while above 600 ºC nitrogen is preferentially incorporated into aromatic rings which are 

thermally more stable. Secondly, the presence of oxygen functionalities on the carbon 

surface has a determinant influence on the extent of the ammonia-carbon reaction. For 

the C carbons, phenols and ethers seem to be the main oxygen-groups that react with 

ammonia at T > 600 ºC. 

CO2 capture tests at atmospheric pressure 

Temperature programmed adsorption-desorption tests were carried out to evaluate the 

influence of temperature on the CO2 capture capacity of the prepared sorbents. Prior to 

any CO2 capture experiment the samples were dried under inert atmosphere to avoid the 

influence of the moisture present in the samples. Table 4 shows the CO2 adsorption 

capacities, at 25 and 75 ºC, of the ammonia modified carbons and the parent carbons. 

The R samples displayed greater CO2 capacities (wt. %) than the C samples treated with 

ammonia at the same temperature, especially at 25 ºC. This behaviour might be 

explained by the stronger basic character of the R carbons compared to the C samples 

and the higher narrow micropore volumes of the R carbons which were calculated from 

the CO2 adsorption isotherms at 0 ºC. At 75 ºC, the CO2 capture capacities of both 

series of carbons diminishes, as might be expected for typical adsorption processes, 

where increasing adsorption temperature acts to the detriment of CO2 adsorption. 
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A comparison of the behaviour of the ammonia-modified samples with the parent 

carbons shows that for the C samples, ammonia heat treatment up to 700 ºC reduces the 

capture capacity of the treated samples. However, treatment temperatures of 700 ºC and 

above result in an enhancement of the capacity of C carbons to capture CO2. For the R 

samples, ammonia treatment at the different temperatures increases the CO2 capture 

capacity of the R modified samples with respect to the parent carbon, R, but only to a 

small extent. CN800 and RN800 display the highest CO2 capture capacities of each 

series at both 25 and 75 ºC. To isolate the effect of the change in surface chemistry on 

the capture performance of the modified carbons, their CO2 capture capacities were 

normalised by the micropore volume (W0) (see Table 4). Figure 6 shows the 

temperature resolved CO2 capture tests for the C and R carbons studied, where CO2 

uptakes are expressed in milligrams of CO2 adsorbed per cubic centimetre of micropore 

volume. All the treated carbons present higher CO2 uptakes per cm3 of micropores than 

the corresponding parent carbons over the temperature range studied. This clearly 

indicates that surface modification by ammonia treatment increases the affinity of 

carbon towards CO2. For both series the highest CO2 uptakes per cm3 are obtained for 

the carbons treated with ammonia at the highest temperatures, CN800 and RN800. 

However, it should be pointed out that for the C series, CO2 uptakes per cm3 are not 

directly related to the nitrogen content. For instance CN600 (3.5 wt.% N) presents a 

lower CO2 capture capacity per cm3 than CN200 and CN400 (2.4 and 3.3 wt.% N, 

respectively). Thus, the CO2-adsorbent affinity depends not only on the amount of total 

nitrogen incorporated into the carbons but also on the type of nitrogen functionalities 

introduced. According to the results, nitrogen on the samples treated with ammonia at 

temperatures higher than 600 ºC can be expected to be incorporated into aromatic rings 

of the pyridinic and pyrrole-like type. However, no clear differences between CN600, 
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CN700 and CN800 could be inferred from the characterisation of the nitrogen surface 

groups by XPS and TPD analysis. 

Conclusions 

Two commercial activated carbons, C and R, were heat-treated with ammonia at 

different temperatures, in the 200 - 800 ºC range. This treatment introduced nitrogen 

functionalities into the carbon materials, thereby increasing their basic character. 

Characterisation of the modified carbons by TPD and XPS showed that ammonia 

treatment at temperatures higher than 600 ºC incorporated nitrogen mainly into aromatic 

rings, while at lower temperatures nitrogen was introduced into more labile 

functionalities, such as amide-like functionalities. The CO2 capture capacities at 25 ºC 

of the treated carbons increased with respect to the parent carbons. In particular in the C 

series, CO2 capture capacities rose from 7 wt.% for C to 8.4 wt.% for CN800. Ammonia 

treatment did not notably change the textural properties of the parent carbons. CO2 

capture capacity is not directly related to the total nitrogen content of the samples but to 

specific nitrogen functionalities that are responsible for increasing the CO2-adsorbent 

affinity.  

Thus, any surface modifications of commercial activated carbons should be carefully 

performed. In this way nitrogen functionalities that promote the CO2 capture capacities 

of adsorbents can be incorporated without altering the textural properties of the parent 

carbon. 
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Table 1. Product yield, ultimate analysis and pHPZC of the studied samples 

Ultimate Analysis (wt.%, daf) 
Sample Product 

yield (wt %) C  H  N  O  
pHPZC 

C 100 82.9 3.0 0.4 13.7 2.8 
CN200 103 84.5 2.9 2.4 10.2 6.8 
CN400 95 84.9 2.8 3.3 9.0 6.6 
CN600 87 91.2 1.7 3.5 3.6 7.8 
CN700 86 86.6 1.0 8.1 4.3 8.8 
CN800 74 88.7 0.7 6.3 4.3 8.9 

       

R 100 94.7 0.4 0.7 4.2 9.5 
RN200 100 95.5 0.3 0.8 3.4 9.7 
RN400 100 95.6 0.0 0.9 3.5 9.7 
RN600 100 95.8 0.1 1.1 3.0 9.8 
RN800 99 94.2 0.1 2.1 3.6 9.6 
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Table 2. Textural parameters and helium density of the studied samples 
 

N2 adsorption at -196 ºC 

 

CO2 adsorption at 0 ºC 
Sample dHe 

(g cm-3) SBET 
(m2 g-1) 

Vp 
(cm3 g-1) 

Vmeso 

(cm3 g-1) 
D 

(nm) 

 

W0 
(cm3 g-1) 

E0 

(kJ mol-1) 
L0 

(nm) 
C 1.51 1361 0.965 0.441 2.84  0.215 26.07 0.74 

CN200 1.58 1294 0.925 0.431 2.86  0.181 26.96 0.69 
CN400 1.51 1225 0.876 0.397 2.86  0.177 26.92 0.70 
CN600 1.69 1095 0.749 0.329 2.74  0.198 27.96 0.65 
CN700 1.87 1023 0.686 0.292 2.69  0.206 29.36 0.60 
CN800 1.92 1190 0.831 0.354 2.79  0.221 28.97 0.61 
C800 1.92 976 0.664 0.288 2.72  0.206 29.36 0.60 

          

R 2.14 942 0.407 0.008 1.73  0.261 28.02 0.65 
RN200 2.14 1105 0.470 0.011 1.70  0.252 28.17 0.64 
RN400 2.12 948 0.403 0.005 1.70  0.253 28.73 0.62 
RN600 2.12 990 0.423 0.008 1.71  0.236 28.89 0.62 
RN800 2.14 1072 0.467 0.013 1.74  0.211 30.07 0.58 
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Table 3. XPS C1s, O1s and N1s fitted peaks for some of the studied samples  
 

C1s 
Sample Fit #1 

(eV) (%) Fit #2 
(eV) (%) Fit #3 

(eV) (%) Fit #4 
(eV) (%) 

C total 
(% at.) 

C 284.58 64.9 285.86 7.4 286.63 9.6 289.03 6.2 88.1 
CN600 284.47 63.8 285.6 13.0 286.74 7.1 289.15 7.6 91.5 
CN700 284.54 58.1 285.65 7.1 286.29 13.0 288.85 10.5 88.7 
CN800 284.57 61.5 285.71 7.7 286.46 11.1 288.91 10.3 90.6 

          

R 284.53 59.0 285.58 8.0 286.24 14.1 288.86 4.3 85.4 
RN600 284.50 53.2 285.56 14.3 286.60 12.3 289.11 4.4 84.2 
RN800 284.52 43.6 285.54 20.5 286.65 13.9 289.23 4.6 82.6 

O1s 
Sample 

Fit #1 (eV) (%) Fit #2 (eV) (%) 
O total 
(% at.) 

C 533.28 7.6 531.54 3.6 11.2 

CN600 533.29 3.5 531.63 2.5 6.0 
CN700 533.27 3.3 531.49 3.1 6.5 
CN800 533.24 2.7 531.52 2.3 5.0 

N1s 
Sample 

Fit #1 (eV) (%) Fit #2 (eV) (%) 
N total 
(% at.) 

CN600 398.32 0.7 399.91 1.1 1.8 
CN700 398.34 1.9 400.07 2.3 4.2 
CN800 398.27 1.6 400.08 2.2 3.8 
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Table 4. CO2 capture capacities at 25 and 75 ºC for the studied samples 
 

CO2 capture capacity 
(wt.%) 

 
CO2 capture capacity / W0 

(mg CO2 / cm3) Sample 

25 ºC 75 ºC  25 ºC 75 ºC 

C 7.0 2.0  326 93 
CN200 6.6 1.9  365 105 
CN400 6.5 2.0  367 113 
CN600 6.5 2.0  328 101 
CN700 7.6 2.5  369 121 
CN800 8.4 2.7  380 122 

      

R 9.1 2.7  349 103 
RN200 9.2 2.9  365 115 
RN400 9.6 3.2  379 126 
RN600 9.5 2.8  402 119 
RN800 9.6 3.2  455 152 
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Figure captions 

 

Figure 1. N2 adsorption isotherms at -196ºC of the parent activated carbons, C and R, 

and the corresponding modified samples. 

Figure 2. a) HCN and b) NH3 profiles during the TPD tests of the C-modified carbons 

Figure 3. CO2 evolution during the TPD tests of the studied samples. 

Figure 4. CO evolution during the TPD tests of the studied samples. 

Figure 5. N1s XPS spectra for CN600, CN700 and CN800. 

Figure 6. CO2 uptakes, normalised by the micropore volume, during the temperature 

programmed CO2 capture tests for the studied samples. 
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Figure 1 N2 adsorption isotherms at -196ºC of the parent activated carbons, C and R, 
and the corresponding modified samples.  
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Figure 2. a) HCN and b) NH3 profiles during the TPD tests of the C-modified carbons. 
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Figure 3. CO2 evolution during the TPD tests of the studied samples. 
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Figure 4. CO evolution during the TPD tests of the studied samples. 
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Figure 5. N1s XPS spectra for CN600, CN700 and CN800. C. Pevida et al. 
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Figure 6. CO2 uptakes, normalised by the micropore volume, during the temperature 
programmed CO2 capture tests for the studied samples. 
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