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Abstract 1 

Although the Central Ebro Basin (Northeastern Iberian Peninsula) is both the 2 

northernmost semi-arid area in Europe and one of the regions with the largest biodiversity, it has 3 

been insufficiently studied in terms of past climate variability due to the scarcity of suitable sites 4 

for palaeoenvironmental analyses. Previous studies from ephemeral saline lakes in the area, 5 

mainly based on palynological data, show abrupt and rapid arid/humid transitions throughout 6 

the last glacial cycle highlighting a complex palaeohydrological evolution. New cores from two 7 

saline lakes (La Playa and La Salineta) in the Los Monegros area provide multi-proxy records 8 

including sedimentology, geochemistry, and pollen indicators. This study, together with a 9 

detailed and comprehensive review of the main saline records from the Central Ebro Basin, 10 

enables us tos reconstruct a comprehensive picture of the palaeoclimate evolution during the last 11 

glacial cycle. One of the main results of this study is the alternation of humid and dry phases as 12 

a characteristic of the climate evolution during the Lateglacial. Additionally, the study suggests 13 

an important role of the increased flow from the Pyrenean rivers during deglaciation in the 14 

hydrological balance of the Central Ebro Basin. It is found that the Early Holocene is the wettest 15 

period over the sequence studied contrasting with the arid Middle Holocene interval, which is 16 

frequently absent as a result of intense aeolian erosive processes. Although anthropogenic 17 

activity partially masks the climate signal from the palynological data in the uppermost part of 18 

the sequences studied, there are some sedimentological evidences for a climate change during 19 

the last 2000 years resulting in a recovery of average saline lake levels in the Central Ebro 20 

Basin. 21 

 22 

Keywords: Playa-lake systems, Palynology, Sedimentology, Palaeohydrological fluctuations, 23 

Vegetation cover. 24 

 25 

1. Introduction 26 

The Mediterranean region of the Iberian Peninsula is one of the territories with the 27 

greatest biodiversity in southern Europe and, consequently, is more exposed to significant 28 
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decline in terms of future global warming (IPCC: Houghton et al., 2001). This area constitutes 1 

the northernmost semi-arid region in Europe and it is remarkable from an ecological point of 2 

view due to the high variability in ecotones, including Euro-Siberian to Mediterranean 3 

ecosystems, as a result of the strong topographic climatic and geographic gradients from the 4 

highest Pyrenees peaks (> 3000 m a.s.l.) and the lowlands of the Central Ebro Basin (~ 400 m 5 

a.s.l.). Its uniqueness has also been well documented during the last Glacial cycle in relation to 6 

both northern Europe and eastern Mediterranean regions (Prentice et al., 1992, 1998; Harrison et 7 

al., 1993, 1996; Yu and Harrison, 1995; Cheddadi et al., 1997; Valero-Garcés et al., 2000a, 8 

2004; González-Sampériz et al., 2005). Particularly remarkable is the evidence of numerous 9 

abrupt and rapid arid/humid transitions throughout the last glacial cycle that highlight the 10 

complex palaeohydrological evolution of North-eastern Spain (Valero-Garcés et al., 1998, 11 

2000a). 12 

The location of the Iberian Peninsula at the southernmost position of the westerly winds 13 

and its simultaneous dependence on both the North Atlantic and sub-tropical climate may 14 

explain its present climatic singularity (Sumner et al., 2001) and distinctive response to glacial 15 

and Holocene global climatic changes. Additionally, strong climatic and geographic gradients 16 

and topographic contrasts have contributed to this region’s marked physiographic heterogeneity, 17 

thus making the reconstruction of the palaeoclimate variability for the area particularly 18 

challenging. Given the long history of human activities in North-eastern Spain (Utrilla and 19 

Rodanés, 1997; Valero-Garcés et al., 2000b), it is not easy to discern between cultural and 20 

natural landscapes, adding greater complexity to the palaeoenvironmental reconstruction. In 21 

fact, climate scenarios modelled for European areas usually do not succeed when considering 22 

the reconstruction of vegetation cover or lake levels in the Mediterranean region of Spain 23 

(Harrison et al., 1996; Prentice et al., 1998; Davis et al., 2003). 24 

Consequently, more records from hydrologically sensitive areas are necessary to better 25 

understand the disimilarities and to reconstruct a coherent history of effective moisture 26 

fluctuations for the North-eastern regions of the Iberian Peninsula during the last glacial cycle. 27 

However, most palaeoclimate records in this region are located in high mountains or in coastal 28 
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areas and very few sites are from low-elevation areas in the inner part of  Spain (Davis, 1994; 1 

Taylor et al., 1998; Dorado-Valiño et al., 1999; González-Sampériz, 2004) and even fewer 2 

records spanning since the Lateglacial period are available (Valero-Garcés et al., 2000a, 2004; 3 

González-Sampériz et al., 2005). Archaeological sites and geomorphological records have 4 

provided some reconstructions, although the records are highly fragmented (Peña-Monné et al., 5 

1996; Gutiérrez-Elorza et al., 2002; González-Sampériz, 2004). The only available lacustrine 6 

records from the lowlands of North-eastern Spain are from saline lakes (Fig. 1). The semi-arid 7 

climate and the presence of large endorheic regions have favoured the development of a large 8 

number of small saline lakes in the lowlands of the Central Ebro Basin (NE Spain) (Ibañez, 9 

1975; Castañeda, 2002). However, this type of record presents several well-known problems 10 

(i.e., short sequences, few fertile layers in palynological terms, lack of sedimentary continuity, 11 

reworking and contamination for radiocarbon dating, complexity of evaporitic systems, poor 12 

preservation of biologic indicators, etc.,) that must be considered with caution in any 13 

palaeoenvironmental study. 14 

Several studies have shown the potential of these Ebro Basin playa-lake records (Fig.1 15 

and Table 2) as palaeoclimate archives (Pueyo-Mur, 1979; Pueyo-Mur and Inglès-Urpinell, 16 

1987; Pérez-Obiol and Roure, 1990; Stevenson et al., 1991; Davis, 1994; Burjachs et al., 1996; 17 

Schütt, 1998; Giralt et al., 1999; Valero-Garcés et al., 2000a,b, 2004; Roc et al., 2002; Rodó et 18 

al., 2002; Moreno et al., 2004; González-Sampériz et al., 2005). To date, the results obtained 19 

from the Central Ebro Basin indicate that more humid conditions were established during some 20 

periods of the Lateglacial, as was already suggested by the location of vegetation refuge areas in 21 

the same region (Valero-Garcés et al., 2000a; González-Sampériz et al., 2004). The results are 22 

coherent with the hypothesis that, at least for some periods, the ice-age climate of the western 23 

Mediterranean was characterized by cold winters, with relatively higher effective moisture 24 

(precipitation minus evaporation ratio) and summer droughts (i.e., Harrison et al., 1996). 25 

Increased flow from the Pyrenean rivers during the deglaciation could also have played a 26 

significant role in the palaeohydrological cycle in the Central Ebro Basin during the Lateglacial 27 

and the Early Holocene (Valero-Garcés et al., 2004; González-Sampériz et al., 2005). Moreover, 28 
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the usual lack of Middle Holocene deposits suggests an intensification of deflation processes 1 

pointing to intense arid conditions during that interval. Several sites in the Ebro Basin highlight 2 

an increase in the effective moisture during the last few centuries (Davis, 1994). 3 

Unfortunately, all these records are somehow incomplete, and a global study describing 4 

the climate variability in the Central Ebro Basin (north-eastern Spain) since the Lateglacial 5 

period is still lacking. In addition, most records are mainly based on pollen studies and lack the 6 

analysis of moisture fluctuations from other palaeoenvironmental indicators. Hence, both a 7 

multi-proxy approach and a regional review of the playa-lake records studied are required to 8 

take into consideration the observed regional heterogeneity and to enable it to be represented in 9 

global palaeobiogeographical models. The essential goal of this study is to provide a 10 

comprehensive picture of the palaeoclimate evolution of the Central Ebro region for the last 11 

glacial cycle to improve our understanding of the palaeoenvironmental variability in North-12 

eastern Iberia. 13 

We describe in this paper two new sequences from saline lakes located in the Los 14 

Monegros region (Central Ebro Basin, north-eastern Spain): La Playa and La Salineta records. 15 

The combined analysis of pollen, sedimentary facies, geochemistry, stable isotopes and 14C 16 

dating allow us to reconstruct the hydrological fluctuations and the variations in the vegetation 17 

cover since the Lateglacial. Additionally, we provide a review of the available data in the 18 

Central Ebro Basin to characterize the water balance evolution in playa-lake systems and the 19 

regional vegetation during the Lateglacial, the Early, the Middle and the Recent Holocene 20 

periods. 21 

2. Description of the area and sites studied 22 

2.1. Present-day climate 23 

The Central Ebro Basin is the northernmost area of truly semi-arid climate in Europe. 24 

The climate is Mediterranean with a strong continental influence characterized by very hot 25 

summers, cold and dry winters, and low rainfall (300-350 mm yr-1) due to the rain-shadow 26 

effect of the Iberian Range (Capel Molina, 1981; García-Vera, 1996). The high insolation and 27 

evapotranspiration (1000 - 1500 mm/year), and the prevalence of strong dry NW winds also 28 
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contribute to an annual water deficit, especially during summer. The seasonal pattern of 1 

precipitation in the central and eastern regions of Iberia is not typically Mediterranean, but bi-2 

modal, with the highest rainfall in spring and autumn and the lowest in winter and summer 3 

(Rodó et al., 1997). The mid-winter period is particularly important for groundwater recharge 4 

because this is the time when low temperatures restrict evapotranspiration (García-Vera, 1996). 5 

2.2. Vegetation formations 6 

The present landscape in the Central Ebro Basin is a steppe, mostly dedicated to 7 

agriculture. Vegetation cover is less than 50% and dominated by cereal crops and steppe taxa, 8 

leaving small patches of open parkland dominated by Pinus halepensis, Quercus coccifera and 9 

Juniperus thurifera, and/or a dense shrubland with Rhamnus lycioides, Rosmarinus officinalis, 10 

Globularia alypum, Ephedra nebrodensis, Ephedra fragilis, Thymelaea tinctoria, Pistacia 11 

lentiscus, Phillyrea angustifolia, Brachypodium ramosum etc., depending on topography and 12 

soil type. Mesophytes are here restricted to particularly humid canyons, as in the Sierra de 13 

Alcubierre near Zaragoza (Blanco et al., 1997). Nitrophylous and gypsophylous plants are 14 

abundant: Salsola vermiculata, Atriplex halimus, Artemisia herba-alba, Peganum harmala, 15 

Ferula communis, Malcomia africana, Marrubium alysoon, Ononis tridentata, Gypsophila 16 

hispanica, Helianthemum squamatum, Cistus clusii, etc. The margins of the saline lakes are 17 

dominated by halophytic plant communities, i.e., Salicornia and other taxa of the Suaedetum 18 

brevifoliae association (Braun-Blanquet and de Bolòs, 1957; Peinado-Lorca and Rivas-19 

Martínez, 1987). 20 

The long history of human occupation in the area has contributed to the transformation 21 

of the landscape since the Neolithic (Davis, 1994; Utrilla and Rodanés, 1997; Gutiérrez-Elorza 22 

and Peña-Monné, 1998; González-Sampériz, 2004), resulting in deforestation practices to 23 

agriculture expansion (mainly cereal crops) and pastoralism activities. So, an open steppe 24 

landscape with an important ruderal and nitrophylous component is developed and the forest 25 

and shrub formations are located only in isolated small patches. 26 

2.3. Geological and Hydrological setting 27 
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The Ebro Basin is a large depression surrounded by the Pyrenees to the north, the Iberian 1 

Range from the west to the southeast, and the Catalan Ranges to the east. It is mostly filled with 2 

Tertiary continental deposits mainly composed of limestones, marls and gypsum formations 3 

(IGME, 1971, Ramírez, 1997) (Fig. 1). Most lake depressions in the Central Ebro Basin occur in 4 

groups, particularly on the central plateau of Los Monegros (about 100, 60 of them flooded 5 

every year) and in the Bajo Aragón area (Ibáñez, 1975; Pueyo-Mur, 1979; García-Vera, 1996). 6 

The genesis of the depressions has been related to dissolution of the Tertiary evaporite substrate, 7 

preferential water circulation through fault lines, differential erosion, and deflation (Benito et 8 

al., 1998; Sánchez-Navarro et al., 1998). Some depressions in the Ebro Basin originated during 9 

the Lower and Middle Pleistocene (Benito et al., 1998). However, geomorphologic criteria and 10 

the presence of Elephas meridionalis indicate that many depressions also formed during the 11 

Upper Pleistocene (van Zuidam, 1980). 12 

The Monegros plateau is a topographically elevated area, bounded to the South by the 13 

Ebro River and characterized by its tabular landforms and endorheic character. Two main 14 

aquifers have been defined in the Late Oligocene and early Miocene evaporite-bearing 15 

formations underlying the hydrologically-closed basin of Los Monegros (García-Vera, 1996). 16 

Stable isotope data suggest that groundwater, rainwater, and runoff (estimated at less than 10% 17 

of the rainfall) are the main water input to the lakes (Samper-Calvete and García-Vera, 1998). 18 

Groundwater recharge takes place at the interfluves and highlands and its range is estimated 19 

from 20-45 mm/yr. Three sedimentary units have been described in the Los Monegros plateau 20 

(Samper-Calvete and García-Vera, 1998). Most of the lakes are located in the Intermediate unit 21 

(Lower Miocene), and only a few (La Salineta among others) occur in the Upper lacustrine unit 22 

(Upper Miocene – “Aragoniense”), north of the main Los Monegros endorheic system. Both 23 

aquifers are fed by precipitation and the lower one supplies most of the water to the different 24 

playa-lakes. However, playa-lakes located in the Upper unit, such as La Salineta, would also 25 

receive water discharges from the upper aquifer (Samper-Calvete and García-Vera, 1998). Field 26 

and satellite observations carried out during several years (1985-2000) confirm that La Salineta 27 

and La Playa are among the playa-lakes with a longer wet cycle (more than six months a year) 28 
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(Castañeda, 2002). However, the high variability over the years studied is closely related to the 1 

fluctuations in the precipitation pattern. La Salineta is essentially the most sensitive playa-lake 2 

in the Los Monegros basin to rainfall variability. We have selected two lakes in the area: La 3 

Salineta because of its unique hydrology, and La Playa, which at 1.72 km2, is the largest playa-4 

lake in the Los Monegros area. 5 

2.3.1. La Playa 6 

La Playa lake (340 m a.s.l., 41º25’00''N, 0º11'10''W) is located near the town of 7 

Bujaraloz (Zaragoza). Available limnometric data (Castañeda, 2002) show a maximum water 8 

depth of 51 cm during winter, and complete desiccation during summer. The brines are of (Cl-)-9 

(SO4=)-(Na+)-(Mg2+) type and undergo strong seasonal oscillations in concentration because 10 

of groundwater input, evaporation and progressive salt precipitation (Pueyo-Mur, 1979). 11 

Present-day sediments are calcitic, organic-rich mud with abundant gypsum microcrystals and 12 

without the halite crust characteristic of other playa-lakes in the area. 13 

A detailed geomorphological study showed three stepped levels of lacustrine terraces 14 

and a set of yardangs associated to the lacustrine terraces (Gutiérrez-Elorza et al., 2002). The 15 

oldest terrace (T3) is located at 7.5 m above the modern lake floor, the intermediate T2 at 3.5-3 16 

m has the greatest extent, and the youngest one (T1) is located at 0.3-0.5 m. Although the 17 

terraces are not dated, they represent periods of high lake level and posterior incision. 18 

2.3.2. La Salineta 19 

La Salineta lake (325 m a.s.l., 41°28’55”N, 0°09’30’’W), located 1.5 km south of the 20 

town of Bujaraloz (Zaragoza), is a seasonal playa-lake that holds water longer than most of the 21 

other lakes in the Los Monegros area. Water chemistry is dominated by sodium-chloride and 22 

salinities can reach values up to 200 g/l. A thick, soft and wet halite crust covers the surface 23 

during the summer. Groundwater is typically of magnesium-sulphate or calcium–sulphate type 24 

with an average TDS of 5 g/l. Hydrological modelling suggests that the upper aquifer discharges 25 

one third of the total recharge (5822 m3/yr) into La Salineta lake, and that the lower aquifer 26 

contributes with waters with long residence times and high chloride and sodium contents. This 27 
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hydrology explains both the perennial nature of the lake and the presence of the thickest salt 1 

layers (Samper-Calvete and García-Vera, 1998). 2 

The modern La Salineta lake (20 ha surface) is inset within a much larger palaeolake, 3 

whose deposits have been eroded and form cliffs up to 4 m surrounding the present lake. The 4 

cliffs are well developed at the windward SE end of the basin. The palaeolake sediment surface 5 

sits almost level with the rolling plains of the steppe and it is visible over the ploughed ground 6 

as an area of gray lacustrine clays. In some short section, remains of small cliff (1 m high) mark 7 

the boundary of the maximum extent of the lake. 8 

3. Material and methods 9 

A multi-proxy study combining pollen, sedimentary facies, elemental and stable isotope 10 

geochemistry was applied to two new saline lake sequences located in the Los Monegros region 11 

(Central Ebro Basin, North-eastern Spain): La Playa and La Salineta lakes (Fig. 1). A 162 cm 12 

long core was collected in 2002 with a modified 5-cm diameter Livingstone corer in La Playa 13 

lake, close to the western margin. The Miocene bedrock was reached at the bottom of the 14 

sequence. The same method was employed to retrieve a 87 cm long core from the central area of 15 

La Salineta lake in July 2004. However, the bedrock was not reached in this saline lake. 16 

Both sediment cores were split, described and sampled for grain-size analyses, carbonate 17 

and organic matter content, mineralogical and elemental composition and stable isotope every 2 18 

to 10 cm. In addition, samples for pollen analyses were obtained every 10 cm in both sequences. 19 

Sedimentary facies were identified based on colour, lithology, and sedimentological structures 20 

and textures. 21 

Samples for grain size analyses were treated with 10% hydrogen peroxide in a water-22 

bath at 80ºC to eliminate the organic matter; then, a dispersant agent was added and ultrasound 23 

treatment was used prior to measurement. Gypsum crystals were not removed. Finally, grain 24 

size of the samples was determined using a Coulter laser size analyzer. Total Carbon (TC) and 25 

Total Inorganic Carbon (TIC) contents were determined by a UIC model 5011 CO2 Coulometer 26 

for La Salineta samples while organic matter content was determined by loss-on-ignition 27 

analyses at 450ºC and carbonate content with a Barahona calcimeter for La Playa samples. X-28 
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ray diffraction (XRD) analyses were performed using an automatic Siemens D-500 x-ray 1 

diffractometer: Cu kα40 kV, 30 mA, and graphite monochromator. Identification and 2 

quantification of the different mineralogical species present in the crystalline fraction were 3 

carried out following a standard procedure (Chung, 1974). Accordingly, the intensity of the 4 

main peak of every mineral (in counts) obtained with Macdiff software has been corrected and 5 

used for quantification procedures. After acid digestion of the samples, analyses for the main 6 

elemental composition were performed by atomic emission spectrometry using an inductively 7 

coupled plasma ICP-OES with solid state detector (Perkin Elmer Optima 3200 DV). Oxygen 8 

and carbon isotopic compositions were analysed in bulk-sediment samples of La Salineta core 9 

following standard procedures, and the isotopic values are reported in the conventional delta 10 

notation relative to the PDB standard. The δ3C values of organic matter were measured after 11 

carbonate removal with HCl 1:1. Analytical precision was better than 0.1‰ for δ8O and δ3C in 12 

carbonates and organic matter. 13 

Pollen analysis follows the standard procedure described by Moore et al. (1991) and 14 

Dupré (1992), using the classical chemical treatment by HF, HCl and KOH with mineral 15 

separation in heavy liquid (Thoulet: density 2.0). Exotic Lycopodium clavatum tablets 16 

(Stockmarr, 1971) of a known concentration were added to estimate the pollen concentration 17 

and a minimum of 250 pollen grains for slide were counted. Results are expressed here in 18 

relative percentages, excluding spores and hydro-hygrophytes from the pollen sum. The 19 

diagrams were constructed using the Psimpoll (Bennet, 2002) and Corel Draw programmes. 20 

Pollen zones have been defined following the main vegetation trends and accordingly to 21 

sedimentological criteria. 22 

The chronology of these sequences is hampered by the absence of terrestrial remains and 23 

the very low organic matter content. Due to this difficulty, the AMS 14C dates have been 24 

obtained using pollen concentrates, an efficient technique when terrestrial macro-rests are scarce 25 

(Brown et al., 1989; Vandergoes and Prior, 2003; González-Sampériz et al., 2006). A sample at 26 

80 cm depth in La Playa and a sample at 65-67 cm depth in La Salineta were dated (8.773 ± 73 27 

14C yr BP and 2081 ± 38 14C yr BP, respectively, Table 1). These dates were calibrated using 28 
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CALIB 5.1 software and the INTCAL04 curve (Reimer et al., 2004), and the mid-point of 1 

95.4% (2σ probability interval) was selected. Although two pollen samples near the base (at 160 2 

and 140 cm depth) from La Playa core were concentrated and analyzed by AMS dating, no 3 

results were obtained because organic carbon content was too low (Table 1). 4 

4. Results and interpretation 5 

4.1. The sediment record 6 

Playa lake core sediments are composed of gypsum, carbonates, clays and quartz. 7 

Gypsum is the only evaporitic mineral that is preserved; most of the others are seasonally 8 

dissolved during rainy periods (Pueyo-Mur and Inglès-Urpinell, 1987). Both of the cores studied 9 

are composed of decimeter-bedded, massive, greenish and gray, gypsum-rich carbonatic 10 

sediments with several intercalated quartz-rich silts and evaporitic (halite, gypsum and other 11 

sulphates) layers. Seven sedimentary facies have been identified after integration of visual 12 

description, microscopic observation, grain-size, and sediment composition analyses (Table 2). 13 

Facies 1-3 are massive carbonatic mud (carbonate percentage between 5 and 30%) with variable 14 

mineral composition (calcite or dolomite) and presence of gypsum as micro and macro-crystals 15 

(usually as lenticular crystals of about 100 μm). Facies 4 represents a higher detrital influence, 16 

as denoted by the increase in clay minerals and quartz. Facies 5 is a laminated organic-rich mud 17 

only present in the uppermost units of La Salineta core. Facies 6 and 7 are evaporite facies with 18 

different colour, texture and composition. Facies are described in detail in Table 2. 19 

In general, grain-size in these saline lake sediments reflects the size of the gypsum 20 

crystals, providing some additional indication of their genesis. The abundance of clay minerals 21 

and quartz is taken as a marker of increased detrital input, mainly caused by aeolian activity in 22 

these dry areas that are highly exposed to deflation. Coherently, both Al and Fe, as elements that 23 

form part of clay minerals and oxides, are also indicative of detrital input to the lake basins. 24 

Although variable throught time, runoff processes are less important in this sedimentary context 25 

due to the flat topography and the arid climate. Due to the abundance of limestones in the 26 

Tertiary continental deposits that constitute this region, detrital calcite is a common component 27 

of the lake sediments. Increasing calcite content associated with higher quartz or clay minerals 28 
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contents is interpreted as a reflection of higher detrital input to the lake. Higher calcite content, 1 

without increasing quartz or clay contents, is interpreted as authigenic in origin. Furthermore, 2 

the presence of dolomite since Miocene limestones have a low Mg content (1.6% MgCO3) and 3 

dolomite-and magnesite-rich facies are minor (Quirantes, 1978; Mata et al., 1988), is a proxy for 4 

more concentrated waters with a high Mg/Ca ratio that usually occur during dry periods. This is 5 

also supported by the isotopical study carried out on the dolomite crystals formed in the nearby 6 

Salada Mediana (Valero-Garcés et al., 2000c). A complete study of the processes that lead to 7 

dolomite formation in the Los Monegros saline lakes is now in progress but SEM morphologies 8 

and preliminary stable isotope data point to sinsedimentary or early diagenesis processes (Calvo 9 

et al., 2005).  10 

Gypsum crystals are the result of i) direct precipitation from concentrated lake waters as 11 

a response to seasonal evolution or ii) precipitation from interstitial waters due to evaporative 12 

pumping or other early diagenetic processes (Pueyo-Mur, 1979; Pueyo-Mur and Inglès-Urpinell, 13 

1987). Both processes lead to the formation of lenticular gypsum crystals, as those observed in 14 

the cores in some intervals. Therefore, it is not possible to discern only from the observed 15 

morphology primary minerals (precipitated from lake waters) from those formed during the 16 

early stages of diagenesis. However, total absence of gypsum nodules, gypsum-crusts or 17 

cements discards late diagenesis as a main origin for the gypsum occurrences in La Playa and 18 

La Salineta. 19 

A black, sapropelic layer generally occurs below the evaporite crust in these saline lakes 20 

(Pueyo-Mur, 1979), indicating a good preservation of the organic matter and activity of bacteria 21 

under reducing conditions. Algal mats are also frequent (Pueyo-Mur, 1979; Valero-Garcés et al., 22 

2000a) although their preservation potential seems to be reduced. As biological producers 23 

change, increased organic productivity might be related to periods of increased salinity (ref) and 24 

also to freshwater stages. (ref). Therefore, intervals with higher organic matter content, in the 25 

absence of other indicators, cannot be directly related to higher lake levels in wetter climates (a 26 

climatic scenario that usually favours both higher biological productivity and better 27 

preservation). 28 
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4.1.1. The sediment record of La Playa lake 1 

The 162 cm long core from La Playa saline lake has been divided in five 2 

sedimentological units (P1 to P5) that are organized in three sedimentary sequences (Fig. 2): 3 

Sequence P-I would correspond to Unit P1; Sequence P-II would include Unit P3 and P2 and, 4 

finally,  Units P5 and P4 would conform the Sequence P-III. The three sequences are bounded 5 

by erosive surface that represent hiati probably caused by periods with increased desiccation 6 

and aeolian erosion.  7 

Unit P5 is divided in two subunits: (1) Subunit P5b (Facies 7 and 3) overlies the 8 

Miocene substratum and represents the first lacustrine sedimentation that incorporates some of 9 

the gypsum fragments reworked from the base; and (2) Subunit P5a (Facies 2) composed of 10 

massive dolomitic mud with the highest detrital content of the whole sequence (clay minerals 11 

and quartz) and maximum values of Al and Fe. These features indicate an important aeolian 12 

contribution and, additionally, concentrated waters to precipitate dolomite during Subunit P5a. 13 

Unit P4 is characterized by the alternation of Facies 7 and 2, the increasing content in gypsum, 14 

and generally low organic matter contents. This increment in the gypsum context suggests a 15 

change towards drier conditions and even more concentrated waters than in the previous unit. 16 

Therefore, over the Miocene gypsum substratum, the sediments of Sequence P-III were 17 

deposited in an ephemeral sulphate-carbonate saline lake system undergoing less concentrated 18 

(carbonate-dominated; Unit P5a) and more concentrated (gypsum-dominated; Unit P4) brine 19 

stages. 20 

An abrupt increase in calcite content is detected at the onset of Sequence P-II after 21 

deposition of the massive gypsum-rich interval. The bottom part of Unit P3 (Subunit P3b) is 22 

characterized by high quartz, clay minerals and calcite contents, and high values of Al and Fe 23 

(Facies 4). Subunit P3a is composed by Facies 1 characterized by low gypsum abundance, 24 

probably indicating less concentrated waters in a scenario with more flooded stages in the playa-25 

lakes. On the contrary, Unit P2 is depleted in carbonates and both microscopic observations and 26 

grain size indicate the presence of large gypsum crystals, up to 2-3 mm (Facies 3). Sequence P-27 

II would represent deposition in an ephemeral playa-lake complex where more humid intervals 28 
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alternate with arid events when the saline lake was probably dry during long periods. The driest 1 

scenario is represented by the beginning of the sequence (Subunit P3b) where the synchronous 2 

increase in quartz, calcite and clays (together with Al and Fe peaks) suggest that deflation was 3 

very significant at that time, pointing to the dominance of dry areas and stronger winds. A 4 

marked change towards more humid conditions is observed in Subunit P3a where decreasing 5 

detrital calcite and quartz contents could indicate lower salinity compared to the previous 6 

interval. This system would be coherent with the characteristic wetter scenario of the Early 7 

Holocene. The presence of gypsum-rich sediments along Unit P2 may indicate a tendency 8 

towards increased aridity, may be related to the transition towards the Middle Holocene.  9 

Finally, Sequence P-I (Unit P1) is composed by massive, brownish-gray mud with 10 

abundant gypsum micro-crystals (Facies 1). It is noticeable the enrichment in Na (and halite) 11 

towards the top, marking the preservation of halite minerals in recent sediments of an ephemeral 12 

saline lake. Calcite content increases (not related to quartz-rich sediments), suggesting a new 13 

stage of more diluted waters that has been observed in other saline lakes in the Central Ebro 14 

Basin during recent times (Davis, 1994). 15 

The interpretation of this sedimentary record highlight a depositional history 16 

characterized by the evolution from a carbonate-producing lake (Units P5, P4 and P3) towards a 17 

more sulphate-producing saline lake (Unit P2), ending with the present-day ephemeral saline 18 

lake system (Unit P1).  19 

4.1.2. The sediment record of La Salineta lake 20 

Five sedimentary units (S1 to S5) have been defined in the 87 cm long core from La 21 

Salineta based on sedimentological, mineralogical and geochemical criteria (Fig. 3, Table 2). 22 

These units can be organized in three sequences bounded by observed erosional hiati. The 23 

process triggering the formation of these hiati would be similar to that postulated for La Playa 24 

sequence: long dry periods with increased desiccation and posterior aeolian erosion. Unit S5 and 25 

S4 (Sequence S-III) are both characterized by the presence of massive, greenish gray dolomitic 26 

mud (Facies 3 and 2). Gypsum is almost absent except as isolated cm-long crystals at the base 27 

of the sequence. Dolomite percentages reach 60% of the crystalline fraction. The high content in 28 
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clays and quartz in these two units could indicate stronger aeolian contribution. Gypsum and 1 

halite content increases right after Unit S4 suggesting the establishment of a sulphate-chloride 2 

saline system. Sequence S-II comprises Unit S3 and it is composed of massive, dark to light 3 

gray carbonatic mud with abundant mm-sized gypsum crystals (Facies 1). The occurrence of 4 

mm-thick evaporite (mainly halite) crusts and detrital (higher quartz and clay minerals contents) 5 

levels, points to significant changes in the lake’s water balance. Units S2 and S1 conforms the 6 

Sequence S-I. Unit S2 is formed by massive, to faintly laminated, black to dark gray organic-7 

rich mud likely indicating higher productivity or better preservation of the organic matter 8 

(Facies 5). Unit S1 constitutes the present-day saline crust composed by mirabilite, bloedite, 9 

halite and other sulphates that have not been quantified. It has an intermediate black level with 10 

the highest values of organic matter in the core. 11 

The isotopic study was carried out on the bulk carbonate fraction without separating 12 

calcite from dolomite. However, XRD results clearly indicate that calcite is the dominant 13 

carbonate mineral and almost no dolomite is present (except for Sequence S-III, Fig. 3). 14 

Therefore, the isotopic values would likely reflect variations in the isotopic composition of 15 

calcite. In the upper units S1, S2 and S3 values of δ18O are rather constant and similar to the 16 

calcite values of the nearby Salada Mediana (Valero-Garcés et al., 2000c). The similar isotopic 17 

compositions may reflect a detrital origin of the calcite from the same source through the 18 

sequence, or similar hydrological conditions for calcite precipitation in the lake waters. 19 

However, considering that most calcite is detrital, and that limestones from the Los Monegros 20 

area have a range of δ18O values among –9 and 0 ‰ and a δ13C of –5 to –2‰ (Arenas et al., 21 

1997; Valero-Garcés et al., 2000c), the isotopic composition is likely to mostly reflect the 22 

composition of detrital calcite. Only in the lower sequence (Sequence S-III), the enriched δ18O 23 

values would reflect the presence of authigenic dolomite, similarly as in Salada Mediana. 24 

(Valero-Garcés et al., 2000c). The δ13C profile in bulk organic matter has relatively higher 25 

values than those in the longer La Salineta Core-Section (-27.2 to –23.2‰) (Valero-Garcés et 26 

al., 2004). In other saline lakes in the Ebro Basin, cyanobacterial mats have considerably 27 
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heavier values (between –12.8‰ and –11.2‰) than terrestrial halophytic plants (between – 24 1 

to –26‰ PDB) (Valero-Garcés et al., 2000c). The δ13Corg curve shows three main intervals that 2 

are consistent with the sequences previously defined: Sequence S-III (more detrital and 3 

dolomite-bearing) shows the lowest values, pointing to a dominance of halophytic plants in a 4 

frequently desiccated lake. The lack of pollen data due to bad pollen preservation in this lower 5 

part of La Salineta sequence prevents a conclusive confirmation of this interpretation, although 6 

it suggests that poor pollen preservation occurred during desiccation phases (Fig. 3). The 7 

intermediate units S3 and S2 are characterized by a maintained trend towards higher values 8 

suggesting less terrestrial halophytic plants and an organic fraction dominated by lacustrine 9 

material. The pattern towards more negative values characterizes the upper unit (saline crust). 10 

Both the sedimentological and stable isotopic data allow interpreting the depositional 11 

environment associated to the three sedimentary sequences in La Salineta core. Sequence S-III 12 

represents the record of a dolomite-producing lake system characterized by very frequent 13 

desiccation periods. The positive δ18O values point to intense evaporative processes and 14 

dolomite formation probably linked to a more arid climate. Aeolian transport may have been 15 

important as reflected by the maximum values of clays and quartz while halophytic terrestrial 16 

plants would be dominant in the area as suggested by δ13Corg values (-26‰). Sequence S-II 17 

would start at about 2000 cal yr BP corresponding to Unit S3. This interval would represent the 18 

deposit in an ephemeral playa-lake complex where gypsum-rich sediments point to a different 19 

brine composition likely indicating higher salinity. Finally, Sequence S-I begins with a sharp 20 

sedimentary change, suggesting that an unconformity formed after deposition of massive 21 

gypsum-rich interval (Unit S3). The first sequence corresponds to Units S2 and S1, sediments 22 

that were deposited during the present-day ephemeral saline lake. This is characterized by the 23 

higher content of the more soluble sulphates and the dark-gray, banded to black laminated 24 

nature of the sediments. 25 

4.2. Palynological data 26 

The study of pollen records along the Central Ebro Basin to improve our understanding 27 

of environmental changes is limited to playa-lake systems as they are the only existing deposits 28 
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in this semi-arid region (González-Sampériz, 2004). The main regional and local features and 1 

the evolution of the vegetation cover can be deduced from the palynological records. 2 

Additionally, hydrological fluctuations of saline lakes could be inferred from the presence and 3 

abundance of aquatic plants. In this section we present new pollen data from two saline lakes 4 

from the Los Monegros region (La Playa and La Salineta). A complex mosaic landscape with 5 

steppe formations, coniferous forest and Mediterranean shrubs, close to mesothermophytes 6 

refuge areas has been previously proposed for the Lateglacial and Holocene in the Central Ebro 7 

Basin (Pérez-Obiol and Roure, 1990; Stevenson et al., 1991; Davis, 1994; Burjachs et al., 1996; 8 

Valero-Garcés et al., 2000a, b, 2004; Roc et al., 2002; González-Sampériz et al., 2005). In 9 

addition, fluctuations in the abundance of herbaceous halophytic plants in relation to aquatic 10 

plants help to highlight several periods with different moisture balance characteristics (from 11 

desiccation periods during arid conditions to higher water levels during more humid climates or 12 

particular edaphic conditions). To illustrate this relationship, the opposite variations of steppe 13 

taxa (Artemisia) and halophytes versus aquatic plants from La Playa and La Salineta records are 14 

represented in Fig. 4. Anthropogenic influences in more recent periods are also detected in the 15 

palynological spectra by the presence of some taxa, such Cerealia type and Olea. 16 

4.2.1. Pollen sequence of La Playa record 17 

La Playa record is chronologically one of the oldest sequences of the Central Ebro Basin, 18 

together with La Salineta Core-Section from Valero-Garcés et al. (2004) and Salada Mediana 19 

(Valero-Garcés et al., 2000a). Although this record is dated as Early Holocene at 80 cm depth 20 

(from the 162 cm long core), sedimentological and palynological results point to the presence of 21 

Lateglacial sediments at the base of the sequence. The increase of Olea and the presence of 22 

Cerealia type at the top of the sequence confirm that the upper 30 cm (sedimentary Sequence P-23 

I) represent some undetermined moment during the last 2000 years BP. Therefore, the hiatus 24 

observed among Sequences P-II and P-I (Fig. 2), may correspond to, at least, the eroded Middle 25 

Holocene sediments. Although the pollen sequence of La Playa was studied previously by other 26 

authors (Pérez-Obiol and Roure, 1990; Stevenson et al., 1991), the inexistence of a 27 

chronological control and some taxonomic differences (Juniperus versus microspores, 28 
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Carpinus/Ostrya versus Myriophyllum spicatum) prevent a good correlation with the record 1 

presented here. In this pollen sequence, as in all records from NE Spain, Pinus is the dominant 2 

arboreal taxum throughout the whole record (González-Sampériz et al., 2005). The rest of the 3 

AP group (Juniperus, evergreen and deciduous Quercus, mesophytes and thermophytes) usually 4 

represents a minor percentage. The steppe component of the landscape is mainly formed by 5 

Artemisia, Ephedra distachya and Ephedra fragilis types, Chenopodiaceae, Lygeum spartum, 6 

Compositae, Plantago and Urticaceae. The evolution in composition and proportion of the 7 

hydro-hygrophytes and the ratio with halophytes (Chenopodiaceae) reflects the water balance in 8 

the basin (Fig. 4). 9 

Samples from the bottom of the core (sedimentary Units P4 and P5) were 10 

palynologically sterile likely due to the poor pollen preservation as the result of oxidation 11 

processes during aerial exposure in dry periods. Four pollen zones (PZ) have been defined for 12 

the rest of the sequence (Fig. 5). In PZ-P4 (120-110 cm depth), the spectra show the most arid 13 

and cool/cold period of the whole sequence, with the minor proportion of AP (around 40%) and 14 

the maximum of Artemisia (20%) and Ephedra distachya type. It corresponds to the upper part 15 

of the sedimentary Unit P3b, interpreted as the driest period from sedimentological and 16 

geochemical indicators (Fig. 2). This evidence is supported by: i) the mentioned high 17 

percentages of steppe taxa (Artemisia, Ephedra, Plantago, Chenopodiaceae, Asteroideae and 18 

Urticaceae); ii) the presence of Abies at 120 cm depth, unique in the record, and coherent with 19 

other Lateglacial pollen sequences in the region (González-Sampériz, 2004); iii) the low values 20 

of pine and other arboreal curves; and iv) the minor proportions in the sequence of some 21 

significant aquatic taxa as Myriophyllum and Ruppia. Nevertheless, Chenopodiaceae values and 22 

the low but still presence of these two last mentioned aquatic taxa indicate that La Playa (the 23 

largest playa-lake basin in the Central Ebro Basin) still functioned as an ephemeral saline lake 24 

and the groundwater levels remained close to the surface. 25 

In PZ-P3 (110-80 cm depth), the AP proportion is still low but increases towards the 26 

limit between PZ-P3 and PZ-P2 reaching up to 60%. It corresponds with the sedimentary Unit 27 

P3a and the general tendency of pollen curves indicates a decrease in arid conditions. The lower 28 
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percentages of steppe taxa and the slight increment in aquatic plants, mainly Myriophyllum, are 1 

coherent with the more humid conditions associated with the Early Holocene in the region 2 

(Montserrat, 1992; Davis, 1994; Stevenson, 2000; González-Sampériz, 2004). The PZ-P2 (80-3 

30 cm depth) coincides with the sedimentary Unit P2 and it is characterized by fluctuations 4 

mainly in the pine, AP, Poaceae, Artemisia, Lygeum spartum, Rumex, Urticaceae, Boraginaceae, 5 

Lamiaceae, Cyperaceae and Myriophyllum’s curves. Towards the top of this pollen zone, 6 

Artemisia and Ephedra distachya type almost disappear, Juniperus and Ephedra fragilis type 7 

decrease, Ruppia remains present and Myriophyllum and Potamogeton increase. All these 8 

evidences indicate the reduction of xeric conditions and the record of the most humid period in 9 

the sequence, marked by the highest proportion of Myriophyllum. Sedimentologically this 10 

interval corresponds to  a clear increase in organic matter content at 55 to 35 cm depth. Finally, 11 

at the top of the La Playa record (PZ-P1, 30 uppermost cm; sedimentary Unit P1) the 12 

anthropogenic influence in the landscape is evidenced by taxa related to agriculture and grazing 13 

activities (ruderals, Cerealia type presence and Olea expansion, new increase of Artemisia). The  14 

hydro-hygrophytic pollen group is the most varied in composition of the sequence (Cyperaceae, 15 

Typha, Sparganium, Ruppia, Potamogeton, Myriophyllum, etc.,) perhaps in relation to better 16 

preservation of pollen grains during present-day conditions. 17 

The problematic chronology of the three previously defined sequences due to the scarce 18 

terrestrial organic remains together with the presence of discontinuities in the record makes it 19 

very difficult to assign a time period to each sequence. However, comparison with other nearby 20 

records (Salada Mediana, Valero-Garcés et al., 2000a; La Salineta Core-Section, Valero-Garcés 21 

et al., 2004) and the results obtained from the palynological study enable us to define these three 22 

different periods. Sequence P-III may correspond to Lateglacial; Sequence P-II starts with an 23 

arid period followed by a more humid Early Holocene, and probably, finishes with the 24 

beginning of the transition to the more arid Middle Holocene; and Sequence P-I possibly 25 

represents the resume of the sedimentation after the medieval times and modern times. 26 

Therefore, La Playa core indicates large climatic and moisture fluctuations during the Late 27 

Glacial and Holocene periods in the Central Ebro Valley. Despite the absence of a chronology, 28 
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the three sequences described may correspond to the three terraces defined by Gutiérrez-Elorza 1 

et al. (2002). These terraces would represent three stages of lacustrine deposition and posterior 2 

incision of the playa-lake system. 3 

4.2.2. Pollen sequence of La Salineta record 4 

La Salineta record covers the last 2000 years and the pollen sequence indicates a 5 

semiarid-Mediterranean vegetation cover, similar to current formations of the Central Ebro 6 

Basin (Fig. 6). Throughout the whole sequence, Pinus is the main arboreal component, next to 7 

Juniperus and evergreen Quercus with lower percentages. Thermophylous shrubs compose the 8 

rest of the AP group with some mesophytes (Salix, Corylus, Alnus, Populus) and Tamarix, 9 

controlled by soil-moisture conditions. The increase in Olea at the top of the sequence 10 

corresponds to the increase in olive cultivation since the Middle Ages and particularly after the 11 

18th century (Davis, 1994). 12 

Pollen samples from the base of the sequence (sedimentary Units S5 and S4) were sterile 13 

(Fig. 6). Highly oxidizing conditions required to destroy the pollen are consistent with frequent 14 

desiccation periods in a dolomite-producing lake system. When these desiccation periods are 15 

prolonged in time, the associated aeolian erosion over dry lake surfaces could even produce a 16 

sedimentary hiatus, as the previously observed in the transition from sedimentary Sequences S-17 

III to S-II. 18 

In the rest of the sequence (77 cm long), four pollen zones are defined. PZ-S4, PZ-S3 19 

and PZ-S2 correspond to the sedimentary Unit S3. The PZ-S4 (77-55 cm depth) is characterized 20 

by the highest proportion of Juniperus (until 20%), and increasing values of Artemisia. These 21 

assemblages indicate an arid climate, confirmed by the presence of Chenopodiaceae, Lygeum 22 

spartum, Compositae (Cichorioideae, Asteroideae and Carduae), Plantago, Rumex or Urticaceae 23 

among others, and low proportions of aquatic taxa. In PZ-S3 (55-35 cm depth) the AP values 24 

increase because the increase of Pinus and some expansion of evergreen Quercus and Tamarix 25 

(the latter is usually observed around playa-lake basins). Cerealia type and ruderals percentages 26 

remain constant or even decrease, and halophytic taxa (mainly Chenopodiaceae) and junipers 27 

are in low amounts, according to less arid conditions or some decrease in anthropogenic 28 
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influences and activities around the lake. This situation changes in PZ-S2 (35-15 cm depth) 1 

where pines, and consequently the AP abundance, decrease. Abrupt changes in pollen content 2 

and in isotopic, geochemical and sedimentological indicators (i.e., sharp change of facies, 3 

dramatic increase in grain size or increments in Na and Mg) suggest the presence of a hiatus in 4 

the transition between this zone and the PZ-S1 (15-0 cm depth). In both PZ-S2 and S3, changes 5 

in aquatic taxa and Chenopodiaceae indicate fluctuations in the hydrological balance (Fig.4). 6 

Chenopodiaceae increased when desiccation periods in the playa-lake were more frequent, 7 

because these herbs grow on the salty surfaces, while hydrophytes (aquatics) as Ruppia 8 

(characteristic of saline lakes), Potamogeton and Myriophyllum, need a positive water balance 9 

with some water depth during the vegetative periods. Finally, the upper part of the sequence 10 

(PZ-S1, 15 cm top), corresponding to sedimentary Units S2 and S1, shows the effects of 11 

anthropogenic activities (agriculture) with the expansion of Olea and Cerealia type, and 12 

increasing nitrophylous taxa as Rumex, Plantago, Asteraceae or Brassicaceae. 13 

The La Salineta sequence shows the evolution of a typical playa-lake system, with 14 

marked hydrological fluctuations during the last few millennia that depend on the variability in 15 

the seasonal rainfall. The sequence suggests the presence of a period of frequent desiccation 16 

prior to 2000 cal yr BP, and somehow more positive water balance afterwards. Along PZ-S2 17 

and PZ-S1 sedimentation resumes during medieval times, according to the first expansion of 18 

Olea cultivations (Davis, 1994). Both regional and local vegetation are determined by the 19 

aridity indicating a Mediterranean steppe environment characterized by open herbaceous 20 

extensions with some isolated shrubs and trees, close to human-affected areas with farming and 21 

grazing. 22 

5. Palaeoenvironmental implications 23 

Despite the difficulties associated with palaeoenvironmental studies carried out in playa-24 

lake records, sedimentological, palynological and isotopic analysis from saline lakes along the 25 

semi-arid Central Ebro Basin (north-eastern Spain) provide useful information to reconstruct the 26 

environmental and hydrological variability from the Lateglacial and during the Holocene. A 27 

detailed review of the previous studies available (Table 3), together with the new data presented 28 
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here from La Playa and La Salineta playa-lake records, allow us to identify vegetation changes 1 

and moisture fluctuations during the Late Pleistocene and Holocene periods (Table 4). 2 

6.1. Lateglacial 3 

A complex mosaic landscape was developed in the Central Ebro Basin during the 4 

Lateglacial. Coniferous forest patches (Pinus dominance with presence of Juniperus), 5 

mesophytes (Corylus) and thermophytes (evergreen Quercus) refuge areas, and steppe 6 

formations with Artemisia, Ephedra, Compositae, Helianthemum, etc., coexist (González-7 

Sampériz et al., 2005). Although throughout the Lateglacial several wet and arid intervals are 8 

inferred from playa-lake records, the lack of a good chronology prevents an accurate temporal 9 

location of these climatic fluctuations. The phases of increased effective moisture are indicated 10 

by the higher percentages of some aquatic taxa (mainly Myriophyllum or Potamogeton in 11 

Laguna de Gallocanta from Burjachs et al., 1996; or Salada Mediana from Valero-Garcés et al., 12 

2000a). Ruppia (more saline water tolerant) is also present in pollen diagrams but in minor 13 

percentages. Usually, the aridity phases are marked by Chenopodiaceae increases since these 14 

plants cover the surface of playa-lakes when they are dry (i.e., Salada Mediana, Valero-Garcés 15 

et al., 2000a). The La Salineta Core-Section also shows important moisture fluctuations along 16 

the Lateglacial period reflected by drastic sedimentary changes and variable isotopic values 17 

pointing to the alternation of dry intervals (i.e., about 21 kyrs BP) with more humid stages (i.e., 18 

about 24 kyrs BP, just after the genesis of the lake basin) (Valero-Garcés et al., 2004). 19 

Other clear examples of arid periods during the Lateglacial are the PZ-P4 from La Playa 20 

record presented here (higher proportion of Ephedra distachya and Artemisia)and the bases of 21 

Laguna Guallar and Hoya del Castillo sequences (highest values of Ephedra distachya, 22 

Artemisia and Juniperus; in Davis, 1994). In these three records, the pollen spectra indicate an 23 

arid period just prior to the Early Holocene. There are evidences from other terrestrial records 24 

(i.e., Banyoles, Valero-Garcés et al., 1998; Tramacastilla, Montserrat, 1992; El Portalet, 25 

González-Sampériz et al., 2006) that the Younger Dryas event had a clear arid (and cold) 26 

imprint in the Northeast Iberian Peninsula. Despite the absence of dates in this interval from the 27 

Los Monegros records, considering that La Playa, Laguna Guallar and Hoya del Castillo are the 28 
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only pollen sites that have been studied in the Central Ebro Basin covering this time period and 1 

that present the same palynological signal, we suggest that this is a possible evidence of the arid 2 

Younger Dryas event. In the Playa lake record, the sedimentological and geochemical data also 3 

suggest a dry period. The increase of clay minerals, quartz and detrital calcite (Facies 4) points 4 

to an increase in deflation, a process that is more intense during arid periods. Nevertheless, the 5 

lack of dates throughout Sequence P-III of La Playa record, Laguna Guallar and Hoya del 6 

Castillo prevents us from totally discarding that these sediments corresponded to other arid and 7 

cold periods during the Lateglacial. 8 

The data available support our interpretation that during the Lateglacial period, intervals 9 

of relatively freshwater conditions alternated with other more saline conditions. This situation is 10 

probably the reflection of the well-known arid-cold and wet-warm phases that characterized the 11 

Lateglacial global climate, such as the Dryas and the Bølling and Allerød periods (i.e., Grootes 12 

and Stuiver, 1997). In addition, in the Central Ebro Basin, increased flow from the Pyrenean 13 

rivers during the early deglaciation could play a significant role in the palaeohydrological 14 

conditions (González-Sampériz, 2004; Valero-Garcés et al., 2004) supplying water during 15 

generally drier conditions. Accordingly, the location of mesothermophytes refuge areas in 16 

Salada Mediana (Corylus, evergreen Quercus) confirms the existence of more humid conditions 17 

in the Central Ebro Basin, which was at least wet enough to provide soil moisture, during some 18 

periods of the Lateglacial (Valero-Garcés et al., 2000a; González-Sampériz et al., 2004, 2005). 19 

6.2. Early Holocene 20 

Cool temperatures and/or higher precipitation during the Early Holocene were proposed 21 

by Harrison and Digerfeldt (1993) to explain higher lake levels observed throughout the 22 

Mediterranean at this time (Roca and Julià, 1997; Giralt et al., 1999; Reed et al., 2001). In 23 

addition, a temperature reconstruction from southern Europe (summer MTWA –mean 24 

temperature of the warmest month- and winter MTCO –mean temperature of the coldest month-25 

) reflects wetter conditions during the Early Holocene (Davis et al., 2003) as it has already been 26 

proposed by the same author in some playa-lake systems from the Central Ebro Basin (Davis, 27 

1994). The author bases this hypothesis in the expansion of Pinus, Juniperus and evergreen 28 
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Quercus forest observed in Laguna Guallar and Hoya del Castillo (Tables 1b, 3 and 4). 1 

Moreover, the increase in lake water levels is indicated by the low values of Chenopodiaceae 2 

(around 20%) and the Ruppia proportions in both pollen records (Davis, 1994). In La Playa 3 

record presented in this paper, we also observe during the Early Holocene (PZ-P3 and P2) a 4 

Pinus forest formation, low Artemisia and Chenopodiaceae percentages and the highest 5 

proportions of aquatic plants (Ruppia, Potamogeton and mainly Myriophyllum). In addition, the 6 

sedimentological analysis of La Playa indicates the presence of more diluted waters deduced 7 

from the dominance of low-gypsum sediments with higher organic matter content and the 8 

decrease in wind-transported quartz (Subunit P3a). Contrarily, the transition towards the more 9 

arid Middle Holocene would be indicated by the increase in gypsum and Mg towards the top of 10 

Sequence P-II. Thus, the Early Holocene was probably a relatively humid period in the Central 11 

Ebro Basin, with moderately long periods of high lake levels. However, a patched landscape 12 

with some steppe indicators persists, at the same time that coniferous forest formations increase 13 

and the mesothermophytes decrease pointing to the disappearance of the Lateglacial refuges 14 

areas. 15 

6.3. Middle Holocene 16 

Some areas of the Central Ebro Basin, such as the playa-lake records of Hoya del 17 

Castillo (Híjar, Teruel) and Chiprana (Chiprana, Zaragoza), show up to 80% of pine pollen 18 

(Davis, 1994) during the Middle Holocene (see radiocarbon dates in Table 1b). The usual high 19 

proportions and dominance of Pinus in playa-lake pollen records are related to sedimentary 20 

disturbances and hiatus indicators probably associated to aerial exposure and oxidation 21 

processes that caused low pollen preservation (Burjachs et al., 1996). Pine grains are very 22 

resistant and easy to identify even from their remains, favouring their over-representation in the 23 

pollen spectra. Davis (1994) deduced in the two records mentioned a forest retreat (decrease in 24 

Juniperus and evergreen Quercus) as a consequence of the aridity intensification during the 25 

Middle Holocene. Other evidence of a Middle Holocene dry period is described in the Salada 26 

Chiprana sedimentological record, where an ephemeral lake developed at that time (Valero-27 

Garcés et al., 2000b; Davis, 1994). 28 
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The Los Monegros region and particularly the Bujaraloz area presented in this paper are 1 

the most arid zones of the Central Ebro Basin. Several sequences from that area have provided 2 

palaeoenvironmental information about the Lateglacial and the Early Holocene, although none 3 

presents a Middle Holocene record (i.e., La Playa lake, Figs. 2 and 5). In most cases, the Middle 4 

Holocene has been eroded and the Recent Holocene sediments lie directly above the Early 5 

Holocene material. In the La Playa record a clear sedimentary hiatus between PZ-P2 and PZ-P1 6 

and the sedimentary Units P2 and P1 is observed. Similarly, an interruption of the sedimentation 7 

around 45 cm in depth is detected at Laguna Guallar (Davis, 1994), and the record continues 8 

afterwards during the Recent Holocene. Therefore, our data also support Davis’ (1994) 9 

interpretation of Middle Holocene strong aridity in the Central Ebro Basin, particularly intense 10 

in the Los Monegros area, causing a large depression in the regional water tables and a general 11 

desiccation of the playa-lakes. The dry surfaces of playa-lake basins and the retreat of the 12 

vegetation cover due to the aridity would intensify the erosion processes. Deflation gave rise to 13 

an intense sweeping of the sediments causing a sedimentary hiatus. 14 

Several archaeological sites occur around the saline lake basins in the Central Ebro 15 

Basin (Tilo, 1992). The scarce material preserved has been attributed to i) the Palaeolithic and 16 

Epipalaeolithic macrolithic periods (Lateglacial and Early Holocene), or ii) Bronze Age, Iron 17 

Age and mainly pottery of the Roman period. A good example of this type of archaeological 18 

sites in Los Monegros is the Cardell Valmateu settlement in Bujaraloz-Candasnos area (Tilo, 19 

1992). There are no archaeological remains from the Neolithic culture (Middle Holocene) in the 20 

Los Monegros area and this has been interpreted as a consequence of the increased aridity that 21 

would have probably impeded human settlements. Furthermore, the aridity intensification of the 22 

Middle Holocene had a strong impact on the development of the Neolithic socio-economic 23 

activities such as agriculture and pastoralism and the resulting deforestation processes (Utrilla 24 

and Rodanés, 1997; González-Sampériz, 2004), increase of fire events and accumulation phases 25 

in gullies of the Central Ebro Basin (i.e., Las Lenas or La Morera, dated in 5910 BP and 6015 26 

BP respectively by Peña-Monné et al., 1996). This scenario implies that the aridity crisis during 27 

the Middle Holocene was modulated by two factors: climate and human impact (González-28 
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Sampériz and Sopena, 2002). The same situation was inferred for the rest of Iberia, particularly 1 

in the south-eastern region (Carrión et al., 2003), with a clear intensification of fire events and 2 

human impact since the last 4000 years BP. 3 

6.4. Recent Holocene 4 

Although most playa-lake sequences of the Central Ebro Basin record the Recent 5 

Holocene period, they usually cover only the last 1000 or 2000 years (references in Table 3). 6 

The arid climate that characterized the Middle Holocene probably continued for several 7 

millennia until the beginning of the moister Roman Period. The palynological data from these 8 

studies reflect an open and patched vegetation cover, which was very influenced by human 9 

activities, as reflected by the increased percentages of Olea and Cerealia type (i.e., PZ-P1 in La 10 

Playa record and PZ-S1 and S2 in La Salineta record; Salada Mediana, Valero-Garcés et al., 11 

2000a; Salada Chiprana, Davis, 1994). The Chenopodiaceae and aquatic plants percentages 12 

(mainly Ruppia) indicate a seasonal unstable water depth in both saline lakes of this study (Fig. 13 

4). Sedimentological indicators (i.e., organic-rich mud in La Salineta record, Fig. 3) point 14 

towards a slight recovery of the lake levels, compared to the previous interval. Therefore, 15 

landscape and hydrological conditions inferred from previous playa-lake studies, together with 16 

the new results from La Playa and La Salineta records, suggest a vegetation mosaic with slightly 17 

higher moisture availability. 18 

In the AP, the coniferous component with the usual Pinus dominance persists in the 19 

landscape, but retreated by anthropogenic activities during the last centuries (Tables 3 and 4). 20 

This is interpreted from the two records presented in this paper (La Playa and La Salineta), and 21 

in previous studies from Laguna Guallar (Davis, 1994), La Playa (Pérez-Obiol and Roure, 1990; 22 

Stevenson et al., 1991), La Clota, el Rebollón and El Camerón playa-lakes (Pérez-Obiol and 23 

Roure, 1990), also located in the Los Monegros region. In the other sites from the Central Ebro 24 

Basin, such as Salada Pequeña and La Estanca playa-lake records from Davis (1994) in Alcañiz 25 

(Teruel), Salada Chiprana (Davis, 1994) and Laguna de Gallocanta (Davis, 1994; Burjachs et 26 

al., 1996; Roc et al., 2002) the same observations are made. Therefore, the detected fluctuations 27 

in Pinus curve’s at the uppermost part of the pollen sequences could be ascribed to human 28 
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activities, such as deforestation due to intensive agriculture or pastoralism practices, fire events 1 

related to a significant concentration of charcoal remains (as in Salada Chiprana, Davis, 1994), 2 

and recent reforestation policy. 3 

To complete the patched AP formations in the region, several local features are observed 4 

in some particular sequences, such as the presence of Juniperus or Quercus in higher 5 

percentages than generally. Thus, Juniperus percentages are relatively important at La Playa 6 

record in Stevenson et al.’s work (1991) or at La Estanca in Alcañiz (Davis, 1994) where they 7 

are related to the establishment of Juniperus close to the basins (slopes of nearby hills). 8 

Additionally, important values of evergreen Quercus are observed due to the proximity of local 9 

forest communities or Quercus coccifera formations at Laguna de Gallocanta since Medieval 10 

times (Roc et al., 2002) and at La Playa lake in Pérez-Obiol and Roure’s record (1990). As the 11 

last component of the AP formations, the percentages of mesophytes (Betula, Fagus, Corylus, 12 

Alnus, Ulmus), in spite of they are usually low, may indicate that these trees were present in the 13 

surroundings located in riparian formations or that their pollen grains reached the Los Monegros 14 

area by long-distance transport. 15 

In relation to the NAP component, steppe formations are dominant in the Los Monegros 16 

area throughout the Recent Holocene, with Chenopodiaceae, Artemisia and an increase in 17 

ruderals due to anthropogenic influences (see Tables 3 and 4 and La Salineta pollen diagram in 18 

Fig. 6). The main anthropogenic indicators are ruderals and crops such as Cerealia, Vitis, Olea 19 

and Juglans. The presence of the different cultures enables us to outline a basic chronology 20 

from the North-eastern Spain. Thus, the apparition of Cerealia type in pollen diagrams is 21 

ascribed to approximately 5000 years ago (López-García, 1986), the Vitis and Juglans crops 22 

expansion occurred during the Iberian and Roman period (Dupré, 1988) and the expansion of 23 

Olea is recognized since the Middle Ages (Stevenson et al., 1991; Davis, 1994). The 24 

fluctuations observed among quenopods and aquatics indicate a seasonal unstable water depth in 25 

saline lakes, as represented in Fig. 4 for La Playa and La Salineta records. Myriophyllum and 26 

Potamogeton, which were abundant during the Lateglacial and the Early Holocene records, are 27 

scarce now. However, Ruppia (more saline water tolerant) is always present. Coherently, 28 
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sedimentological records indicates that the depositional environment was ephemeral saline lakes 1 

characterized by periods of higher regional groundwater recharges and thus increased biological 2 

productivity that alternate with periods of dry lake surfaces and formation of evaporites. 3 

7. Conclusions 4 

Despite the usual problems inherent in playa-lake sedimentary systems (i.e., frequent 5 

aeolian erosion and resulting hiati, poor pollen preservation, difficulty in obtaining an accurate 6 

chronological control, etc.,), this study underlines the potential of these records to reconstruct 7 

the palaeoclimate evolution in the Los Monegros area (North-eastern Iberian Peninsula). From 8 

the analysed features that are common in the previously studied saline lake records from the 9 

Central Ebro Basin and the new presented records from La Playa and La Salineta saline lakes, 10 

several climatic patterns are inferred since the Lateglacial period. Thus, the fluctuations of 11 

halophylous and aquatic taxa, in relation to changes in mineralogical and isotopic composition 12 

obtained in these deposits, indicate important fluctuations in the regional groundwater levels 13 

during the Lateglacial. Accordingly, the presence of an interval mainly characterized by 14 

maximum percentages of steppe taxa, together with sedimentological evidences of increased 15 

aeolian erosion, leads us to identify an arid period that could be related to the Younger Dryas 16 

period. By contrast, other episodes of the Lateglacial are characterized by higher percentages of 17 

some aquatic taxa, suggesting phases of increased effective moisture. Similarly, the Early 18 

Holocene was a more humid time interval in the Central Ebro Basin, as indicated by 19 

sedimentological observations (i.e., low gypsum content) and the development of forest 20 

formations although the same steppe indicators persisting in low percentages in the region than 21 

during the Lateglacial. It is likely that the increase of river flow associated with the deglaciation 22 

of the Pyrenees could have provided a considerable amount of water during the Lateglacial and 23 

Early Holocene periods. The lack of sediment records during the Middle Holocene in the Los 24 

Monegros area and the evidences of arid climate from other records in the Central Ebro Basin 25 

support the interpretation of a dry scenario for this interval. The lack of archaeological remains 26 

associated with the Middle Holocene (Neolithic) in this area confirms this hypothesis. Finally, 27 

the Recent Holocene is characterized by anthropogenic activities (deforestation, agriculture and 28 
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pastoralism development, etc.) and a slight recovery in the groundwater recharges as suggested 1 

from both sedimentological and palynological records. 2 
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FIGURES 1 

Figure 1. A) Location of the Central Ebro Basin in the Northeastern Iberian Peninsula. Gray 2 

shaded areas indicate the topography. B) Closer view of the regional geological map with 3 

the location of La Playa and La Salineta records and previous studies in playa-lake systems 4 

of Monegros area. 5 

The numbers 1-11 correspond to previous studies in playa-lakes from the Central Ebro 6 

Basin: 1- Gallocanta, 2- Salada Mediana, 3- Hoya del Castillo, 4- Chiprana, 5- Salada 7 

Pequeña, 6- La Estanca, 7- El Rebollón, 8- El Camerón, 9- La Playa, 10- La Salineta, 11- La 8 

Clota. 9 

Figure 2. La Playa depth profiles of sedimentary facies, grain-size, mineralogy, carbon content 10 

and main elemental composition. The three sedimentary sequences and the facies legend are 11 

shown. Shaded bars mark the levels with increased aeolian input. Chronological 12 

reconstruction and correlation with pollen zones are indicated. 13 

Figure 3. La Salineta depth profiles of sedimentary facies, grain-size, stable isotopes, 14 

mineralogy, inorganic carbon content and main elemental composition. The three 15 

sedimentary sequences and the facies legend are shown. Shaded bars mark the levels with 16 

increased aeolian input. Chronological reconstruction and correlation with pollen zones are 17 

indicated. 18 

Figure 4. Depth profiles of Artemisia, as the main component of steppe taxa, halophytes and 19 

aquatic plants from La Playa and La Salineta records. Halophytic group is composed by 20 

Chenopodiaceae in La Playa record and by Chenopodiaceae and Plumbaginaceae in La 21 

Salineta record. Aquatic group is composed by Ruppia, Myriophyllum and Potamogeton in 22 

both records. 23 

Figure 5. Pollen diagram from La Playa record. Chronological reconstruction and correlation 24 

with sedimentological units are indicated. 25 

Figure 6. Pollen diagram from La Salineta record. Chronological reconstruction and correlation 26 

with sedimentological units are indicated. 27 
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Table 1 – a) Radiocarbon dating of La Playa and La Salineta cores. AA = Arizona Dating 1 

Facility (AMS dating). See text for explanation about calibration procedures; b) Radiocarbon 2 

dates obtained in the other studies from saline lakes of the Central Ebro Basin. See Fig. 1 for the 3 

lakes location. 4 

a) 5 

Lake Lab code Depth Material 
14C age
(yr BP)

Age error 
(yr) 

Calibrated age 
(cal yr BP) (��)

La Playa AA54259 80 cm Pollen concentrate 8773 73 9676 - 9914 

La Playa  140 cm Pollen concentrate Not enough organic material 

La Playa  160 cm Pollen concentrate Not enough organic material 

La Salineta AA60923 65-67 cm Pollen concentrate 2081 38 1966 - 2131 

 b) 6 
Lake Core depth Sample  14C age Reference 

Salada Mediana 1,65 m 

  5 cm 
 28 cm 
 50 cm 
 90 cm 
133 cm 
147 cm 

   1710 BP 
12,400 BP 
10,850 BP 
10,350 BP 
17,300 BP 
11,250 BP 

Valero-Garcés et al., 2000a 

4,65 m -------- ------------ Davis 1994 

La Salineta  8 m 

209 cm 
329 cm 
382 cm 
429 cm 
501 cm 
567 cm 
822 cm 

 1305 BP 
  7740 BP 
13,950 BP 
10,400 BP 
18,790 BP 
21,100 BP 
23,900 BP 

Valero-Garcés et al., 2004 

Guallar 2 m  60 cm   7 485 BP Davis, 1994 
 50 cm 
 75 cm 
192 cm 

    315 BP 
   420 BP 
 5725 BP 

Stevenson et al., 1991 Chiprana  2 m 

150 cm  3410 BP Valero-Garcés et al., 2000b 

Salada Pequeña 4 m 

 40 cm 
102 cm 
164 cm 
186 cm 
236 cm 

    340 BP 
 1225 BP 
 2325 BP 
 2230 BP 
 2675 BP 

Stevenson et al., 1991 

La Estanca 1,93 m 162 cm 
182 cm 

    430 BP 
    470 BP Davis, 1994 

Hoya del 
Castillo 5 m 

175 cm 
280 cm 
410 cm 

 5275 BP 
 7325 BP 
 8855 BP 

Davis, 1994 

0,22 m ---------- ---------- Davis, 1994 

1,10 m  60 cm 
 95 cm 

    840 BP 
12,230 BP Burjachs et al., 1996 Gallocanta 

1,37 m ---------- ---------- Roc et al., 2002 
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 1 
Table 2. Sedimentary facies in La Playa and La Salineta cores. 2 
 3 
Facies Facies description  

Gypsum-rich carbonatic mud facies 
Facies 1:  
Massive, light to dark gray, 
calcitic mud  

Dm-thick layers, where carbonate values reach up to 20% (mostly, 
calcite). Gypsum micro-crystals are abundant, more in La Salineta 
core. OM: 10%.  

Facies 2:  
Massive, greenish-gray, 
dolomitic mud  

Cm to dm-thick layers where dolomite is the dominant carbonate. 
Siliciclastic silty-clayed particles (quartz, clay minerals) are also 
abundant.  

Facies 3:  
Massive, dark greenish 
gray, dolomite-rich mud  

Cm to dm-thick layers where dolomite dominates the carbonatic 
fraction (mainly in La Salineta core). Gypsum appears as coarse 
crystals (up to 75% of sandy material in La Playa core) with frequent 
lenticular habit.  

Siliciclastic silt facies 

Facies 4:  
Massive, gray siliciclastic 
silt  

Cm-thick layers (marked from “a” to “c” in La Salineta core) 
characterized by abundant siliciclastic minerals (quartz and clay 
minerals) and dolomite in comparison to gypsum or halite. Al and Fe 
content are relatively high. OM: <10%.  

Organic facies 
Facies 5:  
Massive to faintly 
laminated, black to dark 
gray, organic-rich mud  

Cm-thick layers (only present in La Salineta core) with mm-thick 
lamination towards the top, with high amount of organic matter 
(>10%). Sediments are mainly composed by gypsum, calcite and 
halite.  

Evaporite facies/Microcrystalline laminae 

Facies 6:  
Massive, white evaporite 
crust  

Cm thick layers that represent the present-day evaporite crust, 
containing halite, bloedite and mirabilite. 

Facies 7:  
Massive, white to gray 
gypsum-rich layers  

Cm-thick gypsum layers (only present in La Playa core) with very low 
carbonatic or organic matter content (OM: <6%). Gypsum is present as 
micro-crystals with a sacarose texture or as layers of fibrous crystals.  

 4 
 5 
 6 
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Table 3 – Location, chronology and main pollen data from the previous studies in playa lake systems from the Central Ebro Basin. (Hol. = Holocene). (? = 
without dates) 
 

Pollen data Name Location Coordenates Core 
depth Chronology 

Vegetation cover Hydrological conditions 
References 

Recent Hol. 
AP decrease. Steppe taxa 

(Helianthemum, Artemisia) & ruderals 
increase. Presence of Cerealia, Vitis, 

Juglans. Olea expansion 

Chenopodiaceae dominance. Low 
values of aquatics (only Ruppia) 

Salada Mediana Mediana 
(Zaragoza) 

350 m a.s.l. 
41º30'10''N 

0º44'W 
165 cm 

Lateglacial 
Conifers dominance (Pinus-Juniperus). 

Abundance of Corylus, & evergreen 
Quercus (refuge area) 

Aquatics (mainly Myriophyllum) 
increase, in opposition to 

Chenopodiaceae. Moisture fluctuation 

Valero-Garcés 
et al., 2000a 

110 cm Holocene ? 
Pinus dominance, relatively high 

proportions of evergreen Quercus and 
mesophytes (Corylus?). Cerealia, Vitis 

& Olea cultives. Ruderals 

Chenopodiaceae fluctuations but in less 
proportions. Without aquatic taxa 

Pérez-Obiol and 
Roure, 1990 

230 cm Holocene ? 
Pinus-Juniperus fluctuations in AP 

local dominance. Steppe taxa, ruderals, 
presence of Olea & Cerealia  

Ruppia presence. Chenopodiaceae 
fluctuations indicating moisture 

fluctuations 

Stevenson et al., 
1991 

Recent Hol. 
Decrease of AP (pine deforestation). 

Artemisia & ruderals increase. Cerealia 
cultive and Olea expansion 

Relatively high values & taxonomic 
variety of aquatics, mainly Ruppia. 

Quenopods, low values. Fluctuations 

Early Hol. 
Increase in AP (Pinus dominance, 

presence of Juniperus and evergreen 
Quercus). Minimum of steppe taxa 

Highest proportions of aquatics (mainly 
Myriophyllum). Lowest values of 

quenopods. More humid conditions 

La Playa Bujaraloz 
(Zaragoza) 

340 m a.s.l. 
41º25'00''N 
0º11'10''W 

162 cm 

Lateglacial? 
Steppe taxa (Artemisia, Ephedra 

distachya, Plantago & Urticaceae) 
highest values. AP less than 40% 

(Pinus, Abies present) 

Aridity. Low values of aquatic taxa. 
Chenopodiaceae present, not dominant 

Moreno et al., 
2004 and this 

study 

465 cm 
(outcrop) Holocene ? 

Pinus dominance (junipers and 
evergreen oaks present). Relatively high 
values of Artemisia. Possible Cerealia 

and increase of Olea at the top. 

Chenopodiaceae fluctuations (peaks 
between 10 and 50%). Seasonal playa-

lake environment 
Davis, 1994 

La Salineta Bujaraloz 
(Zaragoza) 

325 m a.s.l. 
41°28’55’’N, 
0°09’30’’W 

87 cm Recent Hol. 
Coniferous dominant in reduced AP. 

Steppe taxa and ruderals. Olea 
expansion 

Chenopodiaceae-aquatics fluctuations. 
Seasonal-playa lake. this study 

La Clota Bujaraloz 
(Zaragoza) 

347 m a.s.l. 
41º24'25''N 
0º6'18''W 

90 cm Holocene ? 
Pinus dominance in AP. Artemisia and 

Compositae relatively high values. 
Presence of Cerealia and Olea. Low 
pollen preservation & taxa diversity 

Very high percentages of 
Chenopodiaceae. Dominance of spectra. 

No aquatic plants recorded. Aridity 

Pérez-Obiol and 
Roure, 1990 

El Rebollón Bujaraloz 
(Zaragoza) 

320 m a.s.l.  
41º22'30''N   
0º18'21''W 

30 cm Holocene ? 
Pinus dominance. Important presence of 
evergreen Quercus. High values of Olea 

and Cerealia. Steppe taxa & ruderals. 

Very high proportions of 
Chenopodiaceae. No aquatic plants 
recorded. Aridity & human impact 

Pérez-Obiol and 
Roure, 1990 
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El Camerón Bujaraloz 
(Zaragoza) 

330 m a.s.l. 
41º24''00''N 
0º17'15''W 

20 cm Holocene ? 
Low AP values (Pinus and presence of 
Quercus & Olea). Steppe dominance 

(Artemisia, Cichorioideae, Ephedra…) 

Very high percentages of 
Chenopodiaceae. No aquatic plants. 

Intense aridity 

Pérez-Obiol and 
Roure, 1990 

Early Hol. 
Increase in coniferous forest (pines-

junipers) & oaks formations. Presence 
of mesophytes. Decrease in steppe. 

Low values of quenopods. High 
proportions of Ruppia. Carpinus 

identification could be Myriophyllum Laguna Guallar Bujaraloz 
(Zaragoza) 

336 m a.s.l. 
41º24’30’’N, 
0º13’40’’W 

200 cm 
Lateglacial ? 

Steppe taxa (Artemisia & Ephedra 
distachya) highest values. AP between 

20-50% (Pinus-Juniperus) 

Aridity. Very low values of aquatic taxa 
(only presence of Ruppia). 

Chenopodiaceae present, not dominant 

Davis, 1994 

Recent Hol. 
Decrease in pines. High expansion of 
Olea. Presence of junipers and oaks. 

Steppe taxa & ruderals. Possible 
Cerealia. 

High but intermittent values of Ruppia. 
Relatively high propotions of 

Chenopodiaceae with fluctuations Chiprana Chiprana 
(Zaragoza) 

150 m a.s.l. 
41°14’30’N, 
0°10’50”W 

200 cm 

Middle Hol. 
Local forest (AP, 85-90%) with Pinus 

dominance, Quercus ilex-coccifera 
(10%) and Juniperus (5%)  

Very low or inexistent Chenopodiaceae 
values. No aquatic taxa preserved but 
Carpinus type could be Myriophyllum 

Davis, 1994 

Salada Pequeña Alcañiz 
(Teruel) 

350 m a.s.l. 
41º02’40’’N, 
0º13’10’’W 

400 cm Recent Hol. 
AP 50%. (Pinus dominance, junipers & 

evergreen oaks, Olea expansion).  
Steppe taxa, ruderals. Cerealia? Juglans

High Chenopodiaceae values / moderate 
Ruppia proportions fluctuation. 

Ephemeral shallow saline lake. Aridity. 

Stevenson et al., 
1991 

La Estanca Alcañiz 
(Teruel) 

342 m a.s.l. 
0º10'57’’N, 
41º3'54''W 

193 cm Recent Hol. 
Pinus-Juniperus-Quercus ilex-coccifera 

formations. High expansion of Olea. 
Steppe taxa & ruderals. Possible 

Cerealia. 

Highest proportions of quenopods at the 
base. Fluctuation with abundant- varied 

aquatic component towards the top 
Davis, 1994 

Middle Hol. 
Pinus dominance (80% of total spectra). 
Presence of junipers & evergreen oaks. 

Low percentages of steppe taxa. 

Chenopodiaceae fluctuation (low 
values). Presence of Ruppia 

Early Hol. 
Forest formations (Pinus-Juniperus-

Quercus ilex type). Presence of 
mesophytes. Low values of steppe taxa. 

Highest proportions of Ruppia, in 
fluctuations with Chenopodiaceae Hoya del Castillo Híjar (Teruel) 

260 m a.s.l. 
41º28’55’’N, 
0º09’30’’W 

500 cm 

Lateglacial ? 
Highest proportions of Ephedra 

distachya type & Artemisia. Low values 
of AP (only pines and junipers) 

Highest percentages of 
Chenopodiaceae. No presence of 

aquatic taxa. 

Davis, 1994 

22 cm Recent Hol. ?
Pinus dominance. Junipers, evergreen 
oaks & Olea relatively high values. No 
steppe taxa. Cultives (Cerealia type & 

Juglans) 

Chenopodiaceae low proportions 
fluctuates with high values of Ruppia  Davis, 1994 

Recent Hol. 
Pinus dominance. Junipers & oaks 

relatively high values. Expansion of 
Olea. Low steppe taxa values. Cerealia, 

Secale & Vitis presence. Ruderals 

Highest but relatively low values (20%) 
of quenopods fluctuate with highest 

proportions of Potamogeton and Ruppia 
& the presence of Myriophyllum. 

110 cm 

Lateglacial Pinus dominance (90%). Steppe taxa No Chenopodiaceae. Aquatics presence 

Burjachs et al., 
1996 

Gallocanta Zaragoza 
Teruel 

1000 m a.s.l. 
40º58’30’’N, 
1º30’10’’W 

137 cm Recent Hol. Pinus dominance. Oaks important &. 
Olea expansion. Cereal crops. Ruderals 

 Low values of quenopods. Hygrophytes 
but no aquatic plants recorded. Roc, 2003 
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Table 4. Chronological synthesis of climate conditions in the Central Ebro Basin since 

the Lateglacial. Palaeoclimate information is obtained from the playa-lake sites 

indicated in the table (underlined names are the playa-lakes located in the Monegros 

region; note that none is available for the Middle Holocene). 

 

PERIODS Vegetation cover Hydrological situation Climate conditions Playa-lake Sites 

R
ec

en
t H

ol
oc

en
e Pinus dominance in AP but 

decrease by human activities. 
Open cover with steppe 
formations, increase in 
ruderals, cereal crops, Vitis and 
Juglans presence and 
expansion of Olea. 
 

Chenopodiaceae fluctuations 
indicate a seasonal unstable 
water depth. Ruppia (the 
most saline water tolerant 
aquatic taxa recorded) is 
always present with 
relatively high values in 
some moments. Seasonally 
slightly higher water levels. 

Arid or semi-arid 
climate. Intense 
anthropogenic activities, 
with periods of positive 
water balance in playa-
lakes 

Mediana, La Playa, 
La Salineta, Laguna 
Guallar, La Clota, 
El Rebollón, El 
Camerón, Chiprana, 
Salada Pequeña, La 
Estanca, Gallocanta 

M
id

dl
e 

H
ol

oc
en

e 

Pinus dominance in bad 
preserved pollen spectra. 
Juniperus and evergreen 
Quercus decrease. Retreat of 
the vegetation cover. 
 

Very low percentages of 
aquatic taxa (only Ruppia as 
saline waters tolerant). 
Chenopodiaceae increase and 
always present. Ephemeral 
shallow saline lakes during 
long periods and very 
important aeolian erosion. 

Aridity intensification 
and Human impact (fire 
events, deforestation, 
agriculture, pastoralism). 
Increase of erosion 
(deflation) and 
consequent sedimentary 
hiatus. 

Chiprana, Hoya del 
Castillo 

E
ar

ly
 H

ol
oc

en
e 

Expansion of coniferous forest 
(Pinus, Juniperus), and 
evergreen Quercus formations. 
Reduction of steppe taxa 
(Artemisia, Ephedra). 
 

General low values of 
Chenopodiaceae. High 
proportions of aquatic plants 
(still Myriophyllum, 
Potamogeton and Ruppia in 
minor percentages). Higher 
groundwater levels. 

Positive water balance 
and increase in forest 
formations caused by 
cool temperatures and / 
or higher precipitation. 

La Playa, La 
Salineta Core-
Section, Laguna 
Guallar, Hoya del 
Castillo 

L
at

eg
la

ci
al

 

Complex mosaic: coniferous 
patches (Pinus dominance, 
Juniperus presence), 
mesophytes and thermophytes 
refuges areas (Corylus & 
evergreen Quercus), and steppe 
formations (Artemisia, 
Ephedra, other heliophytes) 
 

Alternation between shallow 
and deep lake levels. Phases 
of increased effective 
moisture (relatively high 
percentages of Myriophyllum 
presence of Potamogeton and 
Ruppia in low values). Arid 
periods with dry lake surface 
(Chenopodiaceae fluctuation) 
and intense  deflation. 
 

Fluctuation of arid - 
wetter periods as a 
reflection of the arid - 
cold and wet - warm 
global phases. Moister 
edaphic conditions due 
to increased flow from 
the Pyrenean rivers 
(deglaciation processes). 
 

Mediana, La Playa, 
La Salineta Core-
Section, Laguna 
Guallar, Hoya del 
Castillo, Gallocanta 

 
 


