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Abstract—Two-dimensional (2-D) arrays of squared ma-
trix have maximum periodicity in their main directions;
consequently, they require half wavelength (��2), interele-
ment spacing to avoid grating lobes. This condition gives
rise to well-known problems derived from the huge number
of array elements and from their small size. In contrast, 2-D
arrays with curvilinear configuration produce lower grating
lobes and, therefore, allow the element size to be increased
beyond ��2. Using larger elements, these arrays have the
advantage of reducing the number of elements and of in-
creasing the signal-to-noise ratio (SNR).

In this paper, the beamforming properties of segmented
annular phased arrays are theoretically analyzed and com-
pared with the equivalent squared matrix array. In the first
part, point-like elements are considered in order to facilitate
the field analysis with respect to the array structure. Af-
terward, the effect of the element size on the steered beam
properties also is presented.

In the examples, it is shown that the segmented annular
array has notably lower grating lobes than the equivalent
squared matrix array and that it is possible to design seg-
mented annular arrays with interelement distance higher
than � whose beam characteristics are perfectly valid for
volumetric imaging applications.

I. Introduction

Two-dimensional (2-D) arrays are useful for ul-
trasonic volumetric imaging because they produce

steered and focused beams throughout a volume of inter-
est. Typical 2-D arrays are based on a squared matrix (SM)
configuration in which the array elements are the cells of
the matrix. Due to the aperture periodicity, phased arrays
require λ/2 spacing between elements in order to avoid un-
wanted grating lobes [1]. This condition gives rise to severe
problems derived from the huge number of array elements,
which becomes excessive in relation to the number of chan-
nels managed by current imaging systems, and from their
small size, which causes a reduction in the signal-to-noise
ratio (SNR).

Several techniques have been proposed in the literature
to reduce the number of active array elements in SM ar-
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rays. One approach destroys the array periodicity by ran-
domly removing a subset of elements from the full aper-
ture [1]–[4]. Several methods for optimizing aperiodic lay-
outs also have been proposed [5]–[7]. An alternative ap-
proach uses different arrangements of sparse periodic lay-
outs for transmit and receive modes in which the grating
lobes of the transmit array are suppressed by zeroes of the
receive array response and vice versa. In this group can
be included the cross-like configuration [8] and Vernier ar-
rays [9], [10], which configure the transmission and recep-
tion apertures based on the Vernier scale. The concept of
Vernier arrays was further extended to new 2-D layouts by
exploiting either an increased number of symmetry axes or
radial symmetry [11].

A constant of all these methods is that they maintain
the λ/2 interelement spacing; thus, although they can pro-
duce beams of good properties, important problems relat-
ing to the SNR still remain, owing to the small size of the
elements and the drastic reduction in the array active area.

As an alternative to these limitations, array aper-
tures with curvilinear deployment have been proposed as
they outperform rectilinear designs [12]–[15]. Due to their
greater aperture spatial diversity, curvilinear arrays pro-
duce lower grating lobes and, therefore, layouts with in-
terelement distance beyond λ/2 can be considered. In this
sense, curvilinear arrays have the advantage of reducing
the number of elements and, in addition, of enlarging the
element size, thereby increasing the SNR associated with
the element impedance and the array active area.

Our interest in this paper is to analyze theoretically the
capability of segmented annular (SA) phased arrays for 3-
D beamforming. A segmented annular array is a curvilin-
ear array composed of a set of concentric rings of similar
width that are divided into sectors. Although it is possi-
ble to configure this aperture in several ways, we consider
only the case of elements with a similar area and uni-
tary aspect ratio (Fig. 1), because, with these conditions,
the beam properties are nearly optimized [14]. Computing
methods for SA arrays based on the well-known spatial
impulse response approach [16] are presented in [17], [18].
A theoretical description of the beam radiated by a sin-
gle segmented annulus can be found in [19], [20]. Several
simulations showing advantages of SA arrays in relation
to SM arrays also have been presented, but the analysis is
limited to particular cases, such as continuous wave [21] or
unsteering [22]. Different layouts of SA arrays have been
proposed for medical [23]–[25] and non-destructive testing
[26], [27] applications.

In this work, the beamforming properties for equivalent
SA and SM arrays are compared (two equivalent arrays
have similar shape, size, active area, number of elements,
and aspect ratio). In a first step, the analysis is made on
the basis of the array factor (AF) function [28], which can
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Fig. 1. Geometry of the equivalent arrays SA1 (left) and SM1 (right)
with D = 30 mm, d = w = 0.6 mm, and N = 1950 elements of
unitary aspect ratio with e = 0.48 mm of size.

be obtained by replacing the actual elements with point
sources vibrating in continuous wave (CW); this function
facilitates the analysis of the beam properties in relation
to the array structure. In a second step, the analysis is ex-
tended to wide-band excitation conditions. Steered-beam
properties also are studied considering the real size of ele-
ments for both array configurations. Only the cases of full
aperture and no apodization are considered in this work.

Fig. 1 shows the geometry of the two equivalent arrays
on which the comparative analysis is based: a squared ma-
trix array (SM1) and a segmented annular array (SA1)
both of circular area with diameter D = 30 mm, contain-
ing N = 1950 elements of unitary aspect ratio. For both
arrays, the interelement spacing is d = w = 0.6 mm and
the element size is e = 0.8 d. Simulations are made con-
sidering that the arrays emit waves at 3 MHz into water,
giving a wavelength of λ ≈ 0.5 mm, and the array dimen-
sions become D = 60 λ and d = w ≈ 1.2 λ and e ≈ 0.96 λ.
The analysis in wide band considers an ultrasonic pulse
with a Gaussian envelope of 3 MHz central frequency and
B = 70% relative bandwidth at −6 dB cut-off.

II. Computational Method

For simulations we assume a 2-D array of diameter D
lying in the Z = 0 plane of a Cartesian coordinates sys-
tem (Fig. 2). The N elements of the array vibrate in a
pistonlike manner with velocity v(t). The array emits ul-
trasonic waves, which propagate with velocity c through a
homogeneous liquid medium of density ρ0. Infinitely rigid
baffle is assumed for boundary conditions. The pressure
waveform p(·) radiated over a field point x̄ is obtained by
superposition:

p(x̄, t) = ρ0
dv(t)
dt

∗
N∑

i=1

h1
(
x̄, t − T F

i

)
= ρ0

dv(t)
dt

∗ hA(x̄, t),
(1)

where hA(·) is the velocity potential impulse response of
the array, hi(·) is the impulse response of the ith array
element located at x̄i, (∗) indicates temporal convolution,

Fig. 2. Geometry of the coordinates system.

and T F
i are the time delays for focusing the beam at the

point x̄F :

cT F
i =

∣∣x̄F − x̄i

∣∣ −
∣∣x̄F

∣∣ . (2)

The transmit-receive mode is simulated considering
that the received signal s(t) due to a point target at x̄
is given by:

s(x̄, t) =
ρ0

c

∂2v(t)
∂t2

∗
{
hT

A(x̄, t) ∗ hR
A(x̄, t)

}
, (3)

where hT
A(·) and hR

A(·) are the emit and receive spatial
impulse responses of the array.

The impulse response of the array elements can be cal-
culated in the time domain by direct computation, divid-
ing the array into squared cells of elementary area [29]. If
the surface of the ith element is separated into Ni squared
cells of elementary area ∆S, the velocity potential impulse
response becomes the sum:

h∗
i (x̄, t) =

Ni∑
j=1

δ (t − rj/c)
2πrj

∆S, (4)

where rj is the distance from the jth cell to the field point
x̄, and h∗

i means the discrete representation of the impulse
response.

In computations, the elementary cells are taken λ/9 ∗
λ/9 of size and the sampling time is ∆t = λ/50c. The
computation error in these conditions is below 2% for every
point in the field of interest [30].

When the array elements are assumed as point sources,
the ultrasonic field is calculated from (3) and (4), consid-
ering single cells at the center of the array elements, with
weight equal to the element area.

III. Array Factor Function

If we consider a linear array of identical elements, it is
known that, in CW conditions, the pulse-echo response in
the far field approximates to the field of a single element
positioned at the origin (element factor) multiplied by a
factor that is widely referred to as the AF [28]. Because
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the AF does not depend on the directional characteristics
of the radiating elements themselves, it can be simulated
by replacing the actual elements with isotropic point-like
sources. Each array has its own AF, which is a function
of the geometrical layout, the steering angle and the pulse
wavelength.

The pulse-echo analysis of 2-D arrays can be simpli-
fied by applying the projection-slice theorem [12], [31] and
the effective aperture concept [9], [10]. The projection-slice
method considers that the CW response of a 2-D array at
a given azimuth direction φ can be found by projecting
the 2-D element distribution on a line oriented at the φ
direction (both 1-D and 2-D arrays are equivalent). How-
ever, the effective aperture of a linear array is the one-way
aperture that has the same response as the pulse-echo re-
sponse. In CW conditions, the effective aperture can be
obtained from the spatial convolution of transmission and
reception apertures. In this way, for every azimuth an-
gle, the aperture of a 2-D array can be simplified to the
aperture of a linear array, which is the convolution of the
equivalent transmit and receive linear arrays at that direc-
tion. The elements’ distribution on the effective aperture
of the equivalent linear array is a determinant factor for
the ultrasonic field in the side lobe region.

In the SM array case, the elements overlap for the main
directions (φ = 0◦ and 90◦), resulting in a periodic equiv-
alent linear array with NL = D/d weighted elements, all
separated by a distance of d. The grating lobes in this case
show peaks of amplitude similar to that of the main beam,
whose angular position θG is [1]:

θG ≈ − arcsin
(
λ/d − sin θF

)
, (5)

where θF is the beam steering angle. For φ = 45◦ and 135◦,
the equivalent linear array also is periodic, but in this case
the interelement distance is reduced to 0.7 d.

In contrast, SA arrays do not reach the periodicity of
SM arrays. If we consider the equivalent linear array of a
single annulus of radius Rk, (Rk � d, Fig. 3), the interele-
ment distance di between two consecutive elements, which
are located at the angular position φi with respect to the
field point azimuth φ, can be approximated to:

di ≈ d sinφi. (6)

Therefore, the equivalent linear array of a ring is
nonuniform, with interelement distance close to d at its
center (φi ≈ 90◦) and tending to zero at the extremes.
By randomly rotating the array rings, the aperture spatial
diversity of the SA array can be optimized.

From these arguments, the AF beam patterns of Fig. 4
can be explained. SM1 generates at the main directions
(φ = 0◦ and φ = 90◦) grating lobes of the same amplitude
as that of the main lobe, which, in agreement with (5), are
located at θG ≈ ±56◦ [Fig. 4(c)]. A comparison of SM1
and SA1 AF gives the following results:

• Because the main beam is mainly determined by
the global aperture, both arrays produce practically

Fig. 3. Equivalent linear array of the kth segmented annulus.

identical main lobes, which also are coincident with
the equivalent circular aperture. The pulse-echo beam
widths at −6 dB, −20 dB, and −50 dB are given in
Table I.

• However, the two arrays, however, have significant dif-
ferences in the side-lobe region. SA1 grating lobes
spread almost uniformly on a ring around the main
lobe, with −37 dB peak level. As the remaining period-
icity of SA1 is mostly determined by the interelement
distance d, the grating-lobe peak angular position also
is given by (5).

• We can define the concept of directional periodicity
P (φ)of a 2-D array as the ratio between the peak
of secondary lobes of the equivalent linear array at a
given direction φ (SLPeak(φ)) and the main-lobe peak
(MLPeak), both calculated from the array factor func-
tion:

P (φ) =
SLPeak(φ)
MLPeak

. (7)

This parameter is useful because, being only a func-
tion of the array layout and the acoustic wavelength,
it allows a quick estimation of the influence of the
array structure on the generation of secondary lobes.
Fig. 4(d) is a logarithmic representation of this con-
cept; it shows the ratio between the main lobe and
the peaks of the side-lobe region (given by |θ| > 8◦)
in relation to the azimuth angle φ. Although SM1
produces a nonregular directional periodicity showing
peaks of secondary lobes with maximum amplitude at
the array main directions, SA1 produces an annular
pedestal with small variations of the directional peri-
odicity ranging from −37 dB to −50 dB and a mean
value for all φ of −47 dB.
The array global periodicity Pmax also can be defined
as the ratio between the maximum value of the side-
lobe region (SLPeak) and the main lobe:

Pmax = max
φ=0.180◦

(P (φ)) =
SLPeak

MLPeak
. (8)

Fig. 4(d) shows that SM1 has maximum global pe-
riodicity (Pmax(SM1) = 1) and Pmax(SA1) ≈ 0.01,
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Fig. 4. Array factor of SM1 and SA1 (the array factor considers that the array elements are points vibrating in a continuous wave). (a) and
(b), 3-D representation of SM1 and SA1 beam patterns in pulse-echo mode focusing at RF = 225 mm on axis. (c) Continuous wave beam
pattern (two-ways) at the azimuth direction φ = 0◦. (d) Peak value of the side-lobe region (|θ| > 8◦) for every slice, as a function of the
azimuth angle φ.

TABLE I
Beam Properties Considering that SM1 and SA1 Arrays are Formed by Point Sources Emitting in CW and WB.

1

Main-lobe region Side-lobe region
∆α(− dB) ∆α(−20 dB) ∆α(−50 dB) SLPeak SLAverage

CW SM1 0.96◦ 1.65◦ 5.45◦ 0 dB −60 dB
SA1 0.95◦ 1.64◦ 5.38◦ −37 dB −64 dB

WB SM1 0.89◦ 1.64◦ 4.66◦ −32 dB −69 dB
SA1 0.89◦ 1.63◦ 4.63◦ −59 dB −72 dB

1∆α is the main-lobe beamwidth in degrees at different levels. SLPeak is the ratio between the peaks of the
side-lobe (|θ| > 8◦) and the main-lobe regions. SLAverage is the ratio between the mean value of the field
amplitude at the side-lobe region and the main-lobe peak. All values are for the unsteering transmission-
reception case.

indicating a reduction of two orders of magnitude in
the peak of secondary lobes in favor of SA1 for the
pulse-echo case.

• The mean value at the side-lobe region SLAverage has
also been considered in the comparisons, because this
parameter is useful for optimizing array designs. Ta-
ble I shows that SLAverage is −60 dB and −64 dB for
SM1 and SA1, respectively.

• The variations of the function P (φ) in SA arrays
[Fig. 4(d)] are mainly due to particular periodicities
between rings appearing in the equivalent linear array
at certain directions, which can also affect the peak of
the side-lobe region. In order to evaluate the influence
of the array layout on the array response, 13 SA arrays
have been designed by randomly rotating their rings.

Comparing their field properties, it has been observed
that the main beams and the mean level of the side-
lobe region are very similar for the 13 apertures. But
the peak value of this region varies from −39 dB to
−33 dB, depending on the particular layout (Fig. 5).
This means that, when designing SA arrays, it is worth
trying out several designs in order to find the layout
with the lowest SLPeak.

IV. Omni-Directional Elements Vibrating in

Wide-Band Pulses

In this section, the comparative analysis is made by
considering that the arrays are formed by ideal point-like
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Fig. 5. Array factor. Level of secondary lobes for 13 arrays equiv-
alent to SA1 (considering point-like transducers), which have been
designed by randomly rotating the array rings. SLPeak. Peak value
of the side-lobe region (|θ| > 8◦). SLAverage, mean value of the side-
lobe region.

transducers emitting wide-band (WB) pulses. Fig. 6 shows
the field in WB conditions, about which we can make the
following comments:

• The main beams of SM1 and SA1 are very similar as
they are mainly determined by the aperture geometry;
the quantitative values for CW and WB conditions can
be observed in Table I. However, as occurred with the
AF, the structure of secondary lobes is very different
for the two arrays. SM1 produces grating lobes concen-
trated in specific azimuth directions giving a double-
cross aspect to the field. SA1 generates grating lobes
that spread almost uniformly along a wide ring cen-
tered on the main lobe. Norton [32] has described for
the linear array and for several pulse envelops (e.g.,
rectangular or Gaussian) the effect of the pulse band-
width on the grating lobe amplitude, which is affected
by a bandwidth factor FWB that increases with the
number of cycles of the ultrasonic pulse nc:

SLSM
Peak = FWB ≈ nc

NL
≈ k · d

BD
, (9)

where NL indicates the number of elements of the lin-
ear array, B is the pulse relative bandwidth that is
inversely proportional to nc, and k is a factor close
to one that depends on the pulse shape. Considering
a linear array with D/d = 50 emitting a pulse with
B = 0.7 at −6 dB cut-off, we found k = 0.84.
We can translate the same method to the main direc-
tions of the squared matrix array. Using the previous
values of B and k in (9) gives FWB = −32 dB for
SLPeak, which is almost the computed value shown in
Table I for SM1.
In the case of segmented annular apertures, SLPeak is
affected by two factors: the bandwidth factor and the
array global periodicity in WB PSA

WB, which, due to the
limited number of pulse cycles, is not coincident with
the CW periodicity. The array global periodicity in
WB is then a complex function of the array structure

and the pulse bandwidth, which determines the array
portion causing cancellation in the grating lobes:

SLSA
Peak ≈ FWB · PSA

WB(B). (10)

In order to facilitate the analysis, we consider that
FWB is similar to the one computed for the equivalent
SM array: −32 dB (making this approximation, for the
intervals 0.2 ≤ B ≤ 0.7 and 20 ≤ D/d ≤ 50 we have
computed errors within ±3 dB). In the SA1 case and
taking a pulse bandwidth B = 0.7, the array global pe-
riodicity can be determined from (10) and the peak of
the side-lobe region given in Table I (−59 dB), giving
for PSA

WB a value of −27 dB; this means that, com-
pared to CW, the WB (B = 0.7) produces a reduction
of 10 dB in the grating lobe cancellation.
Due to the WB, grating lobes spread over a broader
region of the space, starting at |θ| ≈ 30◦ for both ar-
rays [Fig. 6(c)]. Moreover, due to the higher frequency
components of the ultrasonic pulse, the grating lobes
at the array diagonals of SM1 increase in relation to
CW [Fig. 6(d)].

• The influence of the parameter d/λ on the side lobe
region is shown in Fig. 7, which has been computed
considering that SM1 and SA1 are formed by ideal
point-like elements, and varying the central frequency
of the WB pulses but holding the relative bandwidth
at B = 0.7.
Both arrays present very similar behavior with SLPeak
practically constant in all the range of d/λ (but hold-
ing a difference of 30 dB in favor of SA1), indicating
that this parameter does not have much influence on
the peak of the side-lobe region. The reduction ob-
served in SLPeak when d/λ < 1 is because we have
computed the unsteered case, and the grating lobes
are partially hidden in the back region of the trans-
ducer. SLAverage also is constant for both arrays when
d/λ > 1 with a very small difference of 5 dB in favor
of SA1. Fig. 7 also shows that the grating-lobe peak
position is very similar for SM1 and SA1.

• The influence of the number of array elements N on
the secondary lobes is shown in Fig. 8, which has been
obtained by removing one by one the external rings
from SA1. The variation of SLPeak for the SM ar-
ray is due to the bandwidth factor FWB, which is a
function of the array diameter D. The periodicity fac-
tor PWB is given in decibels by the difference between
SM and SA curves of Fig. 8, and it shows a variation
from −12 dB to −30 dB for 100 < N < 1900. This
indicates that, in the case of the SA array, an im-
portant dependence of SLPeak exists and, therefore,
of the array global periodicity on the number of el-
ements (approximately inverse to N in the two-ways
case) in contrast with other array design parameters,
which do not produce such strong variations. However,
the curves of SLAverage are very similar for SM and SA
arrays, meaning that this parameter is mainly deter-
mined by the number of elements, rather than by the
array type. An inverse relation exists between N and
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Fig. 6. (a) and (b), Pulse-echo beam pattern of SM1 and SA1 with ideal point-like elements vibrating in WB. (c) Lateral profiles at the
azimuth direction φ = 0◦. (d) Peak value of the side-lobe region (|θ| > 8◦) for every slice, as a function of the azimuth angle φ.

Fig. 7. Variations at the side-lobe region as a function of d/λ, con-
sidering that the array elements are ideal points vibrating in WB.
(a) Peak value of the side-lobe region. (b) Mean value of the side-
lobe region. (c) Angular position of SLPeak. Dashed lines, SM1; solid
lines, SA1.

SLPeak or SLAverage, indicating that, when the num-
ber of elements is low, the side-lobe properties are not
good enough for image applications. A low limit for
the full array could be N = 300, which gives SLPeak
below −40 dB and SLAverage at about −55 dB.

V. Effect of Real Size of Array Elements

We have shown that the aperture spatial diversity inher-
ent in SA arrays produces lower grating lobes, allowing the

Fig. 8. Peak and average of the side lobe-region as a function of the
number of array elements N , considering that the elements are ideal
points vibrating in WB. Solid line, SA array. Dashed line, SM array.
The interelement distance is maintained at d = 1.2 λ.

interelement distance to be increased beyond λ/2, typical
restriction of SM arrays. In this section, the beam prop-
erties of SM1 and SA1 are analyzed considering that the
element size is finite with e = 0.8 d.

A. CW Beam Properties

Fig. 9 shows the CW beam pattern of SM1 and SA1
in the focal semisphere, focusing at (RF = D2/8λ, φF =
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Fig. 9. CW beam patterns of SM1 (a)–(c) and SA1 (b)–(d) considering the real size of elements (e = 0.8 d). (a) and (b), 3-D representation
of the focal semisphere in pulse-echo focusing at RF = D2/8λ, φF = 0◦, θF = 30◦. (c) and (d), φ = 0◦ slice for the following values of
steering angle, θF = 0◦, 15◦, 30◦, and 45◦.

0◦, θF = 30◦). It is well-known [1] that the field in the
focal semisphere of a SM array can be approximated to the
product of an element factor He(θ, φ) and the array factor
function AF (θ, φ). The element factor in pulse-echo is just
the square of the Fourier transform of the element aperture
multiplied by an obliquity factor, which is constant given
the infinitely rigid nature of the baffle assumed in this
paper. For every slice φ, the array lateral response LR
(this is the main lobe peak modulating curve) is given by:

LR(φ, θ) = He(φ, θ) · AF (φ, θ), (11)

where [2]:

He(φ, θ) ≈

sin c2
( e

λ
cosφ sin θ

)
sin c2

( e

λ
sinφ sin θ

)
. (12a)

Making φ = 0◦ we obtain the worst field case for SM1:

LR(φ = 0◦, θ) =

He(φ = 0◦, θ) ≈ sin c2
( e

λ
sin θ

)
. (12b)

In the φ = 0 slice, the lateral evolution of both the
main-lobe and the grating-lobe peaks during steering is
modulated by the element factor in this form:

ML ≈ He(φ = 0◦, θF ), (13)

SLPeak ≈ He(φ = 0◦, θG), (14a)

where θG is given in (5). The modulating effect of the
element factor is clearly shown in Fig. 9(c) in which the
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Fig. 10. WB beam patterns of SM1 (a)–(c) and SA1 (b)–(d) considering the real size of elements (e = 0.8 d). (a) and (b), 3-D representation
of the focal semisphere in pulse-echo focusing at RF = D2/8λ, φF = 0◦, θF = 30◦. (c) and (d), φ = 0◦ slice for θF = 0◦, 15◦, 30◦, and 45◦.

CW lateral responses of SM1 at different steering angles
are drawn. It can be observed that the theoretical element
factor He(θ) given in (12b) is nearly the envelope of both
the main-lobe and the grating-lobe peaks.

The steered beam properties for the segmented annu-
lar array SA1 can be observed in Figs. 9(b) and (d)]. On
the one hand, the main-lobe peak also is modulated by a
curve LR(θ), which is independent of φ, whose value ap-
proximately integrates all the element factors He,SA(φi, θ)
with their particular azimuth orientations φi. There is not
an expression for He,SA(φ, θ). However, we can simplify
the problem if we consider that, when the array elements
are very small, the lateral response of a segmented annular
element is very similar to the equivalent squared element
given by (12a). The estimation of the array lateral response
can be further simplified if we consider that (for small ele-

ments) within the scanning zone of interest (−45◦ ≤ θF ≤
45◦), He(φ, θ) is almost invariant with respect to φ, as
the difference of amplitudes of He(φ, θ) changing the az-
imuth orientation φ is in the range of ±1 dB. Therefore, we
can consider He,SA(φ, θ) ≈ He,SA(θ) ≈ He,SM (φ = 0◦, θ)
(12b), producing errors that are in the range of ±1 dB for
the scanning zone of interest (−45◦ ≤ θF ≤ 45◦). This
effect can be observed in Fig. 9(d) in which the main lobe
peak of the SA array is approximately modulated by the
element factor He,SM (φ = 0◦, θ) of the equivalent SM ar-
ray.

Besides the main lobe, the grating lobe ring (which is
centered on the focus) also is affected by the element fac-
tor He,SA(θ), causing major reduction of amplitude to the
points of major θ. Thus, the grating lobe peak will be given
at the point of the grating lobe ring with maximum He(θ),
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which is located in the φ = φF slice at θ ≈ θF − θG. This
is the section presented in Fig. 9(d) in which it can be ob-
served that the grating lobes are modulated by the element
factor He(θ) of (12b), but in this case with a drop of 48 dB
with respect to the main lobe [this quantity agrees with
the array periodicity at the θ = 0 slice shown in Fig. 4(c)].

Therefore, for segmented annular arrays, the grating-
lobe peak during steering can be written in a more gener-
alized form than (14a):

SLPeak
(
φF

)
≈ P

(
φF

)
· He

(
θF − θG

)
.

(14b)

As P (φ) has small variations in relation to the azimuth
angle, this function can be replaced by a global periodicity
factor taking either the average of P (φ) or its maximum
Pmax (8) for the worst φ case.

B. Beam Properties in Wide Band

Fig. 10 shows the WB beam patterns of SM1 and SA1 in
the focal semisphere, focusing at (RF = D2/8λ, φF = 0◦,
θF = 30◦). In this case, the lateral evolution of the main-
lobe peak during steering is modulated by the element fac-
tor He(θ), and the grating-lobe peak evolution is affected
by three factors: the element factor He, the WB factor,
and the array periodicity in the WB PWB:

SLPeak
(
φF

)
≈ FWB · He

(
θF − θG

)
· PWB

(
φF

)
.
(14c)

For SM1, the grating-lobe peak is produced in the main
directions where PWB = 1. The vertical distance between
both He envelope curves of Fig. 10(c) is −31.5 dB, which
is in agreement with the value of FWB given in Table I. For
SA1, the vertical distance between the envelope curves of
Fig. 10(d) is −72 dB, which is in accordance with SLPeak
at the φ = 0◦ slice shown in Fig. 6(c).

The evolution of the main-lobe and the grating-lobe
peaks in relation to the steering angle for SA1 can be
observed in Fig. 11. It shows that, for SA1 in WB, it is
possible to reach steering angles up to 40◦ with more than
50 dB of dynamic range and SLAverage of −64 dB. This
result indicates that SA1 could be an adequate candidate
for the generation of volumetric images, although it goes
beyond the restrictions of typical 2-D arrays in relation to
the interelement distance (d = 1.2 λ) and the element size
(e ≈ λ).

We should underline that (14a) to (14c) have only a
relative quantitative validity, being more useful for quali-
tative descriptive purposes. For instance, they can be ap-
plied for the analysis of Fig. 12, which shows, for small
(D = 20 λ) and large (D = 60 λ) aperture sizes, a com-
parison of the dynamic range (ratio between the peaks of
the side-lobe and the main-lobe regions) in relation to the
interelement distance. The element size is e = 0.8 d and
the array has been focused at (RF = D2/8λ, θF = 0◦,
θF = 30◦) in all cases. We shall refer to SM-20 and SA-20

Fig. 11. SA1 array considering the real size of elements: evolution of
the main-lobe peak (MLPeak) and the peak of the side-lobe region
(SLPeak) as a function of the steering angle θF . Dashed line, CW
excitation; solid line, WB pulse.

as the arrays with D = 20 λ, and SM-60 and SA-60 as the
arrays with D = 60 λ.

In CW conditions [Fig. 12(a)], the peak of the side-
lobe region for the SM arrays does not change with the
array size, showing a small variation around the 0 dB level
for the interval 0.7 ≤ d/λ ≤ 1.5, which is mainly due
to the modulating effect of the element factor He. In the
case of SA arrays, besides the smooth variation related to
the element factor, SLPeak shows an additional reduction
associated with the smaller array periodicity, at levels of
−24 dB and −37 dB for SA-20 and SM-60, respectively. In
contrast, the side-lobe average [Fig. 12(b)] is not a function
of the array type, and equivalent arrays have similar side-
lobe average. However, it is a function of the number of
array elements.

The curves corresponding to WB conditions are shown
in Figs. 12(c) and (d). Due to the bandwidth factor FWB,
which depends on D and d (9), SLPeak curves correspond-
ing to the four array designs become separated, but they
still remain nearly parallel. The step between SM-60 and
SM-20 curves is −10 dB, which corresponds to the ratio
between diameters. A −22 dB step is observed between the
curves corresponding to the small arrays; this difference is
−32 dB for the large arrays. The average of the side-lobe
region does not present variations with either the array
type (SM or SA) or the pulse bandwidth (CW or WB), as
the array size and the number of elements are more deci-
sive for this parameter. From these figures we can deduce
that, within 30◦ of the steering angle, a SA array with
D = 60 λ and d = 1.2 λ produces a side-lobe region with
SLPeak = −53 dB and SLAverage = −82 dB, which can be
valid for ultrasonic imaging. In this case, the full aperture
would be used, and the number of elements would be re-
duced from 11310 to 1950 (a factor of 5.8!) with respect
to a SM array with λ/2 interelement spacing; the element
area also would be multiplied by the same factor. However,
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Fig. 12. Evolution of SLPeak relative to MLPeak in decibels, (a) and (c) and of SLAverage (b) and (d) for a small aperture with D = 20 λ
and a large aperture with D = 60 λ, as a function of the normalized interelement distance d/λ. Simulations have been made for the arrays in
pulse-echo focusing at RF = D2/8 λ, φF = 0◦, θF = 30◦. In these graphics, the wavelength λ is fixed to 0.5 mm, and the distance between
elements d is varied from 0.5 λ to 2 λ. The element size is e = 0.8 d. Above, CW excitation. Below, WB pulse.

using the SA array as phased array, there is a limit on the
elements’ size in order to avoid zeros on the main beam; a
limit of e = 1.25 λ, which produce zeroes at |θ| = 56◦, can
be reasonable.

VI. Conclusions

The capability of SA arrays for 3-D beamforming has
been theoretically analyzed and compared with the equiv-
alent SM array. Assuming that the main-lobe properties of
equivalent SM and SA arrays are similar, we have centered
the analysis on the side-lobe region.

In order to facilitate the analysis, this paper uses an
approach that allows evaluating the grating lobes of a SA
array by three factors: the periodicity factor P , the band-
width factor FWB, and the element factor He. We have
shown that P has an inverse dependence on the number
of elements of the SA array, FWB depends inversely to the
square root of the number of elements and to the pulse
relative bandwidth, and He depends on the element size,
given that the sector-like shape of the elements and their
orientation is not very important when the elements are
rather small.

Using point-like elements (FA approach in Section III
and wide band pulses in Section IV), the effect of the geo-
metrical distribution of elements in the aperture has been

enhanced. In this sense, we have shown that rotating the
array rings or changing the rate d/λ have a small effect
on the peak of the side-lobe region (SLPeak). However,
there is an inverse dependence of this parameter with re-
spect to the number of array elements. In wide band, where
only a part of the elements simultaneously contribute to
grating-lobe formation, the cancellation of grating lobes is
reduced and, therefore, the periodicity factor is increased.
Related to the mean value of the side-lobe region, we have
shown that SLAverage has small dependence on the array
type (equivalent SM and SA arrays have similar SLAverage
values) or on the interelement distance (d/λ), presenting
however a greater dependence on the number of elements.

The effect of the elements’ real size also has been de-
scribed in detail in Section V. We have shown that the
lateral response of a SA array is modulated by the ele-
ment factor He which, for small elements, can be approxi-
mated to the response of the equivalent squared transducer
in its main directions. This approximation facilitates the
steered-beam analysis of SA arrays and the array design.

From the analysis, we conclude that it is possible to
design SA arrays with interelement distance and element
size beyond λ/2 (e.g., d = 1.2λ, e = λ) with beam char-
acteristics that are perfectly valid for volumetric imaging
applications. In consequence, SA arrays have the advan-
tage of reducing the number of elements and of enlarging
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the element size, implying an increase in the SNR associ-
ated with the element impedance and with the array ac-
tive area. However, there is a limit on the elements’ size
(e < 1.25 λ), as we need avoiding the zeros of the element
factor He for large steering angles.

In contrast, the irregular geometry of SA arrays im-
plies a drawback for their fabrication from piezocompos-
ite techniques [27], especially with small elements (e.g.,
e ≤ 0.5 mm). However, capacitive micromachined ultra-
sonic transducer (CMUT) techniques can be a good solu-
tion to this problem, as using a cell resolution of 40 µm,
array elements with 0.2 mm of size can be well designed.
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