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Abstract

Stochastic fluctuations acting on a model of quasigeostrophic fluid motion on a rotating
frame are shown to be rectified giving rise to large-scale noise-sustained average currents. As
in other noise rectification phenomena, the effect requires nonlinearity and absence of detailed
balance to occur. We apply an analytical coarse-graining procedure to obtain insight into the
phenomenon. Relevance of the effect in the context of ocean modeling is briefly discussed.

1 Introduction

Nonlinear interactions can rectify random inputs of energy organizing them into coherent
motion. This noise-rectification phenomenon has been discussed in several contexts ranging
from biology to physics or engineering [1]. Three ingredients are needed to obtain this kind
of noise-sustained directed motion: nonlinearity, random noise lacking the property of detailed
balance, and some symmetry-breaking feature establishing a preferred direction of motion.

It has been shown numerically [2] that directed motion sustained by noise also appears in a
model of large-scale fluid dynamics on a rotating frame, namely the vorticity equation describing
quasigeostrophic forced turbulence [3]. A large amount of rotating fluid problems concerning
planetary atmospheres and oceans can be described to some degree of approximation by this
model. It uses the fact that, in a planet or frame in fast rotation, vertical velocities are small
and slaved to the horizontal motion, so that flow patterns can be described in terms of two
horizontal coordinates. The vertical depth of the fluid becomes a dependent variable. The fluid
displays many of the unique properties of two-dimensional turbulence, but some of the aspects
of three-dimensional dynamics are still important. In particular, topographic features of the
bottom wall above which the fluid is flowing appear explicitly in the model. In terms of the
streamfunction ψ(x, t), with x ≡ (x, y), the model reads:

∂∇2ψ

∂t
+ λ

[

ψ,∇2ψ + h
]

= D + F . (1)

D is the dissipation term. Here we will use the standard viscous damping, D = ν∇4ψ, where
ν is the viscosity. F (x, t) is any kind of relative-vorticity external forcing, and h = f∆H/H0,
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with f the Coriolis parameter, H0 the mean depth, and ∆H(x) the local deviation from the
mean depth. λ is a bookkeeping parameter introduced to allow perturbative expansions in the
interaction term. The physical case corresponds to λ = 1. The Poisson bracket or Jacobian is
defined as

[A,B] =
∂A

∂x

∂B

∂y
−
∂B

∂x

∂A

∂y
. (2)

The streamfunction provides the horizontal components of the fluid velocity (u(x), v(x)) from

u = −
∂ψ

∂y
, v =

∂ψ

∂x
(3)

Equation (1) represents the time evolution of the relative vorticity subjected to forcing
and dissipation. In addition to the context of rotating fluids, this kind of quasi-twodimensional
dynamics appears also in the study of drift-wave turbulence in plasmas under strong magnetic
fields (perpendicular to the plane of x) [4, 5, 6, 7]. In this case ψ is related to the electrostatic
potential, and h = ln(ωc/n0), where ωc and n0 are the cyclotron frequency and plasma density
respectively. Eq. (1) is also the limiting case of the more general Charney-Hasegawa-Mima
equation when the scales are small compared to the ion Larmor radius or the barotropic Rossby
radius[5, 6, 7].

2 The noise-induced currents

The results in [2] imply (Rayleigh friction is used in that paper, but the results apply also to
the viscous damping used here) that, when the forcing in Eq.(1) is a white Gaussian noise, the
average flow at large scales approaches a state with currents following the large-scale features
of the underlying topography. Energy is extracted from the noise forcing and concentrated into
these large-scale currents. If noise is switched-off, viscosity dissipates all the energy in the system
and currents stop. More interestingly, if nonlinear terms are eliminated from the equation, the
average flow is again zero, corresponding to the intuitive idea that noise with zero average would
not induce mean flow. But the interaction between noise and nonlinearity induces nonvanishing
currents through the phenomenon of noise rectification. The direction of the currents was
cyclonic (i.e. counterclockwise in the Northern hemisphere) around depressions and anticyclonic
around elevations. An example of average flow induced by noise over the topography of Fig. 1
is shown in Fig. 2. It is obvious that contour levels of the average streamfunction, giving the
average velocity field, closely follow topographic contours. Detailed inspection of the simulation
data reveals that the correlation is higher for the large-scale features, the small scales being less
correlated with topography.

Appearance of currents following topography is not a new issue. Since the work of Salmon
et al. [8] it is known that the statistical mechanics of the Euler equations predicts such kind of
currents. In addition, there seem to be observations of them in several places of the world ocean
[9]. What is quite surprising and new is that they appear here in a forced and dissipative model,
and without the property of detailed balance. Thus, the equilibrium statistical mechanics ideas
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Figure 1: Depth contours of a randomly generated bottom topography. Maximum depth is
381.8m and minimum depth −381.8m over an average depth of 5000m. Levels are plotted
every 63.6m. Continuous contours are for positive deviations with respect to the mean, whereas
dashed contours are for negative ones.

presented in [8] cannot explain the phenomenon in (1). A review of the different contexts where
topographic currents appear can be found in [10].

In the next Section we perform analytic calculations trying to understand the origin of the
currents in the present forced and dissipative case [11]. The observation of distinct behavior at
different scales suggests that analysis of the relationship between small and large scales would
give clues about the process.

3 Coarse-graining approach

Here we analyze how the dynamics of the large scales in (1) is affected by the small scales, when
F is a random forcing. A useful choice of F , flexible enough to model a variety of processes, is
to assume F to be Gaussian stochastic process with zero mean and correlations given by

〈

F̂k(ω)F̂k′(ω′)
〉

= Dk−yδ(k + k′)δ(ω + ω′) . (4)

F̂k(ω) denotes the Fourier transform of F (x, t), k = (kx, ky), and k = |k|. The process is then
white in time but has power-law correlations in space. y = 0 corresponds to white-noise also in
space, which is the case studied in [2] and displayed in Fig. 2. This value of y has been observed
for wind forcing on the Pacific ocean [12]. Thermal noise corresponds to y = −4 [13]. In this
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Figure 2: Mean streamfunction computed by time averaging when a statistically stationary state
has been achieved. Continuous contours denote positive values of the streamfunction, whereas
dashed contours denote negative ones; λ = 1, f = 10−4s−1, ν = 200m2s−1, and forcing is white
noise in space and time with intensity D = 10−9m2s−3. Maximum and minimum values are
991.864 and -991.864 m2/s, and levels are plotted every 165.31 m2/s.

case there is a fluctuation-dissipation relation between noise and the viscosity term, so that the
fluctuations satisfy detailed balance.

To obtain the desired large-scale closed equation we have applied a coarse-graining proce-
dure to the investigation of the dynamics. For our problem it is convenient to use the Fourier
components of the streamfunction ψ̂kω or equivalently the relative vorticity ζkω = −k2ψ̂kω. This
variable satisfies:

ζkω = G0
kωFkω +

λG0
kω

∑

p,q,Ω,Ω′

Akpq

(

ζpΩζqΩ′ + ζpΩhq

)

, (5)

where the interaction coefficient is:

Akpq = (pxqy − pyqx)p−2δk,p+q , (6)

the bare propagator is:
G0

kω = (−iω + νk2)−1 , (7)

and the sum is restricted by k = p + q and ω = Ω + Ω′. p = (px, py), p = |p|, and similar
expressions hold for q. 0 < k < k0, with k0 an upper cut-off. Following the method in Ref.
[14], one can eliminate the modes ζ>

k with k in the shell k0e
−δ < k < k0 and substitute their

4



expressions into the equations for the remaining low-wavenumber modes ζ< with 0 < k < k0e
−δ.

To second order in λ, the resulting equation of motion for the modes ζ< is:

∂∇2ψ<

∂t
+ λ

[

ψ<,∇2ψ< + h<
]

= ν ′∇4(ψ< − gh<) + F ′ , (8)

where

ν ′ = ν

(

1 −
λ2S2D(2 + y)δ

32(2π)2ν3

)

, (9)

g(λ,D, δ, ν, y) =
λ2DS2(y + 4)δ

16(2π)2ν3
. (10)

F ′(x, t) is an effective noise which turns out to be also a Gaussian process with mean value
and correlations given by:

< F ′(x, t) >= −
λ2DS2(4 + y)δ

16(2π)2ν2
∇4h<, (11)

〈(

F̂ ′

k(ω) −
〈

F̂ ′

k(ω)
〉) (

F̂ ′

k′(ω′) −
〈

F̂ ′

k′(ω′)
〉)〉

=

Dk−yδ(k + k′)δ(ω + ω′) (12)

S2 is the length of the unit circle: 2π. Equations (8)-(12) give the dynamics of long
wavelength modes ψ<. They are valid for small λ or, when λ ≈ 1, for small width δ of the
elimination band. The effects of the eliminated short wavelengths on these large scales are
described in the new structure of the viscosity operator and the corrections to the noise term
F ′. The action of the dressed viscosity term ∇4(ψ< − gh<) is no longer to drive large scale
motion towards rest, but towards a motion state (≈ gh<) characterized by the existence of flow
following the isolevels of bottom perturbations h<. This ground state would characterize the
structure of the mean pattern. The energy in this ground state is determined by the function
g(λ,D, δ, ν, y) which measures the influence of the different terms of the dynamics (nonlinearity,
noise, viscosity). Relation (10) shows that while nonlinearities and noise increase the energy
level of the ground state, high values of the viscosity parameter would imply a reduction of the
strength of the ground state motion due to the damping that viscosity exerts over small scales.
The other mechanism that reinforces the existence of average directed motion comes from the
fact that the dressed noise has got a mean component as a result of the small scale elimination.

A most interesting fact in (10) and (11) is the presence of the factor y+4. It implies that the
tendency to form directed currents reverse sign as y crosses the value −4, and that it vanishes
at y = −4 which is the value for thermal noise satisfying detailed balance. In consequence
noise rectification does not occur when detailed balance holds, a result of general validity [1].
As an illustration we show in Fig. 3 the average streamfunction in a case with y = −4. An
irregular flow is seen which does not follow the topographic contours. Increasing the number of
configurations included in the average, the amplitude of the mean streamfunction structures is
seen to decrease, converging towards zero flow.

5



Figure 3: Mean streamfunction (average is over a period of 250 years) for the same parameters
as in Fig. 2, except that noise correlations are of the form (4) with y = −4. Features are
uncorrelated with topography. Averaging for longer times makes the features to disappear.

4 Conclusions

We have shown that quasigeostrophic flows develop mean patterns in the presence of noisy
perturbations, and that the origin of these patterns is related with nonlinearity and lack of
detailed balance. Nonlinear terms couple the dynamics of small scales with the large ones and
provide a mechanism to transfer energy from the fluctuating component of the spectrum to the
mean one. This mean spectral component, that is inexistent in purely two-dimensional turbu-
lence [15], is controlled by the shape of the bottom boundary and characterizes the structure of
the pattern. The existence of these noise-sustained structures has a wide range of implications in
the fields of fluid and plasma physics. First because it highlights the important and organizing
role that noise can play in these systems. Second, it establishes the need to modify not only the
value of the parameters (as usually done in eddy-viscosity approaches) when performing large
eddy simulations with insufficient small-scale resolution, but also the structure of the equations
in a way determined by topography. This last statement has been previously suggested from
a heuristic point of view in the context of large-scale ocean models [9, 10, 16]. Our results
represent a step forward towards the justification of such approaches. The implications of these
changes in presently existing general circulation ocean models open new ways for investigating
the crucial role of oceanic circulation on climate variability.
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