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We introduce a time-domain model to study the dynamics of optoelectronic

oscillators. We show that due to the interaction between non-linearity and

time delay, the envelope amplitude of ultra-pure microwaves generated by

optoelectronic oscillators can turn to be unstable. Our analytical predictions

are confirmed by numerical simulations and experiments. c© 2007 Optical
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Recent advances in ultra-stable microwave oscillations have introduced novel architectures

referred to as optoelectronic oscillators (OEOs) [1]. Typically, single-mode OEOs are able to

produce radio-frequency oscillations with extremely high spectral purity in the microwave

range at up to tens of GHz, with sideband phase noise levels as low as −160 dBrad2/Hz at

10 kHz from the carrier. This performance is achieved through the use of an unusual energy

storage principle, based on a long optical fiber delay line instead of the classical concept of

resonators. OEOs are therefore candidates for various applications in spatial, lightwave and

radar technologies.

However, theoretical description of these systems has been done only through the implicit

asumption of a stationary amplitude of the microwave oscillation, despite the presence of

strong non-linearities. We propose here a nonlinear dynamics approach to investigate analyt-

ically the stability properties of OEOs. This approach predicts that the interplay of the delay

and the intrinsic nonlinearity gives rise to unsuspected bifurcation-induced instabilities, in

full agreement with our experimental results.

The OEO under study is organized in a single-loop architecture as depicted in Fig. 1.

The oscillation loop consists of: (i) A wideband integrated optics LiNbO3 Mach-Zehnder

(MZ) modulator; it is seeded by a continuous-wave semiconductor laser of optical power P ,

which serves as a bifurcation parameter for scanning the OEO loop gain; the modulator is

characterized by a half-wave voltage Vπ = 4.2 V, which defines the amplitude scale required

at the microwave MZ driving voltage V (t) for operation in the nonlinear regime. (ii) A

thermalized 4 km fiber performs a time delay of T = 20 µs on the microwave signal carried

by the optical beam; the long delay is intended to support thousands of the microwave ring-

cavity modes; the free spectral range of ΩT/2π = 1/T = 50 kHz. (iii) A fast amplified

photodiode with a conversion factor S = 2.2 V/mW. (iv) A narrow band microwave filter,

intended to select the frequency range for the amplified modes; its central frequency is

Ω0/2π = 3 GHz, and the −3 dB bandwidth is ∆Ω/2π = 20 MHz; (v) A microwave amplifier

with gain G is closes the loop. All optical and electrical losses are gathered in a single

attenuation factor η.

The dynamics of the microwave oscillation can therefore be described in terms of the

dimensionless variable x(t) = πV (t)/2Vπ whose dynamics obeys [2]

x+ τ
dx

dt
+

1

θ

∫ t

t0
x(s)ds = β cos2[x(t− T ) + φ], (1)

where β = πηSGP/2Vπ is the normalized loop gain, φ = πVB/2Vπ is the Mach-Zehnder

offset phase, while τ = 1/∆Ω and θ = ∆Ω/Ω2
0 are the characteristic timescale parameters of

the bandpass filter.

Assuming a monomode microwave oscillation of frequency Ω0 and complex amplitude

A = |A|eiψ for the variable x(t), it is then possible to find an equation for the slowly-
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varying complex envelope amplitude, owing ton the fact that the nonlinear feedback term in

Eq. (1) is reduced to the first order Bessel function J1 through the Jacobi-Anger expansion

eiz cosα =
∑+∞
n=−∞ i

nJn(z)einα. Discarding the harmonics which are outside the bandwidth, we

finally obtain the following delay-differential equation for the microwave complex envelope

dynamics:

Ȧ = −µA− 2µγe−iσ Jc1[2|AT |]AT , (2)

where γ = β sin 2φ is the effective loop gain, µ = ∆Ω/2 is the half-bandwidth of the filter,

σ = Ω0T is the round-trip phase shift of the microwave, while Jc1 is the Bessel cardinal

function defined as Jc1(x) = J1(x)/x. Note that the Bessel cardinal function is qualitatively

similar to the sinus cardinal function, but its absolute maximum is 1/2 instead of 1.

The advantage of dealing with an envelope equation is that the stationary states of the

system are fixed points, which are solutions ofA{1+2γeiσ Jc1[2|A|]} = 0. The phase matching

condition eiσ = ±1 has to be fulfilled for an oscillation to be sustained, and we here set

eiσ = −1 and γ > 0 without loss of generality.

The trivial fixed point A(t) ≡ 0 corresponds to the non-oscillating solution, and to check

for its stability, we track the evolution of a perturbation δA with

δȦ = −µ δA+ µγ δAT . (3)

A sufficient stability condition for this delayed variational equation is found to be γ < 1.

At γ = 1, a bifurcation occurs between the solution A(t) = 0 and the non-trivial fixed

point A(t) = Ao 6= 0 which corresponds to the envelope of the rising microwave oscillation.

From Eq. (2), it can be deduced that its amplitude obeys the equation Jc1[2|Ao|] = 1/(2γ)

which has a unique solution for 1 < γ < 15.52.

Beyond the existence of this solution, we still have to check for its stability through the

perturbation equation

δȦ = −µ δA+ 2µγ (4)

×{Jc1[2|Ao|] + 2|Ao|Jc
′

1[2|Ao|]} δAT ,

whose stability is ensured for amplitudes |Ao| fulfilling the condition∣∣∣∣∣12 +
|Ao|Jc

′
1[2|Ao|]

Jc1[2|Ao|]

∣∣∣∣∣ < 1

2
, (5)

corresponding to values of γ belonging to the interval [1, 2.31]. Therefore, the theory predicts

that a pure single-mode solution emerges at γ = 1, stable up to γcr = 2.31. Beyond γcr, the

system undergoes a supercritical Hopf bifurcation, as the fixed point Ao loses its stability

while a limit cycle Ao + ao exp(iΩHt) emerges. This Hopf bifurcation therefore leads to an
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amplitude modulation of the microwave signal x(t), that is, to the emergence of deterministic

modulation side-peaks in the radio-frequency Fourier spectrum. On the one hand, it can

be demonstrated from the classical theory of Hopf bifurcations that the modulation ampli-

tude |ao| initially grows as [γ − γcr]1/2. On the other hand, it is also possible to determine

analytically the frequency ΩH of the Hopf-induced amplitude modulation. Effectively, the

time-varying component ao exp(iΩHt) is initially very small and can be treated as a pertur-

bation, which should obey Eq. (4): ΩH is thus determined by the transcendental equation

ΩH = −µ tan[ΩHT ], whose physical solution ΩH ' 1
2
ΩT corresponds to a modulation period

TH = 2T = 40 µs.

Numerical simulations fully confirm the theoretical analysis. In Fig. 2, various timetraces

obtained through the simulation of Eq. (2) are displayed. When γ = 2.2, the system converges

towards its stable fixed point, but only after some oscillatory transients. When the gain is

further increased to γ = 2.4, the system has yet undergone the supercritical Hopf bifurcation

at γcr = 2.31. As a consequence, the amplitude is modulated, and the modulation period is

twice the delay-time as predicted. Numerical simulations are therefore in perfect agreement

with the theory, both quantitatively and qualitatively.

The experimental evidence of this Hopf-induced amplitude modulation is presented in

Fig. 3. Before the bifurcation, the amplitude is constant and there is a single peak in the

microwave Fourier spectrum. Exactly at the onset of the bifurcation, the amplitude starts

to be modulated with the Hopf frequency ΩH/2π = ΩT/4π = 25 kHz: two modulation side-

peaks appear beside the carrier at the frequencies ±ΩH/2π. Careful measurement of the

corresponding critical value of the loop gain has given the experimental value of γ̃cr = 2.42,

which is very near the analytical value γcr = 2.31. Note that the lowest Hopf critical value

was obtained after adjusting the MZ bias, most probably due to thermal drifts induced

by the increasing RF power. After the bifurcation, the amplitude is strongly square-wave

modulated with the same frequency ΩH , and the modulation side-peaks become stronger.

This experimental phenomenology is therefore in perfect agreement with the analytically

predicted scenario.

The bifurcation diagrams for the microwave variable x(t) are displayed in Fig. 4. In fact,

removing the periodic fast-scale oscillation at Ω0 is geometrically equivalent to represent

the dynamics of a Poincaré section: therefore, at γ = 1, the amplitude variable A(t) under-

goes a pitchfork bifurcation (from the trivial fixed point to another fixed point) while the

corresponding microwave variable x(t) undergoes a Hopf bifurcation (from a fixed point to

a limit-cycle); and at γ = γcr, A(t) undergoes a Hopf bifurcation while x(t) undergoes a

Neimark-Sacker bifurcation, that is, a bifurcation from a limit-cycle to a torus.

In conclusion, we have proposed a dynamical model for the study of single-mode opto-

electronic oscillators. This model whose variable is the complex envelope amplitude of the
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microwave takes into account the intrinsic features of OEOs, which are a strong non-linearity

on the one hand, and a very large delay on the other. As the loop gain is increased, the model

predicts a supercritical Hopf bifurcation, that is, an amplitude modulation inducing the emer-

gence of robust parasite side-peaks in the radio-frequency Fourier spectrum. The reported

bifurcation phenomena has not been reported in the literature already published on the OEO,

and we anticipate that many other phenomena might arise from this nonlinear dynamics ap-

proach, like for example multimode oscillations or phase noise stabilization/destabilization.

Extensions of this work are numerous. A particular interest of this model is also that it

can easily be adapted to a wide class of oscillators derived from the OEOs, like coupled,

dual-loop, tuneable or photonic filters OEOs. Along the same line, this modelling may

improve the performance of these oscillators for other technological applications [3]. Finally,

the principal interest of OEOs is their ultra-low phase noise [4, 5]: hence, it may be

particularly interesting to derive a stochastic model of OEOs, based on the deterministic

model we are proposing. For this purpose, if we consider a noisy gain γ[1 + ξm(t)] and an

additive noise term ξa(t) in Eq. (2), we can derive a stochastic differential equation for the

phase ψ(t) of the microwave. This would be an interesting challenge that would couple a

new theoretical problem to a plethora of applications.
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List of Figure Captions

Fig. 1. Experimental set-up.

Fig. 2. Numerical simulations of Eq. (2), for various values of the effective feedback

gain γ, with σ = π and φ = π/4. a) γ = 2.2 < γcr : the amplitude converges to a con-

stant value. b) γ = 2.4 > γcr : the amplitude is modulated with a period equal to 2T = 40 µs.

Fig. 3. Experimental evidence of the Hopf-induced amplitude modulation, as the gain is

increased; a1, b1 and c1 are timetraces, and a2, b2 and c2 are the Fourier spectra of the

corresponding reconstructed envelopes (relatively to the carrier at Ω0/2π = 3 GHz). a)

Before the bifurcation. b) At the onset of the bifurcation. c) After the bifurcation.

Fig. 4. Bifurcation diagrams for the microwave variable x(t) revealing unexpected nonlinear

effects (to be compared with Fig. 4 in ref. [4]). a) Theoretical. b) Experimental.
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Fig. 1. Experimental set-up. Fig1.eps
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Fig. 2. Numerical simulations of Eq. (2), for various values of the effective

feedback gain γ, with σ = π and φ = π/4. a) γ = 2.2 < γcr : the amplitude

converges to a constant value. b) γ = 2.4 > γcr : the amplitude is modulated

with a period equal to 2T = 40 µs. Fig2.eps
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Fig. 3. Experimental evidence of the Hopf-induced amplitude modulation, as

the gain is increased; a1, b1 and c1 are timetraces, and a2, b2 and c2 are the

Fourier spectra of the corresponding reconstructed envelopes (relatively to the

carrier at Ω0/2π = 3 GHz). a) Before the bifurcation. b) At the onset of the

bifurcation. c) After the bifurcation. Fig3.eps
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Fig. 4. Bifurcation diagrams for the microwave variable x(t) revealing unex-

pected nonlinear effects (to be compared with Fig. 4 in ref. [4]). a) Theoretical.

b) Experimental. Fig4.eps
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