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Abstract Plants grown in calcareous, high pH soils develop Fe deficiency chlorosis. 23 

While the physiological parameters of Fe-deficient leaves have been often 24 

investigated, there is a lack of information regarding structural leaf changes associated 25 

with such abiotic stress. Iron-sufficient and Fe-deficient pear and peach leaves have 26 

been studied, and differences concerning leaf epidermal and internal structure were 27 

found. Iron deficiency caused differences in the aspect of the leaf surface, which 28 

appeared less smooth in Fe-deficient than in Fe-sufficient leaves. Iron deficiency 29 

reduced the amount of soluble cuticular lipids in peach leaves, whereas it reduced the 30 

weight of the abaxial cuticle in pear leaves. In both plant species, epidermal cells were 31 

enlarged as compared to healthy leaves, whereas the size of guard cells was reduced. 32 

In chlorotic leaves, bundle sheaths were enlarged and appeared disorganized, while the 33 

mesophyll were more compacted and less porous than in green leaves. In contrast to 34 

healthy leaves, chlorotic leaves of both species showed a significant transient opening 35 

of stomata after leaf abscission (Iwanoff effect), which can be ascribed to changes 36 

found in epidermal and guard cells. Results indicate that Fe-deficiency may alter the 37 

barrier properties of the leaf surface, which can significantly affect leaf water 38 

relations, solute permeability and pest and disease resistance. 39 



 3

Introduction 40 

Iron (Fe) deficiency chlorosis is a common abiotic stress affecting plants in many 41 

areas of the world. This physiological disorder is mainly found in crops grown in 42 

calcareous and/or alkaline soils and occurs as a result of several causes acting 43 

simultaneously (Rombolà and Tagliavini 2006). Although Fe is very abundant in the 44 

earth’s crust, its availability to plants is often restricted by the very low solubility of 45 

Fe(III)-oxides under aerobic conditions (Schmidt 2003). Iron is a vital element for 46 

living organisms, since it is essential for the proper functioning of multiple metabolic 47 

and enzymatic processes related to electron transport, nitrogen fixation, DNA and 48 

hormone synthesis, etc. (Conrad and Umbreit 2000; Briat 2007). Plant growth under 49 

conditions of restricted Fe availability is a problem of economic significance for the 50 

fruit agricultural industry, since it reduces crop yield and quality (Álvarez-Fernández 51 

et al. 2006), and its control involves significant costs, chiefly related to treatment with 52 

synthetic Fe chelates (Lucena 2006). 53 

Iron deficiency deeply alters the morphology and physiology of plants (Briat 2007). 54 

Typical iron chlorosis symptoms include leaf interveinal chlorosis, starting from the 55 

shoot apex, development of leaf necrotic spots and shoot defoliation during the 56 

growing season (Rombolà and Tagliavini 2006). Apart from leaf chlorophyll (Chl) and 57 

carotenoid concentration decreases, reductions in leaf size, fresh and dry weight have 58 

been found associated with lime-induced chlorosis (Hutchinson 1970; Anderson 1984; 59 

Morales et al. 1998; Larbi et al. 2006). Severe leaf Fe deficiency chlorosis has been 60 

shown to markedly reduce the photosynthetic rate of several plant species under 61 

controlled and field conditions, with light absorption, photosystem II and Rubisco 62 

carboxylation efficiencies being down-regulated (see Larbi et al. 2006 and references 63 

therein). 64 

Early ecological studies carried out with detached leaves of several plant species 65 

grown in calcareous soils indicated that chlorotic leaves lost water more rapidly than 66 

healthy ones (Hutchinson 1970; Anderson 1984). Hutchinson (1970) hypothesised that 67 

the larger leaf water deficits of detached chlorotic leaves may be due to differences in 68 

stomatal behaviour or alternatively to a high cuticular transpiration rate. Anderson 69 

(1984) noted that despite lime-induced chlorosis may affect stomatal behaviour, 70 

cuticular rather than stomatal factors could be responsible for the more pronounced 71 
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water loss. According to Shimshi (1967), in several species chlorosis was 72 

accompanied by a lower degree of stomatal opening, and not by a decrease in stomatal 73 

density. Gas exchange and Chl fluorescence measurements carried out on severely Fe-74 

deficient peach, pear and sugar beet leaves showed that Fe-deficiency led to decreases 75 

in stomatal opening, transpiration rates and water use efficiency (Larbi et al. 2006). 76 

Working with Fe-sufficient and Fe-deficient Mexican lime (Citrus aurantifolia) 77 

leaves, Maldonado-Torres et al. (2006) observed that chlorosis led to morphological 78 

changes at the leaf, cellular, and ultracellular levels. Chlorotic leaves were thicker than 79 

green ones, due to increases in palisade and spongy parenchyma cell length and 80 

thickness (Maldonado-Torres et al. 2006). In contrast, no significant differences 81 

regarding leaf thickness were found between Fe-sufficient and Fe-deficient leaves of 82 

pear and peach grown in calcareous soils in Spain (Morales et al. 1998). 83 

The effects of Fe deficiency on the leaf epidermis have not been investigated so far, 84 

despite the fact that it is the limiting barrier for the exchange of water and solutes 85 

between the leaf and the environment. Most epidermal cells of the aerial parts of 86 

higher plants, such as leaves, fruits and non-woody stems, are covered by a continuous 87 

extra-cellular membrane of soluble and polymerized lipids called cuticle or cuticular 88 

membrane (Heredia 2003). The structure and composition of the cuticle varies 89 

substantially among plants, organs and growth stages, but is basically composed by a 90 

cutin matrix with waxes embedded in (intracuticular waxes) and deposited on the 91 

surface (epicuticular waxes) (Heredia 2003; Jeffree 2006). Based on their constituents, 92 

the cuticle can be defined as a hydrophobic and non-reactive polyester with associated 93 

waxes (Heredia 2003). Cuticles have been shown to be permeable to water and ions, 94 

and also to polar compounds (Kerstiens 2006; Schreiber 2006). 95 

The aim of this investigation was to study changes occurring in the surface and 96 

internal structure of peach and pear leaves affected by Fe chlorosis. Changes observed 97 

are discussed in the context of plant stress physiology, water relations and penetration 98 

of leaf applied-agrochemicals. 99 

Materials and Methods 100 

Plant Material 101 

Green and chlorotic leaves were collected from 14 year-old peach (Prunus persica (L.) 102 
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Batsch, cv. Miraflores) and pear (Pyrus communis L. cv. Blanquilla) trees, grown in 103 

commercial orchards located in the Jalón River Valley, in the Zaragoza province, 104 

Spain. Soil was calcareous, with approximately 30% total CaCO3, 10% active CaCO3, 105 

7 mg kg-1 DTPA-extractable Fe, 2.6% organic matter and pH 7.8 in water. The flood-106 

irrigated orchards were appropriately maintained in terms of pest and disease control. 107 

The orchards had a frame of 5 × 4 m (peach) and 4 × 3 m (pear). Iron-chlorotic trees 108 

did not receive any exogenous Fe input for two years prior to leaf analysis, and 109 

developed Fe deficiency symptoms in springtime. Trees were Fe-deficient, since they 110 

re-greened after Fe fertilization, either in the form of Fe foliar sprays (Álvarez-111 

Fernández et al. 2004; Fernández et al. 2006), branch Fe solid implants (Larbi et al 112 

2003) or Fe-chelate treatments to the soil near the trunk (Álvarez-Fernández et al. 113 

2003). 114 

The experiment was designed as a completely randomized block. Trees with similar 115 

chlorophyll levels were selected at the beginning of the trial, and monitored for Chl 116 

levels for 2 years. Some trees were treated with Fe(III)-EDDHA (40 g per tree applied 117 

in May; Sequestrene G 100, Syngenta Agro S.A., Spain) and remained fully green 118 

throughout the experiment. Fully expended, non-damaged leaves were collected from 119 

medium size shoots of Fe-sufficient and Fe-deficient trees, located at mid-crown 120 

height, approximately 1.5 meters from the ground. Leaves were sampled during the 121 

summer season of the years 2006 and 2007. 122 

 Leaf weight, area and SPAD value were determined prior to analysis. The Fe 123 

concentration of leaves was analysed by Flame Atomic Absorption Spectroscopy by 124 

using standard A.O.A.C. methods. Prior to processing, leaves were carefully washed 125 

in a 0.1% detergent (Mistol, Henkel) solution and thoroughly rinsed, first in tap and 126 

then in ultrapure water. Thirty samples per treatment, each composed of 10 leaves, 127 

were taken throughout the whole experimental period. 128 

Extraction of cuticular membranes and cuticular isolates 129 

Cuticles from leaves of green and chlorotic peach and pear trees were isolated 130 

enzymatically as described by Schönherr and Riederer (1986). Leaf discs 1.4 cm in 131 

diameter, with the abaxial side labelled with a black felt-tip marker, were incubated in 132 

citrate buffer (10 mM citric acid adjusted to pH 3.0 with KOH) containing 2% (v/v) 133 

cellulase (Celluclast 1.5 L from Novozymes, Bagsvared, Denmark), 2% (v/v) 134 
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pectinase (Pectinex 100 L from Novozymes) and 1 mM NaN3 (Sigma, St. Louis, Mo, 135 

USA), in an orbital shaker at low speed. Adaxial and abaxial leaf cuticles were 136 

separated after 1 week incubation. Isolated cuticular membranes were washed for 24 h 137 

in deionised water and then either dehydrated in an oven at 60ºC and directly weighed, 138 

or air-dried and stored at room temperature for further analysis. 139 

Soluble cuticular lipids were extracted by immersion of 75 leaves in 300 ml of a 2:1 140 

chloroform:methanol solution for 1 min, using 3 replicates per sample. Extracts were 141 

concentrated under a flow of N2 and then evaporated until dryness in a watch glass in a 142 

laboratory fume cupboard. The amount of soluble cuticular lipids was expressed on a 143 

leaf surface area basis. 144 

Microscopic examination 145 

Leaf pieces were fixed in FAA (90% ethanol:water, 5% formol and 5% acetic acid), 146 

dehydrated, embedded in Historesin (Leica, Heidelberg, Germany) and transversal 147 

sections were cut with a microtome. Sections were stained with toluidine blue, 148 

berberine or auramine O and observed with a light microscope (Nikon E 800, Japan; 149 

only toluidine blue micrographs are presented). Fresh leaf transversal sections and 150 

pieces (for internal structure and surface studies, respectively), were frozen in liquid 151 

N, gold sputtered and observed with a low temperature scanning electron microscope 152 

(LTSEM, DSM 960 Zeiss, Germany, acceleration potential 15 kV, working distance 153 

10 mm and probe current 5-10 nA). Scanning electron micrographs of fresh and dried 154 

leaf surfaces were also obtained after gold coating, with other SEM microscopes 155 

(Hitachi S-3400 N and Zeiss DSM 940 A). Stomatal densities and apertures were 156 

measured on SEM micrographs and also in nail-polish leaf fingerprints, using image 157 

analysis (software packages NIS-Elements D, Nikon Corporation, Japan and Carnoy v. 158 

2.1, University of Leuven, Belgium). 159 

Leaf transpiration 160 

Transpiration rates of green and chlorotic leaves of recently flood-irrigated trees were 161 

measured with a portable steady-state porometer (LI-1600, LI-COR Inc., Lincoln, 162 

NE). First, leaves were measured in their natural orientation on the trees. Then, leaves 163 

were detached, the measuring cuvette with the clamped leaf was transferred to the 164 

shade, and transpiration rates were further recorded for 16 min after detachment. The 165 

time course of water loss for detached leaves was also measured gravimetrically for 4 166 
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days (Anderson 1984). 167 

Results 168 

General leaf characteristics and internal structure 169 

Severely Fe-deficient, chlorotic leaves had Chl and Fe concentrations lower than those 170 

found in healthy leaves. Reductions in Chl were 70 and 84%, whereas decreases in Fe 171 

were 34 and 39% in peach and pear, respectively (Table 1). Leaf fresh weight (FW) 172 

and size were also significantly reduced by Fe-chlorosis as compared to the values 173 

measured for Fe-sufficient peach and pear leaves (Table 1). Decreases in FW and total 174 

leaf surface (in peach/pear) were 23/24% and 24/26%, respectively. 175 

In both species, stomata were found only in the abaxial leaf side. While green and 176 

chlorotic leaves had similar stomatal densities, Fe deficiency appeared to decrease 177 

significantly the average size of stomatal pores in both plant species. Stomatal length 178 

decreases with Fe deficiency were 24% in peach and 17% in pear (Table 1). 179 

Iron deficiency also affected the internal leaf structure of peach and pear leaves 180 

(Figs. 1 and 2). While no significant differences regarding leaf thickness were 181 

observed (data not shown), peach leaf transversal sections show that vascular bundle 182 

and palisade parenchyma cells were better organised and defined in green than in 183 

chlorotic leaves (Fig.1). Also, the spongy parenchyma was also more porous, with 184 

larger empty intracellular spaces, in green than in chlorotic leaves. Another 185 

remarkable feature observed in chlorotic peach leaves was the larger size of epidermal 186 

cells, especially in the adaxial side, as compared to Fe-sufficient leaves. In peach, 187 

adaxial epidermal cell length was increased by 23% by Fe deficiency (average length 188 

of approximately 23 and 18 µm in chlorotic and green leaves). In pear, an enlargement 189 

of leaf epidermal cells with Fe deficiency was also observed, but it was less 190 

pronounced than in peach (Fig. 2A,B versus F,G). Regarding the cell wall, both the 191 

toluidine blue staining (Figs. 1A,E and 2A,F) and autofluorescence (Fig.2E and J) 192 

intensities were markedly different in chlorotic and green leaves, suggesting changes 193 

in composition. Whereas cell walls in green leaves were thick and homogeneous, walls 194 

surrounding leaf cells in chlorotic leaves appeared as thin, discontinuous and 195 

apparently heterogeneous (see close up in Fig. 2J). 196 

Leaf epidermis 197 
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Iron deficiency affected the morphology of the abaxial and adaxial leaf surface (Figs. 198 

1C,D,G,H and 2C,D,H,I, for green and chlorotic peach and pear leaves). In peach, 199 

both the adaxial and abaxial surfaces of Fe-sufficient leaves appear to have more 200 

epicuticular waxes (Fig. 1C,D) when compared to Fe-deficient leaves (Fig. 1G,H), as 201 

indicated by a smoother, glazed-like surface. In pear, the surfaces of Fe-sufficient and 202 

Fe-deficient leaves also had a distinct appearance, although differences were much 203 

less remarkable than in the case of peach. 204 

In light of the above observations, both the cuticle weight and the amount of 205 

soluble cuticular lipids per unit surface were quantified (Table 2). Iron chlorosis led to 206 

different effects in the two plant species investigated, since in pear only the lower 207 

cuticle of chlorotic leaves experienced remarkable changes, whereas in peach the 208 

amount of soluble lipids was significantly reduced. In pear, the lower cuticular 209 

membrane underwent a highly significant weight per unit surface reduction with Fe 210 

chlorosis (35% when compared to control values), while the upper cuticle was not 211 

significantly affected. In this species, soluble cuticular lipids accounted for 10 and 212 

13% of the total leaf cuticle weight in green and chlorotic leaves. In peach, however, 213 

Fe-deficiency caused a marked decrease (41%) in the amount of soluble cuticular 214 

lipids, but the weight per unit surface of abaxial and adaxial cuticles was not affected 215 

by the Fe status. In this plant species, soluble cuticular lipids accounted for 48 and 216 

30% of the total cuticle weight in green and chlorotic leaves, respectively. 217 

Stomata 218 

As noted above, stomatal frequency was not significantly affected by Fe chlorosis, but 219 

stomata in chlorotic leaves had significantly shorter (17 and 24% in pear and peach, 220 

respectively) pore lengths as compared to green leaves (Table 1). An estimation of the 221 

actual pore area using nail-polish leaf fingerprints indicated a lower degree of stomatal 222 

opening (31 and 49% lower in pear and peach) in chlorotic than in green stomata. 223 

Similar low transpiration rates were determined on adaxial (astomatous) surfaces of 224 

Fe-deficient and Fe-sufficient attached peach and pear leaves (Table 3). Abaxial side 225 

transpiration rates, however, were markedly reduced by Fe deficiency, the decrease 226 

being 45 and 75% for pear and peach. A different response was observed between 227 

green and chlorotic leaves for both plant species by assessing transpiration rates 228 

immediately after detaching leaves from the tree (Fig. 3). Once detached, transpiration 229 
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rates of Fe-sufficient pear and peach leaves decreased over time, regardless the 230 

prevailing irradiation conditions. In contrast, the transpiration rate of detached 231 

chlorotic leaves increased markedly in the case of pear (by 40 and 20% in 232 

approximately 3-4 min, under high and low irradiation conditions). In the case of 233 

peach, transpiration rates decreased slightly shortly after detachment (in 1-2 min) but 234 

increased thereafter, within 7-10 min, to reach values similar to the ones measured 235 

prior to leaf detachment. This indicates an effect of Fe deficiency on the performance 236 

of stomata, which may be associated either with the mechanical properties of the leaf 237 

epidermis or to a disruption of normal stomatal functioning as a result of Fe chlorosis. 238 

Gravimetric estimation of leaf water losses for a 4-day period provided evidence 239 

that chlorotic leaves lost water more rapidly than green leaves in both plant species, 240 

differences being remarkable after 2 days. 241 

Discussion 242 

Iron chlorosis induced changes in the epidermis and internal structure of peach and 243 

pear leaves at various levels, thereby influencing the two-way diffusion of gases and 244 

solutes between the leaf and the surrounding environment. While a higher dehydration 245 

rate of chlorotic versus green leaves has been described for several plant species 246 

(Hutchinson 1970; Anderson 1984) and Fe-deficient leaves have been suggested to be 247 

less water efficient (Larbi et al. 2006), this is the first study in which the possible 248 

causes relating to such impaired water relations have been directly tackled. Cuticular 249 

characteristics of leaves in Fe-sufficient trees are similar to those found in previous 250 

studies, both for pear (Norris and Bukovac 1968) and peach (Bukovac et al. 1979). 251 

The results obtained in this study provide evidence for changes occurring at the 252 

cuticular membrane level as a result of Fe chlorosis. Also, the morphology and 253 

mechanical properties of the epidermis and the structure of the cell wall and vascular 254 

bundle appeared to be altered by Fe deficiency. 255 

Iron chlorotic leaves had reductions in size and FW as compared to Fe-sufficient 256 

leaves. While stomatal densities were not significantly affected by chlorosis, as also 257 

noted by Shimshi (1967), stomatal pore lengths decreased, possibly as a result of the 258 

reduction in leaf growth and expansion processes due to Fe shortage. In 259 

dicotyledonous plants such as peach and pear, leaves are enclosed in buds or folded up 260 

at earlier developmental stages, and the leaf surface expands via longitudinal and 261 
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lateral cell enlargement (Richardson et al. 2005), with stomata differentiating during 262 

development. This process, which continues until the leaf has reached 10-50% of its 263 

final size (Tichá 1982), is sensitive to environmental conditions, including the 264 

nutritional status of the plant (Weyers and Meidner 1990). When stomatal 265 

differentiation is completed, stomatal density reaches a maximum and declines 266 

thereafter in the course of leaf expansion. As a consequence, final stomatal densities 267 

can be affected by disturbances both in differentiation and expansion processes. The 268 

fact that in Fe chlorotic leaves leaf expansion and the absolute number of stomata per 269 

leaf was reduced, whereas stomatal density was not changed significantly, may 270 

suggest that Fe shortage affects stomatal differentiation. The observed reduction of the 271 

length of stomatal pores in Fe chlorotic leaves could also be associated with the 272 

reduction of leaf expansion at the epidermal and guard cell level. 273 

The hypothesis that Fe chlorosis may hinder or stop leaf development processes 274 

was further supported by changes observed in the leaf cuticle and cell wall with Fe 275 

deficiency, including a decrease in soluble cuticular lipids in peach and a decrease in 276 

abaxial cuticle weight per unit surface in pear. The cuticle covers abaxial and adaxial 277 

leaf surfaces, lines stomatal apertures and the free inner epidermal cell spaces of the 278 

sub-stomatal cavity (Jeffree 2006). The cuticle appears on aerial plant organs very 279 

early during epidermal cell development, for instance in still unexpanded leaves in 280 

buds (Jeffree 2006). In parallel to leaf expansion, cuticular waxes must be deposited 281 

over epidermal cells to avoid desiccation (Richardson et al. 2005). Lipidic materials 282 

are required for adequate leaf growth and their synthesis may be affected by Fe 283 

deficiency. Indeed, it is plausible that Fe shortage affects cuticle formation via a 284 

limited production of lipidic material, as it was suggested to occur in pea and peach 285 

thylakoids (Abadía et al. 1988; Abadía 1992; Monge et al. 1993). 286 

There was a significant enlargement of the upper epidermal peach leaf cells and 287 

bundle sheath cells in both plant species with Fe deficiency. Similar morphological 288 

variations in association with Fe chlorosis have been also described for Mexican lime 289 

(Maldonado-Torres et al. 2006). However, and in agreement with the results obtained 290 

for sugar beet by Terry (1980) we did not appreciate any significant variation 291 

regarding the number of mesophyll cells and average cell volume of Fe-deficient 292 

versus Fe-sufficient leaves. 293 
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Transpiration rates of attached chlorotic leaves were kept at low levels due to the 294 

lower degree of stomatal opening as compared to green leaves, in agreement with 295 

Larbi et al. (2006). However, results obtained provide evidence for a different 296 

behaviour of leaf stomata upon loss of turgor with Fe deficiency, since chlorotic leaves 297 

lost high amounts of water immediately after detachment (stomatal phase) and also 298 

over time (cuticular phase). Thereby, and in agreement with Anderson (1984), water 299 

loss through the cuticle was higher in Fe-deficient leaves than in Fe-sufficient 300 

controls, and therefore cuticular factors could be important in considering leaf water 301 

status of chlorotic trees. Iron chlorosis normally occurs in arid and semiarid areas of 302 

the world were high summer temperature, water shortage and low RH regimes prevail. 303 

We have shown that chlorotic leaves are more prone to desiccation due to their 304 

epidermal characteristics, which poses a further physiological disadvantage for 305 

survival on calcareous, high pH soils. The reason for the partial stomatal closure is 306 

unknown and research is in progress to elucidate the phenomenon. 307 

A transient opening of stomata immediately after detachment, known as Iwanoff 308 

effect (Iwanoff 1928), was found to occur in chlorotic leaves. After interrupting xylem 309 

water supply to the leaf, stomatal opening could be explained by a rapid loss of turgor 310 

pressure, either of the surrounding epidermal cells (Raschke 1970a,b) or both the 311 

epidermal and guard cells (Kaiser and Legner, 2007). The mechanical advantage of 312 

epidermal cells over guard cells (DeMichele and Sharpe 1973) results in a hydro-313 

passive stomatal opening phase, followed by an active stomatal closure phase. The 314 

Iwanoff effect was only observed in chlorotic leaves, and it was found to be 315 

independent of species, daytime, degree of stomatal aperture before detachment, and 316 

irradiation conditions. Healthy leaves of both species never showed this effect, even 317 

when transpiration rates were low and comparable to those of chlorotic leaves, 318 

discarding the possibility that it could be caused by differences in initial stomatal 319 

apertures (Lange et al. 1986). The differential opening of stomata in green and 320 

chlorotic leaves may not be attributed to differences in zeaxanthin contents, because 321 

the time courses of both processes are totally different (Larbi et al. 2006; Powles et al. 322 

2006), with zeaxanthin reverting to violaxanthin only after several hours. Therefore, 323 

the stomatal behaviour of chlorotic leaves could be likely attributed to changes in 324 

mechanical properties related to constitutive morphological features of the epidermis. 325 

Larger surrounding epidermal cells with thinner walls could exert, upon sudden loss of 326 
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turgor, a stronger force on the smaller guard cells in the case of Fe-deficient leaves. 327 

Alternatively, guard cells in Fe-deficient leaves may loose temporarily control as a 328 

consequence of the many physiological changes (e.g., K concentration increases) 329 

brought about by Fe deficiency. The eco-physiological consequences of the 330 

morphological changes associated with Fe chlorosis in terms of the functionality of 331 

stomata in vivo and thus on plant water relations are not yet clear. Possibly the softness 332 

of the epidermal tissue could cause a disturbance of the fine tuning of stomatal 333 

aperture, especially under conditions requiring fast adaptation to changing ambient 334 

conditions. 335 

The reduction of abaxial cuticular weight per unit surface observed in pear leaves 336 

will also have some physiological implications. The abaxial cuticle of a green leaf was 337 

indeed observed to be thicker than the one of a chlorotic leaf, but this does not imply 338 

directly a higher resistance to water loss (Norris 1974). It is remarkable that the 339 

reduction in cuticular weight was only observed in the abaxial leaf side, the upper 340 

cuticle being similar irrespective of Fe status in both plant species investigated. Our 341 

data stress the key role of the lower epidermis, a leaf side which has been traditionally 342 

neglected in cuticular studies. The cuticular lipid and cuticle reduction associated with 343 

Fe-chlorosis will also render the leaves more susceptible to pest and disease attack. 344 

Since leaf water repellence is chiefly related to epicuticular waxes, while intra-345 

cuticular waxes are important in water resistance (Holloway 1969), the decrease in 346 

soluble cuticular lipids observed in chlorotic peach leaves will have consequences in 347 

terms of leaf wettability and resistance to water loss. The observed epidermal changes 348 

in association with Fe chlorosis will have implications for the permeability of gases 349 

and polar and apolar solutes which should be studied. Concerning infiltration 350 

processes, lower stomatal apertures may imply higher capillary forces for penetration 351 

as suggested for citrus leaves with stomatal plugs (Turrell 1947). However, uptake 352 

across stomata has been recently shown to occur via diffusion (Eichert and Goldbach 353 

2008), and generally a lower stomatal aperture also causes lower uptake rates (Eichert 354 

et al. 1998; Eichert and Burkhardt 2001). The occurrence of lower amounts of 355 

cuticular waxes may apparently facilitate leaf wetting and increase permeability. 356 

However, since chlorotic leaves exhibit a higher cuticular transpiration once they are 357 

detached from the tree, this may imply a higher water loss and possibly a lower degree 358 

of cuticular hydration, which in turn may cause a lower permeability to ions and polar 359 
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molecules. Research is in progress to assess the significance of Fe chlorosis in terms 360 

of leaf permeability to water and ions. 361 

In summary, Fe-chlorosis was found to induce structural changes in peach and pear 362 

leaves and also to affect stomatal functioning. The observed reductions in soluble 363 

cuticular lipids (peach leaves) and cuticle weight (pear leaves) in association with Fe 364 

chlorosis, will yield leaves more prone to water loss and more susceptible to pest and 365 

disease attack. Iron deficient leaves were found to be Iwanoff-responsive versus the 366 

standard behaviour of healthy leaves, which may be due to stomatal malfunctioning or 367 

differences in leaf water control. Research is in progress to better clarify the 368 

detrimental effect of Fe-deficiency chlorosis at the leaf level. 369 
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Table 1 Leaf Chl (µmol m-2; n=200) and Fe (µg g-1 DW; n=30) concentration, fresh weight (FW in g per leaf, n=200), leaf area (adaxial plus 488 

abaxial leaf surfaces, cm2; n=200), stomatal density (stomata mm-2; n=50) and stomatal pore length (µm; n=300) of green and chlorotic pear and 489 

peach leaves. Data shown are means ± SE 490 

 491 
Species Leaf type Leaf [Fe]  

(µg g-1 DW)  
[Chl]  

(µmol m-2) 
FW  

(g per leaf) 
Total leaf 

surface (cm2) 
Stomatal density  
(stomata mm-2) 

Pore length 
(µm) 

green 141.8±6.2*** 300±4.3*** 0.52±0.02*** 62.8±2.2*** 221±18 ns 26.1±0.4*** Peach 
chlorotic 92.8±4.1*** 90±6.7*** 0.40±0.02*** 47.0±1.6*** 233±11 ns 19.9±0.4*** 
green 143.8±5.6*** 250±4.4*** 0.72±0.04*** 60.4±3.2*** 160±9 ns 24.4±0.3*** Pear 
chlorotic 87.2±3.9*** 40±3.2*** 0.55±0.02*** 44.6±2.6*** 156±12 ns 20.3±0.3*** 

*** Significant at P ≤ 0.001; ns, not significant492 



 18

Table 2 Weight per leaf unit surface of abaxial and adaxial cuticles (n=20; each with 493 

25 cuticles) and of total solvent-extractable (soluble) cuticular lipids (n=6) from 494 

chlorotic and green peach and pear leaves. Data are means ± SE. The level of 495 

significance according to Student’s t test is indicated in different columns (p ≤ 0.05) 496 

 497 
Cuticle weight (µg cm-2) 

Species Leaf surface Green leaves Chlorotic leaves 
adaxial 191.3 ± 21.4 ns 164.9 ± 16.9 ns 

Peach abaxial 179.7 ± 14.1 ns 175.2 ± 12.2 ns 
adaxial 344.2 ± 22.6 ns 292.9 ± 31.4 ns 

Pear abaxial 513.6 ± 20.8 *** 332.9 ± 21.2*** 

Soluble cuticular lipids (µg cm-2) 

Species  Green leaves Chlorotic leaves 
Peach - 176.5 ± 13.3*** 103.6 ± 7.9*** 
Pear - 85.3 ± 7.2 ns 81.2 ± 5.1 ns 
*** Significant at P ≤ 0.001; ns, not significant    498 
 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 
 513 
 514 
 515 
 516 
 517 
 518 
 519 
 520 
 521 
 522 
 523 
 524 
 525 
 526 
 527 
 528 
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Table 3 Stomatal pore area (n=300), relative pore area on abaxial area basis (%; n=50) 529 

and transpiration rate (mmol m-2 s-1; n=50) of chlorotic and green peach and pear 530 

leaves. Transpiration rates were measured in attached leaves at 1,400 µmol quanta m-2 531 

s-1. Data are means ± SE. The level of significance according to Student’s t test is 532 

indicated in different columns (p ≤ 0.05) 533 

 534 
Species Leaf type Leaf 

surface 
Stomatal pore 

area (µm2) 
Pore area as  % 

of abaxial surface 
Transpiration rate 

(mmol m-2 s-1) 
green adaxial - - 0.09±0.03 ns 
chlorotic adaxial   0.04±0.02 ns 
green abaxial 141.6±15.7*** 0.983 *** 4.0±0.6*** Peach 

chlorotic abaxial 71.6±5.9 *** 0.392 *** 1.0±0.2*** 
green adaxial   0.09±0.02 ns 
chlorotic abaxial   0.06±0.01 ns 
green adaxial 45.8±5.3 * 0.221 *** 6.0±0.7*** Pear 

chlorotic abaxial 31.5±3.8 * 0.110 *** 3.3±0.4*** 
*** Significant at P ≤ 0.001; ** Significant at P ≤ 0.01; * Significant at P ≤ 0.05; ns, not 535 
significant 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 
 547 
 548 
 549 
 550 
 551 
 552 
 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 
 562 
 563 
 564 
 565 
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 566 

Fig. 1. Transversal section and leaf surface appearance of green (A,B,C,D) and 567 

chlorotic (E,F,G,H) peach leaves. (A,E) green and chlorotic embedded tissue samples 568 

stained with toluidine blue, observed by light microscopy; (B,F) LT-SEM micrographs 569 

of a green (B) and a chlorotic (F) leaf; (C,G) SEM micrographs of the adaxial leaf 570 

surface of a green (C) and a chlorotic (G) leaf; (D,H) SEM micrographs of the abaxial 571 

leaf surface of a green (D) and a chlorotic (H) leaf 572 

 573 
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 574 

Fig. 2. Transversal section and leaf surface appearance of green (A,B,C,D,E) and 575 
chlorotic (F,G,H,I,J) pear leaves. (A,F) green and chlorotic embedded tissue samples 576 
stained with toluidine blue, observed by light microscopy; (B,G) LT-SEM 577 
micrographs of a green (B) and a chlorotic (G) leaf; (C,H) SEM micrographs of the 578 
adaxial leaf surface of a green (C) and a chlorotic (H) leaf; (D,I) SEM micrographs of 579 
the abaxial leaf surface of a green (D) and a chlorotic (I) leaf; (E,J) autofluorescence 580 
of a green (E) and chlorotic (J) leaf 581 
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 582 

 583 

Fig. 3. Transpiration rates of detached green and chlorotic peach and pear leaves. 584 

Leaves were first measured while still attached to the tree (t = 0) under high (PAR 585 

1200–1900 µmol quanta m-2 s-1) or low (in the case of pear leaves, PAR 70–180 µmol 586 

quanta m-2 s-1) irradiation levels. Transpiration rates of detached leaves were 587 

subsequently assessed for 16 min, keeping the leaves in the shade (PAR 70–180 µmol 588 

quanta m-2 s-1). Leaf temperatures ranged from 24 to 34 °C in the sun and 22 to 24 °C 589 

in the shade. Relative humidity was between 20 and 37%. Transpiration rates, given as 590 

means and standard errors (n=3-5), are expressed as percentage of the value measured 591 

at t = 0 592 

 593 

Fig. 4. Time course of leaf water loss in green and chlorotic peach and pear leaves. 594 

Leaves were detached, immediately weighed and then placed in a dark room with the 595 

lower side lying against a filter paper (T=24ºC, 40% RH). Leaf weight was monitored 596 

for 4 days and water loss was expressed as a percentage of the initial FW 597 

 598 


