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Abstract 

 

In the Eastern Rif of N Morocco, soil conservation is seriously threatened by water 

erosion. Large areas of soil have reached an irreversible state of degradation. In this 

study, the 137Cs technique was used to quantify erosion rates and identify the main 

factors involved in the erosion process based on a representative catchment of the 

Eastern Rif. To estimate erosion rates in terms of the main factors affecting soil 

losses, samples were collected taking into account the lithology, slope and land use 
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along six selected transects within the Boussouab catchment. The transects were 

representative of the main land uses and physiographic characteristics of that Rif 

sector. The reference inventory for the area was established at a stable, well 

preserved, matorral site (value of 4250 Bq m-2). All the sampling sites were eroded 

and 137Cs inventories varied widely (between 245 and 3670 Bq m-2). The effective 

soil losses were also highly variable (between 5.1 and 48.8 t ha-1 yr-1). Soil losses 

varied with land use. The lowest average values were on matorral and fallow land 

(10.5 and 15.2 t ha-1 yr-1, respectively) but much higher with alfa vegetation or cereal 

crops (31.6 and 27.3 t ha-1 yr-1, respectively). The highest erosion rate was on a 

badland transect at the more eroded part of the catchment, with rates exceeding 40 t 

ha-1 yr-1 and reaching a maximum of 48.8 t ha-1 yr-1.The average soil losses increased 

by more than 100 % when the slope increased from 10º (17.7 t ha-1 yr-1) to 25º (40. 8 

t ha-1 yr-1). Similar results were obtained when comparing erosion rates in soils that 

were covered by matorral with respect to those under cultivation. Lithology was also 

a key factor affecting soil loss. Soils on marls were more erodible and the average 

erosion rates reached 29.36 t ha-1 yr-1, which was twice as high as soils on the glacis 

and old fluvial terraces (average rates of 14.98 t ha-1 yr-1 ). The radiometric approach 

was very useful to quantify erosion rates and to examine the pattern of soil 

movement. The analysis of main erosion factors can help to promote rational soil use 

and establish conservation strategies in the study area.  
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Introduction 

 

There is a severe risk of desertification in the Rif range (NE Morocco). A 

combination of factors such as soil erodibility, topography, climate and land use interact 

to trigger erosion processes that are very intense, especially in mountainous areas. In 

recent decades, anthropogenic impacts have played an important role in the loss of 

fertile soil, thus threatening the conservation of soil resources. In that area, soils are 

poorly developed in general while deforestation and overgrazing have accelerated the 

erosion process. Intense soil degradation by water erosion also leads to important 

socioeconomic damage. On the field scale, the fine fractions of soil decrease and soil 

nutrients are depleted, which decreases soil fertility. Other effects, such as the decrease 

in infiltration rates, promote disequilibrium in the water soil balance and increase 

runoff. On a larger scale (such as catchments and river basins), increase in the runoff 

coefficient causes devastating floods that have undesirable side effects and damage 

infrastructure (channels, roads and bridges). Other important indirect impacts are rapid 

siltation of water bodies, which decreases their storage capacities. The overall 

degradation of soil resources has serious consequences for stable development in the 

region (Faleh, 2004). 

The 137Cs radiometric technique was used to assess the erosion produced by runoff 

and rills since it is useful to quantify soil erosion in a variety of environments around 

the world. From the first studies (Ritchie et al., 1974, Walling et al. 1986; Martz and De 

Jong, 1987; Loughran et al., 1990; Ritchie and McHenry, 1990) to more recent works 

(e.g. Banis et al., 2004, Navas et al., 2005), the history of the successful application of 

this technique extends over the last 30 years. 



 4

Assessment of erosion in semiarid Mediterranean regions (Navas and Walling, 

1992 ; Quine et al., 1994, Soto and Navas, 2004) also demonstrate the potential of this 

technique to describe soil movement in highly fragile environments. In Morocco, 

studies using fallout 137Cs have been conducted more recently by Moukhchane (1999), 

Bouhlassa et al. (2000) and Faleh et al. (2005 a,b). 

In the Boussouab catchment, the key role of vegetation cover, topography and 

type of parent materials on which soils are developed has been demonstrated using 

classical methods and empirical equations (Sadiki, 2005). The objective of this paper 

was to apply an alternative and reliable technique with a physical basis to measure the 

effect of the above mentioned factors on soil loss. A soil survey was designed to 

establish representative transects, taking into consideration land use, slope and lithology 

along selected transects in a characteristic catchment of the fragile environment in the 

Eastern Rif.  

 

The study area  

   

The Boussouab catchment in the Eastern Rif (NE Morocco), located some 40 km 

N of Taza city, extends over a surface area of 25,220 ha. This middle mountain area 

with altitudes ranging from 625 m to 1622 m, is characterized by a hilly type landscape. 

The structural divisions are the Meso-Rif, the Pre-Rif and the Foreland (Figure 1). 

The Meso-Rif is composed of friable and light rocks such as dark shales, white 

marls, limestones with marls and decimetric strata of marls embedded with silex 

limestones. The Pre - Rif extends in the catchment from NE to SW, its internal part is a 

flysch composed by sandy schists, whereas the external part occupies a larger area made 

of Pre- Rif nappe. This is a thick and homogenous sequence of blue marls. On these 
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allochtone formations there are synclinals post-nappes of Tortonian age composed of a 

thick sequence of sandy strata. The Foreland is formed by the sandy-carbonatic massif 

of Terni-Mezgout. The sillon South – Rif is a basin filled with conglomerates, 

calcarenites and marls that separates the massif of Terni-Mezgout from the Rif range. 

The climate is semiarid to arid type with an average annual rainfall ranging 

between 150 mm in the South at Anguied and 350 mm in the North at Tizi Ousli. 

Rainfalls are often short but very intense. Their distribution is irregular both in time and 

in space and most of the water courses are ephemeral, apart from the Boussouab River 

that drains the catchment. 

The natural vegetation in the area is within the arid – semiarid bioclimatic stage. 

Matorral is the predominant vegetation cover, with important degradation features. The 

most common species are Alep pine (Pinus halepensis), juniper (Juniperus communis) 

and thuya (Thuya orientalis), with some Eucalyptus plantations. On the smooth slopes, 

there is steppe vegetation composed by shrubs of alfa (Stypa tenassissima) and Artemisa 

sp. On the flat valley floor, soils are cultivated for cereals that have very low yields and 

are left fallow once every two years. 

 

Materials and Methods 

 

The fallout of 137Cs was especially intense in 1963 and the radioisotope remains 

fixed to soil particles, especially at upper soil layers. Using this artificial radiotracer, the 

soil movement can be traced and erosion and aggradation rates can be estimated. The 

measured inventories are compared with the reference sites where soil stability is 

adequate to preserve the initial activities per surface area from the maximum 137Cs 

fallout (Ritchie et al., 1974).  
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A soil sampling scheme was established to select representative transects of the 

main soil characteristics, slope and land use in the study area (Figure 1). The soil 

samples were collected along six transects following the slope direction, and sampling 

sites were 10 m apart. A 7 cm manual corer was used to extract the 30 cm deep soil 

samples, thus ensuring that the whole radioisotope profile was retained (Faleh et al., 

2005 a). A total of 4 transects (T1, T2, T3, T4) were taken on marls substrate that had 

different land uses and slopes. The T1 (7 cores, C1 - C7) was on fallow land, T2 (7 

cores, C8 – C14) on cereal crops, T3 (7 cores, C15 – C21) under shrubs cover of alfa 

and T4 (3 cores, C34 – C36) on bare soils at a highly degraded slope of badlands. 

Another two transects (T5, T6) were taken on soils developed on a Quaternary 

formation that is a combination of glacis and old fluvial terraces. Transect 5, T5 (6 

cores, C22 – C27), was on a fairly dense “matorral”, whereas T6 (6 cores, C28 – C33) 

was on fields with cereal crops. A stable site that was almost level and had well 

preserved natural vegetation was chosen for sampling as reference for the study area, 

and a composite sample was created (T).  

The 36 bulk cores were sectioned at 5 cm intervals and samples were treated 

following standard methods (Walling and Quine, 1991) prior to analysis for 137Cs by 

gamma spectrometry. Samples were air-dried, ground and passed through a 2 mm sieve. 

The 137Cs activities were measured using a high resolution, low background, low 

energy, hyperpure coaxial gamma-ray detector coupled to an amplifier and multichannel 

analyser. The detector was shielded to reduce background and calibrated using standard 

samples in the same geometry as the measured samples. Gamma emissions of 137Cs 

(662 keV line in Bq kg-1 air-dry soil) were measured on 222 sub-samples. Counting 

times were around 30000 s and the analytical precision of the measurements was 

approximately ± 6 %. 
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Calibration of 137Cs values can be approached by using mass-balance models 

(Walling and He, 1997), allowing to estimate erosion rates. For cultivated soils, the 

mass balance model I (simplified mass balance model) by Zhang et al. (1990) was used. 
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layer (m); B= bulk density of soil (kg m-3); X= percentage reduction in total 137Cs 

inventory; P= particle size correction factor. 

For the uncultivated soils, a profile distribution model (Zhang et al., 1990; 

Walling and Quine, 1991) was used. 
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Results and Discussion 

 

The reference inventory in the Boussouab catchment was established in a 

relatively dense matorral with a high percentage of its surface covered by alfa and the 

site was almost level. The total inventory was 4250 Bq m-2, with a typical exponential 
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decay of the radioisotope with depth (Figure 2). The 137Cs was concentrated in the upper 

part of the soil profile (more than 70 % in the first 15 cm). As seen in Table 1, the 

reference inventories in Morocco are quite variable, depending on physiographic 

characteristics but especially differences in annual rainfall.  

A summary of the physiographic characteristics of the transects, together with 

137Cs inventories and estimates of erosion rates at the sampling sites is presented in 

Table 2. The average 137Cs inventory in the study area was 1748 Bq m-2 (sd = 1044) and 

the estimated erosion rate was around 24. 6 t ha-1 yr-1, (sd = 11.7) largely exceeding the 

rates required to maintain the soil resource. Therefore, there is a general risk of losing 

this non-renewable resource in the area. 

The 137Cs inventories varied widely at the sampling sites ranging from 245 to 

3672 Bq m-2.Compared with the reference inventory for the study area, those values 

represent a range of 137Cs loss between 95% and 14 %, respectively. The estimation of 

erosion rates by mass balance and profile models for the cultivated and uncultivated 

soils were also quite variable, with minimum and maximum values of 5.1 and 48.8 t ha-1 

yr-1, respectively.  

For each of the transects, the average 137Cs inventories ranged between 352 and 

2958 Bq m-2 and the average soil losses between 10.5 and 46.4 t ha-1 yr-1. The lowest 

erosion rates were in soils on glacis at the matorral transect (T5) and the highest were in 

soils on marls of the transect cultivated for cereals (T2) and in the bare soils of the 

badland transect (T4). Erosion rates were also quite high in soils with alfa vegetation on 

marls. Since the six transects have similar climatic conditions, the large variability in 

erosion rates must be explained by other physiographic factors, such as parent materials, 

land use and topography.  
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As seen in Figures 3 and 4, the 137Cs depth distribution differed markedly 

between the matorral (T5) and badland transects (T4). These are the most different 

transects in the study area, the former being better preserved and the latter more 

degraded. In the matorral transect T5, 137Cs decays exponentially along the soil profile. 

The site at the head transect is quite stable, but along the transect, increasing slope 

values increase the soil movement down-slope and erosion rates double that at the top 

position. The depletion of 137Cs in the upper 5 cm indicates that erosion mainly affects 

the soil surface, and that it does not progress further at deeper layers. At the badland 

transect T4, 137Cs was largely depleted along the soil profile and the radioisotope only 

appeared in the upper 5 cm. Thus, it appears that soils were much better preserved under 

the matorral. This has also been found in soils developed on marls in a semiarid 

environment with similar rainfall patterns (Quine et al., 1994). 

The fallow transect (T1) on marls had more homogeneous 137Cs depth profiles. 

This is due to occasional tillage, mainly within the first 20 cm what is the normal depth 

of ploughing. There was some 137Cs depletion in the upper soil layers. In strong 

contrast, there was only little 137Cs in the first 10 cm in the depth profiles along transect 

T2, with cereal crops. Similarly, the 137Cs depth distribution of T2 was quite different 

from the other cereal transect (T6) on the glacis substrate. 

Along the alfa transect (T3), all sites were highly eroded, as indicated by the 

137Cs depth distribution. In 5 of the 7 sites, the radioisotope only appeared within the 

first 10 cm and inventories were considerably depleted as they were almost less than 

half of those found at the matorral transect T5. Below 10 cm, 137Cs is almost zero and 

just one site shows a deeper profile in which the depletion of 137Cs is also very high. 

The data of the six transects were grouped separately to create homogeneous sets 

having similar substrate, slope or land use. Considering the slope factor, for the same 
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marls substrate and land use (alfa), along the alfa transect T3, erosion increases for 

increasing slope values (Table 2). However, the sites located at the top and bottom 

positions of the slope that are flatter that the rest of the sites along the slope, are less 

eroded. As shown in Figure 3, soil losses on 15º slope sites in T3 were around 25 t ha-1 

yr-1, whereas at 25 º slope sites, average soil loss was around 35 t ha-1 yr-1. Hence, soil 

loss increased by approximately 40 % for a slope increase of 10º. Therefore, slope is 

also one of the main factors responsible for variation of soil losses in the studied 

catchment. This agrees with findings by Zhang et al. (2003) that also used the 

radiometric technique to assess soil erosion rates on sloping, cultivated land and flat 

terraces in the Upper Yangtze River Basin, China. In spite of the physiographic 

differences they also found that sloping cultivated fields suffer very severe soil erosion, 

in strong contrast with terraced fields, and suggest a close relationship between erosion, 

soil texture and slope gradient.  

When considering soils developed on the same substrate and with the same slope 

values, soil losses varied largely in terms of land use. As shown in Figure 4, the soils on 

the glacis of the 10º slope transect T5 under matorral vegetation has erosion rates 

around 10.5 t ha-1 yr-1 (sd = 2.7). However, in soils cultivated for cereals at the 10 º 

slope transect T6 (also on glacis materials), the erosion rates were 19.4 t ha-1 yr-1 (sd = 

4.7). Therefore, in 40 years the cultivated soils have lost almost double the amount of 

soil as under matorral. The main role of vegetation in protecting the soil surface and, 

conversely, cultivation as a key factor triggering erosion in semiarid areas, was also 

outlined in a nearby study area (Faleh et al., 2005 a) and in a Spanish catchment (Quine 

et al., 1994). In south-eastern Brazil, Guimaraes et al. (2003) also found that soil 

movement was related to slope, land use, and conservation practices, based on 137Cs 

estimates.  
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Those results demonstrate the negative impact of land use changes, such as 

deforestation of highly fragile soils that are later cultivated. In the study area, there is an 

increasing trend to transform the rangeland on steep slopes into grazing areas or 

cultivated fields. Those practices are the main factors triggering erosion and the surfaces 

with increasing risk of erosion have also been extending rapidly over the last decades. 

All these negative impacts under intense anthropogenic pressure endanger the 

sustainability of agroecosystems in the Rif. Soils quickly lose their fertile horizons and 

reach stages of very low productivity. Other undesirable effects are the conversion of 

transformed areas into net suppliers of sediments that are then exported through the 

drainage system, thus contributing to the siltation of dams and reservoirs in the region.  

For soils with the same slope (10º) and land use (cultivated for cereals) (Table 2) 

the largest soil losses occurred in soils developed on marls, that lost around 34 t ha-1 yr-1  

on average. Those rates almost double what was measured in soils on the Quaternary 

glacis-terrace (average values of 19 t ha-1 yr-1). Schoorl et al. (2004) assessed the effects 

of lithology, slope morphology and land use on steep Mediterranean slopes and found 

important differences in radionuclide concentrations depending on lithology. Although 

the rocks in their study area were very different from the Rif, the main effect of the 

difference in clay mineralogy can be a reason for those differences. Those authors also 

observed that higher 137Cs inventories are associated with higher percentages of 

vegetation cover, as in this study. On the marls substrate, the soils cultivated for cereals 

had similar erosion rates when the slope was 15 º, so for that range of slopes (10º – 15º) 

cultivation was the main erosion factor.  

Therefore, the 137Cs inventories and soil losses varied with the substrate, land 

use and slope. Summary statistics in Table 3 illustrate the differences in terms of the 

factors considered in this study. A one-way analysis of variance showed a significant 
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difference (P<0.05) between the means for 137Cs inventories and erosion rates from soils 

on the marls and soils on the glacis-terrace materials. There were also significant 

differences between the means for erosion rates from bare soils on marls and the 

remaining land uses. When considering slope as the variation factor, increases of 5º in 

slope significantly affected the variation in erosion rates.  

In the Boussouab catchment, rational land use is very important for the control 

and conservation of soils. Moreover, slope deforestation, overgrazing, poor soil 

management and other soil abuses enhance the fragility of this environment and 

substantially increase erosion rates.  

 

Conclusion 

 

  The 137Cs technique helped to trace soil movement in the last 40 years.  

The comparison between the reference inventory for the area and the measured 

inventories at the sampling sites with different slope values, parent materials and land 

uses reflects a large variability. The more degraded cultivated soils on marls of steeper 

slopes were 10 times more eroded than the best preserved soils under matorral, gentle 

slopes and glacis-terrace substrate.  

 The main cause of erosion in the study area was anthropogenic impact, 

especially when the natural vegetation was eliminated and the land used for crops. 

Erosion rates in cultivated land were twice as high as land with matorral. Where 

anthropogenic impact was minimal, slope appeared to be the main cause of erosion. 

Finally, another important factor was substrate, because marls are more erodible than 

glacis materials, the erosion rates on marls substrate doubled that on Quaternary glacis –

terraces.  
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 Because of the fragility of this environment and its risk of accelerated erosion 

under increasing anthropogenic pressure, it is necessary to establish conservation 

measures to protect the natural vegetation and delimit areas for cultivation to more 

gentle surfaces.  

From our results and the relative importance of the studied factors on triggering 

soil erosion, the following recommendations should be taken into consideration. Urgent 

action is required to protect the soils developed on marls because they are highly 

erodible. In areas with some vegetation cover and depending on its conservation, 

reforestation is recommended with trees, for forest areas, or with autochthonous alfa 

species, in the areas where shrubs are predominant. This will increase the soil surface 

protected by the vegetation cover and reduce the splash and consequent detachment of 

soil particles. Increasing root density will favour water infiltration and improving soil 

structure will help maintain soil particles within the soil matrix. Since slopes in the 

study area were quite steep, constructing furrows along contour strips will decrease the 

erosive impact of runoff by limiting its speed.  

For areas cultivated for cereals it is highly recommended to encourage the 

participation of inhabitants and promote tillage following the contour lines. 

Furthermore, implementing borders to enclose the cultivated fields will help to retain 

the detached soil particles. Such furrow boundaries could be planted with fruit trees 

adapted to a semiarid climate such as olive, fig or almond trees. 

For areas where erosion has reached an irreversible stage and vegetation growth 

is extremely complicated, mechanical intervention is required, such as wall construction 

to limit erosion of bare surfaces which are the main sources of sediments that are then 

transported out of the catchments and end up in reservoirs or other water bodies in the 

lowlands, thus contributing to rapid siltation.   
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The preservation of this environment is the only guarantee to stop desertification 

since the Rif and its woodlands constitute a natural barrier. Furthermore, it is necessary 

to identify areas that supply sediments to design action plans and soil best management 

practices to limit the generation of sediments and its transport to water bodies, thus 

reducing water storage capacities and water quality. 
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FIGURE CAPTIONS 

 

Figure 1. Location and geology of the Boussouab catchment 

Figure 2 . 137Cs reference inventory for the Boussouab catchment 

Figure 3. 137Cs depth distribution, inventories and erosion rates at the sampling sites 

along the transects on marls substrate. 

Figure 4. 137Cs depth distribution, inventories and erosion rates at the sampling sites 

along the transects on glacis - terrace substrate. 
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Figure 2 
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137Cs inventory : 2587  Bq m-2 
  Erosion rate :     15.3   t ha-1 yr -1 
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Figure 4 

 

 

137Cs inventory : 3052  Bq m-2 
  Erosion rate :     12.9   t ha-1 yr -1 
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Table 1.  Spatial variability of the 137Cs reference inventories in Morocco 

Area 137Cs reference 
inventory (Bqm-2) 

authors 

 oued Nakhla (Rif occidental 3250 Bouhlassa et al. (2000) 
oued Aknoul (Rif oriental) 3702 Faleh (2004) 

Merkat (Prérif central) 2802 Faleh (2004) 
Oued Tigrigra (Moyen Atlas) 4491 El Katmour (2004)  

Boussouab (Prérif oriental)  4250 Sadiki (2005) 
 

 



Table 2. Physiographic characteristics of transects and 137Cs inventories and soil losses at the 

sampling sites.  

 

Lithology Transect Land use Sample 
(core) 

Slope (º) 137Cs 
Inventories 

Bq m-2 

Soil losses  
t ha-1 yr-1 

 
 
 

T1 

 
 
 

Fallow 
land 

C1 
C2 
C3 
C4 
C5 
C6 
C7 

20 
20 
20 
20 
20 
15 
15 

2587 
2360 
2602 
2827 
2318 
2798 
2871 

15.6 
17.6 
15.2 
13.3 
17.0 
14.1 
13.3 

 
 
 

T2 

 
 
 

Cereals 

C8 
C9 
C10 
C11 
C12 
C13 
C14 

15 
15 
15 
15 
15 
10 
10 

  541 
 396 
 326 
 272 
 245 
 265 
 423 

33.8 
33.5 
33.1 
33.8 
35.6 
35.5 
33.0 

 
 
 

T3 

 
 
 

Alfa 

C15 
C16 
C17 
C18 
C19 
C20 
C21 

15 
20 
25 
25 
25 
20 
15 

1388 
1148 
1057 
1026 
1145 
1182 
1948 

28.9 
33.5 
35.5 
36.2 
33.6 
32.8 
20.6 

 
 
 
 
 
 
 
 
 
 
marls 

 
T4 

 
Badland 

C34 
C35 
C36 

25 
25 
25 

 660 
 764 
 614 

48.8 
43.4 
47.0 

 
 

T5 

 
 

Matorrals

C22 
C23 
C24 
C25 
C26 
C27 

10 
10 
10 
10 
10 
10 

2554 
2987 
2905 
2717 
2913 
3672 

 

14.0 
10.1 
10.8 
13.0 
10.8 
5.1 

 
 

T6 

 
 

Cereals 

C28 
C29 
C30 
C31 
C32 
C33 

10 
10 
10 
10 
10 
10 

1279 
1760 
2325 
2178 
2819 
3052 

26.6 
23.6 
18.8 
19.9 
14.7 
12.9 

 
 
 
 
Glacis 
terrace 

reference Forest T level 4250 0.0 
 
 



Table 3 . Summary statistics for the 137Cs inventories and soil losses in function of lithology, land use and slope.

      n average           sd min. max. average sd min. max.

lithology

marls 24 1324 948 245 2871 29,4 10,8 13,3 48,8
glacis -terraces 12 2597 637 1279 3672 15,0 6,2 5,1 26,7

land use

fallow 7 2623 223 2318 2871 15,2 1,7 13,3 17,6
cereals 13 1221 1068 245 3052 27,3 8,3 12,9 35,6
alfa 7 1271 321 1026 1950 31,6 5,4 20,6 36,2
matorral 6 2958 384 2554 3672 10,5 3,0 5,1 14,0
bare soil 3 679 77 614 764 46,4 2,7 43,4 48,8

slopeº

10 14 2275 1007 265 3672 17,7 9,0 5,1 35,5
15 9 1198 1093 245 2871 27,4 9,0 13,3 35,6
20 7 2147 691 1149 2827 20,7 8,6 13,3 33,5
25 6 878 226 614 1145 40,8 6,5 33,6 48,8

137 Cs Inventories       Bq m-2 Soil losses      t ha-1 yr -1




