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Abstract. Ensemble classifiers combine the classification results of several classifiers. 
Simple ensemble methods such as uniform averaging over a set of models 
usually provide an improvement over selecting the single best model. Usually probabilistic 
classifiers restrict the set of possible models that can be learnt in order to 
lower computational complexity costs. In these restricted spaces, where incorrect 
modelling assumptions are possibly made, uniform averaging sometimes performs 
even better than bayesian model averaging. Linear mixtures over sets of models provide 
an space that includes uniform averaging as a particular case. We develop two 
algorithms for learning maximum a posteriori weights for linear mixtures, based on 
expectation maximization and on constrained optimizition. We provide a nontrivial 
example of the utility of these two algorithms by applying them for one dependence 
estimators.We develop the conjugate distribution for one dependence estimators and 
empirically show that uniform averaging is clearly superior to BMA for this family 
of models. After that we empirically show that the maximum a posteriori linear mixture 
weights improve accuracy significantly over uniform aggregation. 
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1 Introduction

An ensemble of classifiers is a set of classifiers whose individual decisions are combined in
some way (typically by weighted or unweighted voting) to classify new examples. Uniform
averaging and other improper linear models have been shown to be better than selecting a
single best model [5].

Bayesian model averaging (BMA) [19,20] provides a coherent, theoretically optimal
mechanism for accounting with model uncertainty. BMA, under the name Bayesian voting,
is commonly understood as a method for learning ensembles [6]. With some exceptions
[4,2], the application of BMA in machine learning has not proven as successful as expected
[7]. A reasonable explanation of this mismatch between expected and real performance of
BMA has been given in a short note by Minka in [27], where it is clearly pointed out that
BMA is not a model combination technique, and that it should be thought of as a method
for ’soft model selection’. This understanding has led to the proposal of techniques for the
bayesian combination of classifiers [13]. In spite of that, BMA is still being considered by
many scientists as an ensemble learning technique and as such it is compared with other
ensemble learning techniques such as stacking, bagging or boosting [3,9].

Accepting BMA as ’soft model selection’, it can happen that uniform averaging im-
proves over BMA when modelling assumptions are incorrect. Many times this is the case
when classifiers are applied “out-of-the-box”. However, anensemble classifier should be
able to recognize which models are right and which are incorrect. In order to do that, we
propose two algorithms for adjusting the weights for a linear mixture of classifiers and are
robust to incorrect modelling assumptions of the base classifiers.

The issue of generative versus discriminative classifiers has raised a lot of attention
in the community in the last years [28,1,30,16,15,31]. It iswidely believed that, provided
enough data, discriminative classifiers outperform their generative pairs. Since both gen-
erative and discriminative classifiers are in use nowadays,two different initial settings are
assumed in order to construct a linear ensemble of classifiers. In the first one, we are given
a set of base classifiers that after receiving an unclassifiedobservation, output the condi-
tional probability distribution for each class. On the second setting, our base classifiers
are assumed to output the joint probability for each class and the observation (instead of
contioned to the observation). We could name the first setting linear averaging of discrim-
inative classifiers and the second linear averaging of generative classifiers. We propose
the usage of an expectation maximization algorithm for the first setting. The second set-
ting is tougher and we propose the usage of augmented lagrangian techniques [14,29] for
constrained nonlinear optimization.

In the last years there have been several attempts to improvethe naive Bayes classifier
by relaxing its restrictive independence assumption [10,22,37,2]. Averaged One Depen-
dence Estimators (AODE) classifiers have been proposed [36]as an efficient and effective
alternative to naive Bayes. They are based on k-dependence estimators [32], which are
classifiers where the probability of each attribute value isconditioned by the class and at
most k other attributes. AODE classifiers estimate the classprobabilities by performing an
equally weighted linear combination of the estimates of allpossible 1-dependence estima-
tors. Since AODE is a classifier based on uniform aggregationof simple classifiers that
make very hard assumptions that are likely not to be fulfilled, it can act as a good test case
for our algorithms. We describe AODE in section 4. In section5 we find a conjugate dis-
tribution for the problem and we prove that it is possible to perform exact BMA over the



set of 1-dependence estimators in polynomial time. After that, in section 6 we adapt our
weight adjustment algorithms for ODEs and finally in section7 we empirically compare
the results of BMA with uniform averaging and our two linear mixtures, obtaining results
that clearly confirm the previously exposed ideas.

In [33,34] a Bayesian technique for finding maximum likelihood ensembles of Bayesian
networks is described. In [26,25] an EM algorithm for findinglinear mixtures of trees is
proposed. Our work differs from these two previous approaches in some aspects, being the
most rellevant one that those works were stated in the setting of density estimation (mix-
tures were learned with a generative approach in mind) and ours explicitly deals with the
problem of classification or conditional density estimation (discriminative approach). In
[13], Bayesian methods for averaging classifiers are presented. Ghahramani et al. assume
the predicted class to be the only information available as output from the classifiers to
be averaged. We assume a bit more and ask classifiers to outputa probability distribution.
This setting was proposed by Ghahramani et. al. as a rellevant line of future work.

To summarize, the main contribution of the paper is the proposal of two maximum
a posteriori algorithms for averaging probability distributions in a supervised setting. As
side results, we provide the conjugate distribution for ODEs and empirically confirm the
limitations of BMA when understood as an ensemble learning technique in a nontrivial
case. A more detailed study of the two algorithms proposed and a comparison with other
general ensemble learning methods will be the subject of future work.

2 Formalization and Notation

A discrete attributeis a finite set, for example we can define attributePressure asPressure =
{Low, Medium, High}. A discrete domainis a finite set of discrete attributes. We note
ΩC = {A1, . . . , An, C} for a classified discrete domain whereAu are attributes other
than the class andC is the class attribute. We will usei andj as values of an attribute and
u andv as indexes over attributes in a domain. We noteX−C = {A1, . . . , An} the set that
contains all the attributes in a classified discrete domain except the class attribute.

Given an attributeX , we note#X as the number of different values ofX . An obser-
vationx in ΩC is an ordered tuplex = (x1, . . . , xn, xC) ∈ A1× . . .×An×C. An unclas-
sified observationx−C in ΩC is an ordered tuplex−C = (x1, . . . , xn) ∈ A1 × . . . × An.
To be homogeneous we will abuse this notation a bit notingxC for a possible value of the
class forx−C . A datasetD in ΩC is a multiset of classified observations inΩC .

We will noteN for the number of observations in the dataset. We will also noteNu(i)
for the number of observations inD where the value forAu is i, Nu,v(i, j) the number of
observations inD where the value forAu is i and the value forAv is j and similarly for
Nu,v,w(i, j, k) and so on.

3 Learning mixtures of probability distributions

In order to aggregate the predictions of a set of different models, we can use a linear
mixture assigning a weigth to each model. If modelling assumptions are correct, BMA
provides the best linear mixture. Otherwise, uniform averaging has been shown to improve
over single model selection and many times also over BMA. We would like to develop an
algorithm for assigning weigths to models in a linear mixture that improves over uniform
averaging while being robust to incorrect modelling assumptions of the base classifiers.



3.1 Formalization of the problem

On a classified discrete domainΩC , we define two different types of probability distribu-
tionss. A generative probability distribution (GPD) is a probability distribution overΩC .
A discriminative probability distribution (DPD) is a probability distribution overC given
X−C . Obviously, from every GPD, we can construct a DPD, but notvice versa.

A linear mixture ofn DPDs (LMD in the following) is defined by the equation:

PLMD(xC |x−C) =

n∑
u=1

αuPDPDu
(xC |x−C) (1)

The model is more widely known as thelinear opinion pool[12,11].
A linear mixture ofn GPDs (LMG in the following) is defined by the equation:

PLMG(xC , x−C) =

n∑
u=1

αuPGPDu
(xC , x−C) (2)

in both cases
n∑

u=1
αu = 1 and∀u αu > 0.

Supervised PosteriorsFrom a frequentistic point of view, in order to learn conditional
probability distributions we need to maximize conditionallikelihood. In [17] the concept
of supervised posterioris introduced as a Bayesian response to this frequentistic idea.
The proposal in [17] is that from a Bayesian point of view, in order to learn conditional
probability distributions, given a family of modelsM, we need to compute the BMA over
models using the supervised posteriorP s(M |D):

P (xC |x−C ,D, ξ) =

∫

M∈M

P (xC |x−C , M, ξ)P s(M |D, ξ) (3)

where
P s(M |D, ξ) = P s(D|M, ξ)P (M |ξ) (4)

and
P s(D|M, ξ) =

∏
x∈D

P (xC |x−C , M, ξ) (5)

The development in this section follows these ideas.

Supervised posterior for LMD In order to perform Bayesian learning over LMD and
LMG we define a prior distribution overα. A natural choice in this case is to use a Dirich-
let distribution. For conciseness we fix the Dirichlet hyperparameters to 1, although the
development can be easily generalized to any Dirichlet prior. We have

P (α|ξ) ∝

n∏
u=1

αu (6)



The supervised posterior after an i.i.d. datasetD for a LMD is:

PLMD(α|D, ξ) =
P (D|α, ξ)P (α|ξ)

P (D|ξ)
=

∏
x∈D

P (x|α, ξ)P (α|ξ)

P (D|ξ)
=

=

∏
x∈D

P (xC |x−C , α, ξ)P (x−C |α, ξ)P (α|ξ)

P (D|ξ)
=

=
∏
x∈D

P (xC |x−C , α, ξ)P (α|ξ)

∏
x∈D

P (x−C |α, ξ)

P (D|ξ)
(7)

Assuming thatP (x−C |α, ξ) does not depend onα we can conclude that

PLMD(α|D, ξ) ∝
∏
x∈D

n∑
u=1

αuPDPDu
(xC |x−C)

n∏
u=1

αu (8)

The exact BMA prediction in this setting will be given by:

PLMD(xC |x−C ,D, ξ) =

∫
α

PLMD(α|D, ξ)

n∑
u=1

αuPDPDu
(xC |x−C)dα (9)

Supervised posterior for LMG The supervised posterior after an i.i.d. datasetD for
LMG is

PLMG(α|D, ξ) =
∏
x∈D

n∑
u=1

αuPGPDu
(xC , x−C)

∑
c∈C

n∑
u=1

αuPGPDu
(c, x−C)

n∏
u=1

αu (10)

and the exact BMA prediction in this setting

PLMG(xC |x−C ,D, ξ) =

∫
α

PLMG(α|D, ξ)

n∑
u=1

αuPGPDu
(xC , x−C)

∑
c∈C

n∑
u=1

αuPGPDu
(c, x−C)

dα (11)

3.2 Proposed solutions

MAPLMD To the best of our knowledge there is no close form solution for computing
the result of equation 9. Hence, we will have to approximate its value. A first possibility
would be to directly approximate it using Markov Chain MonteCarlo (MCMC). However,
each iteration of the model will require the computation of the product in equation 9 that
ranges over all the observations in the dataset, resulting in a heavy use of computational
resources. A second possibility is approximating the expression using only the maximum
a posteriori (MAP) value forα (which we noteαMAP

LMD
) as

P (xC |x−C ,D, ξ) ≈

n∑
u=1

αu
MAP
LMDPDPDu

(xC |x−C) (12)



It is known [23,24] that, since we are dealing with a finite mixture model, we can
determineαMAP

LMD
by means of the Expectation-Maximization (EM) algorithm byposing

the problem into an incomplete-data one introducing an additional unobservable variable
for each observation corresponding to the mixture component that generated the data. This
gives us a reasonably efficient procedure for determiningα

MAP

LMD
. The aggregation method

resulting from findingαMAP

LMD
and then applying it in equation 1 is MAPLMD.

MAPLMG The case of LMG is not so simple. As we did for LMD, we can approximate
the exact BMA prediction using only the MAP value forα (that we noteαMAP

LMG
). How-

ever, in this case, there is no straightforward way to use theEM algorithm. From an opti-
mization point of view, we have to findαMAP

LMG
, under the inequality constraints that each

component of the vectorαMAP

LMG
should be greater that 0 and the equality constraint that

the components ofαMAP

LMG
should add up to 1. This is a constrained nonlinear optimiza-

tion problem that can be solved by using the augmented (or penalized) lagrangian method
[14,29] for constrained nonlinear optimization. This method transforms a constrained non-
linear optimization problem into a sequence of unconstrained optimization problems, pro-
gresively adjusting the penalization provided by not fulfilling the constraints. For solving
each of the resulting unconstrained optimization problemsseveral efficient methods are
available. In our case we have used the well known Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm. It is a quasi-Newton method which builds up an approximation to the
second derivatives of the function using the difference between successive gradient vec-
tors. By combining the first and second derivatives the algorithm is able to take Newton-
type steps towards the function minimum, assuming quadratic behavior in that region. This
technique requires the computation of the partial derivative of the function to be optimized
with respect to each of theαi. Fortunately this can be done efficiently if we calculate
it together with the function. By simple algebraic manipulations it can be seen that the
derivative of equation 10 comes given by:

∂P (α|D, ξ)

∂αu

= P (α|D, ξ)(
∑
x∈D

pu,xC

n∑
u=1

αupu − pu

n∑
u=1

αupu,xC

n∑
u=1

αupu

n∑
u=1

αupu,xC

+
1

αu

) (13)

where
pu,c = PGPDu

(c, x−C)

pu =
∑
c∈C

PGPDu
(c, x−C)

In order to complete the Lagrangian, we also need to compute the derivatives of the con-

straints,
n∑

u=1
αu = 1 and∀u αu > 0, with respect to eachαu that are trivial. The aggrega-

tion method resulting from findingαMAP

LMG
and then predicting using equation 2 is named

MAPLMG.

4 AODE

In this section we review the AODE classifier as presented in [36]. Given a classified
domain, AODE learns a set of 1-dependence probability distribution estimators (ODE)



containing those where the class attribute and another single attribute are the parents of all
other attributes. Obviously there aren ODEs satisfying our condition, one for each choice
of root attribute. The probablity estimates for an ODE are:

Pu(x) = Pu(xC , x−C) = Pu(xC , xu)
n

Y

v=1
v 6=u

Pu(xv|xC , xu) (14)

where

Pu(xC , xu) =
NC,u(xC , xu) + 1

N + #C#Au

(15)

Pu(xv|xC , xu) =
NC,u,v(xC , xu, xv) + 1

NC,u(xC , xu) + #Av

(16)

After learning these models, that essentially amounts to counting, AODE uniformly com-
bines the probabilities for each of them:

PAODE(xC , x−C) =
n

X

u=1
Nu(xu)>t

Pu(xC , x−C) (17)

In equation 17, the conditionNu(xu) > t is used as a threshold in order to avoid
making predictions from attributes having few observations. If no attribute is over the
threshold, AODE returns the results of predicting using naive Bayes. Equations 15 and 16
are slightly different to the ones presented in [36]. The first difference is that our equa-
tions have been simplified and do not deal with missing values. This is due to the fact
that in our development we will assume complete data (no missing values). The second
difference is the fact that in equation 15 we have introducedand additional#C on the
denominator, in order to have

∑
c∈C

∑
i∈Au

Pu(c, i) = 1 for all i. We have noticed empirically

that this small change slightly improves accuracy. In fact this is what is done in the AODE
implementation in Weka version 3.4.3.

5 Exact Bayesian model averaging of ODEs

In this section we provide a conjugate distribution for ODEsand show how it can be used
to efficiently perform BMA over ODEs.

5.1 Conjugate distribution for one dependence estimators

In order to define a probability distribution over ODEs, we define how we compute the
probability that an ODE is the generating model. After that,we define the probability
distribution over the parameters of that ODE. Probability distribution over the parameters
of two different ODEsu andv (notedu

Θ andv
Θ) are assumed independent.

Definition 1 (Decomposable distribution over ODEs).The probability of an ODE with
concrete structure and parameters under a decomposable distribution over ODEs with

hyperparametersα, N ′ =
n⋃

u=1

u
N

′ is the product of the probability that its root is the



selected root (P (ρB|ξ)) times the probability that its parameters are the right parameters
(P (ρB Θ|ξ)):

P (B|ξ) = P (ρB|ξ)P (ρB Θ|ξ) (18)

The probability distribution for the root is a multinomial with hyperparameterα. The
probability for the parameter set ,u

Θ, for each possible rootu factorizes following the
ODE structure:

P (u
Θ|ξ) = P (u

θu,C |ξ)

m∏
v=1
v 6=u

P (u
θv|u,C |ξ) (19)

and the distribution over each conditional probability table follows a Dirichlet distribution
(where the needed hyperparameters are given byu

N
′):

P (u
θu,C |ξ) = D(uθu,C(., .); uN ′

u,C(., .)) (20)

P (v
θv|u,C |ξ) = D(uθv|u,C(., i, c); uN ′

v,u,C(., i, c)) (21)

5.2 Learning under decomposable distributions over ODEs

If a decomposable distribution over ODEs is accepted as prior, we can efficiently calculate
the posterior after a complete i.i.d. dataset:

Theorem 1. If P (B|ξ) follows a decomposable distribution over ODEs with hyperparam-
etersα,N′, the posterior distribution given an i.i.d. dataset D is a decomposable distribu-
tion over ODEs with hyperparametersα

∗,N′∗ given by:

α∗
u = αuWu (22)

uN ′∗
u,C(i, c) = uN ′

u,C(i, c) + Nu,C(i, c) (23)
uN ′∗

v,u,C(j, i, c) = uN ′
v,u,C(j, i, c) + Nv,u,C(j, i, c) (24)

where

Wu =
Γ (N ′)

Γ (N ′∗)

Y

c∈C

Y

i∈Au

2

6

6

4

Γ (uN ′∗
u,C(i, c))

Γ (uN ′
u,C(i, c))

m
Y

v=1
v 6=u

0

@

Γ (u,s(v)N ′
u,C(i, c))

Γ (u,s(v)N ′∗
u,C

(i, c))

Y

j∈Av

Γ (uN ′∗
v,u,C(j, i, c))

Γ (uN ′
v,u,C(j, i, c))

1

A

3

7

7

5

(25)

and

u
N

′ =
X

c∈C

X

i∈Au

u
N

′
u,C(i, c) (26)

u,s(v)
N

′
u,C(i, c)) =

X

j∈Av

u
N

′
v,u,C(j, i, c) (27)

and the equivalent of equations 26 and 27 hold forN ′∗.



5.3 Classifying under decomposable distributions over ODEs

Under a decomposable distribution over ODEs, we can efficiently calculate the probability
of an observation by averaging over both structure and parameters:

Theorem 2. If P (B|ξ) follows a decomposable distribution over ODEs with hyperparam-
etersα,N′, the probability of an observation givenξ is:

P (X = x|ξ) =

m∑
u=1

αuP (X = x|ρB = u, ξ) (28)

where

P (X = x|ρB = u, ξ) =
uN ′

u,C(xu, xC)
uN ′

m∏
v=1
v 6=u

uN ′
v,u,C(xv, xu, xC)

u,s(v)N ′
u,C(xu, xC)

(29)

Theorems 1 and 2 demonstrate that exact learning can be performed in polynomial
time under the assumption of decomposable distributions over ODEs. Furthermore, the
overhead with respect to the standard AODE algorithm in terms of computational com-
plexity can be considered very small. Proofs are omitted dueto space limitations. For
domains where we do not have prior information we will assigna value of 1 to each of the
hyperparameters inα andN

′. We name the resulting classifier BMAAODE.

6 Learning mixtures of ODEs

It is worth noting that the development in section 3 was done under the assumption that
the datasetD used for determiningαMAP is assumed to be independent of the dataset
used to learn the individual classifiers. To allow the successful application of this results
to ODEs, instead of usingPu(c, x−C) as the probability distribution being averaged, we
will usePLOO

u (c, x−C) (from Leave-One-Out), where the observation being classified (x)
is excluded from the training set. After computing the countsNC,u,v(c, i, j),NC,u(c, xu),
andN , PLOO

u is simply:

PLOO
u (c, x−C) = PLOO

u (c, xu)

n∏
v=1
v 6=u

PLOO
u (xv|c, xu) (30)

PLOO
u (c, xu) =

NC,u(c, xu) + 1 − δ(c = xC)

N + #C#Au − 1
(31)

PLOO
u (xv |c, xu) =

NC,u,v(c, xu, xv) + 1 − δ(c = xC)

NC,u(c, xu) + #Av − δ(c = xC)
(32)

so almost no computational burden is introduced by this strategy. This can be understood
as performing the best possible stacking [35] strategy withthe data at hand, with an ODE
for each attribute as the set oflevel-0 modelsand MAPLMD or MAPLMG as thelevel-
1 generalizer. This particularization of MAPLMD and MAPLMG for ODE are named
MAPLMDODE and MAPLMGODE respectively.



7 Empirical results

In this section we compare AODE with BMAAODE, MAPLMGODE and MAPLMDODE
on two different scenarios. On the first one we compare performance over Irvine datasets
and on the secondone over randomly generated Bayesian networks with different sets of
parameters. In the following sections, we explain the experimental setup and then show
the results and draw some conclusions.

7.1 Experimental setup

We used three different measures to compare the performanceof the algorithms: the error
rate, the conditional log-likelihood and the area under theROC curve [8] which we will
refer to as AUC. For this last measure, when the class is multivalued, we use the formula
provided in [18].

Irvine setup We ran each algorithm on 38 datasets from the Irvine repository repeating
10 runs of 10 fold cross validation. Continuous attributes were discretized into 5 equal
frequency intervals.

Random Bayesian networks setupWe compared the algorithms over random Bayesian
networks varying the number of attributes in{5, 10, 20, 40}, the number of maximum
values of an attribute in{2, 5, 10} and the maximum induced width in{2, 3, 4}. For
each configuration of parameters we generated randomly 100 Bayesian networks using
BNGenerator [21]. For each Bayesian network we obtained 5 learning samples of sizes
{25, 100, 400, 1600, 6400} and a testing sample of size of 500.

7.2 Results and conclusions

A summary of the results can be seen in tables 1 and 2. The tables describe the number of
Wins/Draws/Loses at a 95% statistical t-test confidence level for each measure. AODE0
and AODE30 are two versions of AODE, with different thresholds t = 0 and t = 30
respectively. The results show that the conditionNu(xu) > t proposed in [36] although
intuitively appealing, does not improve performance on none of both settings and can
safely be simplified.

Algorithms AUC ER LogP
AODE0-AODE30 7/24/7 10/22/613/18/7

AODE0-BMAAODE 26/11/1 25/8/5 29/4/5
MAPLMGODE-AODE0 12/20/6 18/18/2 29/5/4
MAPLMDODE-AODE0 14/9/1517/11/10 26/6/6

Table 1.Empirical results over Irvine datasets
It can be seen that BMAAODE performance is significantly worse than uniform aggre-

gation in both settings. In order to understand the reason why, we note that in our Bayesian
formalization of the problem an additional assumption has been introduced ’unnoticed’:
the assumption that one of the ODEs is the right model generating the data. This assump-
tion has the effect that the posterior after a small number ofobservations concentrates most



Algorithms AUC ER LogP
AODE0-AODE30 38/124/1845/128/7 85/92/3

AODE0-BMAAODE 101/77/2 90/83/7143/26/11
MAPLMGODE-AODE0 155/24/1138/41/1151/17/12
MAPLMDODE-AODE0 176/4/0145/27/8 177/2/1

Table 2.Empirical results over random Bayesian networks

of its weight in a single model. AODE also makes a strong assumption: that the right model
generating the data is a uniform aggregation of ODEs. This assumption turns out to be less
restrictive that the one made by BMAAODE. Obviously, neither AODE nor BMAAODE
assumptions are fulfilled by the datasets nor by the Bayesiannetworks used for the ex-
perimentation, but AODE is able to provide a better approximation than BMAAODE to
their probability distributions most of the times. This result obviously does not change
the fact that the assumption of a single generating model, asa generic assumption under-
lying Bayesian learning, is completely reasonable. However, it points out that we should
be careful and understand that BMA provides the optimal linear ensemble only when the
assumption is fulfilled.

Comparing AODE0 with MAPLMDODE and MAPLMGODE we can see that, with
the only exception of MAPLMDODE over Irvine datasets and theAUC measure, both
algorithms consistently improve AODE0 in a statistically significant way. Hence, we have
shown that the general scheme for determining weights of linear mixtures developed in
section 3, when particularized for ODEs, improves uniform aggregation significantly, even
when the models make incorrect modelling assumptions.

8 Conclusions

We have argued that under incorrect modelling assumptions BMA can be worse than uni-
form aggregation. We have provided two maximum a posteriorialgorithms to improve
over uniform aggregation even in the case that the classifiers make incorrect modelling
assumptions. We have shown by means of a nontrivial example that the algorithms can
be applied with significant accuracy gains. A more detailed study of these algorithms and
a comparison with other general ensemble learning methods will be the subject of future
work.
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