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Abstract. Ensemble classifiers combine the classification results of several classifiers.
Simple ensemble methods such as uniform averaging over a set of models

usually provide an improvement over selecting the single best model. Usually probabilistic
classifiers restrict the set of possible models that can be learnt in order to

lower computational complexity costs. In these restricted spaces, where incorrect
modelling assumptions are possibly made, uniform averaging sometimes performs

even better than bayesian model averaging. Linear mixtures over sets of models provide
an space that includes uniform averaging as a particular case. We develop two
algorithms for learning maximum a posteriori weights for linear mixtures, based on
expectation maximization and on constrained optimizition. We provide a nontrivial
example of the utility of these two algorithms by applying them for one dependence
estimators.We develop the conjugate distribution for one dependence estimators and
empirically show that uniform averaging is clearly superior to BMA for this family

of models. After that we empirically show that the maximum a posteriori linear mixture
weights improve accuracy significantly over uniform aggregation.
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1 Introduction

An ensemble of classifiers is a set of classifiers whose iddalidecisions are combined in
some way (typically by weighted or unweighted voting) tessidy new examples. Uniform
averaging and other improper linear models have been shoiva better than selecting a
single best model [5].

Bayesian model averaging (BMA) [19,20] provides a coherér@oretically optimal
mechanism for accounting with model uncertainty. BMA, urttie name Bayesian voting,
is commonly understood as a method for learning ensemb]egVith some exceptions
[4,2], the application of BMA in machine learning has notyep as successful as expected
[7]. A reasonable explanation of this mismatch between ebgueand real performance of
BMA has been given in a short note by Minka in [27], where itlsacly pointed out that
BMA is not a model combination technique, and that it shoddhought of as a method
for 'soft model selection’. This understanding has led ®gihoposal of techniques for the
bayesian combination of classifiers [13]. In spite of thafiBis still being considered by
many scientists as an ensemble learning technique and lastssicompared with other
ensemble learning techniques such as stacking, baggingpstibg [3,9].

Accepting BMA as 'soft model selection’, it can happen thaifarm averaging im-
proves over BMA when modelling assumptions are incorrea@nijtimes this is the case
when classifiers are applied “out-of-the-box”. Howevergasemble classifier should be
able to recognize which models are right and which are imotbrin order to do that, we
propose two algorithms for adjusting the weights for a lmaature of classifiers and are
robust to incorrect modelling assumptions of the base ifileiss

The issue of generative versus discriminative classifiessrhised a lot of attention
in the community in the last years [28,1,30,16,15,31]. Widely believed that, provided
enough data, discriminative classifiers outperform theiegative pairs. Since both gen-
erative and discriminative classifiers are in use nowadaysdifferent initial settings are
assumed in order to construct a linear ensemble of classifiethe first one, we are given
a set of base classifiers that after receiving an unclassifiedrvation, output the condi-
tional probability distribution for each class. On the setaetting, our base classifiers
are assumed to output the joint probability for each clasktha observation (instead of
contioned to the observation). We could name the first gelitiear averaging of discrim-
inative classifiers and the second linear averaging of géinerclassifiers. We propose
the usage of an expectation maximization algorithm for thet §ietting. The second set-
ting is tougher and we propose the usage of augmented lagrateghniques [14,29] for
constrained nonlinear optimization.

In the last years there have been several attempts to imghreveaive Bayes classifier
by relaxing its restrictive independence assumption [1,32,2]. Averaged One Depen-
dence Estimators (AODE) classifiers have been proposedf3éh efficient and effective
alternative to naive Bayes. They are based on k-dependeticgators [32], which are
classifiers where the probability of each attribute valueoisditioned by the class and at
most k other attributes. AODE classifiers estimate the gasisabilities by performing an
equally weighted linear combination of the estimates opa#isible 1-dependence estima-
tors. Since AODE is a classifier based on uniform aggregatiaimple classifiers that
make very hard assumptions that are likely not to be fulfjliedan act as a good test case
for our algorithms. We describe AODE in section 4. In secBome find a conjugate dis-
tribution for the problem and we prove that it is possible éofprm exact BMA over the



set of 1-dependence estimators in polynomial time. Aftat,tim section 6 we adapt our
weight adjustment algorithms for ODEs and finally in secffowe empirically compare
the results of BMA with uniform averaging and our two lineaixtares, obtaining results
that clearly confirm the previously exposed ideas.

In[33,34] a Bayesian technique for finding maximum likelildeensembles of Bayesian
networks is described. In [26,25] an EM algorithm for findimear mixtures of trees is
proposed. Our work differs from these two previous appreadi some aspects, being the
most rellevant one that those works were stated in the getfidensity estimation (mix-
tures were learned with a generative approach in mind) arslexplicitly deals with the
problem of classification or conditional density estimat{discriminative approach). In
[13], Bayesian methods for averaging classifiers are ptedeshahramani et al. assume
the predicted class to be the only information available @put from the classifiers to
be averaged. We assume a bit more and ask classifiers to aytpabability distribution.
This setting was proposed by Ghahramani et. al. as a retléaarof future work.

To summarize, the main contribution of the paper is the psapof two maximum
a posteriori algorithms for averaging probability distiiions in a supervised setting. As
side results, we provide the conjugate distribution for GREd empirically confirm the
limitations of BMA when understood as an ensemble learnéafprtique in a nontrivial
case. A more detailed study of the two algorithms proposeldsaromparison with other
general ensemble learning methods will be the subject aféutork.

2 Formalization and Notation

A discrete attributés a finite set, for example we can define attribBie ssure asPressure =
{Low, Medium, High}. A discrete domairis a finite set of discrete attributes. We note
¢ = {A4,...,A,,C} for a classified discrete domain whe#g, are attributes other
than the class an@ is the class attribute. We will useand; as values of an attribute and
u andv as indexes over attributes in a domain. We nbte> = { Ay, ..., A, } the set that
contains all the attributes in a classified discrete domeiejgt the class attribute.

Given an attributeX, we note# X as the number of different values &f. An obser-
vationz in 2¢ is an ordered tuple = (z1,...,z,,z¢c) € 41 X...x A, xC. Anunclas-
sified observation_¢ in £2¢ is an ordered tuple ¢ = (x1,...,2,) € A1 X ... X A,.

To be homogeneous we will abuse this notation a bit notindor a possible value of the
class forr_. A datasetD in {2¢ is a multiset of classified observations(ily;.

We will note NV for the number of observations in the dataset. We will alse A, (¢)
for the number of observations i where the value foA,, is i, N, , (7, j) the number of
observations irD where the value for,, is ¢ and the value for, is j and similarly for
Nyvww(t, 7, k) and so on.

3 Learning mixtures of probability distributions

In order to aggregate the predictions of a set of differentel® we can use a linear
mixture assigning a weigth to each model. If modelling agstions are correct, BMA
provides the best linear mixture. Otherwise, uniform agerg@has been shown to improve
over single model selection and many times also over BMA. \Wald/like to develop an
algorithm for assigning weigths to models in a linear migttirat improves over uniform
averaging while being robust to incorrect modelling asstiong of the base classifiers.



3.1 Formalization of the problem

On a classified discrete domafily:, we define two different types of probability distribu-
tionss. A generative probability distribution (GPD) is abpability distribution over2..
A discriminative probability distribution (DPD) is a probiity distribution overC' given
X_¢. Obviously, from every GPD, we can construct a DPD, butvic# versa

A linear mixture ofn. DPDs (LMD in the following) is defined by the equation:

Pryvp(zclz_c) = Z ayPppp, (zclz—c) 1)

u=1

The model is more widely known as thieear opinion pool[12,11].
A linear mixture ofn GPDs (LMG in the following) is defined by the equation:

Piyg(ze,x-c) =Y  awPapp, (10, 2_c) )

u=1

in both casesy_ «,, = 1 andvu a,, > 0.

u=1

Supervised Posteriors From a frequentistic point of view, in order to learn conafital
probability distributions we need to maximize conditiohiélihood. In [17] the concept
of supervised posteriois introduced as a Bayesian response to this frequentds. i
The proposal in [17] is that from a Bayesian point of view, nder to learn conditional
probability distributions, given a family of modelg!, we need to compute the BMA over
models using the supervised postediti{ M |D):

P(xclr-c,D,§) = / P(zclr—c, M,&)P*(M|D,§) 3)
MeM
where
P*(M|D,§) = P*(DIM, §)P(MIS) 4)
and
P*(DIM,€) = [ Pleclz—c, M, (5)
z€D

The development in this section follows these ideas.

Supervised posterior for LMD In order to perform Bayesian learning over LMD and
LMG we define a prior distribution ovet. A natural choice in this case is to use a Dirich-
let distribution. For conciseness we fix the Dirichlet hygg@ameters to 1, although the
development can be easily generalized to any Dirichletrpvie have

P(alf) < [] e (6)
u=1



The supervised posterior after an i.i.d. datd3dbr a LMD is:

PWMW%inW%WmL

P(DI¢) N P(D|¢)
[[ Plrclz—c,a,§)P(r_cla, §) P(af§)

zeD

P(D[¢)
[ Plz_cla,g)

= IED—
zel_[DP zolr_o, e, &) P(al€) PR

Pryp(alD,§) =

(@)
Assuming thatP(z_¢|a, ) does not depend am we can conclude that

Pryp(alD,§) « H ZauPDPD (zclz-c) H (8)

rED u=1

The exact BMA prediction in this setting will be given by:

PL]L]D(LCCLCE_C,D,é-) /PLMD a|D € ZauPDPD (CCC|.T C)da (9)

u=1

Supervised posterior for LMG The supervised posterior after an i.i.d. dataBetor
LMG is

n
Y. awPepp,(zc,2-c) n

Pouc(alD,€) = [[ == 1T e (10)
eeD Y Y auPepp,(c,v-c) u=1
ceCu=1

and the exact BMA prediction in this setting

Z awPepp, (0, -C)
Pryc(zclz—c,D,€) = /PLMG(a|D )= do (11)
o > Z ayPapp, (c,2_¢)
ceCu=1

3.2 Proposed solutions

MAPLMD To the best of our knowledge there is no close form solutigrcémmputing
the result of equation 9. Hence, we will have to approximitealue. A first possibility
would be to directly approximate it using Markov Chain Mo@&rlo (MCMC). However,
each iteration of the model will require the computationhe product in equation 9 that
ranges over all the observations in the dataset, resulirgheavy use of computational
resources. A second possibility is approximating the esgiom using only the maximum
a posteriori (MAP) value foex (which we noteny’ AP) as

n

P(zclr-c,D,§) ~ Y aulhthPorp, (xolr—c) (12)

u=1



It is known [23,24] that, since we are dealing with a finite tabe model, we can
determinen . 4E by means of the Expectation-Maximization (EM) algorithmgmsing
the problem into an incomplete-data one introducing anteidil unobservable variable
for each observation corresponding to the mixture compthangenerated the data. This
gives us a reasonably efficient procedure for determiniffyt 5. The aggregation method
resulting from findinge24F and then applying it in equation 1 is MAPLMD.

MAPLMG The case of LMG is not so simple. As we did for LMD, we can apjmate

the exact BMA prediction using only the MAP value far(that we notex}44Z). How-
ever, in this case, there is no straightforward way to us&tealgorithm. From an opti-
mization point of view, we have to find?4E under the inequality constraints that each
component of the vectoﬂ%\?g should be greater that 0 and the equality constraint that
the components Q&LMA‘}g should add up to 1. This is a constrained nonlinear optimiza-
tion problem that can be solved by using the augmented (alized) lagrangian method
[14,29] for constrained nonlinear optimization. This mattransforms a constrained non-
linear optimization problem into a sequence of unconsgGiptimization problems, pro-
gresively adjusting the penalization provided by not flitfg the constraints. For solving
each of the resulting unconstrained optimization problemeral efficient methods are
available. In our case we have used the well known Broydetckér-Goldfarb-Shanno
(BFGS) algorithm. It is a quasi-Newton method which builgisan approximation to the
second derivatives of the function using the differencevben successive gradient vec-
tors. By combining the first and second derivatives the dlgaris able to take Newton-
type steps towards the function minimum, assuming quadsatiavior in that region. This
technique requires the computation of the partial derreatf the function to be optimized
with respect to each of the;. Fortunately this can be done efficiently if we calculate
it together with the function. By simple algebraic manipidas it can be seen that the
derivative of equation 10 comes given by:

n n
Pu,zc Z AyPuy — Pu Z AyPu,zc
TR +—)  (13)

u

OP(a|D, &
MRS - plalp.)(X

u=1
n
z€D Z Oy Py Z AyPu,zc
u=1 u=1

where
Pu,e = Papp, (¢, 2-¢)
pu= Y Paprp.(c,7_¢)
ceC
In order to complete the Lagrangian, we also need to competdérivatives of the con-

straints, > «, = 1 andvu «, > 0, with respect to each,, that are trivial. The aggrega-
u=1

tion method resulting from finding ¥ 2Z and then predicting using equation 2 is named

MAPLMG.

4 AODE

In this section we review the AODE classifier as presented6i.[Given a classified
domain, AODE learns a set of 1-dependence probabilityibigion estimators (ODE)



containing those where the class attribute and anothelesatigibute are the parents of all
other attributes. Obviously there atg®ODESs satisfying our condition, one for each choice
of root attribute. The probablity estimates for an ODE are:

Py,(z) = Pu(zc,z-c) = Pu(zc,2u) H (zolze, zu) (14)
vEu
where ( )
NCu TC, Ty + 1
Pu sy by ) = ’ 15
(e au) =~ oo (15)
N u,v b) Uy v 1
Po(ao|ze, 20) = Counw(TCy Ty Ty) + (16)

NC,u(fECa zu) + #Av

After learning these models, that essentially amounts tmiing, AODE uniformly com-
bines the probabilities for each of them:

Paope(zc,z_c) = Z P.(zc,z_c) (17

u=1
Ny (zy)>t

In equation 17, the conditioW, (z,) > t is used as a threshold in order to avoid
making predictions from attributes having few observatiolfi no attribute is over the
threshold, AODE returns the results of predicting using@d&ayes. Equations 15 and 16
are slightly different to the ones presented in [36]. The fiifference is that our equa-
tions have been simplified and do not deal with missing valliggs is due to the fact
that in our development we will assume complete data (noings&lues). The second
difference is the fact that in equation 15 we have introdwmed additionak#C' on the

denominator, in orderto hav®. > P,(c,i) = 1 for all ;. We have noticed empirically
ceCi€Ay
that this small change slightly improves accuracy. In faid is what is done in the AODE

implementation in Weka version 3.4.3.

5 Exact Bayesian model averaging of ODEs

In this section we provide a conjugate distribution for Oasl show how it can be used
to efficiently perform BMA over ODEs.

5.1 Conjugate distribution for one dependence estimators

In order to define a probability distribution over ODEs, wdinke how we compute the
probability that an ODE is the generating model. After thveg, define the probability
distribution over the parameters of that ODE. Probabilistribution over the parameters
of two different ODEsu andv (noted“® and”@®) are assumed independent.

Definition 1 (Decomposable distribution over ODESs)The probability of an ODE with
concrete structure and parameters under a decomposabiebdison over ODEs with
hyperparametersx, N’ = |J “IN’ is the product of the probability that its root is the

u=1



selected rootP(pp|€)) times the probability that its parameters are the right aeeters
(P2 O[¢)):

P(B[§) = P(psl§) P("* Ol¢) (18)

The probability distribution for the root is a multinomialith hyperparameteix. The
probability for the parameter set @, for each possible root. factorizes following the
ODE structure:

P(*0¢) = P("0ucl) T[] P(“Oujucl®) (19)
“Zu
and the distribution over each conditional probability talfollows a Dirichlet distribution
(where the needed hyperparameters are givehNy):
P("6ucl§) = D("Ouc(-); “N'uc(., ) (20)

P(Uev\u,C|§) = D(u9U|u,C('a ia C); uN/U,u,C('v iv C)) (21)

5.2 Learning under decomposable distributions over ODEs

If a decomposable distribution over ODEs is accepted as,pviocan efficiently calculate
the posterior after a complete i.i.d. dataset:

Theorem 1. If P(B|¢) follows a decomposable distribution over ODEs with hypeapa
etersa,N’, the posterior distribution given an i.i.d. dataset D is admposable distribu-
tion over ODEs with hyperparametess’,N'* given by:

ol = a, W, (22)
“N', i) ="N'yc(i,c) + Nucl(i,c) (23)
UN'ywc(Ghine) = "Ny (i, €) + Noac(d, i, ¢) (24)

where

_ (V) L(“N'"; i 0) (“*IN" o (i, 0) L(“N'} u.clis )
W= T IT 11 {F(w'u c(i;0) ; H (=N o (i, 0)) ].Qv L(“N'ou,c (4,4, )

cEC i€EA,y, ¢
v u

(25)

and

UN = Z Z “Ny.coli,c) (26)

ceCi€A,
“S<”)Nuczc Z UNyu,c (i, €) 27
JEAy

and the equivalent of equations 26 and 27 holdfg¥ .



5.3 Classifying under decomposable distributions over OD&

Under a decomposable distribution over ODEs, we can effigiealculate the probability
of an observation by averaging over both structure and patens

Theorem 2. If P(B|¢) follows a decomposable distribution over ODEs with hypeapa
etersa,IN’, the probability of an observation givens:

P(X =2l¢) = > auP(X = zlpp = u,8) (28)
u=1
where

P(X = alop = u,€) =

uNIu,C(xusz) ﬁ uNIU,u,C(:C'U;ZEu;:EC) (29)
u N/ e u,s(u)]\']/MC(xu7 xC)
vFEU
Theorems 1 and 2 demonstrate that exact learning can berpeddn polynomial
time under the assumption of decomposable distributiors @DEs. Furthermore, the
overhead with respect to the standard AODE algorithm in $eofnicomputational com-
plexity can be considered very small. Proofs are omitted tdugpace limitations. For
domains where we do not have prior information we will assigralue of 1 to each of the
hyperparameters i andIN’. We name the resulting classifier BMAAODE.

6 Learning mixtures of ODEs

It is worth noting that the development in section 3 was domaéen the assumption that
the dataseD used for determininge™4¥ is assumed to be independent of the dataset
used to learn the individual classifiers. To allow the susftgéspplication of this results

to ODEs, instead of using, (c,z_¢) as the probability distribution being averaged, we
will use PL99(c, z_¢) (from Leave-One-Out), where the observation being claskifi)

is excluded from the training set. After computing the ceu¥it ., . (¢, i, 7),Nc w (¢, zy),
andN, PLOO is simply:

PLOO(c 2z ) = PLO9(c, z,) H PLOO (g, e, xy) (30)
N
New(e, ) +1—0(c=2¢)
PLOO — C, ’
W) N + #C#A, — 1

Ne (€ Ty, 1) +1 = 3(c = x¢)
New(c, ay) + #A, — 6(c = z¢)

so almost no computational burden is introduced by thidegisa This can be understood
as performing the best possible stacking [35] strategy thi¢hdata at hand, with an ODE
for each attribute as the set leivel-0 modelsand MAPLMD or MAPLMG as thdevel-

1 generalizer This particularization of MAPLMD and MAPLMG for ODE are nat
MAPLMDODE and MAPLMGODE respectively.

(31)

PO (zyle, xy) = (32)



7 Empirical results

In this section we compare AODE with BMAAODE, MAPLMGODE anddLMDODE
on two different scenarios. On the first one we compare pexdioce over Irvine datasets
and on the secondone over randomly generated Bayesiannketwith different sets of
parameters. In the following sections, we explain the grpental setup and then show
the results and draw some conclusions.

7.1 Experimental setup

We used three different measures to compare the perfornaditioe algorithms: the error
rate, the conditional log-likelihood and the area underR¥C curve [8] which we will
refer to as AUC. For this last measure, when the class is valléd, we use the formula
provided in [18].

Irvine setup We ran each algorithm on 38 datasets from the Irvine repysigpeating
10 runs of 10 fold cross validation. Continuous attributesevdiscretized into 5 equal
frequency intervals.

Random Bayesian networks setupWe compared the algorithms over random Bayesian
networks varying the number of attributes {8, 10, 20, 40, the number of maximum
values of an attribute if2, 5, 13 and the maximum induced width if2, 3, 4}. For
each configuration of parameters we generated randomly d9@d8an networks using
BNGenerator [21]. For each Bayesian network we obtainedtnhieg samples of sizes
{25, 100, 400, 1600, 64Q9Gnd a testing sample of size of 500.

7.2 Results and conclusions

A summary of the results can be seen in tables 1 and 2. Thestdégeribe the number of
Wins/Draws/Loses at a 95% statistical t-test confidencel lfor each measure. AODEO
and AODE30 are two versions of AODE, with different threstedd = 0 andt = 30
respectively. The results show that the conditiép(z,,) > t proposed in [36] although
intuitively appealing, does not improve performance onenof both settings and can
safely be simplified.

Algorithms AUC ER| LogP
AODEO-AODE30 712417 10/22/613/18/7
AODEO-BMAAODE |[26/11/1 25/8/5 29/4/5
MAPLMGODE-AODEQ|12/20/6 18/18/2 29/5/4
MAPLMDODE-AODEQ||14/9/1817/11/10 26/6/6

It can be seen that B\tl)llﬁ,& IB(e:?%?ﬁ%Jgﬁgg% gl\grr]\?f%égﬁt?/wdmm uniform aggre-
gation in both settings. In order to understand the reasgnunote that in our Bayesian
formalization of the problem an additional assumption hesrbintroduced 'unnoticed’:
the assumption that one of the ODEs is the right model geingrtite data. This assump-
tion has the effect that the posterior after a small numbebsérvations concentrates most



Algorithms AUC ER LogP|
AODEO-AODE30 ||38/124/1845/128/1 85/92/3
AODEO-BMAAODE 101/77/2 90/83/7143/26/11
MAPLMGODE-AODEQ| 155/24/1138/41/1151/17/12
MAPLMDODE-AODEQ|| 176/4/Q145/27/8 177/2/1

Table 2. Empirical results over random Bayesian networks

of its weight in a single model. AODE also makes a strong agsiam: that the right model
generating the data is a uniform aggregation of ODEs. Tsigraption turns out to be less
restrictive that the one made by BMAAODE. Obviously, neitA©DE nor BMAAODE
assumptions are fulfilled by the datasets nor by the Bayestanorks used for the ex-
perimentation, but AODE is able to provide a better appration than BMAAODE to
their probability distributions most of the times. This usobviously does not change
the fact that the assumption of a single generating modal generic assumption under-
lying Bayesian learning, is completely reasonable. Howet/@oints out that we should
be careful and understand that BMA provides the optimablirensemble only when the
assumption is fulfilled.

Comparing AODEO with MAPLMDODE and MAPLMGODE we can see thaith
the only exception of MAPLMDODE over Irvine datasets and #¢C measure, both
algorithms consistently improve AODEQ in a statisticailyrsficant way. Hence, we have
shown that the general scheme for determining weights ehlimixtures developed in
section 3, when particularized for ODEs, improves unifoggragation significantly, even
when the models make incorrect modelling assumptions.

8 Conclusions

We have argued that under incorrect modelling assumptidf& Ban be worse than uni-
form aggregation. We have provided two maximum a postedlydrithms to improve

over uniform aggregation even in the case that the classifietke incorrect modelling
assumptions. We have shown by means of a nontrivial exarhptethie algorithms can
be applied with significant accuracy gains. A more detaitedysof these algorithms and
a comparison with other general ensemble learning methdbsenthe subject of future

work.
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