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Abstract

Different approaches to predicting the Ms temperatures of steels are reviewed and

discussed with the objective of summarising the main characteristics, advantages

and difficulties of each method, mostly from a practical point of view. Empirical

methods, and methods based on thermodynamics are then assessed against pub-

lished data.

Keywords: martensite, thermodynamics, bayesian neural networks, linear re-

gression

1 Introduction

The martensite start temperature, Ms, is defined as the highest temperature at

austenite transforms to martensite. This transformation is relatively insensitive to

prior thermal history during cooling, or to the austenite grain size [1]. It is therefore

reasonably easy to predict quantitatively the Ms temperature, at least for a given

category of steels. This has long been done using linear regression.

This method, however has limitations, and over the past few years, a number

of authors have focussed on creating models of wider applicability. Two categories
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Reference Ms/ K, all compositions in wt%

[8] 772-316.7C-33.3Mn-11.1Si-27.8Cr-16.7Ni-11.1Mo-11.1W

[9] 811-361C-38.9Mn-38.9Cr-19.4Ni-27.8Mo

[10] 772-300C-33.3Mn-11.1Si-22.2Cr-16.7Ni-11.1Mo

[11] 834.2-473.9C-33Mn-16.7Cr-16.7Ni-21.2Mo

[12] 812-423C-30.4Mn-12.1Cr-17.7Ni-7.5Mo

[12] 785-453C-16.9Ni-15Cr-9.5Mo+217(C)2-71.5(C)(Mn)-67.6(C)(Cr)

Table 1: Different formulae for the estimation of the Ms temperature in steels.

of techniques have prevailed, those based on thermodymanics [2–6] and others fully

empirical [1, 7].

This review attempts to summarize the different methods and assess them against

published data.

2 Non adaptative regression

This section presents a brief review of the various attempts made at modelling the

compositional dependency of Ms using linear regression or similar methods. We

have classified these as non-adaptative because the ‘shape’ of the function is pre-

determined by the authors rather than adapted to the data. In contrast, neural

network methods, as discussed later, are adaptative functions.

The different equations proposed for Ms have been summarised in table 1. The

small modification proposed by Kung and Rayment [13] has not been presented.

These authors added additional terms (+10Co-7.5Si) in formulae where these ele-

ments were not present.

Regardless of the exact formulae used, these approaches, which are still in use

[7,14], usually have a limited range of applicability. As pointed out by Andrews [12],

‘these formulae are likely to depend on the range of variation of alloy elements’.

Their existence was justified at a time when computing power was limited. How-

ever, more rigourous data analysis methods no longer suffer from these limitations.

It was decided therefore not to assess the existing formulae, such an assessment can

be found in the literature [1, 13].
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3 Predicting Ms from thermodynamics

3.1 Method

The development of a thermodynamic framework to describe the nucleation of

martensite [15] laid the fundations for thermodynamic models predicting the Ms

temperature from the composition of the steel. In an early practical implementa-

tion, Bhadeshia [16,17] estimated the driving force for martensite formation, at Ms,

in plain carbon steels. This resulted in a function of the carbon content describing

the Gibbs energy that must be available to form martensite (further referred to as

the critical driving force ∆Gc). This function was in turn applied to predict the Ms

temperature of low alloy steels with satisfying agreement.

In order to obtain a model of wider applicability, Ghosh and Olson proposed

a model to describe the composition dependency of the critical driving force [2,

3, 5, 6], including the effect of both interstitial and substitutional solutes. In this

model, martensite transformation occurs when embryos of martensite, which are

defects bounded by interfacial dislocations, can grow against the lattice friction

experienced by these dislocations. The fault energy of the martensite embryos is

mainly dependent on the driving force ∆Gγ→α = Gα − Gγ, and must exceed the

interfacial frictional work for nucleation to occur. The compositional dependency

occurs because solid solution hardening affects this frictional work. Ghosh and

Olson therefore modelled the critical driving force for nucleation as a function of

composition, as follows:

−∆Gc = K1 + Wµ(Xi) + Wth(Xi, T ) (1)

where ∆Gc is the critical driving force for nucleation, K1 a constant, Wµ and Wth the

athermal and thermal components of the frictional work, the latter being negligible

for temperature greater than ∼ 300 K. Both are functions of the composition (Xi

indicates the mole fraction of element i) and possibly temperature. The model is

defined by fitting the athermal and thermal components of the frictional work to

simple functions of the composition. This process is illustrated in figure 1.

In binary steels, and in the simple case where the thermal component is neglected,

the composition dependency of ∆Gc is expressed by an empirical formula of the kind:

−∆Gc (J/mol) = K1 + KCX
1/2
C (2)
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Figure 1: Schematic illustration of the method used by Ghosh and Olson. In a first time,
experimental data are collected for steels of known compositions. Using thermodynamic databases
such as SGTE SSOL (as in [2]), ∆Gγ→α is estimated for this composition, at the Ms temperature
where this driving force is equal to the critical driving force. Once sufficient data have been
collected, a function can be fitted to describe the composition dependency of ∆Gc. In principle, the
method only requires examination of binary systems (or in cases of experimental difficulties with the
binary systems, ternary ones), but the establishement of the superposition law sometimes require
data for multicomponent alloys. To predict the Ms temperature for a steel of known composition
the critical driving force is estimated from the composition using the empirical formula previously
derived. Using the same thermodynamic database as in the first step, a computer program can
search for the temperature providing ∆Gγ→α=∆Gc. This is the Ms temperature.

where the K are constants, and XC is, in this example, the mole fraction of car-

bon. This can be physically justified as the solid solution strengthening effect is

traditionaly believed to depend on the square root of the concentration. Ghosh and

Olson [2,3] have obtained values Ki for a variety of binary systems Fe-X or Fe-Ni-X

when stability problems occurred. The extension to multicomponent alloys is made

by adopting a superposition law to describe the combined effect of the different

solutes on ∆Gc.

The ‘pythagorean’ superposition law chosen by Ghosh and Olson is written:

−∆Gc (J/mol) = K1 +

√∑
i

(
KiX

1/2
i

)2

+

√∑
j

(
KjX

1/2
j

)2

(3)

where the elements in the first and second sums might be made up by two different

subsets of all the elements. In principle the establishement of these subsets can be

made purely on the basis of the different values of Ki (elements of similar effect fall in
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the same groups), which implies that the method does not require knowledge of Ms

for multicomponent systems. However, in the first model [2, 3], examination of Fe-

Cr-C alloys led to a modification of the superposition law for this system. Similarly,

in their improved model [5, 6], the subsets established for the superposition law are

difficult to justify a priori, and the best justification for the author’s choice lies in

the success of predicting the Ms of multicomponent alloys. This method therefore

still relies, although to a small extent, on the knowledge of Ms for multicomponent

alloys.

The functioning of the model in making predictions is illustrated in figure 1. For

simplicity, the case where ∆Gc is independent of the temperature (as in [2, 3]) is

illustrated. There is no additional difficulty for the case where ∆Gc is a function of

temperature (as in [5, 6]).

Ghosh and Olson [2,3] provided the parameters for a number of elements (C, N,

Mn, Si, Cr, Nb, V, Ti, Mo, Cu, W, Al, Ni, Co). These were derived using data on

binary alloys, and the superposition law described above (equation 3) was validated

on a few multicomponent steels.

Later, Cool and Bhadeshia [4] argued that the parameters published by Ghosh

and Olson were not suitable for predicting the Ms temperature of ferritic power

plant steels. These typically contain up to 12 additions, with some elements in

relatively large concentration. However, upon further examination, it appears that

these authors used a linear superposition law:

−∆Gc (J/mol) = K1 +
∑

i

KiX
1/2
i (4)

with the parameters published in [2] for a superposition as described in equation 3.

As illustrated in figure 2, when the correct superposition law is used, Ghosh and

Olson’s model gives the more satisfactory agreement.

Given that the error has been propagated in the literature, it seems worth indi-

cating that the formula:

−∆Gc (J/mol) = K1 + 4009X
1/2
C + 1879X

1/2
Si + 172X

1/2
Ni + 1418X

1/2
Mo + 1868X

1/2
Cr

+1618X
1/2
V + 752X

1/2
W + 1653X

1/2
Nb + 3097X

1/2
N − 352X

1/2
Co (5)

reproduced as such in a number of publications [7, 20], is wrongly attributed to

Ghosh and Olson [4], who in fact proposed:

−∆Gc (J/mol) = K1 +

√
(4009X

1/2
C )2 + (3097X

1/2
N )2 +

√
S − 352X

1/2
Co
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Figure 2: Comparison between predicted and measured Ms using the data published in [18, 19].
Left, using the corrected parameters proposed in [4], with the superposition law as in 3; right, the
original parameters from Ghosh and Olson [2, 3], same superposition law.

S = (1879X1/2
s )2 + (172X

1/2
Ni )2 + (1418X

1/2
Mo )2 +

(1879X1/2
s )2 + (172X

1/2
Ni )2 + (1418X

1/2
Mo )2

(1868X
1/2
Cr )2 + (1618X

1/2
V )2 + (752X

1/2
W )2 + (1653X

1/2
Nb )2 (6)

More recently, Ghosh and Olson have refined this approach by taking into ac-

count the composition and temperature dependency of the austenite shear modulus

and expressing the different components of the critical driving force as function of

this modulus [5, 6]. This does not modify the fundamental features of the method

and will therefore not be discussed in details.

3.2 Advantages, difficulties and limitations

This approach allows a much wider range of applicability than linear regression.

Furthermore, the physical basis suggests that it should extrapolate relatively safely

unless the mechanisms taken into account change significantly with composition, or

the empirical thermodynamic data behave badly in extrapolation. It also allows

separation of the effect on alloying additions on phase stability and their influence

on the frictional work.

In this model, ∆Gc is model-dependent in the sense that is implicitely linked

with the thermodynamic database that has been used during the derivation of the

function to express its compositional dependency. This becomes a problem if dif-

ferent databases are used in deriving the criterion and in making predictions (or

6



more exactly, if the different databases describe similar systems differently). With

the increasing number of thermodynamics databases available, this problem cannot

be neglected. In addition, the accuracy of the model may be limited by that of the

underlying thermodynamic database.

In their first model [2, 3], Ghosh and Olson used the SGTE SSOL database [21]

to derive the expression of ∆Gc, but modified parameters for a number of systems.

Unfortunatly, the details of these modifications are left unpublished. It appears

from [5] that parameters for Fe-Ni and Fe-Ni-C systems were significantly changed.

Because these parameters were not published, we used the standard SGTE SSOL

database in our evaluation. Not surprisingly, this resulted in very poor predictions

on the high Ni alloys (section 5.3).

The model also explicitly limits itself to solid solutions, implying that the influ-

ence of precipitates or grain size cannot be accounted for. This does not exclude,

of course, accounting for solute depletion due to precipitation by performing a prior

equilibrium calculation and using the austenite composition rather than the bulk

one as an input (as done by Ghosh and Olson in [5]), but this method can as eas-

ily be used with, for example, linear regression and is not an integral part of the

model. Although the effects of precipitates and grain size are not expected to be

large, an important correlated problem is that of solute depletion by precipitates.

For example, most data for the influence of vanadium have been derived using ‘pure’

samples, with very low carbon content. In commercial steels, a significant amount

of vanadium (or Nb, Ti) will have precipitated during the austenitisation, therefore

leaving an austenite of lower carbon and vanadium content than that of the bulk.

As discussed later, this was also clearly visible in the assessment of the model.

Finally, making predictions requires access to expensive thermodynamic calcu-

lation software and databases.

4 Neural network modelling

4.1 Method

Neural networks, in the present context, essentially refer to non-linear multiple re-

gression tools using adaptative functions. The following section will not detail the

technique (see for example [22–24]), but presents the fundamental differences be-
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tween these methods and empirical methods such as those introduced in the first

section. The typical structure of a neural network is presented in figure 3.

Σ f

Σ f

Σ f

Σ f

Σ f
j

i

1

x

x

y

Figure 3: The typical structure of a neural network as used for non-linear multiple regressions.
The first layer is made up by the inputs (1,.., xi), the second by so-called ‘hidden units’ and the
last one is the output.

The hidden-units (the second-layer in figure 3) take as input a weighted sum of

the inputs and return its hyperbolic tangent:

zj = tanh
∑

i

wjixi (7)

The third-layer combines these outputs using a linear superposition:

y =
∑

j

ωjzj (8)

where the wij and ωj are often referred to as the weights defining the network.

‘Training’ the network implies identifying an optimal set of weights, given some

data for which the output is known. This is similar in principle to identifying the

slope and intercept of the best fit line in a linear regression.

The fundamental difference between this type of regression and methods intro-

duced earlier is that neural networks correspond to adaptative functions. In tradi-

tional methods, the author fixes the form of the equation (for example, a second
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degree polynomial), and identifies the parameters that lead to optimal fitting of the

observed data. Even in the few cases where the authors take the trouble to assess

more than one function (for example, to determine whether a second or third degree

polynomial is most appropriate), the extent to which the function is adapted to the

data is very limited.

With neural networks however, the complexity of the function is mainly con-

trolled by the weights themselves, so that the optimisation includes a determina-

tion of the most suitable shape for the function. This flexibility is not without a

drawback: overfitting is the cause of most problems in neural network modelling.

Overfitting occurs when an overly complex function is chosen, so that the noise,

rather than the trend in the data, is fitted by the function. One method widely

applied to limit overfitting is to perform the optimisation on only one part of the

data, then use the second part to determine which level of complexity best fits the

data. This is illustrated in figure 4.

x

y

Figure 4: The problem of overfitting with neural networks can be avoided if only part of the data
is used to optimise the network (here the filled circle). At this stage, the best solution appears as
that which goes through all the filled circles. When using the second part of the dataset (crosses),
it becomes obvious, however, that this solution is strongly overfitted the real trend and the real
trend is better captured by a simpler model.
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4.2 Bayesian/classical framework

There are two ways to understand regression, whether in the context of neural

networks or of linear, polynomial, etc. regression.

The first and still most often encountered consists in defining an error function

and minimising it by adjusting the parameters. We will refer to this method as the

classical method.

Bayesian probabilities offer a far more interesting approach by which the final

model not only encompasses the knowledge present in the data, but also an estima-

tion of the uncertainty on this knowledge.

Rather than identifying optimum parameters, an optimum probability distribu-

tion of parameters values is fitted to the data. In regions of space where data are

sparce, this distribution will be wide, indicating that a number of solutions could

fit the problem with similar probabilities. If a large amount of data is available,

this distribution will be narrow indicating that one shape of function is significantly

more probable than any other.

Because it can be quantified, the uncertainty on the determination of the net-

work parameters can be translated into an uncertainty on the prediction. This is

illustrated in figure 5.

Figure 5: Illustration of the possibilities offered by Bayesian neural networks: the prediction can
be accompanied by an error bar related to the uncertainty of fitting. When data are sparse, the
uncertainty of fitting is larger than in region with sufficient data.

Whether for linear regression or neural network, a bayesian approach should
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always be preferred because it allows predictions to be accompanied by an indication

on the uncertainty. Because of the flexibility of the method, this is particularly

important in neural network modelling.

4.3 Models

Using the classical method Vermeulen et al. [1] built a neural network model for the

Ms temperature of steels in the range of composition given in table 2. More recently,

Capdevilla et al. [7] built a network using the bayesian approach, on a much wider

range of compositions. This model being built on a superset of the database used

to train the model by Vermeulen et al., the assessment to follow did not include the

latter.

Vermeulen et al. [1] Capdevilla et al. [7]

Elt. Min. Max. Min. Max.

C 0.05 0.7 0 1.62

Si 0.20 0.25 0 3.40

Mn 0.08 2.0 0 3.76

Cr 0 1.40 0 17.98

Mo 0 0.75 0 5.10

Ni 0 0.25 0 27.20

V 0 0.25 0 4.55

Co 0 30.00

Al 0 1.10

W 0 13.00

Cu 0 0.98

Nb 0 0.23

Ti 0 0.18

B 0 0.006

N 0 0.06

Table 2: Range of the database used for the model created by Vermeulen et al. and Capdevilla
et al.. All compositions in wt%.

Although the predictions made in [1] are accompanied by error bars, these cor-
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respond to the average error of the model over the entire training database, which

can be interpreted as a level of noise but do not carry any indication as to the

uncertainty of the predictions.

4.4 Advantages, difficulties and limitations

Neural network modelling is not always perceived as a satisfactory method because

of its purely empirical nature.

However, even in the thermodynamically based approaches, empirical equations

lie at the heart of the method. The form of the function used by Ghosh and Olson

to represent ∆Gc (equation 2) was adopted on physical bases, as the solid solution

strengthening effect scales with the square root of concentration. However, the final

superposition laws (in particular the grouping of elements in subsets) adopted in

both [2] and [5] is not strictly derived from considerations of the solution strength-

ening effect and is thus best justified by later validation than a priori. That is to say,

it is at least partly empirical. That there is no necessary link between the relative

strength of elements and their grouping in subsets is made clear by the fact that

different subsets were used in reference [2] and [5]. In both studies however, the

relative effects of different elements are similar.

There is therefore no obvious reason to trust extrapolations using such models

more than any other empirical method. Furthermore, this approach relies heavily

on the CALPHAD [25] method to estimate the thermodynamic properties of com-

plex systems. In the CALPHAD method, the extension of simple thermodynamic

models (for example, regular solutions) to multicomponent systems and more com-

plex behaviours is mostly empirical in nature, and there is once again no reason to

trust their ability to extrapolate well. Interestingly, Stan et al. recently proposed

to improve on the CALPHAD limitation by using a bayesian framework [26].

The flexibility of the neural networks avoids the use of a pre-determined type of

function. If a Bayesian approach is used, the technique offers the unique advantage

that the level of certainty can be assessed by the user without the need to know

all the details of the model derivation. To assess the validity of a prediction made

using thermodynamic models, one must not only be aware of the limits of the com-

position range of the data used in deriving the ∆Gc function, but also of those of

the thermodynamic database used to link temperatures and driving forces.
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Finally, these models are available as self-contained programs which are freely

distributed on the world wide web [27, 28].

5 Assessment against published data

5.1 Implementation of the thermodynamic models

To assess the models, a computer program was interfaced with the thermodynamic

calculation software MTDATA [29]. Both the original method of Ghosh and Olson

[2, 3] and the revised method [5, 6] were implemented. As mentioned earlier, Ghosh

and Olson relied, in the first case, on the SGTE SSOL database, slightly modified

for Fe-Ni and Fe-Ni-C to derive the function ∆Gc.

In the second case however, significant modifications were made, resulting in a

separate thermodynamic database that the authors namde kMART. Unfortunatly,

this database not being available, the SGTE SSOL database was used in both cases.

When using the more recent model [5, 6], agreement was significantly worse than

with the earlier one. Clearly, this disagreement is not related to the quality of the

model but to the fact that different thermodynamic databases were used.

The driving force for martensite formation can be simply calculated as Gα −Gγ .

However, for low temperature or high carbon steels, it is important to account for

the ordering of carbon in martensite [30, 31]. The driving force for ordering can be

calculated following Fisher [32]:

∆Gz(J/mol) = 2.127 × 105 y2
C z2 + 2.77 yC T φ (9)

where φ = [2(1 − z) ln (1 − z) + (1 + 2z) ln (1 + 2z)], z is Zener’s order parameter

and yc is the fraction of interstitial sites occupied by carbon, given by NC/NS if

NS is the sum of the mole fractions of all the subtitutional elements. The value

of the ordering parameter itself depends on the ratio T/Tc where Tc is the critical

temperature at which ordering takes place and is estimated by 28080 yc [32]. The

tabulated values of z as a function of Tc/T provided by Fisher were used. Ordering

only influences significantly the transformation at low temperatures and high carbon

content.

Agreement between experimental and predicted Ms was systematicaly better

using the original method by Ghosh and Olson [2, 3] and accounting for ordering.
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In the following, the Ms predicted using the thermodynamic model therefore refers

to results obtained with this particular method.

5.2 Databases

Two databases were used for the assessment. The first one, referred to as database

A, contains all the data used by Capdevilla et al. for production of the model

described in [7].

A second database (further referred to as database B) was built by the present

authors using published data [2,8,9,11,33–44] which appeared not to have been used

in either the work of Capdevilla et al., but have been used by Ghosh and Olson to

derive ∆Gc.

5.3 Results

Predictions were made on database A and B using both the neural network and

the thermodynamic methods. To estimate the overall performance, the average of

the absolute values of the errors (further denoted ε) was used, together with the

standard deviation (σerr).

5.3.1 Using database A

When comparing predictions and experimental values in database A ( figure 6),

the neural network performed significantly better with ε=25 (σerr = 34), while the

thermodynamics method gave ε=37 (σerr = 70).

In both cases, the datapoints which gave prediction more than 20% of the data-

base values (‘outliers’) were investigated. The composition giving the worst predic-

tion (measured 400 K, predicted 800 K) was particularly worrying as it was, in the

case of the neural network model, not accompanied by a large error bar. However,

this point turned out to be a mistake in the database (Fe-0.04C-0.08Mn wt% giv-

ing a Ms temperature of 400 K) so that the predicted value was actually correct.

Few other points were wrongly predicted by more than 20 % by the neural network

model, as reported separately [45], a number of them were found to be erroneous

entries in the database.
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Figure 6: The performance of (I) the model by Capdevilla et al. [7], and (II) the model by Ghosh
and Olson [2] on database A. Predictions made following (II) are shown as zero when the driving
force never exceeds the critical driving force.

The limitations of the thermodynamic model became obvious upon examination

of the ‘outliers’. As for the neural network model, the Fe-0.04C-0.08Mn steel appears

wrongly predicted because of a mistake in the database. All of the high-Ni (Fe-

Ni with more than 20 wt% Ni) steels were outliers. As explained earlier, this was

expected because the database used to derive the critical driving force was a modified

version of the SGTE SSOL, while the unmodified SGTE SSOL had to be used in

this study.

Other outliers included most of the steels with vanadium, niobium or titanium

additions and/or significant amounts of carbon, a few examples of which are repro-

duced in table 3.

This is again not surprising given that the model explicitly limits itself to solid

solutions, while most of these steels will have carbides or nitrides remaining after

austenitising.

To verify whether a better prediction could be obtained, the equilibrium consti-

tution of these outliers was estimated using MT-DATA [46], and the SGTE SSOL

and substances databases. Phases allowed were cementite, mixed carbides (M23C6,

M6C, etc), tungsten carbide, niobium carbide, titanium carbide and vanadium car-

bide. The austenitisation temperature was taken as 1373 K (the value was not

provided in the sources). As can be seen from the examples in table 3, this some-

times improved the predictions, but not systematically. One reason might be that,

although the solute content of the austenite should be more realistic after this pro-
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Composition / wt% Ms / K
C Mn Si Cr Ni Mo V Co
Al W Cu Nb Ti B N Ms Predicted(1) Predicted(2)

1.62 0.4 0.48 12.44 0 0.8 0.83 0
0 0 0 0 0 0 0 498 109 405

1.42 2.16 1.62 2.57 5.35 1.29 0.7 0
0.08 8.88 0.98 0.23 0.18 0.01 0.05 769 10.5 -
1.42 0.43 0.38 4.42 0 0.7 4.55 4.97
0 12.99 0 0 0 0 0 513 216 568

0.95 0.24 0.28 4.64 0 4.8 2.45 0
0 7.12 0 0 0 0 0 473 375 -

Table 3: A selection of compositions giving large errors when using the model proposed by Ghosh
and Olson. The first prediction is made using the bulk composition, the second using the austenite
composition having allowed for carbide formation.

cedure, the model does not account for precipitates which may also have an effect.

In some cases, no temperature could be found that satisfied the thermodynamic

criterion when the new compositions were used. This is probably due to the poor

assessment in the SGTE SSOL databases of the effect of either high Ni content or

high W contents sometimes present.

While this assessment outlines clearly the limitations of the thermodynamic

model, it does not represent a good test of the validity of the neural network model

by Capdevilla et al. since database A was used to train this model.

5.3.2 Using database B

Results obtained using the database created by the present authors are presented in

figure 7. A global comparison gives ε=210 (σerr = 501) for the neural network and

ε=116 (σerr = 156) for the thermodynamic model. This is essentially caused by a

few ‘wild’ predictions from the neural network model, whose output is not bounded,

while the thermodynamic model is by design limited to errors of 1000 K which is

the width of the interval in which the program searches for ∆Gγ→α=∆Gc. These

‘wild’ predictions were accompanied by very large error bars and therefore should

not be considered as ’dangerous’.

To incorporate the existence of the error bars in the comparison, the predictions

made with the neural network software were divided in 2 subsets, depending on
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Figure 7: Comparison between predictions and experimental values using (I) and (II) the neural
network model due to Capdevilla et al. [7], and (III) the thermodynamic approach of Ghosh and
Olson [2, 3], using database B. Neural network predictions which were accompanied by an error
bar larger than 200 K are plotted separately for clarity (II).

whether the error bar accompanying the prediction was smaller (subset I) or greater

(subset II) than ±200 K. It must be emphasized here that this does not involve

a comparison with the experimental data as yet, only the use of the uncertainty

estimation described in section 4.2.

Using subset I and the neural network, a value of ε=40 (σerr = 39) was obtained;

on the same subset the thermodynamic method gives ε=102 (σerr = 151). On subset

II, the neural network gave ε=1055 (σerr = 800), while, for the thermodynamic

method, we obtained ε=187(σerr = 160). Interestingly, the thermodynamic model

also performed significantly worse on subset II. In the context of predictions, the

behaviour of the bayesian neural network is clearly the most appropriate, as both

methods wrongly predict a number of points, but only the former is able to warn

the user on the reliability of the prediction.

As for database A, the entries which lead to relative error of more than 20%

were further examined. The outliers were similar for both models, being the high-Ni

steels (20 wt% and more), and the high nitrogen steels. It has been explained earlier

that the thermodynamic model is expected to perform poorly on high-Ni steels. The

neural network was trained on a database including a few Fe-30Ni-C alloys, but no

other data. Consequently, new data for Fe-Ni-C alloys were well predicted, but data

on Fe-Ni-X alloys (where X is Mo, V, etc. but not carbon) were not.

Similarly, the neural network failed to predict correctly the Ms of high-nitrogen

steels, because the database used for training only contained amounts significantly

below the solubility limit. The data introduced in database B included nitrogen
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contents in large excess of this point. The neural network method allows, in principle,

to model influences which depends on the actual value of the input parameter, so

that re-training the model on the low and high nitrogen contents should improve it

significantly. The thermodynamic model is based on the assumption that elements

are in solid-solution so that the failure to predict correctly the Ms of high-nitrogen

steels using the bulk composition is not surprising.

6 Conclusions

A fully empirical method was compared to the thermodynamic approach to estimate

the Ms temperature of steels.

The thermodynamic method provides satifying results, as long as it is used within

boundaries compatible with the fundamental assumptions upon which it was built.

That is to say, one must be careful not to attempt calculations where additions are

beyond the solubility limit.

This method is particularly interesting as it allows to treat separately the influ-

ence of alloying elements on phase stability and their effect on the propagation of

the semi-coherent interface. However, as explained earlier, the link between the solid

solution strengthening effect of elements and that on the martensitic nucleation is

not strongly supported by the analysis of Ghosh and Olson.

Although the fully empirical approach method does not allow the separation of

different roles of alloying additions, it is able to incorporate any effect these might

have, whether constant or depending on their own concentration, as long as the

knowledge is somehow present in the database.

The neural network method was found to perform at least equally as well as

the thermodynamic approach (on database B, in as much as predicting -2000 K or

0 K for an actual Ms of 400 K is equally useless), but nevertheless a number of

improvement could be proposed and the authors have trained a new model whose

performance was significantly improved [45].

Because of the risk of wild predictions, neural network methods should not be

relied on unless a bayesian framework is used.
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7 Notes

All the software and databases used in this study are available on the world-

wide-web. Neural network calculations can also be made online at www-map-

online.msm.cam.ac.uk.
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