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Abstract

Using neural networks in a bayesian framework, a model has been derived for the

Ms temperature of steels over a wide range of compositions. By its design and by

use of a more extensive database, this model improves over existing ones, by its

accuracy and its ability to avoid wild predictions.
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1 Introduction

There is considerable industrial interest in being able to predict reliably the temper-

ature at which austenite transforms to martensite (Ms). For this reason, a significant

amount of work has been devoted to obtaining quantitatively accurate models for

predicting Ms. This temperature is typically a function of a number of variables

which may include stress or magnetic field. From a material point of view, the Ms

temperature is essentially controlled by the composition of the steel.

In a recent assessment of the existing models for predicting the Ms temperature

of steels as a function of their compositions, the authors showed that, from an
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applied point of view, the neural network model due to Capdevilla et al. performed

at least as well as the thermodynamic models proposed by Ghosh and Olson [1–4].

Furthermore, the former is freely available as a standalone computer program.

However, the assessment revealed a number of weaknesses of the neural network

model proposed by Capdevilla et al. [5] (further referred to as model A), which is the

widest in scope available to date. In particular, a large amount of published data had

not been used in training this model, which was shown to perform poorly on most of

these [6]. The model also had a tendency to make very wild ‘predictions’, with some

values of Ms reaching many thousands of Kelvin on rather ordinary compositions.

Finally, we found a significant number of errors in the database used by Capdevilla

et al. (further referred to as database A), some of them by up to 273 K as a result

or incorrect conversions.

In the present work, a new model is created for the Ms temperature of steels as

a function of composition, after verifying that the austenitisation temperature can

reasonably be neglected in most cases. We then validate it against unseen data and

compare its performance to that of model A.

2 Method

Neural network modelling is an empirical modelling method in which a very flexible

function is fitted to a set of data by adjusting the parameters of the network, also

known as the weights.

The neural network method used in the present investigation has been previously

reviewed in the literature (details can be found in [7–10]) and only its most important

features are presented.

2.1 Adaptative functions

Neural networks, as opposed to traditional linear or polynomial regression methods,

do not impose a shape of function on the data. The structure of a typical feedforward

network as used in the present work is illustrated in figure 1. Each hidden unit

calculates a weighted sum of the inputs and return its hyperbolic tangent. The

output of the hidden units are then linearly combined by the output neuron. The
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function corresponding to the 4 hidden-units network shown in figure 1 is:

y = ω1 tanh(w1x + h1) + ω2 tanh(w2x + h2) (1)

+ω3 tanh(w3x + h3) + ω4 tanh(w4x + h4) + θ

where the w, ω and h are the parameters to adjust, often referred to as weights and

biases.

As illustrated in figure 1, simply varying the weights of such a network allows

vastly different functions to be represented.
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Figure 1: The structure of a feedforward neural network with one input, 4 hidden-units and one
output. Two networks with the same structure (4 hidden units) but different weights can represent
totally different functions.

2.2 The bayesian framework

A neural network is traditionally trained by optimising its parameters with regard

to a given error function. This results in an optimum set of weights which are in

turn used to make predictions.

In a bayesian approach however, a probability distribution of weight values is

fitted to the data [8, 9]. Where data are sparse, this distribution will be wide,

indicating that a number of solutions have similar probabilities. If, on the contrary,

there are sufficient data, the probability distribution for the network parameters will

be narrow, indicating that one solution is significantly more probable than others.

This uncertainty can be translated into an ‘error-bar’ on predictions, which indicates

the uncertainty of fitting where the calculation is made.
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This is illustrated in figure 2. The assessment undertaken by the present authors

[6] has illustrated how powerful the technique is in limiting the danger of ‘wild’

predictions.

Figure 2: Illustration of the possibilities offered by Bayesian neural networks: the prediction can
be accompanied by an error bar related to the uncertainty of fitting. When data are sparse, the
uncertainty of fitting is larger than in region with sufficient data.

For further details on the method, we point to the review by Mackay [11].

3 Database

Data were obtained from a variety of sources. The database used by Capdevilla et

al. [5] was kindly provided by this author. It is based on data published in references

[12–16]. During our assessment of existing models for Ms predictions [6], it became

apparent that some mistakes were present in this database. It was therefore decided

to check all data against the original references. This resulted in a significant number

of corrections, sometimes by as much as 273 K when unit conversion has obviously

not been done. Additional data were also gathered from the literature [1, 17–31].

This resulted in a database containing about 1200 entries and covering a wide variety

of compositions as illustrated in table 1.
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Element Min(wt%) Max(wt%) Element Min(wt%) Max(wt%)

C 0.0 2.25 Co 0.0 30.0
Mn 0.0 10.24 Al 0.0 3.01
Si 0.0 3.8 W 0.0 18.59
Cr 0.0 17.98 Cu 0.0. 3.04
Ni 0.0 31.54 Nb 0.0 1.98
Mo 0.0 8.0 Ti 0.0 2.52
V 0.0 4.55 B 0.0 0.06

N 0.0 2.65

Table 1: Minima and maxima for each input variable included in the database.

4 Choice of inputs and output

4.1 Inclusion of strong carbonitride formers

In a number of previous attempts, it has generally been assumed that the austenitis-

ing temperature (further denoted Tγ) has only a small effect on the Ms temperature.

Experiments have shown that most variations in Ms caused by changes in Tγ should

be contained within ±25K [32]. Although this is possibly true for the compositions

then investigated, it may not hold for steels with additions of Ti, Nb or V, in which

one expects to find carbides or nitrides whose quantity depends on Tγ.

If it is the case that the constitution of such alloys changes significantly over

the range of typical austenitisation temperatures, strong variations of Ms should be

expected as this temperature is changed.

To verify this, we first calculated the austenite composition of a Fe-0.3C-0.6Si-

1.5Mn-0.2Ti (wt%) as a function of temperature. This was done using MTDATA [33]

and the SGTE SSOL and SSUB databases [34], allowing austenite and titanium

carbide to coexist. The composition of the austenite in equilibrium with TiC was

then fed into a computer program that calculates the Ms temperature as a function

of composition, following the method of Ghosh and Olson [1].

As illustrated in figure 3, it would be erroneous, when using thermodynamic

models, to use the bulk composition to estimate the Ms temperature. However, it is

fair to say that variations of Tγ have little impact on the expected Ms temperature

once the presence of TiC accounted for. Therefore, it is reasonable not to include
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Tγ in a fully empirical model.
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Figure 3: The Ms temperature as predicted for Fe-0.3C-0.6Si-1.5Mn-0.2Ti (wt%) using the model
of Ghosh and Olson [1]. The dotted line represents the predictions if the bulk composition is used as
an input (therefore neglecting the presence of TiC), the plain line represents the Ms temperatures
calculated from the composition of the austenite in equilibrium with TiC at the given austenitising
temperature.

4.2 A bounded output

As emphasised by Mackay [10], it is important to ensure any knowledge about the

system is somehow present in the database, or in the network structure.

The assessment recently published by the present authors [6] illustrated the fact

that the Ms temperature should be bounded between 0 and 1000 K. While this

was naturally present in the thermodynamic approach of Ghosh and Olson [1–4],

existing neural network models are not necessarily bounded [5, 35], although as

shown by Yescas et al. [36], it is possible to formulate the output in such a way that

it has lower and upper limits. In the case of model A, this lead to wild predictions

of plus or minus thousands of Kelvin on unseen data.

One way to incorporate this knowledge is to train the model using a function of

the target which is naturally bounded in the desired interval [8–10,36].

The present network was trained using y = ln (− ln (Ms/1000)), and therefore

Ms = 1000 ∗ exp (− exp (y)) which is bounded between 0 and 1000.
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4.3 Training

In a first instance, 124 sets were randomly selected from the database to serve as a

test. None of these sets were used in training the present network (while model A

is likely to have been trained on a number of these lines, since half of the database

is identical to that used to train that model).

The remaining data were then divided in two sets, also randomly selected. The

first, one, containing 80% of the lines, was used to train a number of models, while

the second, containing the rest of the database, was used to validate the training and

select an optimum committee of models. As mentioned earlier, this procedure has

been described numerous times in the literature (for example, [7]). In the present

study, a commercial package [37] was used which implements the algorithm written

by Mackay [8].

5 Results

The performance of the network was assessed on the 124 sets of data unseen during

training. Predictions were also obtained for this set of data using model A. As

noted earlier, while it is likely that the latter will have seen some of these data

during training, the present model will not have seen any of these lines. Table 2

gives some examples of compositions found in this testing set.

Figure 4 compares the performance of both models on this dataset. As in our
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Figure 4: Comparison between the model proposed by Capdevilla et al. (A) and the present
model (B) on a test dataset containing a variety of compositions.
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previous assessment of existing models [6], we propose to compare models using the

average of the absolute value of the error between target and prediction (denoted ε)

and the associated standard deviation (σerr). These gave ε= 94 (σerr = 334) using

the model by Capdevilla et al. and ε= 22 (σerr = 25) for the present model.

To take into account the ‘warning’ given by the large error bars accompanying

the wild predictions made by model A, these values were recalculated only for results

accompanied by uncertainties of fitting less than 100 K. This eliminates the wild

predictions made by the model A (as visible in figure 4).

C Mn Si Cr Ni Mo V Co Al W Cu Nb Ti B N
0.22 1.1 0.21 0.6 0.18 0.08 0 0 0 0.3 0 0 0 0 0
0.58 0.08 0.89 1.27 0.06 0.02 0.11 0 0 0 0.14 0 0 0 0
0.72 0.27 0.39 4.09 0 0 1.25 0 0 18.59 0 0 0 0 0
0 0.03 0.08 0 21.66 0 0 3.75 0 0 0 0 0 0 0

0.2 0.64 0.08 2.12 0.76 0.83 0.32 0.01 0 0.63 0 0.02 0 0 0.01
0.24 0 0 1.4 4.98 1.52 0 16.06 0 0 0 0 0 0 0

Table 2: Some examples of compositions found in the randomly selected test set. This set was
not used in any part of the training of the new model. All compositions in wt%.

The procedure somewhat reflects the fact that a user should discard such values

because of the amplitude of the accompanying error bars. In this case, values of

ε= 32 (σerr = 32) and ε= 20 (σerr = 24) were obtained for model A and the present

model respectively, which indicates significantly better predicting performance from

the new model, in spite of the fact that some of the test data had been seen by

model A during training.

6 Conclusions

Using a large amount of published data, a neural network model has been trained

to predict the Ms temperature of steels of a wide range of compositions. By using

of a carefully selected function of Ms rather than Ms as the target, it was possible

to put bounds on the output, therefore eliminating the risk of wild predictions such

as those generated in a previous neural network model. The new model was shown

to perform significantly better than the latter.
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The bayesian framework means that not only the knowledge present in the data-

base is reflected in the model, but also the absence of it, as the model will produce

large error bars for predictions where data were sparse during training.

7 Availability

This neural network model can be used on the wold-wide-web (www-map-online.

msm.cam.ac.uk).

The database is also distributed on the internet (www.msm.cam.ac.uk/map).

8 Acknowledgements

The authors are grateful to Pr Fray for provision of laboratory facilities, and Pr

Bhadeshia for helpful discussion, to NPL for provision of MTDATA and Neuromat

for provision of the Model Manager.

References

[1] G. Ghosh, G. B. Olson, Acta Mat. 42 (1994) 3361–3370.

[2] G. Ghosh, G. B. Olson, Acta Mat. 42 (1994) 3371–3379.

[3] G. Ghosh, G. B. Olson, J. Phase Eq. 22 (3) (2001) 199–207.

[4] G. Ghosh, G. B. Olson, Acta Mat. 50 (2002) 2655–2675.

[5] C. Capdevilla, F. G. caballero, C. G. de Andrés, I.S.I.J. 42 (2002) 894–902.

[6] T. Sourmail, C. Garcia-Mateo, unpublished .

[7] H. K. D. H. Bhadeshia, ISIJ Int. 39 (1999) 966–979.

[8] D. J. C. Mackay, Neural Computation 4 (1992) 448–472.

[9] D. J. C. Mackay, Neural Computation 4 (1992) 698–714.

[10] D. J. C. Mackay, Bayesian non-linear modelling with neural networks,

http://www.inference.phy.cam.ac.uk/mackay/cpi short.pdf (1995).

9



[11] D. J. C. Mackay, Network: Comput. Neural Syst. 6 (1995) 469–505.

[12] M. Atkins, Atlas of continuous cooling transformation diagrams for engineering

steels, Tech. rep., British Steel Corporation.

[13] M. Economopoulos, N. Lambert, L. Habraken, Diagrammes de transformation

des aciers fabriqués dans le benelux, Tech. rep., Centre National de Recherches

Métallurgiques (1967).

[14] Atlas of isothermal transformation diagrams of b.s. en steels. special report no

40, Tech. rep., The British Iron and Steel research association (1949).

[15] Atlas of isothermal transformation diagrams of b.s. en steels.(2nded) special

report no 56, Tech. rep., The Iron and Steel Institute (1956).

[16] Atlas of isothermal transformation and cooling transformation diagrams, Tech.

rep., American Society for Metals (1977).

[17] A. B. Greninger, Trans. ASM 30 (1942) 1–26.

[18] T. G. Digges, Trans. ASM 28 (1940) 575–600.

[19] T. Bell, W. S. Owen, JISI 205 (1967) 1777–1786.

[20] K. Ishida, T. Nishizawa, Trans. JIM 15 (1974) 218–224.

[21] M. Oka, H. Okamoto, Metall. Trans. A 19 (1988) 447–452.

[22] J. S. Pascover, S. V. Radcliffe, Trans. AIME 242 (1968) 673–682.

[23] R. B. G. Yeo, Trans AIME 227 (1963) 884–890.

[24] A. S. Sastri, D. R. F. West, JISI 203 (1965) 138–145.

[25] U. R. Lenel, B. R. Knott, Metal. Trans. A 18 (1987) 767–775.

[26] W. Steven, A. G. Haynes, JISI 183 (1956) 349–359.

[27] R. H. Goodenow, R. F. Heheman, Trans. AIME 233 (1965) 1777–1786.

[28] R. A. Grange, H. M. Stewart, Trans. AIME 167 (1945) 467–494.

10



[29] M. M. Rao, P. G. Winchell, Trans. AIME 239 (1967) 956–960.

[30] P. Payson, C. H. Savage, Trans. ASM 33 (1944) 261–281.

[31] E. S. Rowland, S. R. Lyle, Trans. ASM 37 (1946) 27–47.

[32] C. Y. Kung, J. J. Rayment, Metall. Trans. A 13 (1982) 328–331.

[33] MT-DATA, National Physical Laboratory, Teddington, Middlesex, U.K. (1989).

[34] Scientific Group Thermodata Europe, www.sgte.org (1983).

[35] W. G. Vermeulen, P. F. Morris, A. P. de Weijer, S. van der Zwaag, Ironmaking

and Steelmaking 23 (1996) 433–437.

[36] M. A. Yescas-Gonzales, H. K. D. H. Bhadeshia, Mater. Sci. Eng. A 333 (2002)

60–66.

[37] Model Manager, Neuromat Ltd, www.neuromat.com (2003).

11


