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Abstract 

The niche space of a species has been defined as the region in N-dimensional 

environmental hyperspace in which the fitness of the individuals is positive. In zooplankton 

assemblages, there has been little consideration of how different density-dependent (i.e. resources) 

and density-independent (i.e. conditions) environmental factors relate to fitness components in the 

field, namely survival and reproduction. We studied the abundance and reproduction (egg ratio) 

variability of seven species of pelagic rotifers living in a high-mountain lake and their relation to a 

number of environmental factors by means of partial canonical correspondence analyses. The 

generally higher explanatory capacity of conditions over resources suggests that habitat 

partitioning among species largely relies on historical processes, which are internalised in life 

history traits of spatial and temporal habitat use. However, the increase in the relevance of 

resources when considering reproduction, as compared to abundance, indicates that there is still an 

on-going interactive niche segregation process among rotifer species, which affects present and 

future rotifer assemblages in the lake. Our study shows the value of considering measurements 

close to fitness components (e.g. egg ratio) for detecting on-going niche segregation processes in 

zooplankton, which may help to resolve paradoxes in relation to species coexistence in natural 

assemblages. 
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Introduction  

 Hutchinson (1957, 1959) defined the niche space as the region in N-dimensional 

hyperspace in which the fitness of the individuals is positive. At the population level, fitness can 

be understood as the balance between growth rates and loss rates. Such a balance depends on the 

environmental requirements for an individual to complete its life cycle (survival) and to replace 

itself (reproduction). Approaches that explicitly considered the process of resource depletion 

(Schoener, 1974; Tilman, 1982) distinguished density-dependent (i.e., resources related) and 

density-independent (i.e., conditions related) components of fitness, recognizing that each of these 

components impact on both reproduction and survival probabilities (Liebold, 1995). In aquatic 

systems and for zooplankton in particular, field studies on species distribution quite often highlight 

abiotic factors (density-independent descriptors) as relevant in explaining species segregation 

(Laxhuber, 1987; Dunson and Travis, 1991; Armengol et al., 1998). Only exceptionally has the 

role of resources been demonstrated when using multivariate analyses (Green, 1971). On the other 

hand, theoretical ecology and laboratory studies normally consider density-dependent descriptors 

(i.e. resources and other biological interactions) as key elements of species niche segregation 

(Zaret, 1980; Tilman, 1982; Grundstörm, 1987; Rothhaupt, 1990), and have payed less attention to 

density-independent factors, with exceptions studying resource and temperature interactions in 

large mesocosms (Achenbach and Lampert, 1997; Stelzer, 2006).  

 

The relative significance of conditions and resources in population dynamics (i.e., individuals’ life 

cycles and reproduction) is a traditional, though puzzling question in ecology (Begon et al. 2006). 

Remarkably, field studies have paid little attention to how different resources and conditions relate 

to survival and reproduction. Filling in this gap, we studied the abundance and reproduction 

variability of seven species of pelagic rotifers living in a high-mountain lake and its relation to a 

number of potentially influential environmental factors. We performed a canonical correspondence 

analysis with variance partition (partial CCA) to reveal the hierarchical relationships of conditions 

and resources in describing the two components of the species population dynamics. Reproduction 

was considered in terms of egg ratios (the ratio of the number of eggs to the number of females) 

and when possible we distinguished between current-reproduction and delayed-reproduction (i.e. 

resting eggs). By explicitly looking at the explanatory capacity of various environmental factors on 

abundance and reproduction we expected to assess better the role of conditions and resources in 

the process of habitat partition in species assemblages and, as a consequence, in niche segregation. 
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Method 

The Lake 

This study was based on data from Lake Redon (formerly Lake Redó) (42º 38´N, 0º 46´E), 

a glacial cirque lake located in the Central Pyrenees, Spain, at 2,240 m above sea levell. It is a 

conical lake with a surface area of about 24 ha and a maximum depth of 73 m. It has a volume of 

7.75 x 106 m3 and a mean residence time of water of ca. 4 years. It occupies a relatively large part 

of its catchment (16%). The lake mixing regime is dimictic with spring and autumn overturn 

periods and it is covered by ice and snow for 6-7 months a year. A more complete description of 

the physical and chemical features of Lake Redon can be found in Catalan (1988) and Ventura et 

al. (2000).  

 

The plankton community 

The plankton community is characteristic of deep and oligotrophic high-mountain lakes 

(Felip et al., 1999; Felip and Catalan, 2000). In the period studied, phytoplankton dominated the 

microbial biomass, the ratio between autotrophic (phytoplankton) and heterotrophic (bacteria, 

heterotrophic flagellates and ciliates) microbial biomass ranged from 1.5 to 6.5, being 4.4 on 

average (Felip et al., 1999). Throughout the study period phytoplankton biomass was rich in 

species (ca. 100) and largely dominated (>70%) by flagellates (chrysophytes, small dinoflagellates 

and cryptophytes), with chrysophytes being the most abundant for most of the time. As a 

consequence of this flagellate dominance and the established relationship between phytoplankton 

biovolume and chlorophyll in the lake (Felip and Catalan, 2000), we considered chlorophyll-a to 

be a good proxy for an overall estimation of phytoplankton as a food source for rotifers, although 

we may lose some specific interactions as a result. Bacteria dominated the heterotrophic biomass 

(1000 to 4000 g C m-2) and ciliates were one order of magnitude less abundant, with biomass 

ranging from 1 to 100 mg C m-2. Heterotrophic nanoflagellates were not quantitatively significant 

for most of the year; only in April below the ice did they assume some significance, thus they were 

not considered in our study. Three species of crustacean zooplankton were present: Diaptomus 

cyaneus, Cyclops abyssorum and Daphnia pulicaria. For the period studied, crustacean 

zooplankton biomass ranged from 1 to 1500 mg C m-2,  D. pulicaria being the species that 

contributed the most to zooplankton biomass during the study period.  

 

Sampling and analytical procedures 

Organisms were sampled monthly at 3 m intervals from July 1996 to May 1997 at the 

deepest point of the lake (73 m). Water samples at 23 different depths were obtained each month. 
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In the ice-covered period we reached surface water by drilling a hole in the ice and snow cover. 

Rotifer samples were collected in Ruttner bottles (5 L capacity), filtered in situ on a 45 µm mesh, 

and preserved with 4% formaldehyde. Prior to preservation, the animals were narcotised with 

bicarbonate to facilitate the determination of soft rotifer species. Samples were also obtained in 

Ruttner bottles for the subsequent determination of microbial abundance. Ciliates were preserved 

in 200 mL bottles with Lugol’s solution (Sournia, 1978), and bacteria in 100 mL bottles with 4% 

formaldehyde. The rest of the water was filtered on Whatman GF/F filters to estimate chlorophyll-

a abundances through pigment analysis. 

Rotifer individuals were sedimented following the Utermöhl protocol in 50 ml columns 

(Sournia, 1978) and then counted with an inverted microscope at 150x magnification. All rotifers 

from each sample were counted. Ciliate biomass (fg C µm-3) was calculated in two steps. First, we 

estimated ciliate biovolumes by relating ciliate cell shapes to geometric figures of known volume 

(Sheat et al., 1975). Second, we used a conversion factor from biovolume to biomass of 190 fg C 

µm-3 (Putt and Stoecker, 1989). Bacterial numbers were determined by epifluorescence 

microscopy, using DAPI staining on black Nuclepore filters (pore size, 0.2 mm) by the method of 

Porter and Feig (1980). Chlorophyll-a was determined by spectrophotometry following the 

equations of Jeffrey and Humphrey (1975).  

Oxygen (mg L-1) and temperature (ºC) measurements were taken in situ at 3 m intervals. 

The photoperiod (the number of hours of light in a day) was calculated for each sampling day from 

latitude and longitude, and was considered as zero during the ice-covered period. Water column 

light extinction was computed as a percentage of superficial light by Secchi disk depth and 

following Poole & Atkins (1929).  

Because of its migratory capacity and heterogeneous distribution crustacean zooplankton 

was sampled by vertically integrated  net hauls from near bottom to the surface with a 200 µm net, 

therefore preventing  potential sample by sample comparison with rotifers.  

 

Multivariate analysis 

Ecological niches can be mathematically described as N-dimensional hypervolumes 

defined by orthogonal environmental axes. Species abundance responds to each of these 

environmental gradients following a Gaussian function or a unimodal (optimum-like) function. In 

canonical correspondence analysis (CCA) this statement is rooted in the idea that response 

variables (species) have unimodal or Gaussian distributions along explanatory variables 

(environment) (ter Braak, 1985; Legendre and Legendre, 1998). CCA is a technique that has the 

advantage of directly relating community data to explanatory sets of variables (environmental 
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descriptors). This distinguishes canonical analyses from other multivariate methods, e.g. principal 

component analysis or correspondence analysis (ter Braak, 1994). One of the many possibilities of 

canonical ordination is the partitioning of variance (Borcard et al., 1992), which combines the 

concepts of ordination (correspondence analyses) and regression (partial linear regression) to 

measure the amount of variation in response variables (community data) that can be attributed 

exclusively to one or specific sets of explanatory variables (environmental data), once the 

influence of other environmental data is subtracted (covariable data). Partitioning methods and, in 

particular, partial CCA analysis are thus adequate multivariate methods for looking for 

environmental descriptors of habitat partition between species (Borcard et al., 1992; Legendre, 

1993; Borcard and Legendre, 1994).  

The environmental factors considered in the analysis were: (i) as environmental factors: 

photoperiod (h), light in the water column (%), oxygen (mg L-1) and temperature (ºC), (ii) as 

resources: chlorophyll-a (µg L-1), bacterial abundance (cell µL-1) and ciliate biomass (mgC ml-1). 

Note that here  mixotrophic phytoplankton and ciliates can be food items for some rotifers and 

competitors for food for others. Instead of considering an explicit temporal variable (e.g., day of 

the year) we used the photoperiod, as a variable which may have a more valid (non spurious) 

explanatory value. Depth was also considered but was used to correct for variable autocorrelation 

(see below). Because of the different spatial sampling resolution, crustacean zooplankton was not 

considered in the analysis. To what extent we were missing an important factor is difficult to 

assess. Crustacean zooplankton certainly interacts with rotifers. However, indirect effects via 

common resource consumption were already considered through bacteria, chlorophyll and ciliates. 

Therefore, only direct effects were not evaluated. A CCA using column-integrated rotifer data 

showed no significant explanation in relation to crustacean zooplankton of the rotifer species 

composition and abundance, thus we assumed that direct effects were probably not very large.  

For multivariate ordination procedures, environmental descriptors should be expressed in 

compatible units (i.e. dimensionally homogeneous environmental matrix). Therefore, they were 

brought to a common scale by a range transformation that eliminates both the scales and part of the 

variability between descriptors. The method applied reduced the values of our variables to the 

interval [0,1] by first extracting the minimum observed for each variable and then dividing by the 

range (Legendre and Legendre, 1998). Although species abundance and egg ratio variance only 

covered two and three orders of magnitude respectively, both species matrices were also range-

transformed. Range transformation of species matrices avoids linearization of variables, which is 

not relevant to partial CCA analyses (Legendre and Legendre, 1998). Therefore, the multivariate 
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analyses consisted of the confrontation of two semiquantitative matrices (rotifer abundance or 

rotifer egg ratios vs. environmental factors) that could be compared with each other.  

The analysis procedure was as follows. We performed two partial CCA analyses 

(abundance vs. environmental, and egg ratio vs. environmental matrices) with a stepwise 

regression procedure, known as ‘forward selection’ in CANOCO software (ter Braak and 

Smilauer, 1998). This procedure allowed us to add explanatory variables one by one to the 

regression model, following a hierarchical order of statistically significant environmental 

descriptors. Forward selection was always done once the influence of depth correlations had been 

previously extracted, i.e. depth entered in the analysis as a covariable. By entering depth as 

covariable, we extracted spatial autocorrelation effects in the explanatory variables, which may be 

a main source of spurious relationships. This procedure showed us a hierarchical ordering of 

explained variance by the different environmental factors. The explanatory value of depth 

indicated the relative influence of the extreme environmental topological asymmetry imposed by 

lake morphology that cannot be disentangled among factors. In all cases, explanatory variables 

were added until our regression models were not improved significantly. Monte Carlo permutation 

tests of significance (999 trials) were performed before and after inclusion of each variable in the 

model. After this, we performed partial CCAs (following the hierarchical order obtained in the 

previous analysis) to obtain the variance explained by each environmental descriptor alone without 

the effect of the others. For each environmental variable, the previous environmental descriptors 

were introduced as covariables. Finally, cross-correlations between explanatory environmental 

variables and rotifer abundances or egg ratios were computed to find the sign of their interactions. 

 

Results 

Lake dynamics 

In the present study, summer (ice-free) and winter (ice-covered) stable periods lasted from 

June to September and from December to May, respectively. Continuity between these two periods 

was broken briefly by the autumn mixing period that lasted for two months. The melting of ice 

cover and the spring mixing period occurred in June. Temperatures ranged from 12.8 ºC (August 

in the epilimnion) to 0 ºC (surface water in the ice-covered period). The strongest thermocline was 

present in September after three months of progressive development. In October it started to 

become weaker and deeper, and finally it broke down. In November, the whole water column was 

mixed and temperature was homogeneously distributed. The ice-covered period started in 

December with a gentle inverted gradient of temperature in depth that lasted until May (Fig. 1). 

Oxygen ranged from 10 mg L-1 to 2 mg L-1. During most of the study period lake water was well 
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oxygenated, we only observed increasingly hypoxic conditions at deep layers as the ice-cover 

period progressed;  complete anoxia was never observed (Fig. 1).  

Chlorophyll-a (µg mL-1) and bacteria (cell µL-1) followed different spatiotemporal patterns 

(Fig. 1). As was expected in a deep high-mountain lake, we observed two maximum peaks of 

chlorophyll-a during the year (Catalan et al., 2002). The first abundance peak developed in the 

upper hypolimnion during summer. The second one was larger and developed in winter under the 

ice cover (December). Bacterial abundance ranged over one order of magnitude: from 1,592 cell 

µL-1 (October, 33 m) to 152 cell µL-1 (July, 15 m), however, for most of the samples it was fairly 

similar. Ciliate biomass was low throughout the study period. 

 

Rotifer life cycles 

Seven pelagic rotifer species were found in Lake Redon during the study period: Kellicotia 

longispina, Polyarthra dolichoptera, Asplanchna priodonta, Synchaeta lakowitziana, Collotheca 

pelagica, Keratella hiemalis and Ascomorpha ecaudis. For Polyarthra, we found a continuum of 

phenotypes between P. vulgaris and P. dolichoptera, with P. dolichoptera being the most abundant 

one.  

K. longispina and P. dolichoptera were the two dominant species. Their abundances were 

frequently above 50 ind L-1, with maxima around 125 ind L-1. K. hiemalis, S. lackowitziana, and C. 

pelagica were considered as subdominant species. They are characterised by their continuous 

incidence throughout most of the season with abundances around or below 1 ind L-1. Finally, A. 

priodonta and A. ecaudis were seen as rare species. Their incidence was not as regular as in the 

previous species, though clear spatiotemporal patterns could be observed. Maximum abundance 

for these species reached 1 ind L-1.  

In general, the abundance of the different rotifer species showed high spatiotemporal 

segregation (Fig. 2 and 3). Spatiotemporal patterns of egg abundances also showed seasonality 

(Fig. 2 and 3). 

Kellicottia longispina: This was the most abundant and the most ubiquitous rotifer in the 

lake (Fig. 2). Its population underwent two growth maxima: one in advanced summer (when the 

thermocline became weaker), and one in early winter (just after the formation of the ice cover). 

Although the rotifer was found throughout the lake, maximum population abundance was observed 

above 30 m: upper hypolimnion in summer and below the ice cover in winter. Two abundance 

maxima for the eggs were observed at 20-25 m depth in September and December. The maximum 

egg ratio was observed in September in  the epilimnion. Thus, for K. longispina, maximum 
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reproductive rates, i.e. the highest production rates of amictic eggs by females during the year, was 

in the epilimnion in September. 

Polyarthra dolichoptera: This is a summer epilimnetic species. Its population decreased 

during the mixing period to finally disappear at the beginning of ice cover. P. dolichoptera has the 

complex life cycle of Ploimate rotifers. Amictic females reproduce by parthenogenesis and 

produce (amictic) eggs with a diploid number of chromosomes. Mictic females produce eggs that 

undergo a meiotic division and, therefore, are haploid. The mictic females can be fertilized by 

males. If fertilisation does occur, the fertilised eggs are thick-walled and highly resistant to adverse 

environmental conditions, and these are called resting eggs. If mictic females are not fertilized then 

they produce eggs that promptly hatch into males (Ruttner-Kolisko 1974). In our observations, we 

distinguish between amictic, and mictic eggs and within the latter between mictic eggs still carried 

by females at different stages of development and fully developed resting eggs free in the samples. 

For brevity, hereafter we will refer to these two groups of mictic eggs as mictic and, resting eggs, 

respectively. In the summer period (from July to September), we found amictic and mictic eggs in 

the epilimnion (Fig. 2). Probably amictic reproduction allowed P. dolichoptera to quickly invade 

summer epilimnetic waters, whereas mictic reproduction was more relevant from July to 

November. As the thermocline gradually deepened, resting eggs were found in deeper waters. In 

November, just before the formation of ice cover, resting eggs were more abundant; their density 

peaked at 50 m depth, and progressively settled to deeper layers during the following month (Fig. 

2). The presence of resting eggs indicated that sexual reproduction occurred , however, no males 

were observed. Probably, because the dwarf, short-life males of Polyarthra were not retained on 

the 45 µm mesh net used in this study. Males have length a length of 42 – 44 µm and a smaller 

width (Koste, 1978). Amictic and mictic eggs represented current and delayed reproduction, 

respectively. Depending on the type of egg (amictic, or mictic), maximum egg ratios differed in 

their location in time and space. Therefore, in our multivariate analysis they were considered 

separately; however, we did not include the free-floating resting eggs in the analysis, because we 

considered that they were a delayed indication of  mictic eggs carried by females.  

Asplanchna priodonta: This was a summer epilimnetic species. The life cycle of A. 

priodonta is similar to that of P. dolichoptera (Fig. 2). It also reproduced sexually at the end of the 

seasonal population cycle, and had the maximum egg ratio during October and November 

following the destabilization of the thermocline. As A. priodonta is an ovoviviparous rotifer, all the 

eggs that were freely floating in the water column were considered to be  resting eggs (delayed 

reproduction effort). These free eggs or resting eggs were mainly observed in December when the 

ice cover was formed. Resting eggs were probably buried rapidly in sediment at the beginning of 
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winter and reappeared in spring (March). Although this species can have asexual reproduction, we 

did not observe any females with embryos in the study period. 

Synchaeta lakowitziana: This species appeared at low densities in summer hypolimnetic 

waters and increased steadily during the mixing period (Fig. 3). The maximum population 

abundance was observed in winter just under the ice cover. For this species, we only observed 

resting eggs, the maximum being located below the thermocline in September. There were two 

possible origins of September resting eggs (they could come from summer hypolimnetic 

populations or directly from the sediment). The abundance of resting eggs steadily declined and 

deepened, following thermocline deepening. At the beginning of the mixing period, there was 

probably a mixed adult population (resting eggs coming from the sediment and produced by 

summer population). The maximum egg ratio was observed in December at 60 m. For this species, 

we could not be certain whether the egg ratio was attributed strictly to current reproduction (i.e. 

amictic produced by females of the year) or to delayed reproduction (i.e. mictic and resting eggs 

produced by females of the year or coming from the sediment egg bank). Finally, though winter 

populations under the ice cover are thought to reproduce asexually, we did not observe any amictic 

eggs.  

Collotheca pelagica: This species was mostly present in the summer hypolimnion, but 

seemed to expand its population throughout the water column in November (just before the mixing 

period) from amictic or resting eggs (origin unknown) located near the sediment (Fig. 3). After the 

mixing period, some individuals persisted under the ice cover, but most of the population 

disappeared. The population was found at low densities, but was present at a wide range of 

temperatures and oxygen concentrations. Maximum abundance was observed within a very low 

range of the two factors (Fig. 3). C. pelagica started reproduction after the mixing period near the 

sediment surface and went on reproducing intermittently throughout the winter. Maximum egg 

ratio was developed in February at different depths. We assumed that all the eggs observed from 

December to March (and therefore the egg ratios) represented current reproduction (from the 

sediment surface to the water just under the winter ice cover).  

Keratella hiemalis: This species appeared sporadically from September to April in the 

deepest parts of the water column (50 m or deeper) (Fig. 3). Its maximum population densities and 

maximum egg ratios overlapped in time and space. K. hiemalis produced pseudosexual eggs at the 

bottom of the lake (Fig. 3). Pseudosexual eggs are resting-like eggs produced parthenogenetically 

and not sexually (Bosselman, 1981; Nogrady et al., 1993). We could not distinguish current-

reproduction from eggs produced earlier (delayed reproduction).  
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Ascomorpha ecaudis: This species was mainly found at great depth throughout the ice-free 

period, reaching its population maximum in October, but was also present in surface waters in 

early summer (July, September) (Fig. 3). We did not observe eggs of A. ecaudis, so were unable to 

gain information on its life-cycle dynamics. 

 

Variance partition 

Environmental factors were of different hierarchical importance in explaining 

spatiotemporal variance in abundance (Fig. 4) and egg ratios (Fig. 5). Depth was forced to be the 

first explanatory variable in the hierarchy because it entered the analysis as a covariable to reduce 

spatial correlation (see Methods). When depth relevance was low, it meant there was no problem 

of spatial autocorrelation, whereas when it was high this indicated that the relevance of other 

factors do not show up because the high spatial autocorrelation. The remaining variance associated 

with either abundance or egg ratios was explained by different hierarchies of environmental 

factors. The spatiotemporal patterns (variance) observed for rotifer abundances in Lake Redon 

were mostly explained by temperature, oxygen and light, whereas chlorophyll-a and ciliates had 

much less explanatory value. At the bottom of the hierarchy, we found photoperiod and bacteria 

(Fig. 4a). Although temperature, oxygen and light were inter-correlated, the stepwise regression 

procedure showed that there was still some significant variance to be explained by each factor 

when the others were included in the model. A radically different hierarchy of environmental 

descriptors was obtained in relation to the spatiotemporal distribution of rotifer egg ratios (Fig. 5). 

In this analysis, once spatial correlations were extracted (depth as covariable), photoperiod and 

oxygen were the environmental descriptors explaining most of the variance, followed by some 

environmental factors indicative of resource availability: ciliates and chlorophyll-a. At the bottom 

of the hierarchy we found temperature, light and bacteria.  

Apart from the distinct hierarchical relationships, the environmental factors studied 

explained differing amounts of variance (Fig. 4a, 5a) and involved different representativity in 

each species analysed and/or egg ratio computed (Figs. 4b, 5b). Indeed, the consideration of an 

environmental variable as a potential habitat partitioning descriptor should be based not only on its 

relative position in the general hierarchy, but also on its representativity when the species are 

considered one by one (Figs. 4b, 5b). For example, photoperiod, though it only involved temporal 

information, is represented in several species in both analyses. The same is true for temperature, 

ciliate biomass and chlorophyll-a. However, the relative positions of oxygen were basically due to 

its strong correlation with a single species (K. hiemalis). This is particularly so in the egg ratio 
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analysis (Fig. 5, Table I). In such cases, the environmental variable should not be considered as an 

ecologically meaningful descriptor of the community. 

 

Discussion 

Abundance factors 

The analysis of the seasonal pattern of rotifer species abundance in Lake Redon suggested 

a hierarchy of environmental descriptors in which abiotic conditions (temperature, oxygen and 

light) explained much more variability than resources (chlorophyll-a, ciliates and bacteria). 

Because of this, conditions (and not resources) should be seen as the main environmental 

descriptors of habitat partitioning (Fig. 4a). Based on the correlations observed for the most 

important environmental factors (Table I), we could clearly distinguish between temperature-

dependent (P. dolichoptera, A. priodonta and S. lakowitziana), oxygen-dependent (K. hiemalis), 

and light-dependent species (A. ecaudis, C. pelagica). The spatiotemporal distribution of K. 

longispina was explained by the three factors (temperature, oxygen and light) in equivalent 

proportions. Previous studies of rotifers showed similar results (Laxhuber, 1987; Mikschi, 1989; 

Esparcia et al., 1989). The capacity of conditions (temperature and oxygen, above all) to 

summarise the seasonal patterns of abundance of planktonic species was documented early on 

(Hutchinson, 1967; Miracle, 1974; Makarewicz and Likens, 1975; Dunson and Travis, 1991). 

Effects of temperature on rotifers are multiple (on life-cycle parameters, ingestion rates, etc.) at 

both individual and population levels (Ruttner-Kolisko, 1978; Galkovskaja, 1987). Clearly, oxygen 

concentration is a relevant environmental factor in deep and stratified lakes, but also in high 

temperate and saline waters (Esparcia et al., 1989). In fact, some rotifer species are literally 

trapped between the warm epilimnion and deoxygenated hypolimnion of lakes (Herzig, 1987). 

Most rotifers need concentrations above 1 mg O2 L
-1 to survive (Nogrady et al., 1993). However, 

some studies have found adaptations of rotifers to low oxygen concentrations: from 1 to 0.1 mg O2 

L-1 (Esparcia et al., 1989; Nogrady et al., 1993). Light is related to certain other factors such as 

turbidity, changes in phytoplankton abundance and species composition. Most of the invertebrate 

responses to light are related to daily migratory movements, taxis and/or kinesis (Hutchinson, 

1967). Relationships between rotifers and light are not well documented, though one could expect 

the same kind of significance as for other invertebrates.  

The statistical significance of chlorophyll-a was related to both negative (K. hiemalis and S. 

lakowitziana) and positive correlations (A. ecaudis, A. priodonta ) (Table I). In the latter case, it 

should be considered as a direct resource (A. ecaudis) or as an indirect signal of resources (A. 

priodonta). Ciliate biomass in the epilimnion during the ice-free period could be mainly attributed 



13 

to Pelagostrombidium fallax, with its presence positively correlated with P. dolichoptera (a 

potential competitor) and negatively correlated with A. priodonta (a potential predator). Summer 

hypolimnetic species (S. lakowitziana and C. pelagica) correlated negatively with P. fallax, and K. 

hiemalis correlated positively with other hypolimnetic species of ciliates (oligotrichia). 

Photoperiod and bacterial abundance were not relevant explanatory variables. As the former only 

involved temporal information (seasonal indicator), its explanatory power relating to spatial 

patterns was nil; and the latter had a very constant pattern in space and time. Despite this, bacterial 

abundance explained part of the variance of some species (K. longispina, A. ecaudis and C. 

pelagica), although the two latter species are not bacterivorous but feed on mid-size 

phytoplankton.  

 

Egg ratio factors  

The analysis of the seasonal patterns of rotifer egg ratios in Lake Redon showed other 

factors (photoperiod and oxygen) as the main components of habitat partitioning, followed by 

environmental descriptors indicative of resource availability: ciliate biomass and chlorophyll-a. 

Photoperiod and temperature are the two most frequently demonstrated cues for diapause 

termination (egg hatching) in zooplankton (Gyllström and Hansson, 2004). In addition, 

photoperiod has been shown to be closely linked to the reproductive cycle of rotifers, in particular 

to the production of mictic or diapausing (resting) eggs (Pourriot and Clement, 1975; Pourriot et 

al., 1981). Although temperature has a great impact on rotifer life-cycle parameters (Snell and 

King, 1977; Ruttner-Kolisko, 1978; Walz, 1997), it was a rather weak descriptor of seasonal 

community productivity patterns. This result may suggest complex interactions of temperature 

with other biological and non-biological components (Galkovskaja, 1987; Zoufal, 1989; Yúfera, 

1987; Miracle and Serra, 1989), resulting in effects and counter-effects related to egg production. 

Oxygen concentration summarized most of the spatial information contained in egg ratio patterns. 

However, its explanatory power was mainly related to a negative correlation to K. hiemalis egg 

ratios (Table I). K. hiemalis was present exclusively under hypolimnetic conditions, in which there 

were lower oxygen concentrations.  

Ciliate biomass (mostly P. fallax) was the third factor in the hierarchy, mainly due to the 

existence of positive and negative correlations with those rotifer species achieving the highest egg 

ratios in the summer epilimnion (P. dolichoptera) or superficial hypolimnion (A. priodonta and K. 

longispina), respectively (Table I). The egg ratio pattern of K. hiemalis was also linked to the 

presence of small deep hypolimnetic ciliates. Overall, in egg ratio analysis, ciliate biomass should 
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be considered a direct resource for A. priodonta, and an indicator of resources for P. dolichoptera 

and K. hiemalis (though P. fallax could be a competitor). 

Chlorophyll-a increased its representativity in most of the species considered, compared 

with the abundance analysis (compare Fig. 3b and 4b). Indeed, chlorophyll-a explained much more 

variance than temperature (Fig 3b). Chlorophyll-a positively and directly correlated with P. 

dolichoptera egg ratios, and positively and indirectly correlated with A. priodonta egg ratios (this 

species may predate P. dolichoptera or P. fallax). The egg ratios of bacterivorous (K. longispina, 

K. hiemalis) or mid-size phytoplankton consumers (C. pelagica) correlated negatively with 

chlorophyll-a. Felip and Catalan (2000) showed that chlorophyll-a peaks in Lake Redon were 

related to changes in spatial or successional trends in species dominance, with flagellated 

chrysophytes being the main group related to the chlorophyll maximum. Thus, we can relate 

quantitative changes in chlorophyll-a to changes in the proportion of different phytoplankton 

species or food types (cell size, dominant groups). Similarly, Devetter and Sed’a (2003) showed 

that rotifer fecundity was intimately linked to chlorophyll-a concentration. However, food quality 

and quantity are not only related to population growth (Rothhaupt, 1990; Walz, 1997), but also to 

diapause induction (Gyllström and Hansson, 2004).  

Unlike chlorophyll-a, bacterial abundance showed little variability through the seasonal 

cycle and so was not relevant to egg ratio variability. Constancy of bacterial spatiotemporal 

distributions in the water column has been described and discussed by some authors (Güde, 1989; 

Giorgio and Gasol, 1995). 

 

Conditions vs. resources 

The seasonal succession of species abundance in the lake was adequately explained by 

conditions such as temperature, oxygen and light. However, the egg ratio analysis revealed a 

change in the hierarchy of the most relevant conditions (basically temperature was replaced by 

photoperiod) and, more interestingly, showed an increased role for resources (chlorophyll-a, 

ciliates) as environmental descriptors of habitat partition.  

These results indicate (i) that there is a large proportion of niche segregation among species 

that is already internalised in their life history traits, either because previous competitive 

interactions (Brown and Wilson, 1956; Connell, 1980) or due to independent species evolutionary 

histories, and (ii) that at the present time, there is little competitive exclusion based on resource 

depletion (Hardin, 1960; Ghilarov, 1984; Tilman, 1982; Leibold, 1995). Detailed consideration of 

more specific food items (e.g cryptophytes for Synchaeta) might have increased the explanatory  
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power of resources, in any case, this will be unlikely to dismiss the high explanatory  power of 

density-independent factors.  

Niche segregation among species do not start from zero each year, and to some extent the 

high explanatory capacity of environmental conditions on abundance and reproduction patterns 

could be a measure of those past interactions. However, segregation adjustment among life 

histories would never be perfect, among other aspects because the environment, both physical and 

biotic, is never the same, thus there is a constant local niche re-shaping to fine-tune niche 

segregation, which in turn decreases competition over time, as it has recently been shown 

empirically in co-existing Daphnia species (Steiner et al., 2007). Noticeably, when we consider a 

parameter critical to fitness, such as the egg ratio, the role of resource in explaining variability 

among species increases, suggesting an on-going interactive dynamics of niche segregation. 

Seasonal egg ratio maxima in the lake can be interpreted as “hot spots” of reproductive fitness that 

determine niche segregation mechanisms not only through real-time impacts on the lake ecosystem 

(current-reproduction), but also through their effect on future rotifer generations and seasonal 

cycles (delayed-reproduction). In this sense, some of the egg ratios computed in the present study 

clearly involved adaptive responses of organisms to their changing environments, which are 

known to have an influential effect on changes in future population sizes and dynamics (Gyllström 

and Hansson, 2004).  

Overall, in population dynamics terms, conditions should be understood as the physical 

template in which the potential coexistence equilibriums are established each year, and resources 

might play the role of dynamic impacts that regulate these coexistence equilibriums by affecting 

the stability properties of present or future rotifer species assemblages in the lake. These changes 

in stability continuously reshape niche characteristics and reframe the potential coexistence 

equilibria. In Lake Redon, for example, resources were strongly correlated to rotifer reproductive 

efforts which in turn controls the appearance of present (within the same seasonal cycle) and future 

pelagic species assemblages in the lake. As suggested in the revised niche-theory (Liebold, 1995; 

Chase and Liebold, 2003), species also play important roles in dynamic aspects of community 

stability via their relative ability to influence the environment (impact niches). In this sense, the 

effects on niche segregation of per capita egg production rates may be closely related to those 

generated by impact niche variables such as resource depletion rates or predation rates (Liebold, 

1995, 2003).  

The relative significance of conditions and resources as niche segregation factors in a 

community will vary, depending on species biology, the ecosystem and/or the spatiotemporal 

scales under study. However, in our study we have shown that it is worth considering  
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measurements closer to fitness components of populations (e.g. reproduction) for detecting on-

going niche segregation processes. Such studies on fitness component dynamics, rather than 

simply on abundance patterns, should help resolve paradoxes in relation to species coexistence 

(Ghilarov, 1984) and lead to a better  understanding of niche segregation mechanisms in natural 

communities.  
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Table and Figure legends 

 

Table I. Cross-correlations for the two canonical correspondence analyses performed, based on 

species abundance and egg ratios, respectively. The correlations above 0.7 are highlighted. Codes: 

Aspp, A. priodonta; Colp, C. pelagica; Kell, K. longispina; Kerh, K. hiemalis; Synl, S. 

lackowitziana; Pold, P. dolichoptera (m, mictic, a, amictic); Asce, A. ecaudis. 

 

 

 

 

 

Fig. 1. Spatiotemporal patterns of environmental factors (temperature, oxygen, chlorophyll and 

bacteria) of the rotifer community of Lake Redon during the study period. 
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Fig. 2. Adult females and egg abundance of three of the seven most representative pelagic rotifers 

of Lake Redon during the study period. Data in ind L-1 (adult females) and egg L-1 (eggs). 
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Fig. 3. Adult females and egg abundance of four of the seven most representative pelagic rotifers 

of Lake Redon during the study period. Data shown are given in ind L-1 (adult females) and egg L-1 

(eggs).  
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Fig. 4. Variance partitioning based on species abundance patterns. The percentage of variance 

explained by each of the environmental factors on each species is shown: (a) non-standardised, (b) 

standardised. Within the legend the factors are listed by the order they entered the forward 

selection. Depth was included as a co-variable to correct for autocorrelation patterns related to the 

lake vertical gradient, thus it is listed in first place. In each bar, the explicative value allocated to 

each factor does not include the variance shared with the preceding factors in the hierarchy. Codes: 

Aspp, A. priodonta; Colp, C. pelagica; Kerh, K. hiemalis; Kell, K. longispina; Synl, S. 

lackowitziana; Pold, P. dolichoptera; Asce, A. ecaudis. 
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Fig. 5. Variance partitioning based on species egg ratio patterns. The percentage of variance 

explained by each of the environmental factors on each species’ specific egg ratios is shown: (a) 

non-standardised, (b) standardised. Within the legend the factors are listed by the order they 

entered the forward selection. Depth was included as a co-variable to correct for autocorrelation 

patterns related to the lake vertical gradient, thus it is listed in first place. In each bar, the 

explicative value allocated to each factor does not include the variance shared with the preceding 

factors in the hierarchy. Codes: Aspp, A. priodonta; Colp, C. pelagica; Kerh, K. hiemalis; Kell, K. 

longispina; Synl, S. lackowitziana; aPold, P. dolichoptera (amictic); mPold, P. dolichoptera 

(mictic). 
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Table I. Cross-correlations for the canonical correspondence analyses.  

                

Species        

  Aspp Colp Kell Kerh Synl Pold Asce 

        

depth -0.384 0.898 -0.135 1.550 -0.436 -0.316 0.903 

temperature 0.918 -0.050 -0.179 -0.379 -0.885 0.937 0.197 

oxygen -0.006 -0.074 0.170 -1.897 -0.016 -0.011 -0.097 

light -0.052 0.177 -0.079 0.044 -0.030 -0.050 0.498 

chlorophyll a 0.208 0.079 0.038 -0.540 -0.291 0.070 0.134 

ciliate -.161 -0.155 -0.031 0.436 -0.040 0.269 -0.120 

photoperiod -0.003 0.105 -0.058 0.043 -0.004 0.014 0.173 

bacteria -0.068 -0.171 0.128 0.129 -0.130 0.008 -0.264 

                

Egg ratios        

  Aspp Colp Kell Kerh Synl m Pold a Pold 

        

depth -0.082 -0.102 -0.780 1.538 1.112 0.250 -0.022 

photoperiod 0.747 -0.768 1.082 -0.451 -0.547 -0.104 1.264 

oxygen 0.057 0.359 -0.287 -2.846 0.303 -0.103 0.417 

ciliate -0.630 -0.054 0.395 0.257 0.056 -0.164 1.374 

chlorophyll a 0.535 -0.114 -0.709 -0.032 -0.312 0.339 0.187 

temperature 0.188 -0.047 0.021 -0.479 0.213 0.054 -0.329 

light -0.172 -0.041 0.176 -0.216 0.368 0.050 -0.151 

bacteria 0.288 -0.033 -0.365 -0.191 0.262 0.078 0.045 

                

 


