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Jesús Cerquides (cerquide@maia.ub.es)
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Abstract. In this paper we present several Bayesian algorithms for learning Tree
Augmented Naive Bayes (TAN) models. First we correct Meila and Jaakkola (Meila
and Jaakkola, 2000a) results for Bayesian learning with tree belief networks. Then we
show that these results can be extended to TANs by proving that accepting a prior
decomposable distribution over TAN’s, we can compute the exact Bayesian model
averaging over TAN structures and parameters in polynomial time. Furthermore, we
prove that the k-maximum a posteriori (MAP) TAN structures can also be computed
in polynomial time. We use these results to construct several TAN based classifiers.
We show that these classifiers provide consistently better predictions over Irvine
datasets and artificially generated data than TAN based classifiers proposed in the
literature.

Keywords: Bayesian networks, Bayesian network classifiers, naive Bayes, tree
augmented naive Bayes, decomposable distributions, Bayesian model averaging.

1. Introduction

Bayesian network classifiers such as naive Bayes (Langley et al., 1992)
or Tree Augmented Naive Bayes (TAN) (Friedman et al., 1997) have
shown excellent performance in spite of their simplicity and heavy
underlying independence assumptions.

In their seminal work (Chow and Liu, 1968), Chow and Liu proved
that we can find the maximum likelihood tree structure and param-
eters in polynomial time. In 1997, Friedman et al. introduced TAN
in (Friedman et al., 1997) by extending Chow and Liu results from
tree structures to TAN structures. In (Meila and Jaakkola, 2000a),
Meila and Jaakkola defined decomposable distributions over tree belief
networks and claimed that the exact Bayesian model averaging over
tree structures and parameters was computable in polynomial time. In
this paper we correct Meila and Jaakkola results and extend them to
TANs.
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The paper relevance is twofold. First, it presents a new, careful,
coherent and theoretically appealing development of TAN based classi-
fiers rooted in Bayesian probability theory concepts. Second, it estab-
lishes through empirical tests the practical usefulness of these results.

We start the paper by reviewing previous work in TAN classifiers
and presenting the notation to be used.

In section 3, we define decomposable distributions over trees as in
(Meila and Jaakkola, 2000a). We show that some results in (Meila and
Jaakkola, 2000a) are not correct and we provide the corrected results
with their detailed proofs. Then we define decomposable distributions
over TAN models and we prove that they have four relevant prop-
erties. First, that they allow the computation of the exact Bayesian
model averaging over TAN structures and parameters in polynomial
time. Second, that they allow the computation of the single MAP TAN
structure in polynomial time. Third, that they allow the computation
of the k maximum a posteriori (MAP) TAN structures and their rel-
ative probability weights in polynomial time and that the increase in
complexity is small with respect to computing the single MAP TAN
structure. Finally we show that, given a fixed TAN structure, the result
of performing exact Bayesian model averaging over parameters can be
represented as a single TAN model.

Once we have presented and proved these properties , we use them
to construct three classifiers. We construct the maptan classifier by
computing the MAP TAN structure and then performing Bayesian
model averaging (BMA) over parameters. We construct maptan+bma

by computing the k MAP TAN structures (and their relative proba-
bility weigths) and constructing an ensemble classifier based on that.
Finally, we construct tbmatan (Tractable Bayesian Model Averaging
TAN) by computing the exact Bayesian model averaging over TAN
structures and parameters. Furthermore, we argue that special care
should be taken when implementing tbmatan, because the algorithm
requires the computation of the determinat of a matrix that frequently
is ill-conditioned. In order to deal with this problem we introduce a
fourth classifier, sstbmatan (Structure Sttuborn tbmatan), as an
approximation to tbmatan.

In section 6 we compare the empirical results obtained by the four
classifiers introduced, with the softened TAN classifier proposed in
(Friedman et al., 1997) which we name stan. The comparison is made
over a set of Irvine datasets and over a set of randomly generated
Bayesian networks with different characteristics. We show that all our
classifiers provide consistently better predictions than stan in a statis-
tically significant way. We also show that averaging over TANs also
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improves over selecting a single TAN structure when little data is
available.

Finally, we provide some conclusions and future work in section 7.
This paper improves and extends significatively the results presented

in (Cerquides and López de Màntaras, 2003). Concretely, the paper pro-
vides a more detailed background, corrected results for decomposable
distributions over trees, detailed proofs and introduces and discusses
two new classifiers (maptan and maptan+bma). Also the experi-
mental work has extended by using the area under the ROC curve
as measure of performance and performing experimental work over
randomly generated Bayesian networks. This allows the experimental
results to be far more conclusive than the ones presented in (Cerquides
and López de Màntaras, 2003).

2. Trees and Tree Augmented Naive Bayes

Tree Augmented Naive Bayes (TAN) appears as a natural extension
to the naive Bayes classifier (Kontkanen et al., 1998; Langley et al.,
1992; Domingos and Pazzani, 1997). TAN models are a restricted family
of Bayesian networks in which the class variable has no parents and
each attribute has as parents the class variable and at most one other
attribute. An example of TAN model can be seen in Figure 2(c).

In this section we start introducing the notation to be used in the
rest of the paper. After that we discuss the TAN induction algorithm
presented in (Friedman et al., 1997).

2.1. Formalization and Notation

The notation used in the paper is an effort to put together the different
notations used in (Cerquides, 1999; Heckerman et al., 1995; Friedman
et al., 1997; Meila and Jaakkola, 2000a) and some conventions in the
machine learning literature.

2.1.1. The Discrete Classification Problem

A discrete attribute is a finite set, for example we can define attribute
Pressure as Pressure = {Low,Medium,High}. A discrete domain is
a finite set of discrete attributes. We will note Ω = {X1, . . . , Xm} for
a discrete domain, where X1, . . . , Xm are the attributes in the domain.
A classified discrete domain is a discrete domain where one of the at-
tributes is distinguished as “class”. We will use ΩC = {A1, . . . , An, C}
for a classified discrete domain. In the rest of the paper we will refer
to an attribute either as Xi (when it is considered part of a discrete
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domain), Ai (when it is considered part of a classified discrete domain
and it is not the class) and C (when it is the class of a classified
discrete domain). We note V = {A1, . . . , An} the set that contains all
the attributes in a classified discrete domain except the class attribute.

Given an attribute X, we note #X as the number of different values

of X. We define #Ω =
m∏

i=1
#Xi and #ΩC = #C

n∏
i=1

#Ai. We note

the maximum number of different values for an attribute in a domain
r = max

i∈Ω
#Xi = max(max

i∈V
#Ai,#C).

An observation x in a classified discrete domain ΩC is an ordered
tuple x = (x1, . . . , xn, xC) ∈ A1 × . . . × An × C. An unclassified obser-

vation S in ΩC is an ordered tuple S = (s1, . . . , sn) ∈ A1 × . . . × An.
To be homogeneous we will abuse this notation a bit noting sC for a
possible value of the class for S. A dataset D in ΩC is a multiset of
classified observations in ΩC .

We will note N for the number of observations in the dataset. We will
also note Ni(xi) for the number of observations in D where the value for
Ai is xi, Ni,j(xi, xj) the number of observations in D where the value
for Ai is xi and the value for Aj is xj and similarly for Ni,j,k(xi, xj , xk)
and so on. We note similarly fi(xi), fi,j(xi, xj), . . . the frequencies in
D. It is worth noticing that f defines a probability distribution over
A1 × . . . × An × C.

A classifier in a classified discrete domain ΩC is a procedure that
given a dataset D in ΩC and an unclassified observation S in ΩC assigns
a class to S.

2.1.2. Bayesian Networks for Discrete Classification

Bayesian networks offer a solution for the discrete classification prob-
lem. The approach is to define a random variable for each attribute in
Ω (the class is included but not distinguished at this time). We will
note U = {X1, . . . ,Xm} where each Xi is a random variable over its
corresponding attribute Xi. We extend the meaning of this notation
to Ai, C and V. A Bayesian network over U is a pair B = 〈G,Θ〉.
The first component, G, is a directed acyclic graph whose vertices
correspond to the random variables X1, . . . ,Xm and whose edges repre-
sent direct dependencies between the variables. The graph G encodes
independence assumptions: each variable Xi is independent of its non-
descendants given its parents in G. The second component of the pair,
namely Θ, represents the set of parameters that quantifies the network.
It contains a parameter θi|Πi

(xi,Πxi
) = PB(xi|Πxi

) for each xi ∈ Xi

and Πxi
∈ ΠXi

, where ΠXi
denotes the Cartesian product of every Xj

such that Xj is a parent of Xi in G. Πi is the list of parents of Xi in G.
We will note Πi = U−{Xi}−Πi. A Bayesian network defines a unique
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joint probability distribution over U given by

PB(x1, . . . , xm) =
m∏

i=1

PB(xi|Πxi
) =

m∏

i=1

θi|Πi
(xi|Πxi

) (1)

The application of Bayesian networks for classification can be very sim-
ple. For example suppose we have an algorithm that, given a classified
discrete domain ΩC and a dataset D over ΩC , returns a Bayesian net-
work B over U = {A1, . . . ,An, C} where each Ai (resp. C) is a random
variable over Ai (resp. C). Then if we are given a new unclassified obser-
vation S we can easily classify S into class argmax

sC∈C
(PB(s1, . . . , sn, sC)).

This simple mechanism allows us to see any Bayesian network learning
algorithm as a classifier.

X
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X
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X
   1

X
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X
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X
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X
   1

X
   3
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Figure 1. Notation for learning with trees

2.2. Learning with trees

Given an unclassified domain Ω we will note E the set of undirected
graphs E over {X1, . . . ,Xm} such that E is a tree (has no cycles). We
will use u, v ∈ E instead of (Xu,Xv) ∈ E for simplicity. We note E a
directed tree for E. We note ρE the root of a directed tree E (i.e. in
Figure 1(b) we have that ρ

E
= X1).

We will note Θ
E

the set of parameters that quantify the Bayesian

network M = 〈E,Θ
E
〉. More concretely:

Θ
E

= (θρ
E
, {θv|u|u, v ∈ E})

θρ
E

= {θρ
E
(i)|i ∈ Xρ

E
} where θρ

E
(i) = P (Xρ

E
= i|M)

For each u, v ∈ E:
θv|u = {θv|u(j, i)|j ∈ Xv , i ∈ Xu} where
θv|u(j, i) = P (Xv = j|Xu = i,M).
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procedure Construct-Tree (ProbabilityDistribution P)

var

WeightMatrix IP;

UndirectedGraph UG;

UndirectedTree UT;

DirectedTree T;

foreach Xi,Xj

Compute IP (Xi,Xj) =
∑

x∈Xi
y∈Xj

P (x, y)log( P (x,y)
P (x)P (y) )

end

UG = ConstructUndirectedGraph(IP);

UT = MaximumWeightedSpanningTree(UG);

T = MakeDirected(UT);

Fix T parameters using equation 3

return T;

Algorithm 1: Maximum likelihood tree construction procedure

2.2.1. Learning Maximum Likelihood trees

One of the measures used to learn Bayesian networks is the log likeli-

hood:
LL(B|D) =

∑

x∈D

log(PB(x)) (2)

An interesting property of tree probability distributions is that we
have an efficient procedure (Chow and Liu, 1968) for identifying the
structure of the tree which maximizes likelihood. The procedure, that
can be seen in algorithm 1, fixes the value of the tree parameters as
follows:

θρ
E
(i) = P (Xρ

E
= i)

θv|u(j, i) =
P (Xv = j,Xu = i)

P (Xρ
E

= i)

(3)

where P is the probability distribution that it receives as parameter.
The theorem that guarantees that algorithm 1 finds the maximum

likelihood tree is stated below, where f is the probability distribu-
tion induced by the frequencies in D and r,n and N are defined in
section 2.1.1.

THEOREM 1 (Chow & Liu, 1968). Let D be a dataset over Ω. The

procedure Construct-Tree(f) builds a tree BT that maximizes LL(BT |D)
and has time complexity O((N + r2) · n2).
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Figure 2. Notation for learning with TANs

2.3. Learning with TANs

Given a classified domain ΩC we will note E the set of undirected
graphs E over {A1, . . . ,An} such that E is a tree (we will exclude the
class attribute from E). We will use u, v ∈ E instead of (Au,Av) ∈ E

for simplicity. We note E a directed tree for E. Every E uniquely
determines the structure of a Tree Augmented Naive Bayes classifier,
because from E we can construct E

∗
= E ∪ {(C,Ai)|1 ≤ i ≤ n} as can

be seen in an example in Figure 2. We note the root of a directed tree
E as ρE (i.e. in Figure 2(b) we have that ρE = A1).

We note Θ
E

∗ the set of parameters that quantify the Bayesian

network M = 〈E
∗
,Θ

E
∗〉. More concretely:

Θ
E

∗ = (θC ,θρ
E
|C , {θv|u,C |u, v ∈ E})

θC = {θC(c)|c ∈ C} where θC(c) = P (C = c|M)

θρ
E
|C = {θρ

E
|C(i, c)|i ∈ Aρ

E
, c ∈ C} where

θρ
E
|C(i, c) = P (Aρ

E
= i|C = c,M)

For each u, v ∈ E:
θv|u,C = {θv|u,C(j, i, c)|j ∈ Av, i ∈ Au, c ∈ C} where
θv|u,C(j, i, c) = P (Av = j|Au = i, C = c,M).
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procedure Construct-TAN (ProbabilityDistribution P)

var

WeightMatrix IP;

UndirectedGraph UG;

UndirectedTree UT;

DirectedTree T;

DirectedGraph TAN;

foreach Ai,Aj

Compute IP (Ai;Aj |C) =
∑

x∈Ai
y∈Aj

z∈C

P (x, y, z)log( P (x,y|z)
P (x|z)P (y|z) )

end

UG = ConstructUndirectedGraph(IP);

UT = MaximumWeightedSpanningTree(UG);

T = MakeDirected(UT);

TAN = AddClass(T);

Fix TAN parameters using equation 4

return TAN;

Algorithm 2: Maximum likelihood TAN construction procedure

2.3.1. Learning Maximum Likelihood TAN

The results for trees reviewed in section 2.2.1 were extended to TANs
in (Friedman et al., 1997). We call here the procedure and theorem for
learning maximum likelihood TANs.

THEOREM 2 (Friedman, Geiger & Goldszmidt, 1997). Let D be a dataset

over ΩC . The procedure Construct-TAN(f) builds a TAN BT that

maximizes LL(BT |D) and has time complexity O((N + r3) · n2).

Algorithm 2 fixes the model parameters by using:

θC(c) = P (C = c)

θρ
E
|C(i, c) = P (Aρ

E
= i|C = c)

θv|u,C(j, i, c) = P (Av = j|Au = i, C = c)

(4)

where P is the probability distribution that it receives as parameter. It
has been shown (Friedman et al., 1997) that equation 4 leads to models
that overfit the data. As an alternative, Friedman et al. propose to set
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the parameters as follows:

θC(c) = P (C = c)

θρ
E
|C(i, c) =

N · P (Aρ
E

= i, C = c) + N 0 · P (Aρ
E

= i)

N · P (C = c) + N 0

θv|u,C(j, i, c) =
N · P (Av = j,Au = i, C = c) + N 0 · P (Av = j)

N · P (Au = i, C = c) + N 0

(5)

and suggest the use of N 0 = 5 based on empirical results. The classifier
resultant from finding the maximum likelihood TAN structure and
adjusting the parameters as in equation 5 will be referred to in the
rest of the paper as stan. Using equation 5 to fix the parameters
improves the accuracy of the classifier. However, they are making some
further assumptions (they are assuming that parameters follow the
Dirichlet distribution) in order to derive equation 5. The question arises
on whether those assumptions (or similar ones) could be used in the
determination of the TAN structure. In section 4.5 we will see how this
can be done, but first we have to develop the results for the simpler
case of trees.

3. Decomposable distributions over tree belief networks

In this section we review and correct results for Bayesian learning of
tree belief networks. Following (Meila and Jaakkola, 2000a), we define
decomposable distributions over trees in section 3.1 and after that we
prove that the exact Bayesian model averaging can be computed in
polynomial time.

3.1. Definition

In (Meila and Jaakkola, 2000b), Meila and Jaakkola introduced de-

composable priors: a family of priors over structure and parameters of
tree belief networks, that is, a family of probability distributions over
the space of tree belief network models. In the following we will use
the term decomposable distribution over trees instead of decomposable
priors, and we will use prior and posterior as they are commonly used
in Bayesian analysis.

Decomposable distributions over trees are the product of a distribu-
tion over tree structures and a distribution over tree parameters, that
is, assuming that, given ξ, the probability distribution over the set of
tree belief network models follows a decomposable distribution over
trees, we have that

P (M |ξ) = P (E,Θ
E
|ξ) = P (E|ξ)P (Θ

E
|E, ξ) (6)
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where we recall that E is the directed tree structure and ΘE its pa-
rameters. The definition of decomposable distribution will be done by
specifying its two components, P (E|ξ), the decomposable distribution
over tree structures and P (Θ

E
|E, ξ), the decomposable distribution

over tree parameters.

3.1.1. Decomposable distributions over tree structures

Recalling that m is the number of variables when talking about an
unclassified discrete domain, a decomposable distribution over tree
structures is determined by a m×m hyperparameter matrix β = (βu,v)
such that ∀u, v : 1 ≤ u, v ≤ m we have that βu,v = βv,u ≥ 0 and
βv,v = 0. We can interpret βu,v as a measure of how possible is under
ξ that the edge (Xu,Xv) is contained in the tree model underlying the
data.

We say that P (E|ξ) follows a decomposable distribution over tree
structures with hyperparameter set β iff:

P (E|ξ) =
P (E|ξ)

m
(7)

being

P (E|ξ) =
1

Zβ

∏

u,v∈E

βu,v (8)

where Zβ is a normalization constant with value:

Zβ =
∑

E∈E

∏

u,v∈E

βu,v (9)

It is worth noting that P (E|ξ) depends only on the underlying undi-
rected tree structure E.

3.1.2. Decomposable distributions over tree parameters

A decomposable distribution over tree parameters follows the equation:

P (Θ
E
|E, ξ) = P (θρ

E
|E, ξ)

∏

u,v∈E

P (θv|u|E, ξ) (10)

where we recall that ρE is the root of E. Furthermore, a decompos-
able distribution over tree parameters has a hyperparameter set N′ =
{N ′

v,u(j, i)|1 ≤ u 6= v ≤ m ; j ∈ Xv ; i ∈ Xu} with the constraints that
N ′

v,u(j, i) > 0 and that there exist N ′
u(i), N ′ such that for every u,v:

N ′
u(i) =

∑

j∈Xv

N ′
v,u(j, i) (11)
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N ′ =
∑

i∈Xu

N ′
u(i) (12)

We say that P (Θ
E
|E, ξ) follows a decomposable distribution over tree

parameters with hyperparameter set N′ iff

1. P (ΘE |E, ξ) fulfills equation 10

2. N′ fulfills the conditions appearing in equations 11 and 12.

3. the following two equations are also satisfied

P (θρ
E
|E, ξ) = D(θρ

E
(.);N ′

ρ
E
(.)) (13)

P (θv|u|E, ξ) =
∏

i∈Xu

D(θv|u(., i);N ′
v,u(., i)) (14)

where D stands for the Dirichlet distribution.

3.1.3. Decomposable distributions over tree structures and parameters

We say that P (M |ξ) follows a decomposable distribution over trees
with hyperparameters β and N′ iff

1. P (M |ξ) fulfills equation 6

2. P (E|ξ) follows a decomposable distribution over tree structures
with hyperparameter set β

3. P (Θ
E
|E, ξ) follows a decomposable distribution over tree parame-

ters with hyperparameter set N′

that is, if the conditions in equations 6, 7, 8, 9, 10, 11, 12, 13 and 14
hold.

3.2. Meila and Jaakkola results and corrections

In (Meila and Jaakkola, 2000b), some important results about decom-
posable distributions over trees are stated. Unfortunately, some of these
results were not stated correctly. We review these results and provide
corrected versions whenever needed.

3.2.1. Assumptions needed for decomposable distributions over tree

parameters

Meila and Jaakkola demonstrated that if we have a probability distri-
bution over tree belief networks satisfying equation 6, for which the
support graph is connected and its parameter set is strictly positive,
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then under the assumptions of likelihood equivalence, parameter inde-
pendence, parameter modularity and connectivity, for any tree in any
directed representation, the parameters are distributed following a set
of Dirichlets as imposed by equations 10, 11, 12, 13 and 14. This means
that decomposable distributions over tree parameters are the result of
a fairly reasonable set of assumptions widely used for learning Bayesian
networks as can be seen in (Heckerman et al., 1995).

3.2.2. Bayesian learning with decomposable distributions over trees

Meila and Jaakkola claimed that if we assume a decomposable dis-
tribution over trees with hyperparameters β and N′, the posterior
distribution, given a dataset D, follows a decomposable distribution
over trees with hyperparameters given by

β∗
u,v = βu,vWu,v (15)

N ′∗
v,u(j, i) = N ′

v,u(j, i) + Nv,u(j, i) (16)

where

Wu,v =
∏

i∈Xu

∏

j∈Xv

Γ(N ′
v,u(j, i) + Nv,u(j, i))

Γ(N ′
v,u(j, i))

(17)

3.2.3. Corrected Bayesian learning with decomposable distributions

over trees

Unfortunately, the last result is incorrect. After careful derivation, it
can be proven that if we assume a decomposable prior distribution
over trees with hyperparameters β and N′ the posterior distribution
given a dataset D follows a decomposable distribution over trees with
hyperparameters given by equations 15 and 16 but Wu,v are given by:

Wu,v =
∏

i∈Xu

Γ(N ′
u(i))

Γ(N ′
u(i) + Nu(i))

×
∏

j∈Xv

Γ(N ′
v(j))

Γ(N ′
v(j) + Nv(j))

×
∏

i∈Xu

∏

j∈Xv

Γ(N ′
v,u(j, i) + Nv,u(j, i))

Γ(N ′
v,u(j, i))

(18)

The demonstration can be seen in appendix B.2.

3.2.4. Computation of probabilities from the posterior

Meila and Jaakkola claimed that if we assume a decomposable prior
distribution over trees with hyperparameters β and N′, the posterior
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probability of a new data point conditioned to the observation of a
dataset D is given by

P (X = x|D, ξ) =
w0(x)|Q(β w(x))|

|Q(βW)|
(19)

where

w0(x) =
1

N ′ + N

∏

Xu∈V

[N ′
pa(u)(xpa(u)) + Npa(u)(xpa(u))] (20)

where pa(u) is the parent of attribute Xu in some dependency tree and

w(x) = (wu,v(x)) where wu,v(x) =
N ′

v,u(sv, su) + Nv,u(sv, su)

(N ′
u(su) + Nu(su))(N ′

v(sv) + Nv(sv))
(21)

and for any real m×m matrix τ we define Q(τ ) : R
m×m → R

m−1×m−1

as the first m − 1 lines and columns of the matrix Q(τ ) where

Qu,v(τ ) = Qv,u(τ ) =





−τu,v 1 ≤ u < v ≤ m
m∑

v′=1
τv′,v 1 ≤ u = v ≤ m

(22)

3.2.5. Corrected computation of probabilities from a decomposable

distribution over trees

The previous result is also incorrect since they assume W defined as
in equation 17. Furthermore, they also claim that w0(x) is a structure
independent factor. In fact this is not so. To see why just consider the
case where our domain contains two attributes, namely X1 and X2. For
the tree X1 → X2 we have that w(x) = N ′

1(x1) + N1(x1) while for the
tree X2 → X1 we have that w(x) = N ′

2(x2) + N2(x2). In fact, since we
have seen that the posterior is also a decomposable distribution over
trees, we think it is simpler to have a result regarding the probability
of a new data point given a decomposable distribution over trees, since
such a result can be applied to any decomposable distribution over
trees, including the posterior. Hence, we state the corrected result as
follows:

Assume that P (M |ξ) follows a decomposable distribution over trees
with hyperparameters β and N′. The probability of an observation x

given ξ is given by

P (X = x|ξ) = hx
0 |Q(β hx)| (23)

where

hx
0 =

1

Zβ

1

N ′

∏

Xu∈V

N ′
u(xu) (24)
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hx =
(
hx

u,v

)
where hx

u,v =
N ′

v,u(xv, xu)

N ′
u(xu)N ′

v(xv)
(25)

The proof for this result appears in appendix B.1.
It is easy to see that it can be particularized for the posterior by

using the corrected result for Bayesian learning with decomposable
distributions over trees given in section 3.2.3.

4. Decomposable distributions over TANs

In the previous section we have reviewed and corrected the results in
(Meila and Jaakkola, 2000b) for trees. In this section we will extend
them to TAN models. We start by introducing decomposable distri-
butions over TAN structures and parameters, built upon the already
presented idea of decomposable priors over trees. After that we demon-
strate that, given a decomposable distribution over TANs, it is possible
to compute the probability of an unseen observation and that, given
a prior decomposable distribution over TANs, the posterior distribu-
tion after observing a dataset is also a decomposable distribution over
TANs.

4.1. Definition

In this section we introduce decomposable distributions over TANs,
which are a family of probability distributions in the space M of TAN
models.

Decomposable distributions over TANs are constructed in two steps.
In the first step, a distribution over the set of different undirected
tree structures is defined. Every directed tree structure is defined to
have the same probability as its undirected equivalent. In the second
step, a distribution over the set of parameters is defined. If P (M |ξ)
follows a decomposable distribution over TANs then the probability
for a model M = 〈E

∗
,Θ

E
∗〉 (a TAN with fixed tree structure E

∗
and

fixed parameters Θ
E

∗) is determined by:

P (M |ξ) = P (E
∗
,Θ

E
∗ |ξ) = P (E

∗
|ξ)P (Θ

E
∗ |E

∗
, ξ) (26)

In the following sections we specify the value of a decomposable
distribution over the two components of a TAN model, namely its struc-
ture and its parameters. That is, P (E

∗
|ξ) (decomposable distribution

over TAN structures) and P (Θ
E

∗ |E
∗
, ξ) (decomposable distribution

over TAN parameters).
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4.1.1. Decomposable distributions over TAN structures

Recalling that n is the number of attributes when talking about a classi-
fied discrete domain, a decomposable distribution over TAN structures
is determined by an n×n hyperparameter matrix β = (βu,v) such that
∀u, v : 1 ≤ u, v ≤ n we have that βu,v = βv,u ≥ 0 and βv,v = 0. We
can interpret βu,v as a measure of how possible is under ξ that the edge
(Au,Av) is contained in the TAN model underlying the data.

We say that P (E
∗
|ξ) follows a decomposable distribution over TAN

structures with hyperparameter set β iff:

P (E
∗
|ξ) =

P (E|ξ)

n
(27)

P (E|ξ) =
1

Zβ

∏

u,v∈E

βu,v (28)

where Zβ is a normalization constant with value:

Zβ =
∑

E∈E

∏

u,v∈E

βu,v (29)

It is worth noticing that P (E
∗
|ξ) depends only on the underlying

undirected tree structure E.

4.1.2. Decomposable distributions over TAN parameters

A decomposable distribution over TAN parameters follows the equation

P (Θ
E

∗ |E
∗
, ξ) = P (θC |E

∗
, ξ) P (θρ

E
|C |E

∗
, ξ)

∏

u,v∈E

P (θv|u,C |E
∗
, ξ)

(30)
Furthermore, a decomposable distribution over TAN parameters has a
hyperparameter set N′ = {N ′

v,u,C(j, i, c)|1 ≤ u 6= v ≤ n ; j ∈ Av ; i ∈

Au ; c ∈ C} with the constraints that N ′
v,u,C(j, i, c) > 0 and that there

exist N ′
u,C(i, c), N ′

C(c), N ′ such that for every u,v:

N ′
u,C(i, c) =

∑

j∈Av

N ′
v,u,C(j, i, c) (31)

N ′
C(c) =

∑

i∈Au

N ′
u,C(i, c) (32)

N ′ =
∑

c∈C

N ′
C(c) (33)

We say that P (Θ
E

∗ |E
∗
, ξ) follows a decomposable distribution over

TAN parameters with hyperparameter set N′ iff
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1. P (Θ
E

∗ |E
∗
, ξ) fulfills equation 30

2. N′ fulfills the conditions appearing in equations 31, 32 and 33

3. the following equations are also satisfied:

P (θC |E
∗
, ξ) = D(θC(.);N ′

C(.)) (34)

P (θρ
E
|C |E

∗
, ξ) =

∏

c∈C

D(θρ
E
|C(., c);N ′

ρ
E

,C(., c)) (35)

P (θv|u,C |E
∗
, ξ) =

∏

c∈C

∏

i∈Au

D(θv|u,C(., i, c);N ′
v,u,C (., i, c)) (36)

4.1.3. Decomposable distributions over TAN structures and

parameters

We say that P (M |ξ) follows a decomposable distribution over TANs
with hyperparameters β and N′ iff

1. P (M |ξ) fulfills equation 26

2. P (E
∗
|ξ) follows a decomposable distribution over TAN structures

with hyperparameter set β

3. P (Θ
E

∗ |E
∗
, ξ) follows a decomposable distribution over TAN pa-

rameters with hyperparameter set N′

that is if the conditions in equations 26, 27, 28, 29, 30, 31, 32, 33, 34,
35 and 36 hold.

4.2. Calculating probabilities under decomposable

distributions over TANs

Assume that the data is generated by a TAN model and that P (M |ξ)
follows a decomposable distribution over TANs with hyperparameters
β and N′. We can calculate the probability of an observation S, sC

given ξ by averaging over the set of TAN models

P (V = S, C = sC |ξ) =

∫

M∈M

P (V = S, C = sC |M)P (M |ξ) (37)

The integral for P (V = S, C = sC |ξ) can be calculated in closed form
by applying the matrix tree theorem (see Appendix A.1 and (Meila
and Jaakkola, 2000b)) and the result can be expressed in terms of the
previously introduced Q as:

P (V = S, C = sC |ξ) = h
S,sC

0 |Q(β hS,sC)| (38)

mlj.tex; 27/02/2004; 12:47; p.16



17

where

h
S,sC

0 =
1

Zβ

1

N ′

∏

Au∈V

N ′
u,C(su, sC) (39)

hS,sC =
(
hS,sC

u,v

)
where hS,sC

u,v =
N ′

v,u,C(sv, su, sC)

N ′
u,C(su, sC)N ′

v,C(sv, sC)
(40)

The proof for this result appears in appendix C.1.

4.3. Learning under decomposable distributions over TANs

Assume that the data is generated by a TAN model and that P (M |ξ)
follows a decomposable distribution over TANs with hyperparame-
ters β, N′. Then, P (M |D, ξ), the posterior probability distribution
after observing a dataset D (containing independent identically dis-
tributed observations) is a decomposable distribution over TANs with
hyperparameters β∗ and N′∗ given by:

β∗
u,v = βu,vWu,v (41)

N ′∗
u,v,C(j, i, c) = N ′

u,v,C(j, i, c) + Nu,v,C(j, i, c) (42)

where

Wu,v =
∏

c∈C

∏

i∈Au

Γ(N ′
u,C(i, c))

Γ(N ′
u,C(i, c) + Nu,C(i, c))

×
∏

c∈C

∏

j∈Av

Γ(N ′
v,C(j, c))

Γ(N ′
v,C(j, c) + Nv,C(j, c))

×
∏

c∈C

∏

i∈Au

∏

j∈Av

Γ(N ′
v,u,C(j, i, c) + Nv,u,C(j, i, c))

Γ(N ′
v,u,C(j, i, c))

(43)

The proof appears in appendix C.2.

4.4. Classifying with Decomposable Distributions over

TANs given an undirected structure

Assume that the data is generated by a TAN model and that P (M |ξ)
follows a decomposable distribution over TANs with hyperparameters
β and N′. Then, P (C = sC |V = S,E, ξ), the probability of a class sC ,
given an unclassified instance S and an undirected TAN structure E,
fulfills

P (C = sC |V = S,E, ξ) ∝ h
S,sC

0

∏

u,v∈E

hS,sC
u,v (44)
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where h
S,sC

0 and hS,sC
u,v are defined as in equations 39 and 40. The proof

for this result follows from the result demonstrated in appendix C.1.1
In fact, given an undirected TAN structure E, it is easy to see that

the probability distribution P (C = sC |V = S,E, ξ) can be represented
as a TAN model with structure E

∗
, such that its undirected version

coincides with E and its parameter set is given by

θu|v,C(su, sv, sC) =
N ′

u,v,C
(su,sv,sC)

N ′

v,C
(sv ,sC)

θu|C(su, sC) =
N ′

u,C
(su,sC)

N ′

C
(sC)

θC(sC) =
N ′

C
(sC)

N ′

(45)

This means that under decomposable distributions over TANs, the
Bayesian model averaging over parameters given a fixed undirected tree
structure E can be represented as a single TAN model. A similar result
in the case of decomposable distribution over trees can also be found
in (Meila and Jordan, 2000).

4.5. Calculating the most probable undirected tree

structure under a decomposable distribution over

TANs

From the definition of decomposable distribution over TAN structures,
concretely from equation 28, it is easy to see that the most proba-
ble undirected tree given a decomposable distribution over TANs with
hyperparameters β and N′, is given by

MPT (β,N′) = argmax
E∈E

∏

u,v∈E

βu,v (46)

We can see that MPT (β,N′) does not depend on N′. Furthermore,
assuming that ∀u, v u 6= v we have that βu,v > 0, we can take the
logarithm of the right hand side having

MPT (β,N′) = argmax
E∈E

∑

u,v∈E

log(βu,v) (47)

Considering the matrix log(β) as an adjacency matrix, MPT (β,N′) is
the MST (maximum spanning tree) for the graph represented by that
adjacency matrix. Hence, if we are given a decomposable distribution
over TANs with hyperparameter β, we can find the most probable
undirected tree by computing the logarithm of every element in the
matrix and then running any algorithm for finding the MST. The
complexity of the MST algorithm for a complete graph is O(n2) (Pettie
and Ramachandran, 2002).
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procedure MAPTANStructure (Dataset D,Matrix β,CountingSet N′)

var

CountingSet N′;

Matrix lβ∗;

begin

N′∗ = CalcN’PosteriorTAN(D,N′);

lβ∗ = CalcLogBetaPosteriorTAN(β,N′,N′∗);

return MST(lβ∗);

procedure CalcN’PosteriorTAN (Dataset D,CountingSet N′)

var

CountingSet N′∗;

begin

foreach attribute u

foreach attribute v < u

foreach value xu ∈ Au

foreach value xv ∈ Av

foreach value c ∈ C

N ′∗

u,v,C(xu, xv, c) = N ′

u,v(xu, xv, c);
foreach attribute x ∈ D

foreach attribute u

foreach attribute v < u

N ′∗

u,v,C(xu, xv, xC) = N ′∗

u,v,C(xu, xv, xC) + 1;
return N′∗;

procedure CalcLogBetaPosteriorTAN (Matrix β,CountingSet N′, N′∗)

var

Matrix lβ∗;

begin

foreach attribute u

foreach attribute v < u

lβ∗

u,v = log βu,v + CalcLogWTAN(N′,N′∗,u,v);

return lβ∗;

procedure CalcLogWTAN (CountingSet N′, N′∗, int u, v)

begin

w = 0;

foreach value c ∈ C

foreach value xu ∈ Au

w = w + logΓ(N ′

u,C (xu, c)) - logΓ(N ′∗

u,C (xu, c));
foreach value xv ∈ Av

w = w + logΓ(N ′

v,C (xv, c)) - logΓ(N ′∗

v,C (xv, c));
foreach value xu ∈ Au

foreach value xv ∈ Av

w = w + logΓ(N ′∗

u,v,C (xu, xv, c))
- logΓ(N ′

u,v,C (xu, xv, c));
return w;

Algorithm 3: Computation of the MAP TAN structure
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4.6. Calculating the MAP undirected tree structure

given a prior decomposable distribution over TANs

In section 4.3 we claimed that if we assume a decomposable prior
distribution over TANs with hyperparameters β and N′ the posterior
distribution given a dataset D follows a decomposable distribution over
TANs with hyperparameters given by equations 41, 42 and 43. Since
the posterior is a decomposable distribution over TANs, we can apply
the former result for finding the most probable undirected tree over it
and we get the MAP tree. We can translate this result into algorithm 3,
that finds the MAP undirected tree given a dataset D and prior hy-
perparameters β,N′. Since the computation of MST is O(n2), the time
complexity of MAPTANStructure is bounded by CalcN’PosteriorTAN,
which has complexity O((N + r3) · n2).

4.7. Calculating the k MAP undirected tree structures

and their relative probability weights given a prior

decomposable distribution over TANs

The problem of computing the k MST in order is well known and can
be solved in O((log(β(n2, n)) + k) · n2) for a complete graph (Katoh
et al., 1981). It is easy to see that if in the last step of MAPTANStructure
instead of computing the MST we compute the k MST and their relative
weights as shown in algorithm 4, then the algorithm will return the k

MAP undirected tree structures and their relative probabilities. The
time complexity of the new algorithm is simply the addition of the com-
plexity of CalcN’Posterior with that of computing the k MAP trees
and that of computing the weights, giving O((N + r3 + log(β(n2, n)) +
k) ·n2) which can be understood as O((N +r3 +k) ·n2) for all practical
purposes.

5. TAN classifiers based on decomposable distributions

In this section we define four classifiers based on decomposable distribu-
tions over TANs: tbmatan, maptan, maptan+bma and sstbmatan.
We start introducing tbmatan as the theoretically optimal classifier
based on decomposable distributions over TANs. We explain that a
direct implementation of tbmatan presents some problems with float-
ing point accuracy and propose an approximation to overcome them:
sstbmatan. After that, we introduce maptan and maptan+bma,
classifiers based on the assumption that the posterior probability distri-
bution over models is concentrated around its most probable structures.
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procedure k-MAPTANs (Dataset D,Matrix β,CountingSet N′, int k)

var

CountingSet N′;

WeightedTreeSet WTS;

Matrix lβ∗;

begin

N′∗ = CalcN’PosteriorTAN(D,N′);

lβ∗ = CalcLogBetaPosteriorTAN(β,N′,N′∗);

WTS = k-MST(lβ∗,k);

CalcTreeWeights(WTS,lβ∗);

return WTS;

Algorithm 4: Computation of the k MAP TANs

Finally, we introduce the prior distribution that we will use when no
better information from the classification domain is available.

5.1. tbmatan: Exact Bayesian model averaging over TANs

Putting together the results from sections 4.2 and 4.3 we can easily
design an optimal classifier based on decomposable distributions over
TANs. The classifier works as follows: when given a dataset D, it as-
sumes that the data is generated from a TAN model and assumes a
decomposable distribution over TANs as prior over the set of models.
Applying the result from section 4.3, the posterior distribution over the
set of models is also a decomposable distribution over TANs, and ap-
plying the result of section 4.2 this decomposable posterior distribution
over TANs can be used to calculate the probability of any observation
S, sC . When given an unclassified observation S, it can just calculate
the probability P (V = S, C = sC |D, ξ) for each possible class sC ∈ C

and classify S in the class with highest probability.
The learning time complexity for tbmatan is bounded by the count-

ing step, that is, O((N + r3) · n2). The classification time complexity
requires the computation of #C < r determinants. Since computing
the determinant of a n × n matrix is O(n3), the classification time
complexity for tbmatan is bounded by O(n3 · r). In comparison with
stan complexity, we have exactly the same learning time complexity,
but a higher classification time complexity. This higher classification
time complexity comes as a byproduct of the fact that in tbmatan we
are performing exact Bayesian model averaging over an overexponential
number of trees.

A straightforward implementation of tbmatan, even when accom-
plishing the before mentioned complexity bounds, will not yield accu-
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rate results, specially for large datasets. This is due to the fact that the
calculations that need to be done in order to classify a new observation
include the computation of a determinant (in equation 38) that happens
to be ill-conditioned. Even worse, the determinant gets more and more
ill-conditioned as the number of observations in the dataset increases.
This forces the floating point accuracy, that we have to use to calculate
these determinants, to depend on the dataset size. We would like to
note that this problem is due to the straightforward implementation of
the formulas. If it were possible to compute quotients of determinants
of similar matrices accurately, the problem would be solved. To the best
of our knowledge, such accurate computation does not exist. Therefore,
we have used a brute force solution to accurately implement tbmatan.
More concretely, we have calculated the determinants by means of NTL
(Shoup, 2003), a library that allows us to calculate determinants with
the desired precision arithmetic. This solution makes the time for clas-
sifying a new observation grow faster than O(n3 · r), and hence makes
the practical application of the algorithms difficult in situations where
it is required to classify a large set of unclassified data.

5.2. sstbmatan: A solution to tbmatan computational

problems

We analyzed what makes the determinant in tbmatan ill-conditioned
and concluded that it is due to the Wu,v factors given by equation 43.
The factor Wu,v could be interpreted as “how much the dataset D has
changed the belief in that there is a link between u and v in the TAN
model generating the data”. The problems relies in the fact that Wu,v

are easily in the order of 10−200 for a dataset with 1500 observations.

Furthermore, the factors Wu,v

Wu′,v′
for such a dataset can be around 10−20,

providing the ill-condition of the determinant. In order to overcome
this problem, we propose to postprocess the factors Wu,v computed by
equation 43 by means of a transformation that limits them to lie in the
interval [10−K , 1] where K is a constant that has to be fixed depending
on the floating point accuracy of the machine. In our implementation
we have used K = 5.

The transformation works as depicted in Figure 5.2 and is described
in detail by the following equations:

lmax = log10 max
u∈V
v∈V
u6=v

Wu,v (48)

lmin = log10 min
u∈V
v∈V
u6=v

Wu,v (49)
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Figure 3. Transformation of weights for sstbmatan

a =

{
K

lmax−lmin
lmax − lmin > K

1 otherwise
(50)

b = −K − a ∗ lmin (51)

W̃u,v = 10a log10(Wu,v)+b (52)

Using W̃u,v instead of Wu,v to calculate the posterior hyperparame-
ters β∗

u,v has the following properties:

1. It is harder to get get ill-conditioned determinants, because for all
u, v W̃u,v is bound to the interval [10−K , 1].

2. It preserves the relative ordering of the Wu,v. That is, if Wu,v >

Wu′,v′ then W̃u,v > W̃u′,v′ .

3. It does not exaggerate relative differences in belief. That is, for all
u, v, u′, v′ we have that

− If
Wu,v

Wu′,v′
≥ 1 then

Wu,v

Wu′,v′
≥

W̃u,v

W̃u′,v′
.

− If
Wu,v

Wu′,v′
≤ 1 then

Wu,v

Wu′,v′
≤

W̃u,v

W̃u′,v′
.

The posterior hyperparameters β∗
u,v can be interpreted as a repre-

sentation of the a posteriori belief in the existence of an edge (u, v)

in the TAN structure. Using W̃u,v, given the properties stated, means
being more conservative in the structure learning process, because the
beliefs will be confined to the interval [10−K , 1] which impedes the
representation of extreme probability differences between edges. We
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can interpret the transformation as applying some stubbornness to the
structure learning process. Applying this transformation allow us to
implement an approximation of tbmatan that does not require the use
of special floating point accuracy computations. We will refer to this
approximation of tbmatan as sstbmatan (from Structure Stubborn
tbmatan).

It is worth noting that the problem described in this section does
only affect the classification time complexity. The learning process for
tbmatan does not need high precision arithmetics. The learning time
complexity for tbmatan, O((N + r3) · n2), is the same as the one for
stan and sstbmatan.

When we have enough data, it is likely that the posterior over mod-
els is concentrated around their highest values. If we accept that, we
can approximate the results of tbmatan by selecting a small set of
models and their relative probability weights or, in the extreme case,
by selecting a single model. We introduce now maptan (Maximum a
Posteriori TAN) and maptan+bma based on these ideas and on the
results described in section 4

5.3. maptan: Learning a single TAN

The learning steps for the maptan classifier consist in:

1. Assume a decomposable distribution over TANs as prior

2. Apply algorithm 3 to find the undirected tree E underlying the
MAP TAN structure given a dataset D.

3. Randomly choose a root, create a directed tree E and from it a
directed TAN structure E

∗
.

4. Use equation 45 to fix the TAN parameters.

For classifying an unclassified observation, we have to apply the TAN
that has been learned for each of the #C classes to construct a probabil-
ity distribution over the values of the class C and then choose the most
probable class. This classification algorithm runs in O((N + r3) · n2)
learning time and O(nr) classification time.

5.4. maptan+bma: Learning an ensemble of TANs

The learning steps for maptan+bma classifier consist in:

1. Assume a decomposable distribution over TANs as prior
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2. Apply algorithm 4 to find the k undirected trees underlying the k

MAP TAN structures and their relative probability weights given
a dataset D.

3. Generate a TAN model for each of the undirected tree structures
as we did in maptan.

4. Assign to each TAN model the weight of its corresponding undi-
rected tree.

The resulting probabilistic model will be a mixture of TANs.
For classifying an unclassified observation, we have to apply the k

TAN models for the #C classes and calculate the weighted average to
construct a probability distribution over the values of the class C and
then choose the most probable class.

This classification algorithm runs in O((N + r3 +log(β(n2, n))+k) ·
n2) learning time and O(nrk) classification time.

5.5. The prior

The four classifiers we have presented assume a decomposable distri-
bution over TANs as prior. Ideally, this prior will be fixed by an expert
that knows the classification domain. Otherwise, we have to provide the
classifier with a way of fixing the prior distribution hyperparameters
without knowledge about the domain. In this case the prior should be
as “non-informative” as possible in order for the information coming
from D to dominate the posterior by the effects of equations 41 and 42.
We have translated this requisite into equations 53 and 54:

∀u, v ; 1 ≤ u 6= v ≤ n ; βu,v = 1 (53)

∀u, v; 1 ≤ u 6= v ≤ n;∀j ∈ Av;∀i ∈ Au;∀c ∈ C;

N ′
v,u,C(j, i, c) =

λ

#C#Au#Av

(54)

Defining β as in equation 53 means that we have the same amount of
belief for any edge being in the TAN structure underlying the data. For
fixed u, v, equation 54 assigns the same probability to any (j, i, c) such
that j ∈ Av, i ∈ Au and c ∈ C.

The hyperhyperparameter λ is an “equivalent sample size” for the
prior in the sense of (Heckerman et al., 1995). Experimental tests have
shown that the algorithms are stable to the choice of λ provided that ev-
ery N ′

v,u,C(j, i, c) ≥ 1. In our experiments we have selected the minimal
λ such that this condition is fulfilled.

mlj.tex; 27/02/2004; 12:47; p.25



26

5.6. Comments

We have shown that decomposable distributions over TANs can be
used to construct classifiers based on TAN models. Comparing with the
stan classifier introduced in (Friedman et al., 1997), classifiers based
on decomposable distributions show some theoretical advantages.

First, stan disregards uncertainty over models. If the posterior dis-
tribution over models is not concentrated around its peak, this could
affect the accuracy of the classifier. We can foresee two main situa-
tions where the posterior is likely not to be concentrated. The first
one is when there is little data available. The second one is when
the distribution underlying the data is not a TAN model. In these
cases, classifiers that take into account uncertainty over models, such
as tbmatan, sstbmatan or maptan+bma are likely to obtain better
results.

Second, regarding the determination of the TAN structure, stan

relies on the maximum likelihood principle. This gives the algorithm
a theoretical guarantee that it is assymptotically correct. That is, the
algorithm will have a good performance given enough data. On the
other hand, no guarantee is provided when not enough data is available,
and we are given no indication on the number of instances needed for
the convergence of the algorithm. This contrasts with the result for
finding the MAP TAN structure provided in section 4.5. The result
given there guarantees that the TAN structure determined is the most
probable, independently of the amount of data at our disposal. This
means that, again when little data is available, maptan is likely to
obtain better results.

Third, regarding the way of fixing the parameters, whilst stan is
inspired on Bayesian principles, maptan and maptan+bma rely on a
well founded result showing that there is a single TAN model that pre-
dicts as the Bayesian model averaging over parameters of models with a
fixed structure. In our opinion this is more appealing from a theoretical
point of view, and gives a reasonable explanation on why it makes sense
to soften the parameters instead of choosing the parameters resulting
from the application of the maximum likelihood principle.

Fourth, regarding prior information, stan algorithm does not take
into account any, while TAN classifiers based on decomposable distri-
butions allow the use of some form of prior information if available,
specially structure related information. For example, if we have expert
knowledge that tells us that one of the edges of the tree is much more
(or much less) likely than the others it is very easy to incorporate this
knowledge when fixing the prior hyperparameter matrix β. Evidently,
as was pointed out in (Meila and Jaakkola, 2000b), decomposable distri-
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butions do not allow the expression of some types of prior information
such as “if edge (u, v) exists then edge (w, z) is very likely to exist”.

The first of these four advantages requires a higher computational
complexity from the classifier, but the the others come at no price.
Concretely it is worth pointing out that maptan has exactly the same
computation complexity as stan.

6. Empirical comparison

In order to evaluate the classifiers we performed two sets of experi-
ments. On the first one we tested its performance against Irvine datasets.
On the second we tested it against randomly generated Bayesian net-
works with different sets of parameters. In the following sections, we
explain the experiment setups and then show the results and draw some
conclusions.

6.1. General setup

The algorithms compared are stan, maptan, maptan+bma, sstb-

matan and tbmatan. stan refers to the algorithm presented in (Fried-
man et al., 1997) as TAN s. For the learning algorithms based on
decomposable distribution the prior is assumed to be the one described
in section 5.5 with λ as prescribed in that section. For maptan+bma

the number of trees in the mixture was fixed to k = 10, because in our
implementation this value provided a classification time between the
ones of maptan and sstbmatan. For sstbmatan, K was fixed to 5.

The measure used to compare the performance of the algorithms is
the area under the ROC curve (Fawcett, 2003) which we will refer to
as AUC. When the class is multivalued, we use the formula provided in
(Hand and Till, 2001), that is based on the idea that if we can compute
the AUC for two classes i,j (let us denote this by A(i, j)), then we can
compute an extension of AUC for any arbitrary number of classes by
choosing all the possible pairs (1 vs. 1). Since A(i, j) = A(j, i), this can
be simplified as shown in the following function:

AUC =
2

#C(#C − 1)

∑

i<j

A(i, j) (55)

6.2. Irvine setup

We run each of the algorithms over 23 Irvine datasets: adult∗, aus-
tralian, breast, car, chess∗, cleve, crx, flare, glass, glass2, hep, iris,
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letter∗, liver, lymphography, mushroom∗, pima, nursery∗, primary-tumor,
shuttle-small∗, soybean, vehicle, votes. due to computational constraints,
for the larger datasets marked with a ∗, we used 10 fold CV (cross
validation) and we did not run tbmatan. For the datasets which are
not marked, we repeated 5 times 10 fold CV. For each learning fold, we
learnt with 10%, 50%, and 100% of the learning data to evaluate how
the classifier improves with increasing data.

6.3. Random Bayesian networks setup

We wanted to evaluate our algorithms over artificial domains that could
resemble real life datasets. In order to do that we generated random
Bayesian networks with different characteristics, using BNGenerator
(Ide and Cozman, 2003). We varied three characteristics: the number
of attributes of the dataset, the number of maximum values of an
attribute and the maximum induced width of the network. In (Ide
and Cozman, 2003), it is argued that that a network with low induced
width ”looks like” real networks in the literature and hence, the most
appropriate parameter to control a network density when generating
Bayesian networks is the induced width.

We compared our algorithms over networks varying the number
of attributes in {5,10,20,40}, the number of maximum values of an
attribute in {2,5,10} and the maximum induced width in {2,3,4}. For
each configuration of parameters we generated randomly 100 Bayesian
networks. For each Bayesian network we obtained 4 learning sam-
ples of sizes {25,100,400,1600} and a testing sample of size 100. For
tbmatan evaluation we dropped the bigger learning sample, due to
computational constraints.

We also compared the algorithms when the underlying model is a
random TAN, varying attributes as described before, except for the
induced width, that was not controlled.

6.4. Analysis of results

In this section we draw some conclusions from the analysis of the results
of the experimental work. We start comparing stan with maptan, be-
cause both classifiers have the same computational complexity. We will
see that maptan improves stan consistently, and that the improvement
increases as the amount of data gets smaller or the number of different
values of the attributes grows. Then we will compare sstbmatan, our
proposed approximation to avoid floating point accuracy problems to
the optimal tbmatan. We will see that sstbmatan most of the times
improves over tbmatan, and will argue that this is due to the fact that
the assumptions under tbmatan are not exactly fulfilled, and hence
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the increased softening provided by sstbmatan is benefitial. Finally,
we will compare maptan, as a classifier learning a single model, to
maptan+bma and sstbmatan, classifiers based on Bayesian model av-
eraging. We will see that performing Bayesian model averaging usually
provides significant improvements, specially for the case of sstbmatan.

6.4.1. stan against maptan

The relationship between stan and maptan as data increases appears
in figure 4. We present two sets of plots. In figure 4.a we can see from
left to right the evolution of the scatter plot of the AUC of stan and
maptan for Irvine datasets as we increase the amount of data in the
learning set. Below each scatter plot we present statistical significance
results showing the number of datasets where each classifier outper-
forms the other at a level of significance of 5%. Below the significance
test results we can see the percentage of training data that was used. In
figure 4.b we follow the same schema for randomly generated Bayesian
networks, presenting scatter plots and significance tests figures when we
use samples of 25, 100, 400 and 1600 instances for learning. Both over
Irvine and artificial datasets we can see that when the amount of data at
our disposal is small, maptan outperforms stan, and as data size grows
the difference diminishes. We performed an additional experiment in
order to test whether, following this tendency, stan finally outperforms
maptan. In order to do that we selected the smallest sampling size
space (5 attributes and 2 values per attribute) and increased the data
size up to more than 100.000 instances. Under this setting, maptan

results were usually over stan results and stan was never found to
be statistically significantly better than maptan, reinforcing our belief
that both classifiers converge to the same model given enough data.

In figure 5 we can see that maptan improves significantly over stan

and that this improvement is more significant as the number of maxi-
mum values of the attributes grows. This increase can not be noticed as
the number of attributes grows. This is understandable, because the size
of the sampling space is O(rn), and hence is much more sensible to an
increase in r than to an increase in n. The difference for both algorithms
was stable along the different maximum induced width values we tested.

6.4.2. sstbmatan against tbmatan

In figure 6 we can see that both classifiers give approximately the same
results when provided a small sample, but as we increase the number
of observations, sstbmatan significantly improves tbmatan in many
cases. The difference also increases as the maximum number of values
per attribute grows (see figure 7). The difference between sstbmatan

and tbmatan sligthly benefits sstbmatan on a stable way along the
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Figure 4. maptan vs. stan. AUC comparison across learning data size
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Figure 5. maptan vs. stan. AUC comparison across number of values of the
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different maximum induced width values and the different number of
attributes we tested.

The fact that sstbmatan improves over the theoretically optimal
tbmatan can be understood if we analyze on what do the two algo-
rithms differ. The only difference is that sstbmatan is more conserva-
tive (stubborn) in terms of changing its probability distribution over
structures. In the datasets we are analyzing the underlying distributions
are not TAN distributions and hence the assumptions for tbmatan
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Figure 6. sstbmatan vs. tbmatan. AUC comparison across learning data size

are not fulfilled. Being more conservative regarding is known about the
structure turns out to be good in this setting. In order to double check
that claim, we ran additional experiments were data was sampled from
TAN distributions with sample sizes in {25,100,400}. On those exper-
iments both algorithms returned almost equivalent results:tbmatan

provided sligthly better AUC, but the biggest difference in AUC was
in the order of 0.001.

6.4.3. sstbmatan against maptan

We can see in figure 8.b that sstbmatan improves significantly over
maptan for many datasets and that as we increase the amount of
data, the difference between sstbmatan and maptan decreases. The
opposite happens as the number of maximum values per attribute grows
(see figure 9). This can be understood because as the amount of data
grows, our uncertainty over the set of models decreases, and so does
the improvement obtained by taking this uncertainty into account.
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Figure 8. sstbmatan vs. maptan. AUC comparison across learning data size

On Irvine datasets (figure 8.a), sstbmatan improves significantly
over maptan for many datasets, but no clear tendency is appreciated
as we increase the amount of data.

6.4.4. maptan+bma against maptan

maptan+bma improves over maptan in a statistically significant way
over some datasets, specially when the amount of learning data is small
(see figure 10). However, the differences are much smaller than for
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Figure 10. maptan+bma vs. maptan. AUC comparison across learning data size

sstbmatan and do not seem very rellevant from a practical point of
view. No significant direct dependence on the number of attributes,
maximum number of values of the attributes, or maximum induced
width has been detected.
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7. Conclusions and future work

In this paper, we have focused on improving Bayesian network classi-
fiers based on trees and TANs. We have done that by following Bayesian
probability theory, that is by defining a conjugate distribution for
these families of models: decomposable distributions. We have corrected
Meila and Jaakkola results for decomposable distributions over trees.
Then we have introduced decomposable distributions over TANs, ex-
tending the results to TANs. We have proposed four classifiers based
on decomposable distributions over TANs. Finally, we have shown that
these classifiers provide clearly significant improvements, specially when
data is scarce. Furthermore, our classifiers allow the user to provide the
classifier with some prior information, if such is available.

Of the four classifiers we have introduced, tbmatan should be dis-
carded for practical use due to computational reasons. There are three
variables to take into account in order to select which of the other three
classifiers should be applied. The first one is the value ratio between effi-
ciency and accuracy (how much are we willing to pay in computing time
for a given increase in accuracy). When this ratio is small we should
use maptan and as it grows we should switch to maptan+bma, and
then sstbmatan. The second one is the posterior level of uncertainty
in the models. Again, when it is small we should use maptan and as it
grows we should switch to maptan+bma, and then sstbmatan. The
third variable to take into account is the amount of the sampling space
covered by our learning data. When our learning data size is small
compared to our sampling space, we should use sstbmatan, and as it
grows we should switch to maptan+bma and then to maptan.

Three future lines of work arise. The first one is the design of a clas-
sifier that is “conscious” of the relevance of the uncertainty in models
and hence able to choose between sstbmatan, tbmatan, and maptan.
The second one is constructing an algorithm that instead of learning
the MAP TAN structure learns a probably MAP TAN structure, that
is a TAN structure that coincides with the MAP TAN structure with
probability 1−δ. Such an algorithm could be used in learning from infi-
nite sequences of data. The third one is the extension of decomposable
distributions to other tree based families (see (Friedman et al., 1997)).
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Appendix

A. Preliminaries

In this appendix we introduce three results that will be needed in the
further development and then in appendix C we prove the results in
sections 4.2 and 4.3.

A.1. The matrix tree theorem

Let G = (V,E) be a multigraph and denote by au,v = av,u the number
of undirected edges between vertices u and v. Then the number of all
spanning trees of G is given by the value of the determinant obtained
from the following matrix by removing row u and column v.

A =




deg v1 −a1,2 −a1,3 . . . a1,n

−a2,1 deg v2 −a2,3 . . . a2,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−an,1 −an,2 −an,3 . . . deg vn


 (56)

Proof: See (West, 1999; Rubey, 2000).

�

A.2. The matrix tree theorem for decomposable

distributions

Let P(E) be a distribution over spanning tree structures defined by
equations 8 and 9. Then the normalization constant Zβ is equal to
|Q(β)| with Q(β) being the first (n-1) lines and columns of the matrix
Q(β) given by:

Qu,v(β) = Qv,u(β) =





−βu,v 1 ≤ u < v ≤ n
n∑

v′=1
βv′ ,v 1 ≤ u = v ≤ n

(57)

Proof: See (Meila and Jaakkola, 2000a).

�
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A.3. A useful result about Dirichlet distributions

A Dirichlet distribution is defined as

D(θ1, . . . , θk;N1, . . . , Nk) =
Γ(

∑k
i=1 Ni)∏k

i=1 Γ(Ni)

k∏

i=1

θi
Ni−1 (58)

Let D(θ1, . . . , θr;n
′
1, . . . , n

′
r) be a Dirichlet distribution. We have that:

D(θ1, . . . , θr;n
′
1, . . . , n

′
r)

r∏

i=1

θi
ni =

Γ(
∑r

i=1 n′
i)∏r

i=1 Γ(n′
i)

∏r
i=1 Γ(n′

i + ni)

Γ(
∑r

i=1 n′
i + ni)

D(θ1, . . . , θr;n
′
1 + n1, . . . , n

′
r + nr)

(59)

and since the Dirichlet distribution is normalized you have that

∫
· · ·

∫

θ1,...,θr

D(θ1, . . . , θr;n
′
1, . . . , n

′
r)

r∏

i=1

θi
ni =

Γ(
∑r

i=1 n′
i)∏r

i=1 Γ(n′
i)

∏r
i=1 Γ(n′

i + ni)

Γ(
∑r

i=1 n′
i + ni)

(60)
Proof: By expanding the Dirichlet distribution by means of its defi-
nition in equation 58, grouping again into a Dirichlet and considering
that the Dirichlet distribution is normalized distribution and hence
integrates to one, we have that:

∫
· · ·

∫

θ1,...,θr

D(θ1, . . . , θr;n
′
1, . . . , n

′
r)

r∏

i=1

θi
ni (61)

=

∫
· · ·

∫

θ1,...,θr

Γ(
∑r

i=1 n′
i)∏r

i=1 Γ(n′
i)

r∏

i=1

θi
n′

i
+ni−1 (62)

=

∫
· · ·

∫

θ1,...,θr

Γ(
∑r

i=1 n′
i)∏r

i=1 Γ(n′
i)

∏r
i=1 Γ(n′

i + ni)

Γ(
∑r

i=1 n′
i + ni)

D(θ1, . . . , θr;n
′
1 + n1, . . . , n

′
r + nr)

(63)

=
Γ(

∑r
i=1 n′

i)∏r
i=1 Γ(n′

i)

∏r
i=1 Γ(n′

i + ni)

Γ(
∑r

i=1 n′
i + ni)

∫
· · ·

∫

θ1,...,θr

D(θ1, . . . , θr;n
′
1 + n1, . . . , n

′
r + nr)

(64)

=
Γ(

∑r
i=1 n′

i)∏r
i=1 Γ(n′

i)

∏r
i=1 Γ(n′

i + ni)

Γ(
∑r

i=1 n′
i + ni)

(65)

�
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B. Detailed development for decomposable distributions

over trees results

In this appendix we provide the proofs for the results in section 3.2.

B.1. Calculating probabilities under decomposable

distributions over trees

Knowing that P (M |ξ) follows a decomposable distribution over trees
with hyperparameters β and N′ we need to calculate

P (X = x|ξ) =

∫

M∈M

P (X = x|M, ξ)P (M |ξ) (66)

We can calculate the integral over the set of models by calculating the
probability of each structure and then performing an addition over the
set of structures. In fact, since we have assumed likelihood equivalence
and our distribution over directed structures is uniform given the undi-
rected structure, we can work over the set of undirected structures,
that is

P (X = x|ξ) =
∑

E∈E

P (X = x|E, ξ)P (E|ξ) (67)

where P (E|ξ) comes given by:

P (E|ξ) =
1

Zβ

∏

u,v∈E

βu,v (68)

In order to calculate P (X = x|ξ) we have to calculate P (X = x|E, ξ)
and then calculate the summmation in equation 67.

B.1.1. Calculating P (X = x|E, ξ)
Using again likelihood equivalence we can express P (X = x|E, ξ) as
the integral over any directed structure E which undirected structure
coincides with E:

P (X = x|E, ξ) =

∫
· · ·

∫

Θ
E

P (X = x|E,Θ
E

)P (Θ
E
|E, ξ)dΘ

E
(69)

P (X = x|E,Θ
E

) is determined by the expansion of equation 1 taking
into account the tree structure.

P (X = x|E,Θ
E

) = θρ
E
(xρ

E
)

∏

u,v∈E

θv|u(xv, xu) (70)
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P (ΘE|E, ξ) can be expanded from equations 10, 13 and 14 into

P (Θ
E
|E, ξ) = D(θρ

E
(.);N ′

ρ
E
(.))

∏

u,v∈E

∏

i∈Au

D(θv|u(., i);N ′
v,u(., i))

(71)

Now we need to calculate the integral in equation 69 We define:

1x
i (k) =

{
1 k = xi

0 otherwise
(72)

1x
i,j(k, l) =

{
1 k = xi ∧ l = xj

0 otherwise
(73)

It is easy to see that:
∑

j∈Av

1x
v,u(j, i) = 1x

u(i) (74)

∑

i∈Au

1x
u(i) = 1 (75)

We can use this notation to expand the product

P (X = x|E,Θ
E

)P (Θ
E
|E, ξ) (76)

by substituting equations 70 and 71 giving:

P (X = x|E,Θ
E

)P (Θ
E
|E, ξ) = D(θρ

E
(.);N ′

ρ
E
(.))

∏

i∈Aρ
E

θρ
E
(i)

1x
ρ
E

(i)

×
∏

u,v∈E

∏

i∈Au


D(θv|u(., i);N ′

v,u(., i))
∏

j∈Av

θv|u(j, i)1x
v,u(j,i)




(77)

By analyzing equation 77 we can see that the integral in equation 69
can be calculated by applying the result in equation 60 twice. This
gives:

P (X = x|E, ξ) =

Γ(
∑

i∈Aρ
E

N ′
ρ

E
(i))

∏
i∈Aρ

E

Γ(N ′
ρ

E
(i))

∏
i∈Aρ

E

Γ(N ′
ρ

E
(i) + 1x

ρ
E
(i))

Γ(
∑

i∈Aρ
E

N ′
ρ

E
(i) + 1x

ρ
E
(i))

×
∏

u,v∈E

∏

i∈Au




Γ(
∑

j∈Av

N ′
v,u(j, i))

∏
j∈Av

Γ(N ′
v,u(j, i))

∏
i∈Av

Γ(N ′
v,u(j, i) + 1x

v,u(j, i))

Γ(
∑

i∈Av

N ′
v,u(j, i) + 1x

v,u(j, i))




(78)
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This expression can be simplified by applying equations 11,12,74 and
75 and reorganizing:

P (X = x|E, ξ) =
Γ(N ′)

Γ(N ′ + 1)

∏

i∈Aρ
E

Γ(N ′
ρ

E
(i) + 1x

ρ
E
(i))

Γ(N ′
ρ

E
(i))

×
∏

u,v∈E

∏

i∈Au


 Γ(N ′

u(i))

Γ(N ′
u(i) + 1x

u(i))

∏

i∈Av

Γ(N ′
v,u(j, i) + 1x

v,u(j, i))

Γ(N ′
v,u(j, i))




(79)

Since the quotient Γ(N ′

∗
(∗)+1x

∗
(∗))

Γ(N ′

∗(∗)) is N ′
∗(∗) if the condition expressed by

the 1x
∗(∗) is satisfied and 1 otherwise we have that:

P (X = x|E, ξ) =
1

N ′
N ′

ρ
E
(xρ

E
)

∏

u,v∈E

[
N ′

v,u(xv, xu)

N ′
u(xu)

]

(80)

Defining hx
0 and hx

u,v as in equations 24 and 25 it is easy to see that
multiplying and dividing in equation 80 by the factor:

∏

v∈Ω−{ρ
E
}

N ′
v(xv) (81)

and rearranging we get:

P (X = x|E, ξ) = hx
0 Zβ

∏

u,v∈E

hx
u,v (82)

and the expression depends only of the undirected structure of the tree.

B.1.2. Adding over Tree Structures

Combining equations 68, 82 we get

P (X = x|E, ξ)P (E|ξ) = hx
0

∏

u,v∈E

βu,vh
x
u,v (83)

Calculating the summation over structures using the matrix tree theo-
rem for decomposable distributions gives the desired result.

P (X = x|ξ) = hx
0 |Q(β hx)| (84)

�
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B.2. Learning under decomposable distributions over trees

Given that P (M |ξ) follows a decomposable distribution over trees with
hyperparameters β and N′ we want to calculate P (M |D, ξ) where D is
an i.i.d. dataset sampled from a tree distribution. Using Bayes rule we
get:

P (M |D, ξ) = P (E,Θ
E
|D, ξ) =

P (E,Θ
E
|ξ)P (D|E,Θ

E
, ξ)

ZD
(85)

The prior P (E,Θ
E
|ξ) is calculated combining equations 6,68, 71 giving:

P (E,Θ
E
|ξ) =

1

Zβ

∏

u,v∈E

βu,v

× D(θρ
E
(.);N ′

ρ
E
(.))

×
∏

u,v∈E

∏

i∈Au

D(θv|u(., i);N ′
v,u(., i))

(86)

P (D|E,ΘE , ξ) is the probability that the model generates the data in
D. Since D contains independent identically distributed observations,
we have that

P (D|E,Θ
E

, ξ) =
∏

i∈Aρ
E

θρ
E
(i)

Nρ
E

(i)

×
∏

u,v∈E

∏

i∈Au

∏

j∈Av

θv|u(j, i)Nv,u(j,i)
(87)

Substituting equations 86 and 87 into 85 we get

P (E,ΘE |D, ξ) =
1

Zβ

1

ZD

∏

u,v∈E

βu,v

× D(θρ
E
(.);N ′

ρ
E
(.))

∏

i∈Aρ
E

θρ
E
(i)

Nρ
E

(i)

×
∏

u,v∈E

∏

i∈Au


D(θv|u(., i);N ′

v,u(., i))
∏

j∈Av

θv|u(j, i)Nv,u(j,i)




(88)
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Applying the result in equation 59 for all the Dirichlets we have that

P (E,Θ
E
|D, ξ) =

1

Zβ

1

ZD

∏

u,v∈E

βu,v

×

Γ(
∑

i∈Aρ
E

N ′
ρ

E
(i))

∏
i∈Aρ

E

Γ(N ′
ρ

E
(i))

∏
i∈Aρ

E

Γ(N ′
ρ

E
(i) + Nρ

E
(i))

Γ(
∑

i∈Aρ
E

N ′
ρ

E
(i) + Nρ

E
(i))

×
∏

u,v∈E

∏

i∈Au




Γ(
∑

j∈Av

N ′
v,u(j, i))

∏
j∈Av

Γ(N ′
v,u(j, i))

∏
j∈Av

Γ(N ′
v,u(j, i) + Nv,u(j, i))

Γ(
∑

j∈Av

N ′
v,u(j, i) + Nv,u(j, i))




× D(θρ
E
(.);N ′

ρ
E
(.) + Nρ

E
(.))

×
∏

u,v∈E

∏

i∈Au

D(θv|u(., i);N ′
v,u(., i) + Nv,u(., i))

(89)

This expression can be simplified by applying equations 11 and 12 (and
similar ones for N) and reorganizing:

P (E,Θ
E
|D, ξ) =

1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

∏

u,v∈E

βu,v

×
∏

i∈Aρ
E

Γ(N ′
ρ

E
(i) + Nρ

E
(i))

Γ(N ′
ρ

E
(i))

×
∏

u,v∈E

∏

i∈Au


 Γ(N ′

u(i))

Γ(N ′
u(i) + Nu(i))

∏

j∈Av

Γ(N ′
v,u(j, i) + Nv,u(j, i))

Γ(N ′
v,u(j, i))




× D(θρ
E
(.);N ′

ρ
E
(.) + Nρ

E
(.))

×
∏

u,v∈E

∏

i∈Au

D(θv|u(., i);N ′
v,u(., i) + Nv,u(., i))

(90)

Defining Wu,v as appears in equation 18, it is easy to see that multi-
plying and dividing in equation 90 by the factor:

∏

v∈Ω−{ρ
E
}

∏

i∈Av

Γ(N ′
v(i) + Nv(i))

Γ(N ′
v(i))

(91)
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and rearranging we get:

P (E,Θ
E
|D, ξ) =

1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

v∈Ω

∏

i∈Av

Γ(N ′
v(i) + Nv(i))

Γ(N ′
v(i))

×
∏

u,v∈E

Wu,vβu,v

× D(θρ
E
(.);N ′

ρ
E
(.) + Nρ

E
(.))

×
∏

u,v∈E

∏

i∈Au

D(θv|u(., i);N ′
v,u(., i) + Nv,u(., i))

(92)

It is worth noting that if we use the definition of Wu,v given by Meila
and Jaakkola (see equation 17), our expression will keep a factor that
depends on the directed tree structure (concretely on the root) and it
would not be possible to continue with our development further on.

In order to have P (E,Θ
E
|D, ξ) completely determined we need to

calculate ZD. Since we know that
∫

M∈M

P (M |D, ξ) =
∑

E∈E

∫
· · ·

∫

Θ
E

P (E,ΘE |D, ξ) = 1 (93)

We can do this by integrating over the parameters, then summing over
the tree structures and finally solving for ZD. The first step is easy,
because Dirichlet distributions are normalized and integrate to 1 giving:

∫
· · ·

∫

Θ
E

P (E,ΘE |D, ξ) =
1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

v∈Ω

∏

i∈Av

Γ(N ′
v(i) + Nv(i))

Γ(N ′
v(i))

×
∏

u,v∈E

Wu,vβu,v

(94)

The addition over structures can be calculated by means of the matrix
tree theorem for decomposable priors, giving

∑

E∈E

∫
· · ·

∫

Θ
E

P (E,Θ
E
|D, ξ) =

|Q(βW)|

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

v∈Ω

∏

i∈Av

Γ(N ′
v(i) + Nv(i))

Γ(N ′
v(i))

= 1

(95)
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Solving for ZD, recalling that Zβ = |Q(β)| we have that

ZD =
|Q(βW)|

|Q(β)|

Γ(N ′)

Γ(N ′ + N)

∏

v∈Ω

∏

i∈Av

Γ(N ′
v(i) + Nv(i))

Γ(N ′
v(i))

(96)

Finally, substituting the result for ZD in equation 92 we can see that
the posterior is a decomposable distribution over trees with the hyper-
parameters updated as given by equations 15, 16 and 18:

P (E,Θ
E
|D, ξ) =

1

|Q(βW)|

∏

u,v∈E

Wu,vβu,v

× D(θρ
E
(.);N ′

ρ
E
(.) + Nρ

E
(.))

×
∏

u,v∈E

∏

i∈Au

D(θv|u(., i);N ′
v,u(., i) + Nv,u(., i))

(97)

�

C. Detailed development for decomposable distributions

over TANs results

In this appendix we provide the proofs for the results in sections 4.2
and 4.3.

C.1. Calculating probabilities under decomposable

distributions over TANs

Knowing that P (M |ξ) follows a decomposable distribution over TANs
with hyperparameters β and N′ we need to calculate

P (V = S, C = sC |ξ) =

∫

M∈M

P (V = S, C = sC |M, ξ)P (M |ξ) (98)

The development will be parallel to the one in section B.1. In this case,
we can also work over the set of undirected structures having:

P (V = S, C = sC |ξ) =
∑

E∈E

P (V = S, C = sC |E, ξ)P (E|ξ) (99)

where P (E|ξ) comes given by:

P (E|ξ) =
1

Zβ

∏

u,v∈E

βu,v (100)
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C.1.1. Calculating P (V = S, C = sC |E, ξ)
Using likelihood equivalence we can express P (X = x|E, ξ) as the in-
tegral over any directed TAN structure E

∗
which undirected structure

coincides with E:

P (V = S, C = sC |E, ξ) =

=

∫
· · ·

∫

Θ
E
∗

P (V = S, C = sC |E
∗
,Θ

E
∗)P (Θ

E
∗ |E

∗
, ξ)dΘ

E
∗ (101)

P (V = S, C = sC |E
∗
,Θ

E
∗) is determined by the expansion of equation 1

taking into account the TAN structure.

P (V = S, C = sC |E
∗
,Θ

E
∗) = θC(sC) θρ

E
|C(sρ

E
, sC)

∏

u,v∈E

θv|u,C(sv, su, sC)

(102)
P (Θ

E
∗ |E

∗
, ξ) can be expanded from equations 30, 34, 35 and 36 into

P (Θ
E

∗ |E
∗
, ξ) = D(θC(.);N ′

C(.))

×
∏

c∈C

D(θρ
E
|C(., c);N ′

ρ
E

,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c);N ′
v,u,C (., i, c))

(103)

Now we need to calculate the integral in equation 101. We define:

1S,sC

C (c) =

{
1 c = sC

0 otherwise
(104)

1S,sC

i,C (k, c) =

{
1 k = si ∧ c = sC

0 otherwise
(105)

1S,sC

i,j,C(k, l, c) =

{
1 k = si ∧ l = sj ∧ c = sC

0 otherwise
(106)

It is easy to see that:
∑

j∈Av

1S,sC

v,u,C(j, i, c) = 1S,sC

u,C (i, c) (107)

∑

i∈Au

1S,sC

u,C (i, c) = 1S,sC

C (c) (108)

∑

c∈C

1S,sC

C (c) = 1 (109)
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We can use this notation to expand the product

P (V = S, C = sC |E
∗
,Θ

E
∗)P (Θ

E
∗ |E

∗
, ξ) (110)

by substituting equations 102 and 103 giving:

P (V = S, C = sC |E
∗
,Θ

E
∗)P (Θ

E
∗ |E

∗
, ξ) =

= D(θC(.);N ′
C(.))

∏

c∈C

θC(c)1
S,sC
C

(c)

×
∏

c∈C


D(θρ

E
|C(., c);N ′

ρ
E

,C(., c))
∏

i∈Aρ
E

θρ
E
|C(i, c)

1
S,sC
ρ
E

,C
(i,c)




×
∏

c∈C

∏

u,v∈E

∏

i∈Au


D(θv|u,C(., i, c);N ′

v,u,C (., i, c))
∏

j∈Av

θv|u,C(j, i, c)1
S,sC
v,u,C

(j,i,c)




(111)

By analyzing equation 111 we can see that the integral in equation 101
can be calculated by applying the result in equation 60 three times.
This gives:

P (V = S, C = sC |E, ξ) =

Γ(
∑

c∈C

N ′
C(c))

∏
c∈C

Γ(N ′
C(c))

∏
c∈C

Γ(N ′
C(c) + 1S,sC

C (c))

Γ(
∑
c∈C

N ′
C(c) + 1S,sC

C (c))

×
∏

c∈C




Γ(
∑

i∈Aρ
E

N ′
ρ

E
,C(i, c))

∏
i∈Aρ

E

Γ(N ′
ρ

E
,C(i, c))

∏
i∈Aρ

E

Γ(N ′
ρ

E
,C(i, c) + 1S,sC

ρ
E

,C(i, c))

Γ(
∑

i∈Aρ
E

N ′
ρ

E
,C(i, c) + 1S,sC

ρ
E

,C(i, c))




×
∏

c∈C

∏

u,v∈E

∏

i∈Au




Γ(
∑

j∈Av

N ′
v,u,C(j, i, c))

∏
j∈Av

Γ(N ′
v,u,C(j, i, c))

∏
i∈Av

Γ(N ′
v,u,C(j, i, c) + 1S,sC

v,u,C(j, i, c))

Γ(
∑

i∈Av

N ′
v,u,C(j, i, c) + 1S,sC

v,u,C(j, i, c))




(112)
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This expression can be simplified by applying equations 31,32,33,107,108
and 109 and reorganizing:

P (V = S, C = sC |E, ξ) =
Γ(N ′)

Γ(N ′ + 1)

×
∏

c∈C

∏

i∈Aρ
E

Γ(N ′
ρ

E
,C(i, c) + 1S,sC

ρ
E

,C(i, c))

Γ(N ′
ρ

E
,C(i, c))

×
∏

u,v∈E

∏

c∈C

∏

i∈Au


 Γ(N ′

u,C(i, c))

Γ(N ′
u,C(i, c) + 1S,sC

u,C (i, c))

∏

i∈Av

Γ(N ′
v,u,C(j, i, c) + 1S,sC

v,u,C(j, i, c))

Γ(N ′
v,u,C(j, i, c))




(113)

Since the quotient Γ(N ′

∗
(∗)+1

S,sC
∗

(∗))
Γ(N ′

∗
(∗)) is N ′

∗(∗) if the condition expressed

by the 1S,sC
∗ (∗) is satisfied and 1 otherwise we have that:

P (V = S, C = sC |E, ξ) =
1

N ′

× N ′
ρ

E
,C(sρ

E
, sC)

×
∏

u,v∈E

[
N ′

v,u,C(sv, su, sC)

N ′
u,C(su, sC)

] (114)

Defining h
S,sC

0 and hS,sC
u,v as in equations 39 and 40 it is easy to see that

multiplying and dividing in equation 114 by the factor:
∏

v∈V −{ρ
E
}

N ′
v,C(sv, sC) (115)

and rearranging we get:

P (V = S, C = sC |E, ξ) = h
S,sC

0 Zβ

∏

u,v∈E

(
hS,sC

u,v

)
(116)

and the expression depends only on the undirected structure of the
tree.

C.1.2. Adding over Tree Structures

Combining equations 100, 116 we get

P (V = S, C = sC |E, ξ)P (E|ξ) = h
S,sC

0

∏

u,v∈E

(
βu,vh

S,sC
u,v

)
(117)

Calculating the summation over structures using the matrix tree theo-
rem for decomposable distributions gives the desired result.

P (V = S, C = sC |ξ) = h
S,sC

0 |Q(β hS,sC)| (118)
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�

C.2. Learning under decomposable distributions over

TANs

Given that P (M |ξ) follows a decomposable distribution over TANs
with hyperparameters β and N′ we want to calculate P (M |D, ξ) where
D is an i.i.d. dataset sampled from a TAN distribution. Using Bayes
rule we get:

P (M |D, ξ) = P (E
∗
,Θ

E
∗ |D, ξ) =

P (E
∗
,Θ∗

E
|ξ)P (D|E

∗
,Θ

E
∗ , ξ)

ZD
(119)

The prior P (E,ΘE |ξ) is calculated combining equations 26,100, 103
giving:

P (Θ
E

∗E
∗
|ξ) =

1

Zβ

∏

u,v∈E

βu,v

× D(θC(.);N ′
C (.))

×
∏

c∈C

D(θρ
E
|C(., c);N ′

ρ
E

,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c);N ′
v,u,C (., i, c))

(120)

P (D|E
∗
,Θ

E
∗ , ξ) is the probability that the model generates the data in

D. Since D contains independent identically distributed observations,
we have that

P (D|E
∗
,Θ

E
∗ , ξ) =

∏

c∈C

θC(c)NC(c)

×
∏

c∈C

∏

i∈Aρ
E

θρ
E
|C(i, c)

Nρ
E

,C(i,c)

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

∏

j∈Av

θv|u,C(j, i, c)Nv,u,C(j,i,c)

(121)
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Substituting equations 120 and 121 into 119 we get

P (E
∗
,Θ

E
∗ |D, ξ) =

1

Zβ

1

ZD

∏

u,v∈E

βu,v

× D(θC(.);N ′
C(.))

∏

c∈C

θC(c)NC(c)

×
∏

c∈C


D(θρ

E
|C(., c);N ′

ρ
E

,C(., c))
∏

i∈Aρ
E

θρ
E
|C(i, c)

Nρ
E

,C(i,c)




×
∏

c∈C

∏

u,v∈E

∏

i∈Au


D(θv|u,C(., i, c);N ′

v,u,C (., i, c))
∏

j∈Av

θv|u,C(j, i, c)Nv,u,C(j,i,c)




(122)

Applying the result in equation 59 for all the Dirichlets we have that

P (E
∗
,Θ

E
∗ |D, ξ) =

1

Zβ

1

ZD

∏

u,v∈E

βu,v

×

Γ(
∑
c∈C

N ′
C(c))

∏
c∈C

Γ(N ′
C(c))

∏
c∈C

Γ(N ′
C(c) + NC(c))

Γ(
∑

c∈C

N ′
C(c) + NC(c))

×
∏

c∈C




Γ(
∑

i∈Aρ
E

N ′
ρ

E
,C(i, c))

∏
i∈Aρ

E

Γ(N ′
ρ

E
,C(i, c))

∏
i∈Aρ

E

Γ(N ′
ρ

E
,C(i, c) + Nρ

E
,C(i, c))

Γ(
∑

i∈Aρ
E

N ′
ρ

E
,C(i, c) + Nρ

E
,C(i, c))




×
∏

c∈C

∏

u,v∈E

∏

i∈Au




Γ(
∑

j∈Av

N ′
v,u,C(j, i, c))

∏
j∈Av

Γ(N ′
v,u,C(j, i, c))

∏
j∈Av

Γ(N ′
v,u,C(j, i, c) + Nv,u,C(j, i, c))

Γ(
∑

j∈Av

N ′
v,u,C(j, i, c) + Nv,u,C(j, i, c))




× D(θC(.);N ′
C(.) + NC(.))

×
∏

c∈C

D(θρ
E
|C(., c);N ′

ρ
E

,C(., c) + Nρ
E

,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c);N ′
v,u,C (., i, c) + Nv,u,C(., i, c))

(123)
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This expression can be simplified by applying equations 31,32 and 33
(and similar ones for N) and reorganizing:

P (E
∗
,Θ

E
∗ |D, ξ) =

1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

∏

u,v∈E

βu,v

×
∏

c∈C

∏

i∈Aρ
E

Γ(N ′
ρ

E
,C(i, c) + Nρ

E
,C(i, c))

Γ(N ′
ρ

E
,C(i, c))

×
∏

u,v∈E

∏

c∈C

∏

i∈Au


 Γ(N ′

u,C(i, c))

Γ(N ′
u,C(i, c) + Nu,C(i, c))

∏

j∈Av

Γ(N ′
v,u,C(j, i, c) + Nv,u,C(j, i, c))

Γ(N ′
v,u,C(j, i, c))




× D(θC(.);N ′
C(.) + NC(.))

×
∏

c∈C

D(θρ
E
|C(., c);N ′

ρ
E

,C(., c) + Nρ
E

,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c);N ′
v,u,C (., i, c) + Nv,u,C(., i, c))

(124)

Defining Wu,v as appears in equation 43, it is easy to see that multi-
plying and dividing in equation 124 by the factor:

∏

v∈V −{ρ
E
}

∏

c∈C

∏

i∈Av

Γ(N ′
v,C(i, c) + Nv,C(i, c))

Γ(N ′
v,C(i, c))

(125)

and rearranging we get:

P (E
∗
,Θ

E
∗ |D, ξ) =

1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

c∈C

∏

v∈V

∏

i∈Av

Γ(N ′
v,C(i, c) + Nv,C(i, c))

Γ(N ′
v,C(i, c))

×
∏

u,v∈E

Wu,vβu,v

× D(θC(.);N ′
C(.) + NC(.))

×
∏

c∈C

D(θρ
E
|C(., c);N ′

ρ
E

,C(., c) + Nρ
E

,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c);N ′
v,u,C (., i, c) + Nv,u,C(., i, c))

(126)
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In order to have P (E
∗
,Θ

E
∗ |D, ξ) completely determined we need to

calculate ZD. Since we know that
∫

M∈M

P (M |D, ξ) =
∑

E∈E

∫
· · ·

∫

Θ
E
∗

P (E
∗
,Θ

E
∗ |D, ξ) = 1 (127)

We can do this by integrating over the parameters, then summing over
the tree structures and finally solving for ZD. The first step is easy,
because Dirichlet distributions are normalized and integrate to 1 giving:

∫
· · ·

∫

Θ
E
∗

P (E
∗
,Θ

E
∗ |D, ξ) =

1

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

c∈C

∏

v∈V

∏

i∈Av

Γ(N ′
v,C(i, c) + Nv,C(i, c))

Γ(N ′
v,C(i, c))

×
∏

u,v∈E

Wu,vβu,v

(128)

The addition over structures can be calculated by means of the matrix
tree theorem for decomposable priors, giving

∑

E∈E

∫
· · ·

∫

Θ
E
∗

P (E
∗
,Θ

E
∗ |D, ξ) =

|Q(βW)|

Zβ

1

ZD

Γ(N ′)

Γ(N ′ + N)

×
∏

c∈C

∏

v∈V

∏

i∈Av

Γ(N ′
v,C(i, c) + Nv,C(i, c))

Γ(N ′
v,C(i, c))

= 1

(129)

Solving for ZD, recalling that Zβ = |Q(β)| we have that

ZD =
|Q(βW)|

|Q(β)|

Γ(N ′)

Γ(N ′ + N)

∏

c∈C

∏

v∈V

∏

i∈Av

Γ(N ′
v,C(i, c) + Nv,C(i, c))

Γ(N ′
v,C(i, c))

(130)
Finally, substituting the result for ZD in equation 126 we can see
that the posterior is a decomposable distribution with the parameters
updated as given by equations 41, 42 and 43:

P (E
∗
,Θ

E
∗ |D, ξ) =

1

|Q(βW)|

∏

u,v∈E

Wu,vβu,v

× D(θC(.);N ′
C(.) + NC(.))

×
∏

c∈C

D(θρ
E
|C(., c);N ′

ρ
E

,C(., c) + Nρ
E

,C(., c))

×
∏

c∈C

∏

u,v∈E

∏

i∈Au

D(θv|u,C(., i, c);N ′
v,u,C (., i, c) + Nv,u,C(., i, c))

(131)
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