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General Introduction, Aim and Outline of This Thesis 

 

‘There is no science which does not spring from pre-existing knowledge’ - W. Harvey 

 

History of The Anatomy and Physiology of the Cardiovascular System 

Physiology, coming from the Ancient Greek word physis ‘nature’ or ‘origin’ and logica ‘study of’, 

focuses on the normal function of organisms, organs and cells. Therefore, it laid the foundation of the 

study of the development of disease (pathophysiology, coming from the Ancient Greek word, pathos 

‘suffering’ and physiology) and served as a cornerstone for the modern medical sciences. In the 

beginning of modern cardiovascular physiology there was no differentiation between anatomy and 

function.1 Thus the ancient scientist formulated hypotheses about the function of the human body 

based on empirical observations which fitted within the beliefs of that age and location. Hippocrates 

(around 400 B.C.) was one of the first to apply logical reasoning to medicine and stated that disease 

is caused by imbalance of the four humors (blood, water, black and yellow bile). In other words a 

disruption of the normal physiology results in disease.2 Aristoteles believed that the heart was the 

centre of the physiological mechanisms and the origin of all blood vessels. Interestingly, only about 

50 years later, Praxagoras was the first to differentiate between arteries and veins, but stated that 

arteries were filled with air instead of blood. Galen (born 129 A.D.) continued on these hypotheses 

and formulated that both the arteries and the veins are filled with blood, but the blood streams 

through openings in the ventricular septum. Blood in the left ventricle is oxygenated by air coming 

from the lungs directly and the systemic circulation was still considered an open system.2 

During the European golden ages of anatomy in the 15th century, multiple anatomists—such 

as Da Vinci, Vesalius, Servetus, Columbus and Caesalpinus—described important anatomical features 

of the heart, lungs and circulation and how they influence cardiovascular function.3 Their findings 

helped William Harvey to write ‘Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus’ 

(Latin for "An Anatomical Exercise on the Motion of the Heart and Blood in Living Beings") which was 

published in 1628.4 His description of a closed system with two separate—pulmonary and systemic—

circulations was the synopsis of multiple observations done by his predecessors but was truthfully 

combined first by Harvey. Especially his experiments (Figure 1) and hypothesis about the movement 

of blood were of utmost importance for modern cardiovascular physiology.2 Furthermore, the change 

in role of the heart, from a mythical and spiritual organ to a blunt pump, was the missing link in 

combining the existence of arteries, veins and a closed circulation. Unfortunately, there was one 

missing facet which would complete the closed circulation hypothesis by Harvey, namely the 

connection between the arteries and veins. This connection was not observable yet, as it was not 
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possible at that time to observe vessels smaller than those visible to the eye. It was not until 1660, 

after Harvey’s death, that Marcello Malpighi observed blood flow through the capillaries (of a frog’s 

lung) with an early microscope and thus discovered the missing link which confirmed the closed 

circulation hypothesis. Since this important discovery, a large portion of evidence has been acquired 

about the microcirculation and its function. 

The Coronary Microcirculation

The human circulation exists of vessels of different sizes, ranging from ~30mm (aorta) to <10µm 

(capillaries) inner luminal diameter, with an arterial and a venous system connected by capillaries. All 

vessels in the human body are lined inside by a layer of endothelial cells which form the barrier 

between the circulation and the surrounding tissue. Vascular smooth muscle cells (VSMC) and fibrotic 

tissue surround the endothelial cells depending on the size and location of the vessel (Figure 2). 

Whereas the large conduit arteries are responsible for blood transportation, the smaller arteries

(~100-400µm), arterioles (~10-100µm) and capillaries (<10µm), forming the microcirculation, are of

uttermost importance in maintaining blood pressure, regulating blood flow, tissue perfusion and 

maintaining tissue homeostasis.5, 6 In the majority of humans, the arterial system of the heart, called 

Figure 1 Classical experiments performed by Harvey

Classical experiments from ‘An Anatomical Exercise on the Motion of the Heart and
Blood in Living Beings’ performed by Harvey proving the arterial and venous system 
and the direction of blood flow.

11 
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the coronary circulation is composed of the 3 main coronary arteries  (conduit vessels) which originate 

from the aorta—the right coronary artery, left circumflex and left anterior descending coronary 

arteries. The human coronary circulation is right dominant, indicating that the right coronary artery is 

responsible for supplying not only the right side of the heart but also the posterior wall of the left 

ventricle, whereas the left anterior descending coronary artery supplies the anterolateral wall of the 

left ventricle, apex as well as the interventricular septum, and finally the left circumflex is responsible 

for supplying the posterolateral walls of the left ventricle. As the arteries branch off they form the 

small arteries, arterioles and eventually capillaries responsible for myocardial perfusion. This thesis 

will focus on the (dys)function of this last part of the circulation; the coronary microcirculation.

The microcirculation of the heart faces a unique challenge in that it is compressed during 

every heart contraction (or systole), thereby limiting blood inflow. Hence, the heart is mainly perfused 

during the relaxation of the cardiac muscle, the so-called diastole. 7, 8 In addition, the microcirculation 

of the heart is particularly crucial as the perfusion of the myocardium needs to be tightly regulated 

for multiple reasons. Firstly, the normal heart continuously beats about 60-70 times per minute and 

is therefore in constant need of supply of oxygen and nutrients as the cardiac reserves last for just 

about 3 heart beats.7 Secondly, Secondly, with the heart utilizing ~70% of the oxygen supplied through 

Figure 2 Normal structure and function of coronary macro- and microcirculation 

Normal structure and function of coronary macro- and microcirculation. Most of the coronary 
resistance comes from the coronary microcirculation, regulating myocardial perfusion. Adapted 
from Taqueti and Di Carli.9

12 
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the coronary vasculature at rest, the perfusion of the heart needs to quickly adapt to increased 

metabolic demand as myocardial oxygen consumption can rapidly increase up to six times during 

exercise.7, 8 As myocardial oxygen extraction is already high during resting conditions (60-70%) there 

is not much room to increase extraction during increased metabolic demand, therefore it must be 

met by an commensurate increase in coronary blood flow which can be increased by about 5 times in 

healthy humans.7 A reduction in coronary vascular resistance is required to increase myocardial blood 

flow and most of the vascular resistance resides in the coronary microcirculation and thus can regulate 

myocardial perfusion (Figure 2).9  

The regulation of coronary microvascular tone is dependent on the balance between 

constrictor and vasodilator influences. The coronary microvasculature is especially sensitive to 

vasodilator influences as it has a relative high resting tone.10 Vessels of different sizes act in concert 

to adequately respond to increases in demand. Thus, the coronary smallest arterioles are mostly 

sensitive to metabolic and larger arterioles to myogenic factors, while upstream small arteries are 

flow sensitive and dilate in response to increases in flow. Figure 3 gives an overview of the most 

important factors involved in the regulation of the coronary microvascular tone. Both endothelium-

dependent and independent factors can induce vasodilation as well as vasoconstriction, mediated by 

relaxation and constriction of the VSMC.11 Such factors comprise of neurohumoral, metabolic and 

endothelial factors. Important neurohumoral factors include the sympathetic and parasympathetic 

nervous system-derived molecules which also play an important role in regulation of cardiac function 

during exercise, complicating the investigation of the direct effect of the nervous system on coronary 

microvascular vasomotor control.7 However, many of the factors involved in the regulation of the 

coronary microvascular tone are produced locally by endothelial cells and surrounding 

cardiomyocytes. Endothelium-derived factors include vasodilators such as nitric oxide (NO), 

prostaglandins, and endothelium-derived hyperpolarizing factors (EDHF) which counterbalance 

potent vasoconstrictors such as endothelin-1 (ET-1).10  

NO is produced by nitric oxide synthase of which the endothelial isoform (eNOS) is most 

abundant in the vasculature and thus most important in the regulation of vascular tone. It is not only 

produced by biochemical stimulation with several agonists, but also in response to increased shear 

stress. Endothelium-produced NO is released luminally, where it inhibits platelet aggregation, and 

abluminally where it binds to its receptor soluble guanylyl cyclase in VSMC, which increases cGMP 

levels and thus activates protein kinase K, resulting in VSMC relaxation. Interestingly, NO as a signalling 

molecule in vascular biology has been discovered only about 30 years ago.12 Since then studies have 

been conducted to investigate the role of NO in vascular biology and have found that the role of NO 

is not limited to vasodilation but NO also has anti-inflammatory, anti-oxidative and anti-proliferative 
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characteristics.12 NO can act as antioxidant since it can react with reactive oxygen species (ROS), or 

more specifically superoxide anion (O2-). Scavenging of NO is one of the main mechanisms by which 

increased ROS can decrease vasodilation of the microcirculation.13, 14 Moreover, ROS can uncouple 

eNOS and subsequently enhance ROS production by eNOS.14 Additionally, NO has also paracrine 

effects on the surrounding tissue (cardiomyocytes and fibroblasts) and has an important role in 

maintaining tissue homeostasis. For example, NO exerts an inhibitory effect on VSMC proliferation 

and therefore limits vascular remodelling.14 Therefore, it is considered as one of the most important 

active molecules in the (coronary) microcirculation. 

Figure 3 Overview of the main mechanisms involved in coronary microvascular 
vasomotor control

Schematic drawing of endothelium, vascular smooth muscle cell (VSMC) and cardiomyocyte 
illustrating mechanisms for control of vasomotor tone and diameter. Abbreviations: ATP 
adenosine triphosphate, P2y purinergic receptor type 2y, SOD superoxide dismutase, O2

−

superoxide anion, H2O2 hydrogen peroxide, eNOS endothelial nitric oxide synthase, L-arg L-
arginine, NO nitric oxide, COX cyclooxygenase, PGI2 prostacyclin, AA arachidonic acid, CYP2C9 
cytochrome P450 2C9, EETs epoxyeicosatrienoic acids, ECE endothelin-converting enzyme, bET-
1 big endothelin-1, ET-1 endothelin-1, ETA endothelin type A receptor, ETB endothelin type B 
receptor, M muscarinic receptor, ACh acetylcholine, PDE5 phosphodiesterase, KCa calcium-

activated K+ channel; 5, KV voltage-gated K+ channel, KATP ATP-sensitive K+ channel, A2 adenosine
receptor 2, β2 β2-adrenergic receptor, NE norepinephrine, α1 α1-adrenergic receptor, α2 α2-
adrenergic receptor, CO2 carbon dioxide, O2 oxygen, ADP adenosine diphosphate. Adapted 

from Sorop et al.10

14 
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EDHFs are responsible for an additional endothelium-dependent vasodilatory mechanism, 

which results in hyperpolarization of the VSMC and opening of calcium-sensitive potassium channels. 

Although the exact identity of EDHFs is still under debate, different candidates such as 

epoxyeicosatrienoic acid and endothelial-produced hydrogen peroxide (H2O2) have been proposed as 

potential EDHFs.15, 16 Furthermore, the major active metabolite of the arachidonic acid—prostacyclin 

(PGI2)—is a potent coronary vasodilator but has limited contribution to vascular tone control in the 

normal heart.17 Adenosine—extracellular break down product of ATP released by red blood cells and 

cardiomyocytes— is a potent vasodilator with a limited role in resting conditions and during exercise, 

but regarded as a contributor to tone regulation during low oxygen pressure and myocardial ischemia, 

respectively, when reuptake of ATP/AMP insufficient.7, 18  

In concert with the above mentioned vasodilators, vasoconstrictors such as ET-1 regulate 

tissue perfusion by increasing vascular tone in tissues with less metabolic needs and are subsequently 

responsible for redistribution of blood flow to the hyperaemic tissues (e.g. increased vasoconstriction 

in splanchnic  circulation during exercise).19 There are two main receptors for ET-1, endothelin 

receptor A (ETA) and B (ETB). Whereas ETA is only present on VSMC, mediating vasoconstriction, ETB is 

present on both VSMC—resulting in vasoconstriction—and endothelial cells, where stimulation 

results in vasodilation through eNOS activation, with a subsequent increase in NO bioavailability, and 

through clearance of ET-1.20 

With this intricate system, which is more comprehensive and complex as discussed above, 

which is responsible for adequate blood supply in all tissues—and especially in high oxygen 

demanding tissues such as the heart—dysfunction of the microvasculature can obviously be 

detrimental to maintaining physiological function. Furthermore, coronary microvascular dysfunction 

(CMD) cannot only result from functional changes in the microcirculation but also from structural 

changes (e.g. medial hypertrophy, increased perivascular fibrosis and a loss of arteriolar density). Not 

only the microvessels are prone to be affected by various diseases, so are larger arteries. Although 

there are distinctive pathological changes observed within vessels of different sizes and location, e.g.

large conduit arteries are most prone to atherosclerosis development, there is a central overlapping 

role for endothelial dysfunction in vessels of different sizes in most vascular diseases.11 Especially 

metabolic derangements—such as obesity and diabetes mellitus—are well established risk factors for 

the development of coronary microvascular dysfunction. Figure 4 gives an overview of the

pathophysiological mechanisms involved in CMD induced by metabolic derangement.10 CMD is

comprised of alterations of multiple pathways, which can affect endothelial cells and VSMCs both on

the functional and structural level. However, functional endothelial dysfunction seems to be most 

common as it is an important paracrine organ and it acts as a barrier between circulating factors and
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the surrounding tissue.21, 22 For example, a systemic pro-inflammatory state, induced by metabolic 

derangements or chronic kidney disease, can induce endothelial oxidative stress, which in turn can 

reduce the bioavailability of vasodilators, mainly NO and EDHFs, or increase the bioavailability of 

vasoconstrictors (ET-1), resulting in higher vasomotor tone, reduced tissue perfusion and vascular 

remodelling.21, 22 Eventually, surrounding tissues adapt to these changes in microvascular function, 

for example CMD can result in cardiomyocyte functional (systolic and diastolic) dysfunction and 

induce cardiomyocyte hypertrophy due to a loss of NO bioavailability.22, 23  

Coronary Microvascular Dysfunction in Ischemic Heart Disease

As stated above, CMD is common in a variety of cardiovascular diseases and a classification system, 

composed of 4 types, has been proposed to differentiate between the different forms of CMD in 

cardiovascular disease (Table 1).24, 25 Although the link between obstructive epicardial coronary artery 

disease (CAD) and myocardial ischemia has been thoroughly studied and is currently undisputed, CMD 

is increasingly considered an important contributor. For instance, it has been shown that obstructive 

CAD is accompanied by CMD in a significant portion of the patients, classified as type 3 CMD.24, 25

Importantly, cardiovascular outcome of patients with combined myocardial infarction patients and 

CMD is worse than that of patients with a myocardial infarction without CMD.26 This difference is

possibly due to changes in the coronary microvascular control distal of the obstruction which further 

limit myocardial perfusion.27  

Figure 4 Proposed mechanisms of coronary microvascular dysfunction induced by 
metabolic derangements

Microvascular dysfunction in the presence of metabolic dysregulation. Abbreviations: ET-1 
endothelin-1, VSMC vascular smooth muscle cell, ETA endothelin receptor A, ETB endothelin 
receptor B, RAAS renin angiotensin aldosterone system, NO nitric oxide, ROS reactive oxygen 
species, EC endothelial cell. Adapted from Sorop et al.10

16 
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The main treatment of acute coronary syndromes to date is revascularization by 

percutaneous coronary intervention—, which is considered very effective.28 Yet, in a significant group 

of patients revascularization is not met by full restoration of myocardial perfusion, this phenomenon 

deemed ‘no-reflow’29 which, importantly, is associated with a worse outcome.26, 30 CMD in these 

patients has been classified as type 4 CMD, which encompasses iatrogenic causes of CMD.24, 25 

In contrast to CMD in patients with obstructive CAD, a significant number of patients (40%) 

that undergo coronary angiography for chest pain appears to have structurally normal coronary 

arteries, defined as luminal narrowing <50%.31 This phenomenon was originally named ‘cardiac 

syndrome X’ and later ‘microvascular angina’.32-34 Recently a broader syndrome was defined named 

‘Ischemia with No Obstructive Coronary Artery disease’ (INOCA), including microvascular angina as 

one of its components.32, 35, 36 INOCA fits within the description of type 1 CMD.24, 25 These patients are 

more often women than men (65% versus 32% respectively) and have more comorbidities.37 These 

patients are more often women than men (65% versus 32% respectively) and have more comorbidities 

than patients with obstructive coronary artery disease.37 These comorbidities can lead to 

microvascular dysfunction with subsequent myocardial ischemia and angina.  

Table 1. Classification of coronary microvascular dysfunction 

Clinical setting Main pathogenic 
mechanisms 

Type 1: in the 
absence of 
myocardial diseases 
and obstructive CAD 

Risk factors 
Microvascular angina 

Endothelial dysfunction 
SMC dysfunction 
Vascular remodeling 

Type 2: in myocardial 
diseases 

Hypertrophic 
cardiomyopathy 
Dilated cardiomyopathy 
Anderson-Fabry's disease 
Amyloidosis 
Myocarditis 
Aortic stenosis 

Vascular remodeling 
SMC dysfunction 
Extramural 
compression 
Luminal obstruction 

Type 3: in obstructive 
CAD 

Stable angina 
Acute coronary syndrome 

Endothelial dysfunction 
SMC dysfunction 
Luminal obstruction 

Type 4: iatrogenic PCI 
Coronary artery grafting 

Luminal obstruction 
Autonomic dysfunction 

CAD, coronary artery diseases; SMC, smooth muscle cells; PCI, percutaneous coronary 
intervention. Adapted from Crea et al.24 
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In clinical practice, diagnosing INOCA is still challenging due to limited knowledge about the 

pathophysiological cascade. In 2017, a diagnostic pathway based on expert opinion has been 

proposed, with a central role for invasive coronary reactivity testing.35 A reduction in coronary flow 

reserve (CFR), (defined as the maximal divided by the basal coronary blood flow), measured by 

coronary flow velocities or positron emission tomography (PET) and impaired responses to the 

infusion of vasodilatory agents (adenosine, acetylcholine and nitroglycerine) have been proposed as 

characteristic features of INOCA. Although not specific for one cause of microvascular dysfunction, 

this does indicate general CMD.35 Furthermore, a reduction in CFR, in the absence of coronary artery 

disease, is independently associated with an increase in MACE without differences between sexes.38 

The effect size of mere CMD should not be underestimated, for example the risk of MACE in diabetic 

patients with reduced CFR but non-obstructive CAD is similar to non-diabetic patients with CAD.39 

When measured using a Doppler flow wire, a CFR of <2.32 best predicted outcome in INOCA patients, 

with a 5-year MACE rate of 27% versus 9.3% for patients above 2.32.35 This cut-off value is lower when 

CFR is measured by PET, there a CFR of <2 increased the MACE rate 3 times compared to those above 

the cut-off value.35 After 10 years, myocardial infarction or cardiovascular death occurred in 6.7% of 

the women without ‘evident angiographic CAD’ and in 12.8% among patients with non-obstructive 

CAD40, which is comparable to the prognosis in male INOCA patients.35  

Although the exact pathophysiological relation between the risk factor profile and INOCA is 

not yet known, CMD is thought to play a pivotal role.24, 32, 35, 36, 40 A possible common pathway, is that 

CMD is induced by a systemic pro-inflammatory state due to multiple common cardiovascular 

comorbidities.41, 42 However, as summarized in Figure 4, the mechanisms by which CMD is induced by 

comorbidities can be multifold, and therefore a tailored treatment for INOCA patients is not available 

to date. Further research is needed to determine the pathogenesis so that targeted therapy can be 

developed. Therefore, translational animal models which recapitulate these features of CMD with 

alterations in myocardial perfusion are needed to unravel the pathophysiological cascade and test 

new treatment options. 

Coronary Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction 

Recently, INOCA has been linked to heart failure with preserved ejection fraction (HFpEF), a 

multifactorial heart failure syndrome in which CMD is also considered a hallmark.33, 43, 44 It is suggested 

that HFpEF and INOCA represent two extreme clinical presentations of a disease continuum but have 

the same ‘common soil’: CMD.33, 43 However, this hypothesis is still a new concept and more research 

is needed to confirm the link and underlying mechanisms.33 
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HFpEF is present in about half of all HF patients and this portion is projected to rise in the 

coming years, as the overall world population ages.45 In HFpEF, the heart is unable to maintain cardiac 

output commensurate to the metabolic demand of the body, mainly due to diastolic dysfunction 

(impaired relaxation) while ejection fraction is preserved (≥50%), as opposed to HFrEF—heart failure 

with reduced (<50%) ejection faction—wherein systolic dysfunction is the main mechanism 

involved.46 HFpEF is associated with classical cardiovascular risk factors such as diabetes mellitus, 

hypertension and obesity. Interestingly though, HFpEF has also been associated with non-classical risk 

factors, such as obstructive sleep apnoea syndrome, chronic kidney disease and anemia.23, 45, 46 Recent 

insights have demonstrated that chronic kidney disease especially, plays an important role in the 

development of HFpEF.47-49 Especially multimorbidity is common in HFpEF as ~50% of the patients 

have five or more major comorbidities.45 In part this can be explained by the fact that over 90% of the 

HFpEF patients are over the age of 59.45, 46 It has consistently been shown that the risk of HFpEF is 

higher in women than in men, while HFrEF is more prevalent in men than in women.50 This post-

menopausal women-skewed distribution is in line with the sex-distribution seen in INOCA patients 

and men-skewed distribution of patients with obstructive CAD.35  

The current HFpEF hypothesis, in which it proposed that dysfunction of endothelial cells is 

the driven factor, was postulated by Paulus and Tschöpe in 2013, and has received wide support from 

cardiovascular researchers and clinicians across the world.23 They proposed that multiple common 

comorbidities induce a systemic pro-inflammatory state which subsequent coronary microvascular 

endothelial dysfunction with a loss of NO-bioavailability. Loss of the paracrine effect of endothelium-

produced NO on cardiomyocytes results in reduced protein kinase G (PKG) activation. Normally, 

activated PKG has anti-hypertrophic effects and phosphorylates the large protein titin—a spring-like 

structure determining the passive stiffness of (cardio)myocytes—resulting in a lowering of the passive 

stiffness.23 Besides impaired myocardial relaxation caused by intrinsic cardiomyocyte passive stiffness, 

increased interstitial fibrosis by inflammation-mediated fibroblast to myofibroblast differentiation 

also induces myocardial stiffness and subsequent diastolic dysfunction.23 Both intrinsic cardiomyocyte 

stiffening and extra cellular matrix expansion can occur in patients with HFpEF, and they might 

represent distinctive phenotypes which require a tailor-made therapeutic approach. 

Additionally, besides the clear cardiac phenotype of HFpEF, extra-cardiac changes in 

microvascular function contribute to its morbidity, for example through impairments in muscle 

function and pulmonary vascular disease.51 Especially the pulmonary circulation is of importance, as 

pulmonary congestion and subsequent dyspnoea are the main symptoms in patients with heart failure 

and contribute the most to the disease burden.52 Although the physiological function of the 

pulmonary circulation is quite different as compared to the coronary circulation, risk factors for HFpEF 
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might also directly induce pulmonary vascular dysfunction.51 As stated before53, due to the systemic 

pro-inflammatory state, microvascular dysfunction is often not limited to one organ or one circulation. 

Therefore, researchers need to consider to investigate multiple organ systems in the same model, as 

differences and similarities in pathophysiology are important to address, especially in diseases of 

which it is known that multiple organ systems are affected, such as HFpEF. 

Although some clinical studies confirm intrinsic cardiomyocyte stiffness and extracellular 

matrix expansion due to microvascular oxidative stress in HFpEF pathogenesis54, 55 suggesting possible 

therapeutic targets, there is still no evidence-based proven treatment for HFpEF specifically.52 In part 

this is due to the heterogeneity of HFpEF patient populations52 but also due to the lack of a good 

translational model which recapitulates the complexity of HFpEF patients, especially with regards to 

multimorbidity.56 Therefore, an animal model which not only recapitulates diastolic dysfunction but 

also the underlying comorbidities is needed to unravel HFpEF pathophysiology and testing of new 

compounds to treat HFpEF. 

Porcine Model for Coronary Microvascular Dysfunction 

Notwithstanding the undisputable merits of experimental animal models, we need to carefully 

consider the choice of a specific animal model. It is imperative to acknowledge that no single animal 

model perfectly emulates the human disease (CMD, INOCA and/or HFpEF), nor has a perfect 

translational capacity to the clinical setting.57, 58 A significant portion of all therapeutic candidates 

emerging from basic research fails to translate into a clinical available therapy, referred to as the 

translational gap.59 For a part this is attributable to the lack of expertise into translation of both basic 

researchers as well as clinicians.59 Another part it is due to the use of animal models which are 

relatively healthy and mimic only the investigated disease but do not mimic the comorbidities as 

present in the patients. Therefore, there is a clear need for translational models of cardiovascular 

disease, which show high resemblance to human disease but also take in account comorbidities which 

might be present in patients ultimately receiving treatment.  

Swine pose a very valuable animal model in cardiovascular research specifically, given their 

resemblance to human cardiovascular anatomy and physiology. Furthermore, the size of swine 

enables the use of imaging modalities also available in humans, therefore improving the translational 

value to the clinical setting.60 In addition, in large animal models such as swine, chronic 

implementation of catheters allows for continues or repeated measurements of disease development 

in awake animals. The latter has been shown to be important as anaesthesia can influence cardiac as 

well as vascular function, possibly masking involved pathophysiological mechanisms. Chronic 

implantation of catheters also allows for measurements during exercise-induced stress of the 
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cardiovascular system.61 As described below, cardiovascular stress testing has been proven a valuable 

diagnostic and prognostic tool, especially for heart failure and INOCA research.  

Exercise as Physiological Stressors of Cardiovascular Disease 

To differentiate between different causes—e.g. cardiac or extracardiac—of dyspnoea or exercise 

intolerance, cardiopulmonary exercise testing (CPET) should be used. Furthermore, most initial 

symptoms in patients with cardiovascular disease occur during exercise, with symptoms occurring at 

rest less often and/or with more advanced disease. This underlines the importance of investigating 

changes in cardiovascular health not only in ‘static’ conditions, but also during physiological stressors 

of the cardiovascular system (e.g. exercise). This is confirmed by findings in multiple large human 

studies conducted in both HFpEF patients and patients with pulmonary hypertension (PH). At the 

Mayo clinic (Rochester, MN), extensive work has been done in HFpEF patients showing that CPET has 

the ability to unmask patients with early HFpEF before overt left ventricular backward failure occurs.62, 

63 Reduced exercise intolerance (reduced peak VO2) is a common feature in—but is not limited to—

HFpEF.62 Such reduction in exercise capacity is partially due inadequate cardiac output generation 

during increasing metabolic demand.64, 65 The latter is in line with the reduced peripheral vascular 

function which limits peak VO2 as commonly seen in HFpEF.51, 65, 66 Indeed, peak VO2 especially could 

help to differentiate HFpEF from non-cardiac dyspnoea, with a proposed cut-off value of <14 ml min-

1 kg-1 reflecting HFpEF.63 In addition, pulmonary congestion is thought to play an important role in the 

reduced exercise capacity.62 Interestingly, the correlation between peak VO2 and peak filling 

pressures, as a measure for pulmonary congestion, is observed in HFpEF but not in HFrEF.63 Although 

pulmonary congestion due to left ventricular diastolic dysfunction is a key feature of HFpEF, direct 

pulmonary vascular alterations and right ventricular dysfunction have also been observed67, 68, 

possibly due to direct effects of the comorbidities on pulmonary (endothelial) function and 

structure.69 This hypothesis is confirmed by a unique response to CPET in HFpEF patients with isolated 

pre-capillary PH—due to pulmonary vascular disease, (PVD)—as compared to non-PH and combined-

capillary PH HFpEF patients.70 Whereas, in the HFpEF guidelines, CPET is relatively new and is only 

recommended in a selective group of patients with an intermediate diagnostic algorithm score71, in 

PH or pulmonary arterial hypertension, more specifically, exercise testing (both 6-minutes walking 

test and CPET) has been investigated extensively and is included into the guidelines as an important 

prognostic marker.72 Additionally, isolated exercise-induced PH has not been included in the current 

PH-guidelines72, but it is currently under debate, as it has been shown that an increased pulmonary 

arterial pressure and pulmonary vascular resistance during CPET can unmask PH in patients with 

normal resting pulmonary arterial pressure (<20mmHg), which is thought to be of prognostic value.73 



Chapter 1 

22 

The value of exercise testing in determining cardiovascular (dys)function is therefore beyond any 

debate and should be included in research, both clinical and preclinical.74-76 

Aim and Outline of This Thesis 

As outlined above, clarification of the pathophysiology and treatment of multimorbidity-induced 

cardiovascular diseases, in particular INOCA and HFpEF, are unmet clinical needs. The general aim of 

this thesis is to study how cardiovascular risk factors, specifically diabetes mellitus, dyslipidaemia and 

chronic kidney disease, impair cardiovascular function, with a focus on microvascular function and left 

ventricular diastolic function. For this purpose, we exposed swine to multiple risk factors and utilized 

novel sensitive methods to extensively characterized cardiac and (micro)vascular (dys)function in 

these models. This thesis is divided into 2 parts. 

Part I of this thesis focuses on the effect of metabolic derangements on coronary 

microvascular function as well as myocardial function. Chapter 2 provides an overview of the main 

proposed effects of metabolic derangements, such as obesity and diabetes mellitus, on microvascular 

function in different vascular beds. Chapter 3 presents an overview of the various animal models of 

CMD, pointing towards swine as a translationally highly relevant experimental animal. In Chapter 4 

we investigate the effect of metabolic derangements, by induction of diabetes mellitus and 

dyslipidaemia, in Göttingen miniswine on left ventricular function and structure using 

echocardiography, molecular and histological techniques. In Chapter 5 we utilize the same Göttingen 

miniswine model as well as farm swine with metabolic derangement to investigate the relation 

between microvascular endothelial dysfunction, atherosclerosis and the circulating coagulation 

proteins von Willebrand Factor and Factor VIII.  

In Part II we investigate the combination of chronic kidney disease, as non-classical risk 

factor for cardiovascular disease, and metabolic derangements on cardiovascular function. In Chapter 

6 we reviewed the link between chronic kidney disease and HFpEF, previously conducted clinical trials 

and novel therapeutic options for HFpEF, with a focus on the coronary microcirculation. In Chapter 7 

we introduce a novel swine model with left ventricular diastolic dysfunction induced by multiple 

cardiovascular risk factors—diabetes mellitus, dyslipidaemia and chronic kidney disease. In this 

chapter, we extensively phenotype this swine model using MRI, in vivo cardiac function 

measurements and multiple in vitro techniques. Chapter 8-10 focus on in vivo cardiac and vascular 

function measurements in awake resting swine and during exercise using the same swine model. 

Chapter 8 describes the coronary microvascular, systemic and left ventricular function and myocardial 

oxygen balance in awake swine at rest and during exercise, additionally cardiac and vascular structure 

were determined by histology. In Chapter 9 we elucidate the mechanisms underlying the in Chapter 
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8 observed perturbations in coronary microvascular vasomotor control, by investigating the nitric 

oxide signalling pathway, both in vivo at rest and during exercise, as well as in vitro using molecular 

techniques and isolated vessel experiments. In Chapter 10 we investigated underlying mechanisms of 

the pulmonary vascular dysfunction observed at rest and during exercise, in this swine model with 

multiple morbidities, as well as right ventricular function and structure. In Chapter 11 we discuss the 

findings of this thesis and provide a general conclusion. 
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Abstract 

It is increasingly recognized that obesity is a risk factor for microvascular disease, involving both 
structural and functional changes in the microvasculature. This review aims to describe how obesity 
impacts the microvasculature of a variety of tissues, including visceral adipose tissue, skeletal muscle, 
heart, brain, kidneys, and lungs. These changes involve endothelial dysfunction, which in turn (i) 
impacts control of vascular tone, (ii) contributes to development of microvascular insulin resistance, 
(iii) alters secretion of paracrine factors like nitric oxide and endothelin, but (iv) also influences 
vascular structure and perivascular inflammation. In concert, these changes impair organ perfusion 
and organ function thereby contributing to altered release and clearance of neurohumoral factors, 
such as adipokines and inflammatory cytokines. Global microvascular dysfunction in obese subjects is 
therefore a common pathway that not only explains exercise-intolerance but also predisposes to 
development of chronic kidney disease, microvascular dementia, coronary microvascular angina, 
heart failure with preserved ejection fraction, chronic obstructive pulmonary disease, and pulmonary 
hypertension. 
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1. Introduction 

A large body of evidence has accumulated over the years, from both clinical and experimental studies, 

indicating that obesity is associated with endothelial dysfunction and development of atherosclerosis, 

and that obesity has become one of the most important risk factors for cardiovascular disease 

including coronary artery disease, heart failure, and stroke.1 In addition to atherosclerosis in the larger 

arteries, obesity is also a risk factor for microvascular disease.2–4 Interestingly, a single high fat meal 

already perturbs endothelial function in the brachial artery,5 and reduces flow reserve in the coronary 

vasculature,6 illustrating how a single exposure to a high circulating lipid load has an impact, albeit 

transient, on the microvasculature. Regular exposure to high circulating lipid loads, even prior to the 

onset of overt obesity, leads to an inflammatory response that is accompanied by microvascular 

dysfunction,7,8 the severity of which correlates with the amount of visceral adipose tissue present in 

the body.9 Eventually, obesity and the associated inflammation not only impact function, but also 

structure of the microvasculature (Figure 1 and Table 1). 

The microcirculation regulates the supply of oxygen and nutrients by determining flow to 

the tissue through regulation of vascular resistance and exchange at the capillary level. Acute 

regulation of resistance to blood flow is accomplished by changes in microvascular tone, i.e. in 

contraction of vascular smooth muscle, through integration of multiple signals from the perivascular 

nerves, the surrounding tissue, the endothelium as well as circulating factors (Figure 1).10 The central 

nervous system contributes to regulation of vascular tone through modulation of the balance 

between activation of the sympathetic and parasympathetic nervous system. In obesity, the 

sympathetic nervous system is activated by leptin,11 but the impact of sympathetic nervous system 

activation on the regulation of tone in the different organs depends on their innervation pattern. The 

endothelium produces both vasodilators [nitric oxide (NO), prostacyclin, and hydrogen peroxide 

(H2O2) and other endothelium-derived hyperpolarizing factors] and vasoconstrictors [endothelin (ET), 

vasoconstrictor prostanoids and superoxide],12 as well as factors, including uridine adenosine 

tetraphosphate (Up4A), of which the vasoactivity depends on the vascular bed studied.13 It is 

increasingly recognized that many of these endothelial factors not only influence smooth muscle tone, 

but also act in a paracrine fashion on the surrounding parenchymal tissue.  
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Figure 1 Proposed mechanisms of obesity-related microvascular dysfunction predisposing to multi-

organ disease

High fat diet on a regular basis changes the composition of visceral adipose tissue, and induces a low 
grade local inflammatory response, which together modify the secretion of adipokines. 
Simultaneously, high fat diet results in endothelial dysfunction throughout the body, which not only 
alters vascular tone, and contributes to development of microvascular insulin resistance, but also 
influences vascular structure and perivascular inflammation. In concert, these microvascular changes 
impair organ perfusion and organ function thereby further contributing to altered release and 
clearance of metabolites and neurohumoral factors, like adipokines, inflammatory cytokines as well 
as (cardio)myokines. Global microvascular dysfunction in obese subjects therefore is a common 
pathway that contributes to exercise-intolerance and predisposes to development of chronic kidney 
disease, microvascular dementia, coronary microvascular angina, COPD and pulmonary hypertension. 
CKD, chronic kidney disease; HFpEF, heart failure with preserved ejection fractioan; COPD, chronic 
obstructive pulmonary disease.
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The balance between vasodilators and vasoconstrictors shifts in response to mechanical stimuli such 

as an increase in shear stress, but also in response to endocrine factors such as insulin. In the 

endothelial cells, insulin can activate PI3-kinase, resulting in eNOS activation, NO production, and 

vasodilation. Conversely, insulin can also activate the ERK1/2 pathway, leading to increased 

production of ET and resulting in vasoconstriction.8,14 In the healthy vasculature, insulin-induced 

activation of eNOS and epoxyeicosatrienoic acids (EETs) predominate, which serves to facilitate 

glucose uptake in tissue, whereas in obesity insulin-mediated activation of the PI3K pathway in 

endothelial cells is selectively impaired while the insulin-mediated activation of ET and vasoconstrictor 

eicosanoids remains intact.8,15 This shift in the resistance vessel response to insulin impairs 

downstream capillary recruitment, which plays a critical role in the development of insulin 

resistance.8,9,16 The fat surrounding the blood vessels, i.e. perivascular fat, likely plays an important 

role in determining insulin resistance. Thus, insulin-mediated capillary recruitment is increased by 

adiponectin, whereas it is decreased by free fatty acids as well as by inflammatory cytokines, including 

TNFα, that can be released from the perivascular fat.8,9,16 In obesity, there is a shift in factors secreted 

by perivascular fat, that either directly, or via an increase in oxidative stress, tilts the vasomotor 

balance towards vasoconstriction and insulin resistance.12,17 At the same time, these inflammatory 

cytokines in conjunction with oxidative stress upregulate adhesion molecules on the endothelium, 

and causing the microcirculation to serve as an entry point for inflammatory cells into the 

tissue,9,11 that can then further contribute to microvascular and ultimately organ dysfunction. 

As stated, the primary function of the microcirculation in tissues such as skeletal and cardiac 

muscle and the brain is to supply oxygen and nutrients, and remove carbon dioxide and waste 

products. Hence, microvascular dysfunction, resulting in impaired oxygenation and low grade 

inflammation in these tissues, likely contribute to exercise intolerance as well as to the pathogenesis 

of coronary microvascular angina18 and cerebromicrovascular disease (i.e. microvascular 

dementia; Figure 1).19,20 The microcirculation serves a different purpose in various other highly 

specialized tissues, including adipose tissue, kidneys, and lungs. Within adipose tissue, the 

microcirculation serves as an exchange site allowing storage of fat in times of nutrient excess, and re-

uptake of fat when the body experiences nutrient shortage. The pulmonary microvasculature serves 

to clear carbon dioxide and oxygenate the blood in the alveolar capillaries. Similarly, the 

microcirculation in the kidneys is designed for clearance not only of waste products like urea and 

creatinine, but also of adipokines.21 Microvascular dysfunction in these organs therefore impacts the 

removal of waste products from the body, thereby prolonging circulation time of carbon dioxide 

(lungs), or adipokines and uremic toxins (kidneys) that may further damage the microvasculature of 

other organs (Figure 1). Given the variety of specialized tasks in different organs, it is not surprising 
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that microvascular control mechanisms differ markedly between vascular beds, and that the impact 

of obesity on the microcirculation varies between organs (Table 1). 

In this review article, we will discuss the functional and structural changes in the 

microvasculature of different organs, that are associated with obesity—and how these changes 

contribute to organ dysfunction—with a particular focus on evidence obtained in humans and large 

experimental animals 

 

2. Adipose tissue microcirculation in obesity 

Two main types of adipose tissue can be distinguished in the body, which have distinctly different 

functions both in healthy and obese subjects being white and brown adipose tissue (WAT and BAT 

respectively). WAT is the primary site of fat accumulation, and not only allows efficient fat storage, 

but also quick mobilization of fat stores to meet energy demands of the body.22 WAT comprises both 

subcutaneous and visceral adipose tissue (VAT). The main role of BAT is 

thermogenesis.22,23 Thermogenesis in BAT is activated by the sympathetic nervous system. High 

expression of uncoupling protein-1 on the inner membrane of BAT mitochondria results in uncoupling 

of mitochondrial respiration so that heat is generated instead of ATP.23 In adult humans, BAT is mainly 

located in cervical, supraclavicular, mediastinal, paravertebral, suprarenal, and peri-renal areas.22 In 

addition, epicardial and perivascular adipose tissue have a phenotype that more closely resembles 

BAT than WAT. Both WAT and BAT contain dense microvascular networks, but microvascular density 

is higher in BAT as compared to WAT, with 3 vs. 1 capillary per adipocyte, respectively.22 The 

microvasculature in WAT serves as the exchange site for fat deposition and mobilization, while in BAT 

it is required for both delivery of fuel for and dissipation of heat produced during 

thermogenesis.7,22,23 Metabolism, perfusion and function of both WAT and BAT are affected by 

obesity. 
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Obesity, by definition an excessive accumulation of fat mass, results in expansion of 

particularly WAT. Ingestion of a single high fat meal induces upregulation of P-selectin on the venular 

side of the visceral adipose microvasculature, thereby forming an anchoring point for leucocytes. The 

leucocytes infiltrate the VAT and initiate an inflammatory response. Hence, low grade inflammation 

particularly in visceral adipose tissue may precede excessive fat accumulation, increase oxidative 

stress, and cause chronic microvascular dysfunction.7 Interestingly, blood flow to VAT increases 

following meal ingestion in lean but not obese subjects.24 Moreover, diet-induced obesity is 

accompanied by decreased eNOS-expression and activity, while eNOS overexpression protects against 

diet-induced obesity (Table 1).25 These observations suggest a key role for microvascular function in 

adipose tissue homeostasis. Besides this paracrine interaction between adipocytes and the 

microvasculature, it should be noted that fat accumulation in VAT results in an increase in adipocyte-

size from 50 μm up to 150–200 μm, which is beyond the diffusion distance for oxygen, while the 

accompanying reduction in capillary density will further decrease adipose tissue oxygenation. Indeed, 

chronic hypoxia has been shown to be present in expanded VAT.26 Similar to WAT, brown adipocytes 

hypertrophy in obesity. Intriguingly, it has recently been shown that capillary rarefaction, leading to 

focal hypoxia in BAT, is sufficient to induce ‘whitening’ of BAT, which is associated with reduced beta-

adrenergic signaling, mitochondrial dysfunction, loss of thermogenic capacity and further 

accumulation of lipid droplets.27,28 

Hypoxia per se induces a reduction in adiponectin and an increase in leptin release from 

isolated adipocytes.26 Moreover, chronic hypoxia results in sustained inflammation thereby further 

modulating the secretion of adipokines from both WAT26,29 and BAT23and contributing to metabolic 

derangement in obesity.26,30,31 In healthy subjects, the secretion of the anti-inflammatory adipokine 

adiponectin predominates, whereas in obese subjects, there is a shift toward pro-inflammatory 

adipokines such as leptin, resistin, TNFα, IL-6, and IL-18 (Table 1).32 Thus, adipose tissue hypoxia and 

inflammation are centrally involved in the pathophysiology of obesity, and can, through release of 

vasoactive and/or inflammatory adipokines, modulate microvascular function throughout the body 

(Figure 1). 

 

3. Skeletal muscle microvasculature in obesity 

Although some studies in young adult humans suggest that skeletal muscle blood flow is relatively 

well-maintained in obesity33 even during exercise,34 others show a reduction in flow normalized for 

muscle mass both at rest and during exercise.34–38 These findings seem to be independent of age and 
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vascular bed, as the reduction in flow is present in children,36,38 and adults,35,37 both in the forearm35–

37 and upper leg.34,37,38 Similarly, the exercise-induced increase in systemic vascular conductance is 

blunted in obese swine as compared to lean swine, consistent with a decrease in flow to exercising 

muscle.39 This decrease in flow is compensated by an increase in oxygen extraction to fulfill the 

oxygen-requirement of skeletal muscle.39,40 

In skeletal muscle, close coupling of blood flow to metabolic activity is required and besides 

substances released from nerve terminals, the endothelium and the contracting muscle, also involves 

mechanical interaction between the contracting muscle and the vasculature.10 The nervous system 

contributes to exercise hyperemia in skeletal muscle via activation of sympathetic vasodilator fibers, 

vasodilation elicited by acetylcholine spillover from active motor nerves as well as functional 

sympatholysis in active muscle.10 Resting muscle sympathetic nerve activity (MSNA) is significantly 

higher in obese patients with metabolic syndrome, but it does not further increase during 

exercise.41 Interestingly, in the presence of β-blockade, exercise resulted in larger increase in forearm 

blood flow and conductance in obese as compared to lean men. Together with the observation that 

the exercise-induced increase in skeletal muscle blood flow is reduced or at best preserved in obesity, 

these data suggest that β-adrenergic vasodilation is reduced in obesity. Furthermore, in the presence 

of β-blockade, α2- but not α1-stimulation resulted in a larger decrease in forearm vascular 

conductance in obese vs. lean subjects at rest and during exercise. Similarly, there was a tendency 

towards a larger increase in conductance with α-blockade with phentolamine at rest in obese vs. lean 

subjects, but a reduced increase in conductance upon α-blockade during exercise.41 These data 

suggest that obesity results in a shift in the balance of neurogenic control of skeletal muscle blood 

flow, with increased α-adrenergic constriction at rest, that is withdrawn during exercise, thereby 

compensating for a loss of β-adrenergic vasodilation (Table 1). 

In humans, endothelium-dependent skeletal muscle microvascular vasodilation in response 

to acetylcholine is either preserved 34,42 or reduced43 in obesity, while eNOS expression is 

unaltered.42 However, the contribution of both NOS-42 and cyclooxygenase (COX)-44 dependent 

vasodilator mechanisms to acetylcholine-induced vasodilation is reduced, which is compensated by 

NOS- and COX-independent vasodilator mechanisms, potentially an increase in endothelium-derived 

hyperpolarizing factors such as EETs and/or H2O2.12 An increase in H2O2 may result from superoxide 

dismutase (SOD)-mediated conversion of superoxide, particularly in more active obese 

individuals.43 In addition, a reduction in NO-bioavailability has been shown to be counterbalanced by 

reduced phosphodiesterase 5 (PDE5) activity,40 as well as by a reduced vasoconstrictor influence of 

ET (Table 1). The latter is mediated through a reduction in ET-sensitivity of the skeletal muscle 
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arterioles together with a decrease in circulating ET, reflecting a decrease in local ET 

production.39 Interestingly, a study in rodents suggests that basal differences exist in endothelial cell 

phenotype between arteries perfusing slow-twitch and those perfusing fast-twitch muscle fibers, with 

the former being less susceptible to endothelial dysfunction.45 

Alterations in endothelial function may also play a role in insulin-dependent modulation of 

microvascular tone. In healthy individuals, insulin-induced vasodilation serves to facilitate glucose 

delivery and uptake in skeletal muscle. As outlined in the introduction, insulin resistance is associated 

with a shift from insulin-induced vasodilation to vasoconstriction. Indeed, the change in femoral 

vascular conductance upon glucose ingestion is smaller in obese as compared to lean women, which 

is associated with impaired body glucose uptake.46 Moreover, flow to the quadriceps muscle of obese 

men is lower in the presence of insulin both at rest and during exercise,47 and insulin-induced 

vasodilation is converted into vasoconstriction in skeletal muscle arterioles isolated from obese 

women.16 The latter is mediated, at least in part, by alterations in perivascular adipose tissue (PVAT), 

that displays a pro- inflammatory phenotype in obesity.16 

Although low grade inflammation may lead to an increase in oxidative stress, TBARS (as 

index of systemic oxidative stress) do not appear to be different between normal and obese young 

adults.48,49 Conversely, ROS production by NADPH-oxidase and Xanthine oxidase in skeletal muscle is 

increased in overtly obese, but not mildly obese individuals.43 In accordance with this observation, 

infusion of the NADPH-oxidase inhibitor and antioxidant apocynin augmented the acetylcholine-

induced increase in flow to skeletal muscle in obese but not lean subjects.43 However, despite a 

significant inverse correlation between TBARS and vasodilator responses, the antioxidant ascorbic 

acid augmented acetylcholine-induced vasodilation to a similar extent in normal and obese subjects 

under resting conditions.48 Nevertheless, the significant correlation between waist-to-height ratio and 

TBARS post-exercise,48 together with a negative correlation between catalase and BMI,49 suggests 

that anti-oxidant capacity may fall short during stress in obese subjects. 

The obesity-induced decrease in exercise capacity (VO2max) closely correlates with capillary 

density in skeletal muscle, indicating that besides functional, also structural changes in the skeletal 

muscle microvasculature are present (Table 1).50 A study in rodents suggests that capillary rarefaction 

in obesity occurs in two phases, of which the first one is mediated by an increase in oxidative stress, 

and the second one by a decrease in NO-bioavailability.51 

Taken together, obesity moderately reduces skeletal muscle blood flow at rest. The 

mechanisms of this reduction are incompletely understood but may involve factors released from 
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perivascular fat that modulate insulin sensitivity and endothelial function as well as an increased 

vasoconstrictor influence caused by an increase in MSNA. In addition, structural changes in the 

skeletal muscle microvasculature may contribute to the decreased resting blood flow. Because 

exercise hyperemia involves many redundant regulatory mechanisms, it is relatively well-maintained. 

However, the impairments in blood flow and its distribution are likely to become more severe when 

the metabolic disturbance persists for a longer time or when other co-morbidities such as 

hypertension, hyperlipidemia, and hyperinsulinemia co-exist in the same patient,33,52,53 which may 

contribute to exercise intolerance in obese people. 

 

4. Coronary microcirculation in obesity 

Similar to skeletal muscle, coronary microvascular function plays an important role in coupling of 

myocardial perfusion to cardiac metabolism.54 Clinical studies have shown that in conditions such as 

obesity and hypercholesterolemia the coupling of coronary blood flow to the myocardial metabolic 

demand is altered.2 Thus, coronary flow velocity of obese patients during dobutamine stress-echo is 

impaired, with the impairment becoming even more evident when obesity is associated with other 

risk factors.55 Also, myocardial blood flow measurements with PET indicate that increases in 

myocardial blood flow in response to cold-pressor testing are diminished in obese 

patients.56 Interestingly, female sex and the volume of visceral fat are associated with a reduction in 

myocardial perfusion at peak dose of dobutamine, as measured by MRI.57 These clinical observations 

are supported by studies in obese Ossabaw swine with metabolic syndrome and swine with severe 

familial hypercholesterolemia (FH), demonstrating that coronary blood flow regulation and 

myocardial oxygen balance are altered in particular during treadmill exercise.58,59 

Several studies have reported reduced coronary flow reserve and increased minimal 

vascular resistance in patients with obesity and hypercholesterolemia as assessed by either PET, 

Doppler echocardiography or MRI.60–64 Such abnormalities can be the result of either changes in 

microvascular function, i.e. the regulation of vascular tone, or structural changes within the coronary 

microcirculation, such as vascular rarefaction or inward remodeling.54,65 Alterations in control of 

coronary microvascular tone are generally characterized by a loss of endothelial vasodilator influence 

(such as NO) as well as by increased neurohumoral (angiotensin II) and endothelium-derived 

vasoconstrictor (ROS, ET, prostanoids) influences resulting in a shift in the vasomotor balance towards 

increased vasoconstriction (Table 1).2,3,66 Indeed, several studies in humans and animal models have 

demonstrated that obesity is associated with alterations in the vasodilator-vasoconstrictor balance 
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controlling coronary microvascular tone.2–4,67 Thus, hyperoxia-induced vasoconstriction in the 

coronary microvasculature is enhanced in obese adolescents,68 while bradykinin-induced vasodilation 

is impaired in isolated coronary arterioles from obese patients due to increased tissue angiotensin-

converting enzyme activity.69 Similarly, in swine with hypercholesterolemia, endothelial dysfunction 

of isolated small coronary arteries due to impaired NO biovailability is noted early in the disease 

process (2.5 months after start of the high fat diet).70 In contrast, at 15 months of diet, NO signaling is 

restored but the constriction to ET-1 is exacerbated, this response being mediated by ETB-mediated 

vasoconstriction, indicating that disturbances in the balance between vasodilators and 

vasoconstrictors are modulated during progression of the disease (Table 1).71 The observations that 

eNOS activity is impaired by adipokines secreted by perivascular fat72 and that coronary microvascular 

dysfunction correlates with increased inflammation62 suggest that inflammation and fat-derived 

cytokines in obesity are also important determinants of coronary microvascular dysfunction. This is 

consistent with the correlation of fat deposits with the decline in coronary microvascular function.57,63 

In addition to the functional changes in the control of vascular tone, obesity can also result 

in structural remodeling of the coronary microcirculation. Histological analysis of left ventricular tissue 

biopsies obtained during coronary bypass surgery show significantly lower capillary densities in obese 

patients (Table 1).73 Importantly, both arteriolar remodeling and capillary rarefaction likely contribute 

to the reduced coronary flow reserve in obese patients as reported in several,60–62 though not all 

studies.66 Similarly, hypertrophic inward remodeling of coronary arterioles, increased stiffness as well 

as capillary rarefaction are reported in animal models of obesity and hypercholesterolemia.58,71,74 

It is increasingly recognized that the factors released by the coronary endothelium also 

impact the function of the surrounding cardiomyocytes in a paracrine fashion. Loss of NO, increased 

oxidative stress and the ensuing tissue inflammatory response are thought to play a key role in 

development of left ventricular diastolic dysfunction through altering relaxation of the cardiac 

myocytes and increasing collagen fraction in the extracellular matrix.75,100 

In conclusion, both clinical and experimental evidence indicate that obesity is an 

independent risk factor for coronary microvascular dysfunction, with both functional and structural 

alterations in the coronary microcirculation contributing to the impairments in coronary flow 

regulation and having a negative impact on the coronary flow reserve in these patients. Some, but not 

all, of these changes can be alleviated by weight loss and physical exercise.68,76 However, in order to 

be able to specifically address the different aspects the obesity-associated coronary microvascular 

dysfunction, future studies should focus on revealing the underlying mechanisms that drive the 

obesity-associated coronary microvascular abnormalities. 
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5. Cerebral microvasculature in obesity 

Similar to the heart, the brain relies on a continuous supply of blood flow, with regional alterations in 

brain activity requiring corresponding changes in brain flow distribution via metabolic vasodilation, 

which is referred to in the brain as neurovascular coupling. Obesity-induced changes in brain 

microvascular structure and function have been proposed to result in disruptions in neurovascular 

coupling, thereby leading to vascular cognitive impairment.20,77 Importantly, the brain 

microvasculature is only surrounded by neurons and glia as there is no perivascular adipose tissue. 

Therefore, the effects of obesity likely manifest as the result of changes in neural/glia-vascular 

(metabolic) interactions, and hemodynamic (i.e. blood pressure) or circulating factors (hyperglycemia 

and dyslipidemia) that have a direct vasoactive effect or act indirectly via influencing neurons and glia. 

Both pre-clinical78,79 and clinical80,81 obese human populations exhibit reduced brain blood 

flow and impaired vasodilation during hypercapnia. The mechanisms responsible likely relate to 

microvascular rarefaction,19,20,82 decreased contribution of NO to basal cerebral microvascular tone 

control, altered release of vasodilator prostanoids, and/or a direct effect of H+ on vascular smooth 

muscle ion channels.83 Impaired cerebral vasoreactivity in obesity occurs independently of clinical 

insulin resistance,78,84 but may also worsen with accompanying hypertension and poor glycemic 

control.80,81 Obese Zucker rats display impaired endothelium-dependent NO-mediated middle 

cerebral artery (MCA) vasodilation as well as depressed insulin-stimulated vasodilation, potentially 

due to increased PKC- and MAPK-activation, combined with eNOS uncoupling resulting in augmented 

superoxide production.82,85 Indeed, depressed vasodilator responses to hypoxia and NOS-dependent 

dilators, as well as enhanced constrictor responses to 5-hydroxytryptophan1 reflect potential 

pathological adaptations that impair neurovascular coupling. Decreased insulin-mediated 

vasodilation potentially contributes to impaired microvascular insulin delivery in the brain 

(Table 1).86 The physiological significance of this remains incompletely understood, but similar to 

skeletal muscle, altered insulin signaling in the brain (i.e. brain insulin resistance) can link 

microvascular and metabolic dysfunction, thereby leading to cognitive impairment. Collectively, the 

data from humans81 and rodents82,85 suggest that obesity induces endothelial dysfunction with 

impaired NO production/bioavailability, resulting in altered cerebral vasoreactivity. 

Obesity also affects the structure of small arteries, arterioles and capillaries in the brain, 

with many of these changes reflecting the development of cerebral microvascular disease.20,77 Indices 

of cerebral microvascular disease, including cerebral microbleeds, lacunas and microlacunas, increase 

the vulnerability to neurodegeneration,20,77 and occur more commonly in obese individuals with 
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insulin resistance,87 dyslipidemia,87 and central adiposity.88 In addition, genetic predispositions may 

also contribute to this relationship.77 Beyond these preliminary observations, the underlying 

mechanisms responsible for obesity-induced cerebrovascular remodeling in humans remain elusive. 

However, cortical microvascular density decreases,89 and the MCA undergoes eutrophic inward 

remodeling and progressive arterial stiffening during the progression of metabolic syndrome in obese 

Zucker rats.82 In diet-induced obesity in Sprague–Dawley rats, similar MCA adaptations are observed 

in conjunction with increased MMP-2 activity, collagen I expression, and reduced MMP-13 expression, 

suggesting that increases in collagen deposition contribute to vascular stiffening (Table 1).90 In the 

aforementioned studies,82,89,90 inward MCA remodeling coincided with the development of 

hypertension, while pharmacological treatment of hypertension ameliorated the remodeling.82 This 

suggests that obesity-induced hypertension, and not metabolic dysfunction,91 serves as the primary 

stimulus responsible for inducing inward remodeling of the MCA. 

Although pharmacological treatment of hypertension ameliorates MCA remodeling, it does 

not improve cortical microvascular rarefaction in obese Zucker rats.89 Also in Rhesus monkeys, diet-

induced obesity causes cortical capillary rarefaction, but without concurrent changes in blood 

pressure.92 In the latter study, cortical capillary rarefaction occurred alongside decreased VEGF, 

increased von Hippel-Lindau protein (which degrades HIF-1α) and (paradoxically) increased 

expression of FOXO3, eNOS, and eNOS uncoupling. In contrast to inward remodeling in the MCA, it 

appears that obesity-induced metabolic dysfunction and oxidative stress, and not hypertension, is 

responsible for the observed microvascular/capillary rarefaction (Table 1). Therefore, while inward 

remodeling may prevent hypertension-induced cerebral hyperperfusion, inward remodeling and 

microvascular rarefaction may limit cerebrovascular reserve and impair brain blood flow control. 

Functional and structural microvascular deficits resulting in impaired neurovascular coupling 

likely reflect an acquired, and not programmed feature of obesity, suggesting that these abnormalities 

can be environmentally induced, prevented or even reversed.93–95 Indeed, short-term diet-induced 

obesity reduces prefrontal cortex blood flow in mini-pigs,94 and impairs metabolic vasodilation and 

precedes neuronal loss in rodents.95 Furthermore, individuals with an elevated BMI exhibit reduced 

basal flow79 and post-prandial vasodilation93 in the prefrontal cortex, but formerly obese individuals 

do not display this defect.93 Reversal of such adaptations is of growing importance as the early signs 

of cerebral microvascular disease can manifest very early in life, as seen in an obese 2-year-old child.96 

In conclusion, the cumulative effect of cerebral inward remodeling, microvascular 

rarefaction, and impaired vasodilator capacity, likely contribute to obesity-related impairments in 

brain flow control and neurovascular coupling. Such obesity-induced changes can occur rapidly and in 
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young individuals, but it appears these pathological adaptations are modifiable. Gathering more 

knowledge about mechanisms of obesity-related changes in brain microvascular structure and 

function along the (micro)vascular tree is essential in understanding the pathology of disease 

progression and developing effective prevention and treatment strategies. 

 

6. Renal microvasculature in obesity 

Obesity is associated with an increased risk for chronic renal failure. In a Swedish case-control study, 

particularly diabetic nephropathy, nephrosclerosis, and glomerulonephritis were associated with 

obesity,97 suggesting that obesity negatively impacts the renal microvascular bed. Indeed, clinical 

studies show that in obesity, afferent arteriolar vasodilation results in an increased renal blood flow 

(RBF), that causes a state of hyperfiltration.98 Results in experimental animals are equivocal with some 

laboratories showing that RBF and glomerular filtration rate (GFR) are increased 3–4 months99,100 of 

high fat diet, whereas others show no change in RBF and GFR.101–105 The reported increase in RBF is 

mostly due to an increase in renal cortical volume, vascular volume fraction and cortical perfusion, 

whereas filtration fraction, medullary size, and medullary perfusion showed no difference.99,100,106 

Obesity is linked to increased peri-renal fat deposition,100,107 which in turn leads to low grade 

inflammation and renovascular endothelial dysfunction. Indeed, endothelium-dependent 

vasodilation to acetylcholine was impaired both in vivo98,102,103,108 and in vitro in renal arteries of 

obese swine,100 while endothelium-independent vasodilation to the NO donor sodium nitroprusside 

(SNP) was unaltered in vitro (Table 1).100 Although renal eNOS-expression may initially 

increase,99 prolonged exposure to high fat diet reduces expression of eNOS and promotes eNOS-

uncoupling and activation of xanthine oxidase resulting in impaired bioavailability of NO in obese 

swine.102 Antioxidant capacity in obesity is further reduced by a decrease in SOD 

activity.103,108 Moreover, increased NAD(P)H-oxidase and LOX-1 expression further contribute to 

increased oxidative stress, which together with upregulation of iNOS, may have led to increased 

nitrotyrosine levels.99,102,104,105,108,109 ROS in turn, induce upregulation of renal pre-pro ET-1 and 

ETA receptors thereby promoting vasoconstriction (Table 1).102–104 

Interestingly, incubating renal arteries of lean swine with peri-renal fat of obese animals 

transferred the impaired endothelial function to those arteries.100 This response appears to be the 

result of fat derived inflammatory molecules, and not of oxidative stress, as the endothelial 

dysfunction could only be reversed by neutralizing TNF-α, but not by the free radical scavenger 
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Tempol, in vitro.100 Furthermore, anti-inflammatory treatment with thalidomide in vivo, abolished the 

renal increase in TNF-α, and improved endothelial function without altering oxidative stress, 

suggesting that increased levels of TNF-α play a vital role in impaired function of the endothelium.102 

In addition to renovascular dysfunction, structural alterations in the kidney produced by 

obesity have also been reported (Table 1). Interestingly, obesity is associated with a change in the 

balance of angiogenic and anti-angiogenic factors in the kidney that favors angiogenesis. Thus, VEGF 

and its receptor Flk-1108 as well as Angpt2110 are increased. Moreover, protein expression of the 

angiogenesis inhibitor TSP-1 is decreased as a result of increased oxidative stress,99 although this is 

not a unanimous finding.104 Indeed, both arteriolar and capillary density in the outer cortex of the 

kidney are increased in animals with obesity.99,108 However, these newly formed vessels are more 

tortuous and erythrocyte exudation has been shown, suggesting that the newly formed vessels are 

leaky and immature.99,102,103,108,109 Furthermore, glomerular density is decreased in animals with 

metabolic derangement,109 while glomerular hypertrophy due to matrix hyperplasia and glomerular 

swelling are also observed in obese swine.99,109–111 Taken together, these data suggest that the newly-

formed microvasculature does enhance glomerular filtration, but is rather damaged and 

dysfunctional. Vascular remodeling in obesity is facilitated by dynamic processes in the extracellular 

matrix, as an increased MMP expression, which promotes extracellular matrix (ECM) degradation was 

noted at 10 weeks,99 but not at 16 weeks104 of high fat diet. Furthermore, in obese swine, renal 

expression of tissue transglutaminase is increased, causing extracellular matrix crosslinking and 

vascular remodeling especially in conditions of sustained vasoconstriction.103 Moreover, 

microvascular media-to-lumen ratio is increased,104,108 and perivascular as well as tubulointerstitial 

fibrosis is observed in obese swine.104,108 The increased presence of renal M1-macrophages, and 

increased NF-κB expression, plasma/renal levels of TNF-α as well as activation of the TGFβ-system in 

the kidneys of obese animals, suggests that inflammatory cells play a central role in these processes.98–

100,103,104,106 

In conclusion, the increased fat or lipid deposition in and around the kidney acts as a 

promotor of a pro-inflammatory state with oxidative stress, endothelial dysfunction and 

microvascular remodeling as a consequence. Although these changes are initially reversible by 

switching to a healthy life style,104 as well as by interventions that lower lipids and/or oxidative 

stress,105,108 modulate the immune-system102 or prevent vasoconstriction,98,103 prolonged exposure 

results in irreversible alterations in the renal microvasculature. Indeed, although diabetes mellitus and 

hypertension are still the main causes of chronic kidney disease (CKD),112 it has been shown that 

obesity independently increases the risk of CKD and end-stage renal disease even in the absence of 
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these known cardiovascular risk factors or nephropathy.113 As the kidney is important in clearing 

waste products and adipokines from the body, renal dysfunction in obesity and the ensuing increase 

in so-called uremic toxins, can further contribute to microvascular dysfunction in other organs and 

thereby contribute to development and aggravation of cardiovascular disease.114 

 

7. Pulmonary microvasculature in obesity 

Functional and structural changes in the pulmonary microvasculature as a result of obesity are less 

well studied as compared to their systemic counterparts. The comparison of the effect of obesity in 

the pulmonary and systemic microvasculature is of interest as the pulmonary vasculature receives the 

same cardiac output as the systemic vasculature and is exposed to the same circulating factors, such 

as glucose, cholesterol, adipokines, and inflammatory factors. Indeed, obesity is also associated with 

a variety of lung diseases including obstructive sleep apnea, hypoventilation syndrome, chronic 

bronchitis, asthma, and pulmonary embolism.115 Many of these diseases have an inflammatory 

component and it is likely that the change in circulating adipokines with obesity facilitates this 

pulmonary inflammation. Adiponectin exerts anti-inflammatory and protective effects against 

inflammatory lung diseases.115 In contrast, leptin is pro-inflammatory and leptin receptors are present 

on all inflammatory cell-types in the lung. An increase in leptin primes leucocytes for increased 

secretion of inflammatory cytokines and reactive oxygen species.115 However, exactly how a change 

in adipokine profile impacts pulmonary microvascular structure and function remains to be 

established. 

An autopsy study in 1982 revealed a strong correlation between the size of atherosclerotic 

plaques in the aorta and the pulmonary artery.116 In rabbits on a high fat diet, the rate of cholesterol 

accumulation in the pulmonary artery exceeded that in the aortic arch initially, but at later stages of 

atherogenesis, the rate of cholesterol accumulation slowed in the pulmonary artery ultimately falling 

below accumulation rates in the aortic arch.117 Obesity is also associated with structural changes in 

the pulmonary microvasculature (Table 1). Increased medial thickness of both pulmonary small 

arteries and veins, and increased muscularization of pulmonary arterioles were observed in obese 

humans compared to controls at autopsy.118 Similarly, an increased wall to lumen ratio was found in 

pulmonary arterioles of obese rats as compared to lean control rats.119 Interestingly, adiponectin 

deficiency has been shown to result in pulmonary microvascular remodeling, with an increased 

muscularizaton of pulmonary microvessels.120 
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These structural pulmonary microvascular changes in obesity resemble those found in post-

capillary pulmonary hypertension. Indeed, the prevalence of pulmonary hypertension (PH) is 

increased in obese subjects, and is associated not only with sleep apnea and hypoxemia, but also with 

left ventricular diastolic dysfunction, resulting in increased left atrial pressure.121 The association 

between obesity and elevated pulmonary artery pressures has also been found in both obesity prone 

and overtly obese Zucker rats on a high fat diet119 and in obese FH-swine.39,40 Similar to humans, the 

elevated pulmonary artery pressure in the obese swine was mainly due to an increase in left atrial 

pressure as pulmonary vascular resistance was only mildly elevated.39,40 However, despite the mildly 

elevated pulmonary artery pressure and pulmonary vascular resistance at rest, the pulmonary 

vasodilator response to exercise was preserved in swine with hypercholesterolemia, at a time when 

systemic vasodilation was reduced.39,40 

The effect of obesity and high fat diet on pulmonary vascular function has only been 

assessed in experimental animals and may depend on the duration of exposure and the stimulus used 

to assess vascular function. Thus, pulmonary artery vasodilation in response to methacholine is 

enhanced in rabbits given a 2% cholesterol diet over a period of 2 weeks.122 Exposure of Zucker rats 

to high fat diet for 18 weeks has no effect on eNOS expression or acetylcholine-induced NO production 

in either conductance or resistance pulmonary arteries.123 Similarly, the increase in pulmonary 

vascular resistance in response to eNOS inhibition is comparable in healthy swine and in FH-swine on 

a high fat diet for 6 months, both at rest and during exercise, although ATP-induced NO mediated 

vasodilation was reduced.40 Also, the pulmonary vasodilator response to SNP is maintained in both 

obese Zucker rats123 and FH-swine40 exposed to high fat diet. In the latter group, vasodilation to PDE5-

inhibition is also preserved. Altogether, these data suggest that pulmonary vasodilation through the 

NO pathway is well-preserved in obesity (Table 1). 

In general, vasoconstrictor responses in the pulmonary microvasculature are reduced in 

obesity. Thus, vasoconstriction to KCl, phenylephrine, serotonin, and hypoxia are reduced in 

pulmonary resistance, but not conductance arteries of obese Zucker rats.123 In FH swine, endothelin 

receptor blockade did not reduce pulmonary vascular resistance, while it produced pronounced 

vasodilation in normal swine (Table 1).39 This loss of ET-mediated vasoconstriction was accompanied 

by slightly lower plasma ET-levels. These data suggest that reducing the effect of vasoconstrictors may 

serve as an early compensatory mechanism to maintain pulmonary vascular resistance as low as 

possible, to limit the workload of the right ventricle. 
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8. Obesity paradox 

The term obesity paradox refers to the observation that although obesity is a well-known risk factor 

for the development of cardiovascular disease, mortality rate in many cardiovascular disorders, once 

established, is lower in obese patients.1 Thus, there is evidence suggesting that when CKD is present, 

mortality is higher in underweight patients and lower in patients with obesity class I, but not with class 

II or III.124 Similarly, in patients with established coronary artery disease,125 heart failure,126 or 

stroke,127,128 there are large cohort studies suggesting that mortality is reduced in patients with 

obesity class I, particularly in the short term. Also in patients with established PH, a recent study shows 

a strong inverse correlation between obesity and mortality, in that both in pre-capillary and out-of 

proportion post-capillary PH, obese patients had a significantly lower mortality (46% vs. 10% mortality 

in pre-capillary and 40% vs. 11% in post-capillary PH for lean and obese subjects). Moreover, BMI was 

the strongest predictor of mortality in a COX hazard analysis, followed by NYHA functional class.129 

However, there is also concern about selection bias, insufficient control for 

cardiorespiratory fitness, inadequate determination of body fat localization (i.e. visceral vs. 

subcutaneous), and underweight vs. normal weight subjects, in these studies. Indeed, the overall 

consensus is that losing weight by for example exercise trainings confers protection against mortality 

in cardiovascular disease.1 A large part from these benefits of exercise training can be ascribed to 

improved microvascular function, and reduced inflammation. Another intriguing possibility is that 

exercise training results in secretion of ‘myokines’ from skeletal muscle and ‘cardiomyokines’ from 

cardiac muscle such as FGF21 and irisin, that act in an endo- and/or paracrine fashion on perivascular 

and epicardial adipose tissue, and induce a ‘browning’ phenotype.22 

 

9. Summary and conclusion 

Obesity is a well-established risk factor for microvascular dysfunction throughout the body (Figure 1). 

This microvascular dysfunction is likely initiated by transient elevations of circulating free fatty acids, 

and perpetuated by changes in adipokines and inflammatory cytokines released from visceral as well 

as perivascular adipose tissue. These factors contribute to endothelial dysfunction as well as insulin 

resistance in the microvasculature, thereby affecting function of different organs not only by impairing 

tissue perfusion, but also through altering the release of paracrine factors from the endothelial cells. 

Thus, although the mechanisms can differ between regional vascular beds (Table 1), microvascular 

dysfunction is a central common pathway that may explain exercise-intolerance as well as the higher 



2

The microcirculation: a key player in obesity-associated cardiovascular disease 

 51 

prevalence of chronic kidney disease, microvascular dementia, coronary microvascular angina, heart 

failure with preserved ejection fraction, and pulmonary hypertension in obese subjects. 
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Abstract 

Coronary microvascular dysfunction (CMD) is commonly present in patients with metabolic 

derangements and is increasingly recognized as an important contributor to myocardial ischemia, 

both in the presence and absence of epicardial coronary atherosclerosis. The latter condition is 

termed ‘ischemia with non-obstructive coronary arteries’ (INOCA). Notwithstanding the high 

prevalence of INOCA, effective treatment remains elusive. Although to date there is no animal model 

for INOCA, animal models of CMD, one of the hallmarks of INOCA, offer excellent test models for 

enhancing our understanding of pathophysiology of CMD and for investigating novel therapies. This 

article presents an overview of currently available experimental models of CMD – with an emphasis 

on metabolic derangements as risk factors – in dogs, swine, rabbits, rats and mice. In all the available 

animal models, metabolic derangements are most often induced by a high fat diet and/or diabetes 

mellitus via injection of alloxan or streptozotocin, but there is also a wide variety of spontaneous as 

well as transgenic animal models which develop metabolic derangements. Depending on number, 

severity and duration of exposure to risk factors — all these animal models show perturbations in 

coronary microvascular (endothelial) function and structure, similar to what has been observed in 

patients with INOCA and co-morbid conditions. The use of these animal models will be instrumental 

in identifying novel therapeutic targets and for the subsequent development and testing of novel 

therapeutic interventions to combat ischemic heart disease, the number one cause of death 

worldwide. 
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1. Introduction 
Common risk factors for cardiovascular disease, including diabetes mellitus (DM), dyslipidaemia, 

hypercholesterolaemia, and chronic kidney disease (CKD), are independently, but especially in 

combination, well-known risk factors for the development of coronary artery disease (CAD) of both 

large epicardial arteries and smaller coronary arteries.1–4 While it is well-established that obstructive 

CAD is a major cause of myocardial ischaemia,5 there is increasing evidence that coronary 

microvascular dysfunction (CMD) also contributes to myocardial ischaemia, not only in the presence 

of obstructive CAD6–8 but also in patients without obstructive CAD, a situation referred to as 

‘ischaemia and no obstructive coronary artery disease’ (INOCA).2,9,10 Clinical studies have shown that 

INOCA is present in approximately one-third of men and two-thirds of women undergoing 

angiography for suspected ischaemic heart disease.11,12 Importantly, cardiovascular death or 

myocardial infarction occurred in 6.7% of the patients without any signs of CAD and in 12.8% of 

patients with non-obstructive CAD.11,12 

Since INOCA has only recently been recognized as a separate clinical entity, its exact 

definition and the underlying pathophysiology are not well-established yet.9 The potential multitude 

of factors underlying ischaemia in these patients underscores the complexity of the disease and 

simultaneously presents a diagnostic and therapeutic challenge.13 The current diagnostic workup for 

chest pain is not optimized for determining the different INOCA aetiologies, and INOCA is currently 

mainly used as a diagnosis per exclusionem in patients with non-obstructive CAD. Recently, the 

‘CORonary MICrovascular Angina (CorMicA)’ study and the working group of INOCA of the American 

College of Cardiology have proposed a similar diagnostic flowchart.9,13 According to these experts, a 

diagnostic flowchart for INOCA encompasses a three-step approach, including invasive coronary 

angiography for the evaluation of coronary obstructions with invasive diagnostic fractional flow 

reserve (FFR) if needed, coronary flow reserve (CFR) measurements for the evaluation of 

microvascular dysfunction, and a vasoreactivity test to acetylcholine and a nitrate for the assessment 

of endothelial dysfunction with/without vasospasm. Such an approach could discriminate patients 

with epicardial vasospastic angina vs. microvascular angina and enables evaluation of a tailored 

treatment between these groups. Although studies with non-invasive techniques, including positron 

emission tomography (PET), transthoracic echo-Doppler, and cardiac magnetic resonance imaging, 

have shown some promising results, invasive testing is currently still considered the gold-standard.9 

An important limitation of patient studies is that the disease is only diagnosed when patients 

present with overt complaints, and hence the differentiation into the various angina subtypes, based 

on coronary function, typically occurs at a later stage, at a time when the (potentially synergistic) 
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contributions of individual risk factors, including diabetes, hypercholesterolaemia, CKD, hypertension, 

and even sedentary lifestyle are difficult to assess. Longitudinal, mechanistic invasive studies 

considering individual comorbidities, age and sex, should be performed to identify the different 

patient subgroups. However, such studies in patients are very difficult given the complexity of the 

disease and co-occurrence of risk factors. In addition, structural microvascular alterations, including 

arteriolar remodelling and capillary rarefaction that can contribute to impaired CFR and myocardial 

oxygen delivery, are also difficult to assess in clinical studies. For this purpose, animal models are 

instrumental, as influences of metabolic factors, genetic predisposition, sex and age on the 

development of perturbations in coronary microvascular function and structure, as well as the 

progression of CMD, can be thoroughly studied. 

In this review, we focus on the different animal models for CMD, which is a critical hallmark 

of INOCA. Since each animal model has its advantages and disadvantages, the specific research 

question should be the prime determinant of the animal model of choice. It is therefore important to 

take the (pitfalls for) translation to the clinical setting into account when selecting an animal model. 

Here, we present an overview of different models for studying CMD in the setting of metabolic 

derangements in commonly used animal species. We discuss the different ways to induce metabolic 

derangement, the resulting microvascular dysfunction, and the underlying mechanisms for each 

individual model. Subsequently, the models are evaluated and compared with respect to their 

translational capacity for the study of INOCA. 

2. Animal models: anatomical and metabolic considerations 

A variety of animal species and models has been employed to study the effects of different risk factors 

on the development and progression of CMD. The cardiovascular system of each species has evolved 

differently in order to meet the demands of that species and has specific similarities and differences 

with the human cardiovascular system. In this section, we will provide an overview of the most 

important similarities and differences in terms of coronary anatomy and body and myocardial 

metabolism. 

2.1 Anatomical considerations 

Large animal species (canine and porcine) have been widely used to study ischaemic heart disease. 

Dogs, pigs, and humans have been shown to vary with respect to the anatomic distribution of their 

coronary arteries. In all these species, the coronary arteries and their main branches run on the 

epicardial surface. The coronary vasculature in humans is mostly right dominant, implying that in most 
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humans the right coronary artery supplies the right ventricle as well as the posterior wall of the left 

ventricle with blood, whereas the anterior and lateral wall of the left ventricle are perfused via the 

left anterior descending coronary artery and the left circumflex coronary artery. Humans have no 

separate septal artery, and the ventricular septum is supplied through perforating vessels that 

originate from the interventricular branches.14 Similarly, the porcine coronary circulation is right 

dominant, while dogs are left dominant.15 Humans and swine are also similar with respect to the 

vascularization of the interventricular septum, which is supplied by anterior and posterior septal 

branches arising from the left and right coronary arteries, respectively. In addition, the 

atrioventricular node and the bundle of His in both humans and swine are irrigated predominantly by 

the posterior septal branch.16 This anatomical resemblance implies that ischaemia-associated injury 

to the conduction system of the swine heart is analogous to that in humans, contrary to the canine 

model, in which the blood supply originates from the anterior septal artery.17 Importantly, while an 

innate coronary collateral circulation is negligible in humans and swine,18,19 there is an extensive pre-

existing collateral circulation in the dog heart, which—depending on the dog breed—can supply as 

much as 40% of the blood flow distal to an occluded coronary artery.20 In rabbits, the left coronary 

artery is always the dominant artery, from which the septal artery originates. In rodents, the coronary 

anatomy differs markedly from that in large animals. Thus, coronary arteries run deeper in the 

myocardium and contain fewer layers of smooth muscle cells. In the mouse, the heart is supplied by 

two coronary arteries, left and right, each perfusing the corresponding ventricle. Studies have 

demonstrated a single major septal coronary artery arising either from a separate ostium from the 

right sinus of Valsalva or as a proximal branch of the right coronary artery.21 The mouse septal 

coronary artery courses along the right side of the interventricular septum and provides perfusion to 

this region of the myocardium.21 In the rat, the coronary anatomy is similar to that in mice, although 

coronary angiography in Lewis rats indicates that the septal artery branches off either from the 

proximal part of the left coronary artery (60% of the animals) or the right coronary artery 

(40%).22 Furthermore, coronary collateral blood flow capacity is low, but not negligible, in 

rabbits,23 rats,19 and mice.24 

2.2 Metabolic considerations 

Blood pressure is similar among mammalian species, independent of body weight.25 The heart is the 

most energy-requiring organ of the body, with heart rate being the most important determinant of 

oxygen consumption. There are significant intrinsic differences between rodents and the large 

mammals in terms of heart rate, but also oxygen consumption, and metabolic activity, partly mediated 

by species-specific activity of thyroid hormones.26 Humans, dogs, and pigs have similar heart rates, 
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60–80 b.p.m. in rest up to 200 b.p.m. (humans) or 300 (dog, pig) during maximal exercise,27 while 

resting heart rates are 200–250 b.p.m. in rabbits,28,29 350–400 b.p.m. in rats,25 and 500–600 b.p.m. in 

mice.30,31 Dynamic exercise increases left ventricular coronary blood flow (CBF) in proportion to the 

increase in heart rate (Figure 1).30–36 CBF measurement during exercise is very difficult to perform in 

mice, and to our knowledge, no exercise blood flow data are available. However, the few studies 

performed in anaesthetized mice30,31 as well as in awake rats35 indicate high flow values already under 

resting conditions, i.e. five to six times higher than in humans or large mammals, which appears to be 

entirely due to the higher resting heart rates (Figure 1).35

Figure 1 Relation between HR and LVMBF at rest and during exercise in dogs, swine, rats, mice, and 

humans

For awake rabbits only a single resting measurement is available.34,aThere are no measurements 

available in awake mice. Note that the regression line is based on the human data points. Adapted 

with permission from Duncker et al.35 HR, heart rate; LVMBF, left ventricular myocardial blood flow.
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In adult fasting mammals, 60–80% of the cardiac energy metabolism relies on the oxidation of free 

fatty acids, the rest being accounted for by glucose, lactate, and ketone bodies.37 However, there are 

species differences, as mice rely more on glucose, lactate, and ketone bodies and much less (30–40%) 

on fatty acids.38 In addition, also in terms of lipid transporters in the blood—with low-density 

lipoprotein (LDL) and high-density lipoprotein (HDL) being the predominant carriers of cholesterol—

there are major species differences in the proportion of LDL and HDL particles in plasma. Thus, pigs 

and rabbits transport most of the cholesterol in LDL particles—as do humans (~60% LDL, ~40% HDL)—

while rodent species carry the majority of cholesterol in HDL, making rodents virtually resistant to 

atherosclerosis and less appropriate as models for dyslipidaemia and atherosclerosis.39 

In line with the high heart rate in mice, basal metabolic rate per gram body weight is also seven times 

greater in mice than in humans. Such differences in metabolic rate have a major effect on reactive 

oxygen species (ROS) production in these species.40,41 One of the consequences of high metabolism in 

mice is that, in response to tissue hypoxia, mice are capable of reducing their oxygen utilization by 

down-regulating the activity of mitochondrial uncoupling proteins (responsible for a significant part 

of overall O2 consumption), without affecting ATP production. Hence, interventions targeting or 

affecting cellular metabolism in mouse models may not predict efficacy in humans.42 Rats have a 

larger blood volume when compared with mice, however, they are particularly resistant to oxidative 

stress due to their high activity of tissue antioxidant enzymes. Furthermore, nitric oxide (NO) 

metabolites in blood are 10–20 times higher than those in humans, potentially limiting translational 

impact of studies involving NO and ROS in this species.43 Given the importance of NO and oxidative 

stress in the regulation of coronary microvascular function, such interspecies differences are highly 

relevant in the choice of animal model for the study of CMD. 

3. Large animal models 

3.1 Canine models of CMD 

The dog represents a large animal model that has traditionally been employed to study CBF regulation 

in health and disease32,44,45 including in studies pertaining to the influence of cardiovascular risk 

factors on CBF and regulation of coronary microvascular tone, (see Supplementary material online, 

Table S1). To induce metabolic derangement in dogs, alloxan-induced DM and/or HFD-induced obesity 

that is associated with dyslipidaemia, hypertension, and insulin resistance, have been used. These 

canine models are highly relevant for the study of metabolic derangements and their influence on 

microvascular function. 
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3.1.1 Canine models with alloxan-induced DM 

Insights in some of the alterations produced by longer exposure to metabolic derangement is offered 

by studies in mongrel dogs with alloxan-induced DM. A strength of this model is that measurements 

can be performed before and after DM induction, allowing for assessment of DM effects within the 

same animal. Alloxan is typically administered in a dose of 40–60 mg/kg i.v., which results in robust 

hyperglycaemia and hypoinsulinaemia without the need of insulin treatment.46 Following the 

induction of DM, which stabilizes within 1 week of alloxan infusion, resting CBF gradually decreased 

to ∼60% of its pre-DM value, at 5 weeks of follow-up.46 Vasodilation in response to adenosine and 

acetylcholine was impaired in the absence of narrowing of the large coronary arteries, suggesting the 

presence of coronary microvascular endothelial dysfunction. Tune et al.47 studied the haemodynamic 

alterations after only 1 week of alloxan-induced DM at rest and during graded treadmill exercise. 

Although resting CBF was unaltered 1 week post-alloxan, the exercise-induced increase in CBF was 

progressively impaired. The limitation of myocardial oxygen delivery during exercise elicited an 

increase in myocardial oxygen extraction, thereby resulting in lower coronary venous oxygen tensions 

at each level of exercise.47 The authors demonstrated in a subsequent study that α-adrenoceptor 

blockade augmented the exercise-induced increase in CBF and attenuated the decrease in coronary 

venous oxygen tension to a greater extent in DM than in non-DM dogs, indicating that α-

adrenoceptor-mediated coronary vasoconstriction was increased in diabetic dogs, particularly during 

increased metabolic demand.48 Adenosine triphosphate-sensitive potassium (KATP) channel blockade 

with glibenclamide49 blunted the coronary hyperaemia during exercise in DM, but not in healthy dogs, 

suggesting that KATP channels exert an increased coronary vasodilator influence in DM dogs, acting to 

maintain CBF during increased myocardial metabolism and increased sympathetic activation during 

exercise. 

3.1.2 Canine models with diet-induced metabolic derangement 

Several studies in dogs of either sex have investigated the effects of chronic metabolic derangement 

produced by 5–6 weeks of HFD on the coronary microvasculature. Such exposure to HFD resulted in 

features of the metabolic syndrome (MetS) with obesity, moderate hypertension, dyslipidaemia, and 

insulin resistance. These factors impaired myocardial perfusion, especially during exercise, by 

decreasing coronary vascular conductance, although myocardial ischaemia was absent.50 The tonic 

constriction of the coronary vasculature in this setting was mediated by metabolic derangement-

associated neurohumoral alterations, including increased vasoconstriction mediated by angiotensin II 

(ANGII),51 activation of the sympathetic nervous system,52 and the endothelium-derived 
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vasoconstrictor, endothelin 1 (ET-1),53 as tested in a series of consecutive studies in male and female 

dogs. 

Zhang et al.,51 investigated the involvement of prediabetic metabolic derangement-

associated activation of the renin–angiotensin–aldosterone system (RAAS) on CBF regulation. 

Metabolic derangement was associated with increased plasma renin activity and elevated ANGII 

levels, resulting in a significantly increased ANGII-induced vasoconstriction, mediated by angiotensin 

II receptor type 1 (AT1) receptors in isolated arterioles. Further interrogation of this mechanism in 

vivo supported the in vitro data, showing an impaired exercise-induced increase in CBF that was 

alleviated by AT1 receptor blockade. Taken together, these data suggested that in the canine model 

of prediabetic metabolic derangement, chronic activation of the RAAS contributes to coronary 

vascular dysfunction, via increase in circulating ANGII and/or increases in coronary arteriolar 

AT1 receptor density. The increase in sympathetic activity associated with the metabolic derangement 

and its effects on coronary circulation were investigated in the same model by Dincer et al.52 Although 

baseline CBF was not altered in vivo, increased plasma epinephrine concentrations were associated 

with augmented α1-adrenoceptor-mediated coronary vasoconstrictor responses in anaesthetized 

dogs. Sensitization of α-adrenoceptor signalling represents a potentially important contributor to 

impaired control of CBF. A third important vasoconstrictor involved in the control of CBF and shown 

to be increased in metabolic derangement is ET-1. Knudson et al.53 tested the hypothesis that 

prediabetic metabolic derangement augments endothelin receptor A (ETA)-mediated 

vasoconstriction, thereby limiting coronary perfusion. Interestingly, despite a reduction in 

ETA expression in the coronary microvasculature, coronary vasoconstrictor responses to ET-1 were 

not different between HFD-fed dogs and normal dogs, while circulating ET-1 levels were unaltered, 

suggesting either a sensitization of the ETA receptors or an increased contribution of endothelin 

receptor B (ETB)-mediated vasoconstriction. The reduction in ETA receptor expression may represent 

an early compensatory mechanism acting to maintain CBF in the face of increased ANGII- and α1-

adrenoceptor-mediated coronary vasoconstrictor influences. 

Adipokine production is altered in the MetS, and to investigate the potential contribution of 

adipokines to CMD, Tune and colleagues performed a series of experiments in which they investigated 

the coronary microvascular responses to a variety of adipokines. Payne et al.54 investigated the effect 

of various endogenous adipose-derived factors on coronary endothelial function, by infusing adipose-

tissue-conditioned buffer in healthy, lean dogs. Although baseline CBF remained unaltered, coronary 

endothelial dysfunction was observed both in vivo and in vitro. Endothelial dysfunction was the result 

of reduced NO bioavailability, possibly via selective inhibition of endothelial nitric oxide synthase 
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(eNOS), independent of oxidative stress. Although the specific adipokine(s) responsible for the 

alterations in the latter study were not identified, these data show that adipokine administration does 

result in acute endothelial dysfunction, by altering different endothelial vasodilator mechanisms, 

suggesting that chronic exposure to circulating adipose-tissue-derived factors can potentially result in 

vascular dysfunction. To further delineate the precise adipose-tissue-derived factor(s), Dick et al.55 set 

out to test whether acute infusion of resistin, an adipokine implicated in endothelial dysfunction in 

obesity affected CBF in vivo in healthy dogs, by increasing oxidative stress. At concentrations observed 

in obese, type 2 DM (T2DM) patients, resistin did not affect CBF. However, it did produce endothelial 

dysfunction, both in vivo and in isolated coronary arterioles, which was likely endothelium-derived 

hyperpolarizing factor (EDHF)-mediated, as the bradykinin-induced vasodilation was impaired, while 

acetylcholine (ACh)-induced response was maintained. Furthermore, this response was independent 

of oxidative stress. Knudson et al.56 investigated the direct effects of leptin, an adipokine involved in 

several biological processes including glucose metabolism and inflammation, on the coronary 

circulation and specifically on coronary endothelial function in healthy dogs as well as dogs with 

metabolic derangement. In normal healthy dogs, leptin produced coronary microvascular endothelial 

dysfunction characterized by a blunted vasodilator response to acetylcholine. In contrast, and despite 

increased leptin plasma concentration, prediabetic high-fat-fed dogs had normal coronary 

microvascular vasodilator responses to acetylcholine. Interestingly, the coronary vasodilator response 

to ACh was not affected by leptin. These findings suggest that resistance to leptin-induced endothelial 

dysfunction may represent a protective mechanism at this early stage of the disease. 

3.1.3 Summary: canine models of CMD 

Taken together, alloxan-induced DM or exposure to HFD in dogs of either sex, for up to 5–6 weeks 

results in altered coronary microvascular tone control, involving increased coronary vasoconstrictor 

mechanisms such as α-adrenoceptor-mediated and ANGII-mediated coronary vasoconstriction. These 

increased vasoconstrictor influences result in perturbations in CBF regulation and myocardial oxygen 

delivery but are partly mitigated by compensatory reductions in ETA receptor density and by increased 

leptin resistance and KATP channel activation (Table 1). Future studies are required to determine 

whether long-term exposure to these cardiovascular risk factors produces progressive perturbations 

in coronary microvascular function during disease progression. 
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Table 1 Main mechanisms involved in CMD per animal model 

 

Overview of models of coronary microvascular dysfunction per species and what features are present (+), absent 

(-), ambiguous results (~), or not investigated (NA; not assessed). VSMC vascular smooth muscle cell, NO nitric 

oxide, ROS reactive oxygen species, ET-1 endothelin 1, PGI2 prostacyclin, RAAS renin angiotensin aldosterone 

system, SNS sympathetic nervous system, FH familial hypercholesterolemia, WHHL Watanabe heritable 

hyperlipidemic rabbit, Zucker Zucker obese and diabetic fatty rats, OLETF Otsuka Long-Evans Tokushima Fatty rat, 

GK Goto-Kakizaki non obese diabetic rat, db/db leptin receptor deficient mouse, ob/ob leptin deficient mouse, 

T1+2DM Type 1 and 2 diabetes mellitus, apoE apolipoprotein E knockout mouse 

  

	

	 Functional	 	 Structural	
	 Endothelial-dependent	

	
Neurohumoral	

	
VSMC	 	 Arteriolar	

	
Capillary	

	 ↓NO	 ↑ROS	 ↑ET-1	 ↓PGI2	 ↑RAAS	 ↑SNS	 ↓func
tion	 	 ↑	Media	

thickness	 ↓Density	

Canine	models	

Alloxan	 +	 NA	 NA	 NA	 	 NA	 +	 	 +	 	 NA	 	 NA	

High	fat	diet	 NA	 NA	 -	 NA	 	 +	 +	 	 -	 	 NA	 	 NA	

Acute	 ~	 -	 NA	 -	 	 NA	 NA	 	 -	 	 NA	 	 NA	

Porcine	models	

Induced	domestic			 +	 +	 ~	 NA	 	 NA	 NA	 	 ~	 	 NA	 	 +	

Induced	Yucatan	 ~	 NA	 NA	 -	 	 NA	 NA	 	 +	 	 NA	 	 NA	

Rapacz	FH	 +	 NA	 NA	 NA	 	 NA	 NA	 	 -	 	 NA	 	 NA	

Ossabaw	 ~	 NA	 NA	 NA	 	 NA	 NA	 	 ~	 	 NA	 	 +	

Rabbit	models	

Alloxan	 +	 NA	 NA	 +	 	 NA	 NA	 	 -	 	 NA	 	 NA	

High	fat	diet	 ~	 +	 +	 NA	 	 NA	 +	 	 ~	 	 +	 	 NA	

WHHL	 NA	 NA	 NA	 NA	 	 NA	 NA	 	 -	 	 NA	 	 NA	

Rat	models	

Streptozotocine	 ~	 -	 NA	 -	 	 +	 NA	 	 ~	 	 ~	 	 ~	

High	fat	diet	 +	 NA	 NA	 NA	 	 +	 NA	 	 ~	 	 NA	 	 -	

Zucker	 ~	 +	 -	 ~	 	 NA	 ~	 	 -	 	 -	 	 NA	

OLETF		 ~	 +	 +	 NA	 	 +	 NA	 	 -	 	 +	 	 NA	

GK	 ~	 NA	 NA	 -	 	 NA	 +	 	 +	 	 +	 	 -	

Murine	models	

db/db	 +	 +	 NA	 NA	 	 +	 NA	 	 ~	 	 ~	 	 ~	

ob/ob	 +	 NA	 NA	 NA	 	 NA	 NA	 	 -	 	 NA	 	 -	

Induced	T1+2DM	 +	 +	 +	 NA	 	 NA	 +	 	 +	 	 +	 	 NA	

apoE	 +	 +	 NA	 -	 	 NA	 NA	 	 -	 	 NA	 	 NA	
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3.2 Porcine models of CMD 

Swine are widely used in translational cardiovascular research, as they share many similarities with 

humans with respect to coronary and cardiac anatomy and physiology. Furthermore, swine are 

omnivores and have a human-like myocardial metabolism.57 Compared with dogs, domestic swine 

have the advantage of lower cost and societal pressure. Unfortunately, the fast growth rate of 

domestic swine limits study duration and favours utilization of juvenile swine, for a disease that occurs 

in an ageing human population. These pitfalls can be circumvented by the availability of different 

strains of mini-swine. Different porcine models of CMD have been generated over the past 20 years, 

typically by exposure to risk factors that are common in patients with ischaemic heart disease 

including dyslipidaemia, DM, CKD, and hypertension. In addition, several swine strains with increased 

genetic susceptibility to developing metabolic derangement—particularly when exposed to these risk 

factors—have been identified, characterized, and inbred and are now being used in a variety of 

experimental studies into coronary microvascular function in health and disease. Finally, a transgenic 

porcine model of diabetes has recently been established.58 

3.2.1 Domestic swine 

For over 40 years, domestic swine have been employed in studies focusing on the regulation of CBF 

in health and ischaemic heart disease.32,45 Studies pertaining to the effects of different risk factors on 

coronary microvascular function have for the most part been published in the past 10 years 

(Supplementary material online, Table S2). In these studies, different methods to induce risk factors 

have been used, including high-fat/high-sugar diets either as single intervention or in combination 

with streptozotocin (STZ)-induced hyperglycaemia and/or CKD-associated hypertension. 

Gerrity et al.59 and Ditzhuijzen et al.60 demonstrated that in young (12 weeks of age) male domestic 

swine, <20 weeks of HFD (1–1.5% cholesterol and 15-25% lard), or a combination of HFD and STZ-

induced DM did not result in flow-limiting coronary lesions. We also observed that although 10 weeks 

of HFD and DM by low-dose STZ in domestic swine did not induce coronary arterial lesions, CMD was 

already present at this early timepoint.61 Thus, epicardial conduit artery function was unaltered, but 

isolated coronary small arteries (∼300 µm in diameter) showed impaired endothelial function in DM 

swine that were fed a HFD. CMD was characterized by impaired NO bioavailability, while EDHF-

dependent mechanisms were not affected, and the overall vascular smooth muscle cell (VSMC) 

sensitivity to NO was preserved.61 The endothelial dysfunction-associated reduction in vasorelaxation 

was accompanied by a markedly reduced ETA-receptor-mediated vasoconstrictor response to ET-1, 

possibly serving as a compensatory mechanism for the increase in circulating ET-1 levels and the loss 
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of NO bioavailability, at this early stage of the disease. Furthermore, 10 weeks of DM+HFD resulted in 

increased microvascular passive stiffness, potentially further contributing to perturbations in coronary 

microvascular function in vivo.61 Indeed, Mannheim et al.62 observed impaired CBF responses to 

intravenous adenosine in swine after approximately 3 months of HFD, suggesting that the early 

alterations in coronary microvascular control mechanisms as observed in vitro can indeed translate 

into impaired CBF responses in vivo. 

Interestingly, in our initial study, no changes in coronary microvascular responses to bradykinin or ET-

1 were observed in non-DM animals fed the same HFD.61 The latter observation appears to be in 

contrast to an early study by Hasdai et al.,63 who reported increased vasoconstriction of small arteries 

(∼500 µm diameter) to ET-1 in vitro, in swine after 10–13 weeks of HFD. These different results are 

not readily explained but may well stem from differences in vessel size (300 µm61 vs. 500 µm63), sex 

(male61 vs. female63), or the diet composition (1% cholesterol, 25% saturated fats, 20% fructose/20% 

sucrose61 vs. 2% cholesterol, 20% lard, and 1% hog bile extract63). 

In a subsequent study, we subjected male swine with or without STZ-induced DM to HFD for 

15 months and observed significant functional and structural alterations in the coronary vascular bed 

in both large and small arteries.64 Thus, at this stage of the disease, plaques were found in epicardial 

conduit arteries (albeit not flow-limiting; i.e. <30% plaque burden) and in coronary small arteries, 

while the latter also showed increased passive stiffness. Moreover, microvascular tone control studies 

showed a normal endothelium-dependent bradykinin-induced vasorelaxation that was accompanied 

by an enhanced ETB-receptor-mediated vasoconstrictor response to ET-1.64 Interestingly, these 

alterations were principally the result of the HFD and independent of the presence of DM. Taken 

together these two studies reveal a surprising shift from an early blunting of endothelium-dependent 

vasorelaxation at 10 weeks61 towards a late ‘normalization’ of endothelium-dependent 

vasorelaxation at 15 months,64 that was accompanied by a shift from an early blunting61 to a late 

augmentation64 of the vasoconstrictor responses to ET-1. These results underscore the importance of 

performing longitudinal studies, as the mechanisms of microvascular dysfunction were highly 

dependent on the duration of exposure to the cardiovascular risk factors. 

When CKD was combined with hypercholesterolaemia and metabolic derangement for 4–5 months, 

sustained inflammation and oxidative stress were associated with impaired coronary vasodilation to 

adenosine and bradykinin, suggestive of endothelial dysfunction.65,66 These early microvascular 

functional alterations were accompanied by a reduced myocardial capillary density, and together may 

lead to impaired CBF and oxygen delivery, thereby contributing to INOCA. 
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Further studies directed at a complete characterization of CMD at different stages of the disease are 

needed, to potentially provide new therapeutic strategies aiming at alleviating microvascular disease 

and improving myocardial perfusion. However, such studies are difficult to conduct in domestic pigs, 

as their body growth limits follow-up time. Mini-swine may offer an alternative due to their limited 

growth rate and size at maturity. 

3.2.2 Yucatan mini-swine 

Yucatan mini-swine are commonly used for the study of CAD, due to their ability, similar to domestic 

pigs, to reproduce the neointimal formation and thrombosis as observed in humans.67 As with 

domestic swine, metabolic derangement can be induced using chemical destruction of the pancreatic 

beta cells and/or a HFD.68 Twenty weeks of HFD resulted in dyslipidaemia in male Yucatan mini-swine 

without changes in plasma glucose.69 At this time point, isolated coronary arterioles (∼100 µm in 

diameter) showed only very limited endothelial dysfunction as assessed by the responses to 

bradykinin, adenosine diphosphate (ADP) and flow-mediated dilation, despite increased 

microvascular spontaneous tone in HFD animals and lower eNOS protein content. These modest 

microvascular perturbations were alleviated by exercise training.69 

The addition of alloxan-induced DM as an additional cardiovascular risk factor resulted in significant 

decreases in both basal and hyperaemic CBF in response to adenosine and resulted in endothelial 

dysfunction as assessed with bradykinin in vivo.70 While exercise training alleviated the impairment in 

basal perfusion and CFR, endothelial dysfunction was not affected by exercise training.70 These studies 

show that Yucatan mini-swine subjected to DM in combination with a HFD are an excellent model for 

long-term studies of the pathophysiology of and therapeutic interventions for CMD. 

3.2.3 Ossabaw swine 

Ossabaw swine represent a unique model for the study of MetS and CAD. These swine have a ‘thrifty 

genotype’ (propensity to obesity) that enabled them to survive long periods of scarce food conditions 

on Ossabaw Island off the coast of Savannah, Georgia. Consumption of excess kcal (i.e. HFD) causes 

these animals to manifest components of the MetS, including central (intra-abdominal) obesity, 

insulin resistance, impaired glucose tolerance, dyslipidaemia, and hypertension, and progress towards 

T2DM and eventually coronary atherosclerosis.71 When studied in parallel, male Ossabaw swine had 

higher glucose-intolerance and insulin resistance after 43 weeks of HFD vs. male Yucatan 

swine.68 Furthermore, CFR in response to intracoronary adenosine was impaired and endothelial 

dysfunction, as evidenced by the response to intracoronary bradykinin infusion, was greater in 

Ossabaw compared with Yucatan swine either on normal chow or on HFD. In addition, Ca2+ efflux was 
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impaired in coronary smooth muscle cells from HFD fed Ossabaw vs. Yucatan swine. These coronary 

vascular alterations were accompanied by diffuse CAD in Ossabaw but not in Yucatan swine on HFD.68 

Also in 7–10 weeks old male Ossabaw swine, a short (9 weeks) exposure to a high-fat, high-fructose 

diet resulted in early-stage MetS, with obesity, hyperglycaemia and dyslipidemia.72 However, at this 

early stage, CBF both at baseline and during intracoronary adenosine infusion remained unchanged, 

as was the response of isolated coronary arterioles (∼100 µm in diameter) to adenosine or the NO 

donor sodium nitroprusside, suggesting preserved VSMC function despite early alterations in 

adenosine A2 receptors and KATP channels expression.72 With prolongation of diet duration, 

myocardial perfusion became significantly impaired.73 The contribution of the voltage-gated 

potassium (KV) channels to metabolic control of CBF at rest and during exercise was studied in lean 

Ossabaw swine vs. obese Ossabaw swine with MetS produced by 4 months of HFD.73 MetS swine 

showed a 30–35% reduction in CBF both at rest and during treadmill exercise and a reduction in 

coronary vascular conductance. This CMD was the result of a blunted contribution of KV channels to 

CBF control during increased metabolic demand in MetS.73 Subsequent studies revealed that coronary 

large conductance Ca2+-activated potassium (BKCa) channel dysfunction (both in vivo and in vitro in 

isolated arterioles ∼100µm in diameter) was associated with increased L-type Ca2+ channel-mediated 

constriction, which also contributed to CMD after 3–6 months of MetS.74 Furthermore, after 6 months 

of HFD in Ossabaw swine, isolated coronary microvessels showed increased myogenic tone, which 

was associated with inward hypertrophic remodelling, indicating that longer-term MetS can also 

result in structural changes in the coronary microvasculature.75 In addition, capillary rarefaction was 

present which may have further contributed to the impaired CFR.75 The addition of renovascular 

hypertension (by unilateral renal artery stenosis) to this model, resulted in further impairment of 

maximal myocardial perfusion, as the MetS and hypertension synergistically suppressed the 

adenosine-induced hyperaemic response almost completely.76 This response was associated with 

impaired eNOS expression and hypertrophic remodelling in the coronary microvasculature and 

resulted in left ventricular diastolic dysfunction, making this animal model with multiple 

cardiovascular risk factors also suitable for the study of microvascular involvement in heart failure 

with preserved ejection fraction.76 

3.2.4 Rapacz familial hypercholesterolaemic swine 

Downsized Rapacz familial hypercholesterolaemic (FH) swine have been inbred at the University of 

Wisconsin Swine Research and Teaching Center by Drs Rapacz and Hasler-Rapacz to yield a swine 

model of high plasma cholesterol levels and accelerated atherosclerosis. This was achieved by a 

spontaneous mutation in the LDL-receptor gene on chromosome 2; the protein product of this gene 
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normally removes LDL from the circulation.77 This model is especially suitable for the study of coronary 

vascular dysfunction associated with high levels of circulating LDL, as seen in FH patients prior to or in 

the presence of obstructive coronary artery lesions. In 20-month-old Rapacz FH swine, 5 months of 

HFD resulted in marked hypercholesterolaemia and diffuse coronary atherosclerosis, associated with 

CMD.78 This study demonstrated once again the presence of microvascular endothelial dysfunction 

both in vivo and in isolated coronary arterioles (∼100 µm in diameter) prior to obstructive plaque 

development. The endothelial dysfunction appeared to be mediated by impaired EDHF-dependent 

vasodilation as well as by impaired NO bioavailability that was compensated for by an increased 

sensitivity to NO. These perturbations in the regulation of microvascular tone resulted in impaired 

CBF and myocardial oxygen delivery—especially during exercise—that was associated with a shift 

towards anaerobic myocardial metabolism particularly during increased myocardial metabolic 

demand.78 

3.2.5 Summary: porcine models of CMD 

In conclusion, several swine models of CMD in the presence of comorbidities are currently available, 

showing clear evidence of CMD depending on the duration of exposure to cardiovascular risk factors. 

The mechanisms involved in the development and progression of CMD are summarized in Table 1. 

While domestic pigs are readily available and cheap, young animals are typically used in cardiovascular 

studies which makes chronic treatments, including exercise training, difficult to assess due to rapid 

body growth of the animals, thereby limiting follow-up time. The use of inbred mini-pigs, including 

Yucatan, Ossabaw, and Rapacz enables the study of adult animals, prolongation of diet duration and 

mechanistic studies at different time points, opening opportunities for the development of 

therapeutic targets aimed at alleviating CMD. 

 

3.3 Rabbit models of CMD 

For nearly a century, rabbits have been utilized to investigate the pathophysiology and therapy of 

atherosclerosis including endovascular stents.79 Both in terms of cardiac physiology and body size, 

rabbits represent an intermediate between large animals (pigs and dogs) and small rodents (rats and 

mice), that are large enough to place human endovascular stents while still relatively easy to house 

and handle. Although the rabbit has a higher metabolic rate, lipid profiles and chemical composition 

of plasma in rabbits show greater resemblance to human lipid metabolism, making them especially 

suitable for atherosclerosis research.79 Most commonly used are the domestic rabbit breeds, which 
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all originate from the European rabbit (Oryctolagus cuniculus) including Japanese White rabbits and 

New Zealand White rabbits.80 In several of these models, investigators have studied the effects of 

cardiovascular risk factors on coronary microvascular function and structure (Supplementary material 

online, Table S3). 

3.3.1 Spontaneous hyperlipidaemic rabbit models 

The Japanese veterinarian, Yoshio Watanabe, discovered that a male Japanese White rabbit 

developed spontaneous hyperlipidaemia on normal chow, due to an inherited recessive trait. This 

mutation results in a defective LDL-receptor, resembling human-like familial hypercholesterolaemia. 

Selective inbreeding was used to generate the Watanabe heritable hyperlipidaemic (WHHL) rabbit 

strain, which has 8- to 14-fold higher serum cholesterol levels than normal Japanese White rabbits 

and develops hypertriglyceridaemia (300–600 mg/dL).81 A different inbred strain was developed at 

the St. Thomas Hospital, which also shows hypercholesterolaemia but with normal LDL-receptor 

function and mildly elevated levels of triglycerides. This model resembles the human familial 

hyperlipidaemia more closely and appears therefore more suitable for evaluating the relation 

between hypertriglyceridaemia and insulin resistance.82 Both models are used in combination with 

normal chow as well as a high (∼1%) cholesterol diet. Whereas, to date, these models have principally 

been used to study atherosclerosis, they also represent interesting models for the assessment of CMD 

in response to hyperlipidaemia, although an early study in the WHHL rabbits did not reveal any 

changes in either basal CBF or CFR.83 

3.3.2 Transgenic rabbit models 

To study alterations in lipid compositions other than the specific phenotype of spontaneous 

hyperlipidaemic rabbit models, transgenic rabbit models with modifications in the genes involved in 

lipid metabolism have been developed. The transgenes include human apolipoproteins (hapo), 

specifically the A-I/C-III/A-IV gene clusters (hapoA-I/C-III/A-IV gene cluster), hepatic lipase (hHL), 

lecithin: cholesterol acyltransferase (hLCAT), lipoprotein lipase (hLPL), and scavenger receptor class B 

type I (hSRB-I).79,84 Similar to the inbred strains, levels of cholesterol and/or triglycerides are 

increased.84 However, to our knowledge, these transgenic rabbit models have not yet been used in 

studies of CMD. 

3.3.3 Rabbit models with induced metabolic derangement 

Given the limited availability of spontaneous or transgenic rabbit models for dyslipidaemia, induction 

of risk factors has been used to model metabolic derangement in rabbits. Similar to other animals, 
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induction of risk factors such as DM or dyslipidaemia can be achieved in multiple ways. Supplementary 

material online, Table S3 presents an overview of the studies that induced hyperlipidaemia to study 

alterations in coronary microvascular function. In addition, DM has been created through injection of 

alloxan. Alloxan was used because older studies showed that rabbits, similar to guinea pigs, are 

resistant to the diabetogenic effects of STZ, and thus is not feasible to use STZ in rabbits as opposed 

to other animal models.85,86 In rabbits with alloxan-induced DM, the isolated perfused heart setup was 

used to study coronary microvascular function ex vivo.87 Nine to 12 weeks of exposure to type 1 DM 

(T1DM) had no effect on baseline CBF or CFR and showed similar vasodilator responses to papaverine 

compared to euglycaemic conditions. However, the responses to serotonin and adenosine were 

attenuated in hyperglycaemic and hyperosmotic conditions. In addition, the coronary vasodilator 

response to hypoxia was reduced, which was not due to alterations in adenosine-mediated 

vasodilation but was mediated through an altered contribution of cyclooxygenase products.87 

Multiple studies have used a HFD to induce metabolic derangement to study coronary (micro)vascular 

function in rabbits. These studies vary in the cholesterol content of the diet (ranging from 0.8% to 2%) 

as well as duration of exposure (ranging from 4 to 16 weeks). Endothelial dysfunction was evidenced 

by impaired relaxation to acetylcholine, substance P, and ADP in the hypercholesterolaemic group in 

most88–90 but not all91,92 studies. Conversely, smooth muscle responsiveness to NO was preserved 

after 8–12 weeks of hyperlipidaemia.89–92 In addition, vasoconstriction to norepinephrine as well as 

serotonin was enhanced in coronary arteries from hypercholesterolaemic animals.88 Furthermore, the 

vasodilator response to acidosis was impaired which was due to an impairment upstream of the 

KATP channels, as the response to the KATP channel opener levcromakalim was unaltered.92 In line with 

these findings, Pongo et al.93 showed that the effect of protein kinase C—acting through 

KATP channels—on vasomotor control in hypercholesterolaemic coronary arterioles was lost but was 

restored after farnesol supplementation. Finally, the response to ischaemia-induced paracrine 

vasodilator factors was attenuated in hypercholesterolaemic animals, as a result of increased 

oxidative stress.91 Histological examination of small coronary arteries and arterioles of rabbits with 

hypertension (induced by removal of the left kidney and partial ligation of right renal artery) and 

hypercholesterolaemia (by 0.8% cholesterol diet for 16 weeks), showed structural changes such as 

hyalinization and/or intimal hyperplasia.94 

3.3.4 Summary: rabbit models of CMD 

Taken together, the usage of rabbits in studying CMD in metabolic derangement is viable and has 

distinct advantages when compared with rodent models. Genetically modified models are available, 

although they have not been used yet to specifically investigate CMD. Induction of metabolic 
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derangement is possible and although previous research utilized a large variety of diet compositions 

and durations, all studies report the presence of CMD (Table 1). 

4. Rodent models of CMD 

4.1 Rat models for CMD 

A variety of rat models, exhibiting a range of comorbid conditions, have been utilized to interrogate 

mechanisms of CMD (Supplementary material online, Table S4). The most prevalent models include 

the STZ-induced model of T1DM, the HFD or western diet (WD)-fed and obese Zucker rat (OZR) models 

of obesity and insulin resistance, the Zucker diabetic fatty (ZDF) rat, the Otsuka Long-Evans Tokushima 

Fatty (OLETF) rat model of obesity, progressive insulin resistance, and T2DM and the Goto-Kakizaki 

(GK) non-obese model of T2DM. Each of these models typically exhibit hyperglycaemia and some 

recapitulate additional aspects of human metabolic disease. Specifically, the HFD/WD-fed rat and OZR 

models exhibit obesity, hyperinsulinaemia, and hypercholesterolaemia. The ZDF and OLETF rat models 

are also obese with hypercholesterolaemia, however, hyperglycaemia in these models is associated 

with insulin resistance in younger rats followed by progressive impairment of insulin secretion. Lastly, 

the GK rat exhibits hypercholesterolaemia and, such as the ZDF and OLETF rats, hyperglycaemia owing 

to insulin resistance and eventual impairment of insulin secretion independent of obesity. With 

several exceptions,95–100 available studies evaluating coronary microvascular function in these models 

report similar blood pressures between rats with metabolic derangement and matched controls.101–

114 

Despite the various metabolic phenotypes of these models, available evidence suggests 

similarities in the nature of the associated CMD. A common finding across these models is altered 

coronary endothelial function, however, important distinctions in the manifestation of this 

dysfunction are worth noting. First, significant impairment of endothelium-dependent vasodilation 

(typically to acetylcholine) occurs early in some models or later in the disease process of others due 

to compensatory changes in the underlying mechanism of vasodilation. For instance, most studies in 

STZ rats, HFD/WD-fed rats, and young OZR report maintained coronary vasodilation to 

acetylcholine.95,101,102,105,106,115,116 Further examination of mechanisms of coronary endothelium-

dependent vasodilation in these models, however, has revealed compensatory up-regulation of 

BKCa channel expression/activity,105,115 up-regulation of endothelial small (SKCa) and intermediate 

(IKCa) conductance KCa channel expression/activity,106 increased basal phosphorylation of eNOS and 

Akt,108 and increased VSMC soluble guanylate cyclase activity116 and reduced phosphodiesterase 5 

activity109 in models of metabolic derangement. Thus, early endothelial dysfunction in these models 
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is masked by compensatory mechanisms not seen in the OLETF or GK rat models of metabolic 

derangement. Indeed, impaired endothelium-induced vasodilation has been reported at the earliest 

time points examined in OLETF111 and GK117 rats. An interesting point in this regard relates to the OZR 

model in which insulin-induced vasodilation, also endothelium-dependent, is impaired earlier than 

dilation to acetylcholine.98,107,118 Therefore, insulin-induced vasodilation may serve as a functional 

biomarker of early CMD in metabolic disease and vascular insulin resistance may be an early 

mechanism of dysfunction in these disease states.119 Furthermore, increased basal and stimulated 

coronary or cardiac oxidative stress is reported in these models97,107,112,118,120,121 and may serve as an 

initial trigger of dysfunction/compensation. Scavenging of reactive O2 species restores impaired 

endothelium-dependent vasodilation in OZR and ZDF rats.98,118 Taken together, when using rat models 

to evaluate endothelial function, it should be kept in mind that different rat models represent 

different disease stages. Therefore, rat models need to be carefully selected based on whether the 

hypothesis being tested is focused on ‘early’ or ‘late’ coronary endothelial dysfunction with the 

genetic models (i.e. OLETF, GK, and older OZR) appearing to represent later stages of disease with 

more pronounced endothelial dysfunction. 

Studies evaluating the impact of metabolic derangement on coronary microvascular VSMC 

function in rats are quite disparate and perhaps context- or agonist-dependent. For instance, coronary 

vasoconstrictor responses in OZR are similar in most,105,107,108,120,122 but not all,109,123,124 studies 

compared with lean Zucker rat as controls. Several studies report reduced vasoconstrictor responses 

to several agonists (e.g. ET-1, KCl) in this model.123,124 In addition, in endothelium-denuded coronary 

arterioles from OZR, vasoconstrictor responses to insulin,118 and hydrogen peroxide (H2O2)120,121 are 

similar, however, H2O2-stimulated production of cyclooxygenase-2-derived prostanoids and H2O2-

induced VSMC Ca2+ entry and mobilization are increased.120,121 Conversely, in the OLETF rat model, 

evaluation of ET-1-induced coronary vasoconstriction reveals progressively increased 

vasoconstriction with age.111 In addition, older GK rats exhibit impaired coronary myogenic 

vasoconstriction due to defective Rho-kinase activity.114 Together, these data demonstrate a lack of 

correlation between the endothelial and VSMC phenotypes underlying CMD in rat models of 

metabolic derangement. Interestingly, in the STZ rat model of T1DM, inhibition of NOS/COX in 

vivo has been reported to reveal focal stenosis and segmental vasoconstriction by in vivo synchrotron 

imaging that was alleviated by Rho-kinase inhibition.95,101 Thus, these data may suggest altered 

coronary VSMC function possibly preceding oxidative stress and impaired endothelial function in this 

particular model. 
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Beyond changes in vascular cell function in metabolic diseases, rat models have been utilized 

to examine changes in cardiac perfusion and flow control associated with CMD. In general, when 

viewed across studies, available evidence suggests that changes in cardiac perfusion or coronary flow 

control occur after the development of oxidative stress and endothelial dysfunction in metabolic 

diseases. In the OLETF rat model, for instance, a time course study demonstrated reduced CFR in 

vivo at 15 weeks of age,100 while a separate study reported endothelial dysfunction as early as 5 weeks 

of age in this model.111 Impaired metabolic hyperaemia was reported in OZR at 8–12 months of 

age97 but the relationship to endothelial dysfunction is unclear as no earlier time points were 

assessed. The impact of HFD and WD feeding on cardiac perfusion is ambiguous as both a trend for 

increased baseline perfusion104 and a reduction in estimated perfusion103 have been reported, 

respectively. Results in these models likely differ depending on the composition of the experimental 

diet and the length of feeding utilized. Lastly, both reduced baseline coronary flow125 and impaired 

CFR126 have been reported in GK rats and this dysfunction may be greater in females.127 To our 

knowledge, very few studies have examined sex differences in the coronary microvascular phenotype 

of rat models of metabolic derangement. This is a critical gap in knowledge in light of evidence that 

intermediate-to-high-risk women, but not men, with reduced CFR experience greater cardiovascular 

events.128 

The pathogenic mechanisms initiating CMD, which may serve as appropriate therapeutic 

targets, in these rat models remain incompletely understood. However, one approach that has been 

examined in several models with promising results is inhibition of the RAAS. Indeed, angiotensin-

converting enzyme (ACE) inhibition prevented reduced capillary length density in STZ rats96 and 

acutely restored bradykinin-induced vasodilation in coronary arterioles from HFD-fed 

rats.129 Furthermore, inhibition of aldosterone-binding mineralocorticoid receptors (MRs) reversed 

coronary vasodilator dysfunction in OZR107 and OLETF111 rats, however, enhanced vasoconstriction in 

OLETF rats was not altered by MR blockade. Increased acetylcholine-induced vasoconstriction and 

coronary perivascular fibrosis (i.e. transforming growth factor β1, plasminogen activator inhibitor 1, 

collagen I and III, and fibrin expression) in the OLETF rat were improved by angiotensin receptor 

inhibition.99,130 These data are supported by clinical evidence that ACE inhibition and MR blockade 

improve CFR in patients with DM.131–133 An additional intervention that successfully prevented 

coronary vasomotor dysfunction in the STZ rat is chronic in vivo inhibition of the sodium-hydrogen 

exchanger.134 Much work remains, however, to better understand the precipitating mechanisms of 

CMD in these rat models as well as their translatability to mechanisms implicated in human disease. 
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4.1.1 Summary: rat models of CMD 

There is wide variety of rat models that show CMD including non-genetic (DM and HFD) and genetic 

(Zucker, OLETF, and GK) models. All these models display CMD, the underlying mechanisms being 

summarized in Table 1. 

 

4.2 Murine models of CMD 

The use of murine models for the study of the coronary microcirculation in health and disease has 

gained interest over the past 20 years. Since some of the initial reports of endothelial dysfunction in 

leptin receptor deficient (db/db) and leptin deficient (ob/ob) mice,135,136 there have been several 

publications showing the impact of risk factors on endothelial and vascular function in 

mice. Supplementary material online, Table S5 summarizes several of these murine models that have 

been used in the study of the coronary microcirculation.30,135–148 

Db/db mice, such as the OZR model, have a deficient leptin receptor and as a consequence 

display polyphagia and obesity, resulting in T2DM. Several studies in this mouse model of obesity have 

demonstrated reduced acetylcholine135,137,138,149 and flow-mediated135,138,149 vasodilator responses, 

and either maintained135,149 or reduced138 sensitivity to NO. In addition, there is evidence of inward 

hypertrophic remodelling of arterioles,150 with variable effects on microvascular 

densities.150,151 Ob/ob mice are deficient in leptin production and as a result display the same 

phenotype as the db/db mice. Studies in this mouse model have shown maintained basal coronary 

flow velocities but reduced hyperaemic coronary flow velocities and coronary flow velocity 

reserve.152,153 Bender et al.140 used a WD to produce obesity and T2DM in wild-type mice, and 

observed reduced baseline coronary vascular resistance in isolated perfused mouse hearts that was 

accompanied by reduced NO bioavailability and blunted VSMC sensitivity to NO. Trask et 

al.154 compared T1DM—induced with STZ—and T2DM in db/db mice, and observed inward coronary 

arteriolar remodelling in T2DM but not in T1DM. Finally, ApoE knockout mice are mostly used for 

studies of atherosclerosis but also display coronary endothelial dysfunction as demonstrated in 

isolated arterioles155 or isolated buffer perfused hearts,156 with maintained VSMC sensitivity to NO 

(Supplementary material online, Table S5). 

Mouse models have both advantages and disadvantages—like any preclinical model—but 

one major advantage is the ability to use genetically modified animals, which creates a unique 

platform enabling investigators to address very precise questions. For example, Saitoh et 
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al.157 reported that the drug 4-aminopyridine (4-AP) attenuated coronary metabolic dilation in a large 

animal model. 4-AP is an antagonist of voltage-gated potassium channels, leading the authors to 

conclude that these channels were involved in metabolic coronary hyperaemia. However, the Kv-

channel family is large with 40 genes encoding for 12 Kv channel families. Although 4-AP may have 

some preferential antagonism for certain Kv channels, it is impossible to unequivocally establish the 

particular channel responsible for metabolic vasodilation using a standard pharmacological approach. 

This limitation underscores the rationale for using murine models, to engender a more precise 

conclusion and, in this situation, to enable determination of the specific Kv channel (or channels) that 

are linked to metabolic coronary vasodilation. Within this context, Ohanyan et al.30 demonstrated in 

a genetically modified murine model that Kv1.5 channels are critical to coronary metabolic dilation. 

Thus, deletion of these channels compromised the connection between cardiac work and myocardial 

blood flow. Because the knockout was global, the investigators also created a reconstituted rescue 

model that had the Kv1.5 channel (on the null background) expressed only in vascular smooth muscle 

upon induction with a tetracycline. This model, with the reconstituted channel, restored normal 

metabolic dilation, i.e. re-established the connection between myocardial blood flow and cardiac 

work.30 

4.2.1 Summary: murine models of CMD 

Genetic and non-genetic mouse models of metabolic derangement support the concept of CMD as an 

early abnormality in the disease process, with clear coronary microvascular endothelial dysfunction 

(Table 1). There is no question that the murine model has its limitations—including a high heart rate, 

high rate of metabolism, and sympathetic dominance—but it provides a route enabling the 

interrogation of specific questions in coronary microvascular physiology and pathophysiology. 

Genetically modified mice have enhanced our understanding of the control of the coronary 

microcirculation and will enable further ‘proof of concept experiments’ whereby genes that are linked 

to a human pathology can be expressed in a mouse to determine if the particular gene is causal in the 

process. 
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5. Translational value of the different animal models of CMD and 

concluding remarks 

5.1 Translational value to clinical setting 

Since INOCA is more often diagnosed in post-menopausal women than in men, studies of sex 

differences in pathophysiology are important and animal studies of CMD and INOCA should preferably 

take sex differences into account. Although rodents are more often studied in a comparative manner 

(young vs. old and male vs. female) than large animals, most studies in the field of metabolic 

dysregulation and its effects on coronary perfusion have been performed in young animals (e.g. 8–

12 weeks old mice, 3–6 months old pigs, Supplementary material online, Tables S1–S5) and have 

principally investigated a single sex. Yet, obesity and T2DM are strongly associated with maturation 

and ageing, and several differences have been reported between young and old animals, as well as 

between males and females. Thus, beta-cell replicative capacity strongly decreases with age in mice, 

and young rats do not develop insulin resistance in response to nutrient infusion, whereas older 

animals do.158 Also in male Gottingen minipigs studied from 6 to 24 months of age, increases in plasma 

glucose, fructosamine, and triglycerides were observed with age, while plasma cholesterol levels 

decreased with age.159 Importantly, oestrogen is known to have positive effects on metabolism and 

to be protective against the development of obesity, insulin resistance and hyperglycaemia,158 as well 

as against endothelial dysfunction,160 so that the use of animals of only one sex and one menopausal 

state in case of female animals is likely to introduce a bias. These limitations should be kept in mind 

when choosing an animal model, and limitations such as young age and single sex should, when 

possible, be circumvented in the study of INOCA, especially when testing novel therapies. 

Another important aspect pertaining to the translational value of animal models is their 

ability to utilize clinically relevant methodological approaches to diagnose and treat the disease. PET 

studies and invasive microvascular function measurements have recently been proposed to be the 

best approach in stratifying patients with INOCA for a tailored therapy.9 Such measurements, 

especially when involving invasive techniques, are not easily performed in smaller animal models 

(Supplementary material online, Tables S3–S5). However, large animal models may also pose some 

challenges. For example, while FFR measurements and acetylcholine and adenosine infusions can 

easily be performed in dogs and swine, these tests need to be adapted from the clinical protocol. For 

instance, in the porcine coronary circulation acetylcholine induces muscarinic vasoconstriction 

requiring use of another endothelium-dependent vasodilator. Finally, while the use of isolated small 

arteries/arterioles is very instrumental for the study of perturbations in specific mechanisms 
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regulating microvascular tone, it should be noted that—irrespective of the chosen animal model—

isolated small arteries/arterioles represent only one segment of the coronary microvasculature and 

interactions with the surrounding myocardium are lacking. Hence, while specific mechanisms involved 

in CMD can easily be studied in isolated coronary small arteries or arterioles, the evaluation of the 

coronary microcirculation as a whole, including microvessels of all sizes, is impossible using an in 

vitro technique. Hence, in vivo studies are ultimately required to assess coronary function in an 

integrated manner. 

5.2 Concluding remarks 

Animal models of coronary microvascular disease yield important insights into the genetic and 

environmental basis of human coronary pathophysiology in ischaemic heart disease and provide 

translational models for preventive and therapeutic interventions (see Figure 2). In the past 50 years, 

animal models have been instrumental in advancing our knowledge pertaining to CBF regulation in 

health and ischaemic heart disease. Notwithstanding the undisputable merits of experimental animal 

models, researchers need to carefully consider the choice of a specific animal model.161,162 It is 

imperative to acknowledge that no single animal model perfectly emulates the human disease, nor 

has a perfect translational capacity to the clinical setting (Table 1 and Figure 2). In addition, there are 

a number of financial and logistical considerations that need to be considered, including costs, 

infrastructure, and the requirement for specialized personnel. Small animal models have the 

advantage of being relatively cheap, easy to breed and handle, have short reproductive cycles and 

large litter sizes, a well-defined genome and a relative ease of genetic modification to explore 

pathophysiological mechanisms with great molecular precision. Disadvantages include different 

metabolic and lipoprotein profiles compared to humans and resistance to atherosclerosis 

development, requiring genetic modification, and technical challenges to study the coronary 

microcirculation particularly in vivo. Conversely, large animal models have the advantage of human-

sized hearts and coronary blood vessels, allowing the application of clinical diagnostic and therapeutic 

tools. Moreover, from a coronary anatomical and physiological perspective, large animals, especially 

swine models, approximate the human heart and its coronary circulation more closely, have similar 

lipoprotein profiles and develop similar metabolic derangement. In addition, the possibility of awake 

measurements in large animals is of great importance, as neurohumoral and cardiac dysfunction 

especially in early disease—possibly not detectable at rest or under deep anaesthesia—might be 

unmasked by exercise. As summarized here, several animal models have been developed for the study 

of CMD and characterized in detail. These models—depending on number and severity of, and 

duration of exposure to risk factors—show perturbations in coronary microvascular (endothelial) 
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function and structure, similar to what has been observed in patients with non-obstructive CAD and 

comorbid conditions. The use of these animal models, with careful selection based on the specific 

research question, will be instrumental in identifying novel therapeutic targets and for the subsequent 

development and testing of novel therapeutic interventions to treat CMD. 
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Figure 2 Animal models for CMD in the presence of metabolic derangement

Large and small animal models for CMD, either spontaneous, inducible, or inbred/engineered for the 
development of metabolic risk factors have been employed to study the mechanisms leading to CMD. 
Alterations in microcirculatory endothelial function leading to a disturbed vasodilator/vasoconstrictor 
balance as well as structural modifications both at the arteriolar and capillary level have been 
described, mimicking the human pathology including reduced basal and maximal coronary perfusion 
and myocardial ischaemia. apoE, apolipoprotein E; CBF, coronary blood flow; CCK-1R, cholecystokinin-
1 receptor; CFR, coronary flow reserve; CKD, chronic kidney disease; ET-1, endothelin-1; HFD, high-fat 
diet; LDLR, low-density lipoprotein receptor; LEPR, leptin receptor; NO, nitric oxide; RAAS, renin–
angiotensin–aldosterone system; ROS, reactive oxygen species. Right-sided panel presents the 
mechanisms of CMD which have been recapitulated in at least one animal model/species (black), 
which have been investigated but were not found to be present (black ↔) or which have not been 
investigated (grey) in the various species.
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Abstract 
The prevalence of diabetic metabolic derangement (DMetD) has increased dramatically over the last 

decades. Although there is increasing evidence that DMetD is associated with cardiac dysfunction, the 

early DMetD-induced myocardial alterations remain incompletely understood. Here, we studied early 

DMetD-related cardiac changes in a clinically relevant large animal model. DMetD was established in 

adult male Göttingen miniswine by streptozotocin injections and a high-fat, high-sugar diet, while 

control animals remained on normal pig chow. Five months later left ventricular (LV) function was 

assessed by echocardiography and hemodynamic measurements, followed by comprehensive 

biochemical, molecular and histological analyses. Robust DMetD developed, evidenced by 

hyperglycemia, hypercholesterolemia and hypertriglyceridemia. DMetD resulted in altered LV nitroso-

redox balance, increased superoxide production—principally due to endothelial nitric oxide synthase 

(eNOS) uncoupling—reduced nitric oxide (NO) production, alterations in myocardial gene-

expression—particularly genes related to glucose and fatty acid metabolism—and mitochondrial 

dysfunction. These abnormalities were accompanied by increased passive force of isolated 

cardiomyocytes, and impaired LV diastolic function, evidenced by reduced LV peak untwist velocity 

and increased E/eʹ. However, LV weight, volume, collagen content, and cardiomyocyte cross-sectional 

area were unchanged at this stage of DMetD. In conclusion, DMetD, in a clinically relevant large-

animal model results in myocardial oxidative stress, eNOS uncoupling and reduced NO production, 

together with an altered metabolic gene expression profile and mitochondrial dysfunction. These 

molecular alterations are associated with stiffening of the cardiomyocytes and early diastolic 

dysfunction before any structural cardiac remodeling occurs. Therapies should be directed to 

ameliorate these early DMetD-induced myocardial changes to prevent the development of overt 

cardiac failure. 
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Introduction 

According to a recent report by World Health Organization, age-standardized global prevalence of 

diabetes has nearly doubled since 1980, rising from 4.7% to 8.5% in the adult population.1 An 

estimated 422 million adults suffered from diabetes mellitus in 2014, compared to 108 million in 1980, 

which is the result of concomitantly increased prevalence of obesity and overweight globally.1 As 

diabetes is associated with increased risk of cardiovascular diseases in particular, a deeper 

understanding of its cardiac pathophysiology is essential for the development of novel targeted 

treatments. Previous pre-clinical studies have addressed the consequences of diabetes in myocardial 

tissue, showing that the pathophysiology of diabetes-induced cardiac damage is a complex and 

multifactorial process, in which oxidative stress has been postulated as a key player.2,3,4,5,6 Indeed, 

increased reactive oxygen species production and reduced antioxidant defenses have been associated 

with diabetic cardiomyopathy.2,3,4,5 However, the majority of these studies have been performed in 

rodents2,3,4 and it remains uncertain whether these findings can be translated to a larger, human-like 

heart. 

Consequently, in the present study we employed a translationally relevant large animal model with 

Diabetic Metabolic Derangement (DMetD), having similar anatomic, physiologic and metabolic 

characteristics of the cardiovascular system with the human situation. We characterized, in adult 

swine, the early DMetD-induced left ventricular (LV) changes at the mRNA, protein, cellular, tissue 

and organ function levels. For this purpose, DMetD was produced in adult male Göttingen miniswine 

by streptozotocin injections, to result in partial destruction of the pancreatic β-cells leading to 

impaired insulin production, combined with a high-fat, high sucrose and high fructose diet. LV function 

was assessed at baseline and 5 months after induction of DMetD, and myocardial tissue was 

comprehensively analyzed for oxidative stress and nitric oxide (NO) production, mitochondrial 

function, cardiomyocyte function, collagen content, and global LV remodeling and function, as well as 

for genome-wide gene expression profile. Our study shows that DMetD results in myocardial oxidative 

stress, endothelial nitric oxide synthase (eNOS) uncoupling and reduced NO production together with 

mitochondrial dysfunction and alterations in metabolic gene expression profile. These abnormalities 

are associated with impaired LV relaxation, at a time when cardiac structural remodeling at either the 

global LV or myocardial tissue level is still absent. 
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Methods 

Animals and DMetD induction 

Studies were performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals 

(8th edition, National Research Council. Washington, DC: The National Academies Press, 2011) and 

were approved by the Animal Care Committee at Erasmus University Medical Center, Rotterdam, The 

Netherlands. A total of 17 adult male Göttingen minipigs were enrolled in the study and followed for 

5 months. Diabetes was induced in 9 swine with intravenous injections of streptozotocin 

(25 mg/kg/day), over three days7. One week later, a high fat and high sugar diet (25% saturated fats, 

1% cholesterol, 10% sucrose and 15% fructose) was gradually introduced to the diabetic swine 

(DMetD group, N = 9), whereas the healthy control swine (Control, N = 8) continued on normal pig 

chow. Swine were group-housed with a separate individual access to food for 1 h/meal, twice daily, 

and ad libitum access to water. Fasting mixed central venous blood samples were obtained at baseline 

and sacrifice (5-month time point), and analyzed for glucose, triglyceride and cholesterol. 

Fitness test 

To objectively measure physical fitness, animals were subjected to an incremental endurance 

treadmill test until exhaustion. The test started at a pace of 1.5 km/h and speed was increased by 

0.5 km/h every five minutes and running time was recorded as an indicator of maximal aerobic 

endurance capacity. 

Echocardiography 

Echocardiography was performed at baseline, and after 5 months. Animals were sedated with an 

intramuscular injection of Zoletil (tiletamine/zolazepam; 5 mg/kg) and xylazine (2.25 mg/kg). Two-

dimensional echocardiographic images (iE33, Philips, Best, the Netherlands) were acquired in 

harmonic mode from a right lateral decubitus position using a broadband (1–5 MHz) X5-1 transducer. 

All acquisitions and measurements were performed according to the current guidelines8. We 

performed pulsed-wave Doppler examination from the (apical) 4-chamber view, to obtain peak mitral 

inflow velocities at early (E) and late (A) diastole and E deceleration time. Tissue Doppler imaging was 

performed to measure myocardial tissue velocity at the septal and lateral mitral annulus at early 

diastole (eʹ). E/A ratio and the E/eʹ ratio were calculated. Left atrial volume was measured using the 

modified biplane area-length method. Left atrial volume index was calculated by dividing left atrial 

volume by body weight. 
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Hemodynamic assessments and cardiac tissue sampling and analyses 

At 5 months follow up, hemodynamic measurements were perfomed under anesthesia and animals 

were terminated. Sedation was induced with Zoletil (tiletamine/zolazepam; 5 mg/kg), xylazine 

(2.25 mg/kg) and atropine (2 ml i.m.), and animals were anesthetized with an intravenous continuous 

infusion of pentobarbital (20 mg/kg), intubated and artificially ventilated. Arterial and venous access 

was obtained by placing 9F sheaths in the left carotid artery and the jugular vein for the measurement 

of mean aortic pressure, LV pressure (using a Millar catheter), as well as pulmonary artery and 

pulmonary capillary wedge pressure, cardiac output (by thermodilution) and for blood sampling. After 

placing a pressure-volume catheter in the LV (PV loop catheter, CD Leycom, The Netherlands), the 

pressure–volume loops were recorded and end-diastolic pressure–volume relationships were 

constructed, during baseline hemodynamic conditions, preload reduction (by complete obstruction 

of the inferior vena cava by a Fogarty balloon, 8/10F, Edwards Life sciences, Amsterdam, The 

Netherlands) and preload increase (by saline infusion, 20 ml/kg i.v. within 7 min). Thereafter, a 

sternotomy was performed, hearts were arrested, and quickly excised, washed in cold saline solution 

and then rapidly cut and frozen in liquid nitrogen and prepared and stored for later analyses. 

Myocardial reactive oxygen species (ROS) and nitric oxide (NO) production measurements 

Cardiac oxidative stress was evaluated by lucigenin-enhanced chemiluminescence (Sigma Aldrich; 

5 μmol/l) as previously described7. To this end, both basal and NADPH-stimulated (300 μM NADPH) 

superoxide generation were measured in homogenized, frozen sub-endocardial tissue samples of the 

anterior LV wall. NOS-dependent superoxide production was determined by incubating the samples 

for 20 min with the NOS inhibitor L-NAME (Sigma Aldrich; 1 mmol/l), while the contribution of NADPH 

oxidase to superoxide production was assessed using the NADPH oxidase inhibitor VAS2870, (10 μM). 

The temperature was controlled (37 °C) during the entire experiment and the measured light emission 

was expressed as relative light units (RLU) per mg protein per second. All samples were measured in 

duplicate and data averaged for each animal. Aditionally, myocardial NO production was evaluated in 

the same area, by measuring the production of NO metabolites NO2- and NO3- using the Griess 

reaction colorimetric assay kit (Cayman Chemical). 

Endothelial nitric oxide synthase expression and phosphorylation 

Protein expression of endothelial nitric oxide synthase (eNOS) and the phosphorylated eNOS were 

determined in homogenized, snap frozen LV sub-endocardial tissue samples. Furthermore, low 

temperature SDS-PAGE was performed for the detection of eNOS monomer and dimer fraction, as 
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previously described9. SDS-PAGE for phosphorylated eNOS, total eNOS protein content and 

housekeeping protein glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was performed at room 

temperature. Subsequently, proteins were transferred onto nitrocellulose membranes and the blots 

were probed with primary anti-phospho eNOS (1:1,000, Cell Signaling), anti-eNOS (1:500, 

Transduction Laboratory) and anti-GAPDH (1:10,000, Imgenex). All blots were analysed using the 

Odyssey system (LI-COR). 

AMPK western blot analyses 

Frozen LV samples were weighed and homogenized in 6 vol ice cold 62.5 mM Tris–HCl buffer (pH 6.8, 

with 1 μg/ml Leupeptin, 1 μg/ml Pepstatin, and 1 mM phenylmethanesulfonyl fluoride, Sigma-Aldrich, 

St. Louis, Missouri, USA) with Qiagen TissueLyser (85220, Hilden, Germany). The homogenates were 

centrifuged and the samples were then denatured in Laemmli solution at + 70 °C for 7 mins10. Protein 

concentration of samples was determined using BCA protein assay kit (Thermo Scientific, Waltham, 

Massachusetts, USA). The samples (10 μg of protein for antibodies AMPK and pAMPK) were run with 

SDS-PAGE gels. After separation, the proteins were transferred onto a Whatman Protran 

Nitrocellulose membrane (PerkinElmer, Boston, Massachusetts, USA). The immunoblot membranes 

were blocked with 5% bovine serum albumin (BSA, Sigma-Aldrich) in Tris buffered saline (TBS, Sigma-

Aldrich and thereafter, the membranes where incubated overnight at + 4 °C with primary antibodies 

for AMPK and pAMPK, washed and then incubated for 30 min with horseradish peroxidase conjugated 

secondary anti-rabbit antibody (1:10,000, Abcam, ab6721). The band densities were analysed with 

Gel Doc XR System (BioRad). In order to avoid variation between membranes a control sample was 

loaded onto each gel and the band intensities were normalized against the control sample. 

Enzyme assays 

The samples were weighed and homogenized with 10 volumes of ice-cold homogenization solution 

(50 mM imidazole, 1 mM EDTA, pH 8.0) for HOAD (EC 1.1.1.35) or with 19 volumes homogenization 

buffer (50 mM Hepes, 1 mM, EDTA, 0.1% Triton X-100, pH 7.4) for CS (EC 2.3.3.1) and Lactate 

Dehydrogenase (LDH) (EC 1.1.1.27) with Qiagen TissueLyser. The HOAD samples were diluted 1:1 with 

homogenization solution, the LDH samples were diluted 1:1 with 50 mM Tris buffer, pH 7.4 and the 

CS samples were diluted 1:8 with 50 mM Tris buffer, pH 8.0. The protein concentrations of samples 

were determined with a BCA protein assay kit following the manufacturer´s protocol. The enzyme 

activity analyses were performed according to Dalziel et al.11 for CS and LDH and according to Lowry 

et al.12 for HOAD at 37 °C. The activities were read with PerkinElmer Enspire 2,300 Multilaber reader 
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(Turku, Finland), and the enzyme activities were calculated per mg protein with the background 

activity subtracted. 

Histology and immunohistochemistry 

After the heart was excised, LV myocardial tissue samples were fixated in 4% buffered formaldehyde, 

and embedded in paraffin. Thereafter, 4.5 μm thick slides were cut from the LV anterior wall, 

deparaffinized and stained for various histological analyses. For each analysis, 6–10 fields at × 20 

magnification, were examined in the sub-endocardium of each slide. Collagen deposition was 

quantified using Picrosirius Red staining as follows: using a linear polarization filter, the area occupied 

by the collagen type I and type III fibers, was measured and expressed as percentage of the myocardial 

area. Myocyte size was quantified with a Gomori silver stain: cross-sectional areas of 300–350 round 

cells with clearly visible nuclei were measured in each slide. All measurements were performed using 

the Clemex Vision Image analysis system (Clemex Technologies, Quebec, Canada). 

Passive cardiomyocyte stiffness and titin isoform composition 

Passive stiffness of single cardiomyocytes was measured using membrane-permeabilized 

cardiomyocytes. In brief, single cardiomyocytes were isolated in cold relaxing solution containing (in 

mM) free Mg2+ 1, KCl 100, EGTA 2, Mg-ATP 4, imidazole 10 (pH 7.0, adjusted with KOH) and incubated 

for 5 min in relaxing solution containing Triton X-100 (0.5%) to remove all membranes as described 

previously13. Passive stiffness of the cardiomyocytes, was assesed by Fpas measurements, performed 

in relaxing solution at 15 °C and at sarcomere lengths ranging from 1.8 to 2.2 μm. Cardiomyocyte 

diameters were measured microscopically, in two perpendicular directions, and cross-sectional area 

was calculated assuming an elliptical shape. Passive force data were normalized to cross-sectional 

area of cardiomyocytes. Titin isoforms were separated on 1% agarose gel and stained with SYPRO 

Ruby protein stain as described previously.14,15 

Electron microscopy analysis of mitochondria 

LV samples of 6 Control and 5 DMetD animals were prepared for electron microscopy as previously 

described.16 In short, samples were fixed in 1.5% osmium tetroxide (10 min), dehydrated with 

acetone, and embedded in Epon812. Ultrathin sections were cut and placed on 300-mesh Formavar-

coated nickel grids, and stained with uranyl acetate and lead citrate. Images from the intramyofibrillar 

region (longitudinal to the fiber orientation only) were taken at magnifications ranging from 4,500 × to 
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30,000 × with an electron microscope (Jeol-1200EX, Jeol Peabody, MA, USA). Glycogen content and 

the number of vacuoles were determined by scoring images on a scale for 1 (low) to 5 (extremely 

high) in a blinded fashion. Mitochondrial volume density was determined by overlaying a dense grid 

over images taken at 22,500 × and counting all mitochondria overlaying grid corners, as a percentage 

of all grid corners. Mitochondrial connectivity was assessed by visually inspecting whether 

mitochondria were touching other mitochondria, and expressed as a percentage of all mitochondria 

on the image. On average, 8 ± 1 images were analyzed per animal. 

Mitochondrial respiration 

Mitochondrial respiration was measured in fresh biopsies from the LV sub-endocardium as described 

before16. Thin strips were permeabilised with saponin (50 µg/ml) for 30 min at 4 °C in a solution 

consisting of 7.2 mM EGTA, 2.8 mMCaEGTA, 6.6 mM MgCl2, 10 mM taurine, 5.8 mM ATP, 15 mM 

phosphocreatine, 20 mM imidazole, 50 mM MES and 0.5 mM DTT, and the pH was set to 7.1. The 

tissue was washed in respiration solution, consisting of 110 mM sucrose, 0.5 mM EGTA, 17 mM MgCl2, 

20 mM taurine, 60 mM K-lactobionate, 10 mM KH2PO4, 20 mM HEPES, 1 g/L BSA (fatty acid free), and 

pH set to 7.1 before being transferred to a respirometer (Oxygraph-2 k; Oroboros Instruments, 

Innsbruck, Austria). Oxygen concentration remained < 300 μM during the experiment and 

temperature was set to 37 °C. Leak respiration was measured during 10 mM sodium glutamate, 

0.5 mM sodium malate and 5 mM sodium pyruvate. NADH-linked (through complex I) respiration was 

assessed using 2.5 mM ADP. Maximal NADH-linked respiration was measured after 10 μM 

cytochrome c, i.e. after correcting for possible outer-membrane damage. Maximal oxidative 

phosphorylation capacity was determined after 10 mM succinate. Maximal uncoupled respiration was 

assessed after titrations of 0.01 μM carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP). 

Succinate-driven (complex II) respiration was assessed by inhibiting mitochondrial complex I by 

0.5 μM rotenone. Residual oxygen consumption was measured after 2.5 μM antimycin A and used for 

background correction. Experiments were performed in duplo. Respiration values were averaged and 

normalized to wet weight and expressed in pmol O2/s/mg. 

Mitochondrial complex protein determinations by Western immunoblotting 

Protein content was determined using western immunoblotting. Tissue homogenates containing 7.5 

or 12.5 µg (well within the linear range of detection) of protein were loaded onto a pre-cast 4–15% or 

8–16% gradient criterion TGX SDS-PAGE gels. Proteins were transferred onto PVDF membranes and 

incubated with an antibody cocktail (Abcam, Cambridge, UK; dilution 1:1,000; 2 h) against complex I 
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subunit (NDUFB8), 30 kDa complex II subunit and complex IV subunit 1. Complex III subunit core 2 

could not be determined due to species differences for the specificity of antibodies. 

RNA extraction and gene expression analyses 

From 20 mg snap-frozen sub-endocardial tissue samples of 3 Control and 3 DMetD pigs, total RNA was 

extracted using the Qiagen miRNeasy Mini kit protocol. RNA integrity was checked on an Agilent 2,100 

Bioanalyser for a RIN score ≥ 8.0 and 20 μg RNA at 100 ng/μl was used for further analyses. At the 

Biomics center of Erasmus University Medical Center, RNA was prepared for sequencing with the 

Illumina TrueSeq RNA sample preparation kit. Sequencing was performed according to the Illumina 

TrueSeq v3 protocol on an Illumina HiSeq 2000 sequencing system, 43 bp single read, 7 bp index. 

Sequence data were mapped against the reference pig genome Sus scrofa sequence assembly version 

10.2 by Illumina Tophat version 2.0.10. Gene expression values of the RNA-seq data were estimated 

using featureCounts17 using the gene annotation Sscrofa10.2. Statistical differences in gene 

expression between both conditions were estimated using edgeR18 where an absolute logFC > 1 with 

a P-value < 0.001 was considered statistically significant. Biological functions and molecular networks 

of the differentially expressed genes were determined using Ingenuity pathway analysis Pathway 

analysis (Ingenuity Systems, Redwood City, CA, USA). Interconnectivity of the genes was visualized by 

the molecular networks constructed by the program. 

Data analysis 

Data are presented as mean ± SEM. Comparison of variables between the DMetD and Control animals 

over time was performed by two-way ANOVA for repeated measures (fitness, echocardiography, PV-

loop, myocyte force and blood variables) and Bonferroni post-hoc test or unpaired student t-test 

(variables measured only once at sacrifice) by GraphPad Prism 4.3 or SAS 9.2. p < 0.05 was considered 

statistically significant. 

Results 

Metabolic parameters and fitness 

Several results are presented in the Supplementary Information file. Five months of DMetD resulted 

in hyperglycemia (p < 0.05), hypercholesterolemia (p < 0.05) and hypertriglyceridemia (p < 0.05), 

while no significant differences in body weight were observed between the groups (Table 1). DMetD 
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resulted in a significant reduction in physical fitness, as reflected in a ~ 30% decrease in total running 

time (p < 0.05 versus Control). 

 

Table 1. Body weight and plasma metabolic parameters measured at baseline and 5-month time 
points. 

  BASELINE 5-MONTH 

BW (kg) CON 32 ± 2 37 ± 1 

 DMetD 31 ± 2 40 ± 3‡ 

Glucose (mmol/l) CON 5.9 ± 0.4 6.8 ± 0.7 

 DMetD 5.0 ± 0.3 13.9 ± 2.0*†‡ 

Cholesterol (mmol/l) CON 1.01 ± 0.13 1.10 ± 0.04 

 DMetD 0.98 ± 0.05 5.89 ± 1.03*†‡ 

LDL cholesterol (mmol/l) CON 0.45 ± 0.09 0.39 ± 0.03 

 DMetD 0.42 ± 0.03 3.68 ± 1.05*†‡ 

Triglycerides (mmol/l) CON 0.30 ± 0.02 0.27 ± 0.03 

 DMetD 0.26 ± 0.03 0.66 ± 0.19*†‡ 

Fitness test (min) CON 39 ± 4 38 ± 4 

 DMetD 43 ± 5 30 ± 4*‡ 

CON=healthy controls (n=8), DMetD=diabetic metabolic derangement animals (n=9). LDL = low 
density lipoproteins. *p<0.05 as time•diabetes interaction by two-way ANOVA, †p<0.05 versus 
corresponding CON by Bonferroni post-hoc analysis, ‡p<0.05 versus corresponding baseline by 
Bonferroni post-hoc analysis. Data are mean±SEM. 

 

Cardiac function and remodeling 

There were no differences in echocardiography variables between Control and DMetD at baseline 

(Tables S1 and S2). Five months of DMetD resulted in an elevated E/e’, while peak untwist velocity 

was significantly lower, in DMetD compared to Control (Figure 1), indicating impaired LV diastolic 

function in DMetD. In contrast, DMetD did not produce differences in left atrial (LA) volume, LV 

diameter, or absolute and relative LV wall thickness between DMetD and Control (Figure 1), while LV 

weight was also not affected (Figure 2A), indicating that 5 months of DMetD did not result in cardiac 
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remodeling. Moreover, there were no significant differences in LV and aortic pressures, LV volumes, 

stroke volume, ejection fraction, or cardiac output between DMetD and Control (Tables S3 and S4). 

Histological analysis showed that cardiomyocyte size (Figure 2B, C) and myocardial collagen content 

(Figure 2E, F) were not significantly different between DMetD and Control. Furthermore, there were 

no changes in type I or type III collagen or their ratio (data not shown). These histological findings 

correlated well with the nearly identical LV weights and LV end-diastolic pressure–volume relations, 

(Figure 2D), the preload recruitable stroke work (Figure 2G), and preload adjusted 

dP/dtmax (Figure 2H) and dP/dtmin (Figure 2I) in DMetD and Control.

Figure 1 

Ratio of mitral peak velocity during early filling (E) to early diastolic mitral annular velocity (eʹ, E/eʹ 

ratio, A), peak left ventricle untwist velocity (B), left atrial volume (LA, C), left ventricle end diastolic 

diameter (LVEDD, D), posterior wall thickness (PWd, E), and relative wall thickness 

((2*PWd)/LVEDD, F) in the hearts of DMetD and Control (CON) swine at baseline (BL) and after 

5 months. *p < 0.05 for interaction DMetD and time by two-way ANOVA, †p < 0.05 versus 

corresponding CON by Bonferroni post-hoc test, and ‡p < 0.05 versus CON by unpaired t-test.



4

Left ventricular alterations in a porcine model of diabetic metabolic derangement

109

Figure 2 

Left ventricular weight (LV weight, (A)), myocyte cross-sectional area (examples, (B), and data 

summary (C)), end-diastolic pressure (EDP)–volume (EDV) relation composed from measurements 

at preload reduction, (inverted triangle), baseline (open circle) and preload increase (open triangle) 

(D), myocardial collagen deposition (examples, (E) and data summary (F)), stroke work (SW, G), and 

dP/dtmax (H) and dP/dtmin (I), plotted as a function of end-diastolic volume, measured at sacrifice in 

CON and DMetD animals.

Isolated cardiomyocyte function

Single cardiomyocyte passive force was significantly higher in the DMetD group compared to Control 

(Figure 3A) as was the maximally developed force (Figure 3B). No differences were observed in titin 

isoform composition evidenced by an unaltered ratio between the compliant (N2BA) and stiff (N2B) 

isoform of titin between DMetD and Control (Figure 3C).
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Figure 3

Single cardiomyocyte passive force (A) in response to increasing myocyte stretch and maximal forces 

(B). CON = controls (13 cardiomyocytes of 5 swine), DMetD, diabetic metabolic derangement (11 

cardiomyocytes of 5 swine). Myocardial titin N2BA/N2B ratio of CON (n = 6) and DMetD (n = 5, C), and 

typical examples of the titin gels for 3 animals in each group . *p < 0.05 versus CON by two-way 

ANOVA, †p < 0.05 versus CON by unpaired t-test. Full-length gels are shown in 

Supplementary Figure S1.

Reactive oxygen species and nitric oxide

Superoxide production in the LV myocardium was markedly higher in DMetD compared to Control 

under baseline conditions as well as during inhibition of NOS and NADPH oxidase (Figure 4A). 

Furthermore, upon stimulation of NADPH oxidase (Figure 4B), superoxide production was further 

enhanced in the DMetD group, suggesting that NADPH oxidase is a significant source of superoxide. 

This increase was attenuated by L-NAME, both under basal conditions (Figure 4A), as well as under 

NADPH stimulation (Figure 4B), suggesting that a significant part of the superoxide production is NOS-

dependent. eNOS expression in DMetD was comparable to Control (Figure 4C), but the ratio between 

phosphorylated and unphosphorylated eNOS was reduced in DMetD (Figure 4D). Moreover, 

monomer-to-dimer ratio was also significantly increased, suggestive of eNOS uncoupling (Figure 4E), 

and NO production was reduced in DMetD (Figure 4F). The decrease in eNOS phosphorylation and 

increase in eNOS uncoupling correlated with the superoxide production (both p < 0.05), further 

supporting the contribution of eNOS uncoupling to the oxidative stress in the hearts of DMetD 

animals.
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Figure 4

Basal (A) and NAPDH-stimulated (B) superoxide production in LV myocardium, myocardial eNOS 
expression (C), phosphorylation of eNOS (D), the monomer/dimer ratio (E), and nitric oxide (NO) 
production (F). CON = controls (n = 8), DMetD, diabetic metabolic derangement (n = 9). *p < 0.05 
versus corresponding CON by two-way ANOVA and Bonferroni post hoc (panel A and B) or unpaired 
t-test (panel C–F), †p < 0.05 versus corresponding untreated by two-way ANOVA and Bonferroni post 
hoc, ‡p < 0.05 versus corresponding basal by two-way ANOVA and Bonferroni post hoc. Full-length gel 
blots are shown in Supplementary Figure S2.

Mitochondrial structure and function

Electron microscopy (EM) analysis of the cardiomyocytes (Figure 5A, B) demonstrated increased 

glycogen content in the cardiomyocytes of DMetD compared to Control (Figure 5C), indicating a clear 

diabetic phenotype. Additionally, more (and larger) vacuoles were observed in DMetD myocardium 

compared to Control (Figure 5D), indicative of either fatty acid accumulation or enlarged sarcoplasmic 

reticulum. Mitochondrial density (Figure 5E) and percentage of interconnected mitochondria 

(Figure 5F) were similar in both groups, suggesting that the network connectivity remained intact in 

DMetD. Total myocardial mitochondrial complex protein content was slightly higher in DMetD 

(Figure 5G and S3), but maximally uncoupled respiration (normalized to wet weight) was lower in 
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DMetD compared to Control (− 20%, p < 0.05; Figure 5H). This lower mitochondrial respiration could, 

at least in part, be explained by a lower maximal NADH (complex I)-stimulated respiration in DMetD 

compared to Control (− 31%, p = 0.02; Supplementary Figure S4), while maximal complex II-linked 

respiration was similar (Figure S4), indicative of a mitochondrial complex I dysfunction in DMetD.

Figure 5

Examples of cardiomyocyte ultrastructure by electron microscopy in CON (A) and DMetD (B). 

M = mitochondrion, G = glycogen, V = vacuole. Scale bar represents 2 μm. The inserts highlight the 

altered glycogen content. Quantified glycogen content (C) and number of vacuoles (D) were 

significantly higher in DMetD compared to CON. Mitochondrial density (E) or percentage of connected 

mitochondria (F) were not different between groups. Total myocardial mitochondrial protein content 

(G) by Western blotting (see Supplementary Figure 1) was significantly higher in DMetD compared to 

CON. Electron transport (ET) capacity (H) however, was significantly lower in DMetD compared to 

CON, due to NADH-linked dysfunction (see Supplementary Figure 2), suggestive of an intrinsic 

mitochondrial dysfunction, independent of mitochondrial protein mass. *p < 0.05 vs. CON by 

unpaired t-test. Full-length gels and blots are shown in Supplementary Figure S3.
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AMPK and metabolic enzymes

The analysis of AMPK light and heavy bands showed lower protein levels of the AMPK light bands in 

the DMetD animals (Figure 6A), while no differences were observed in the heavy bands (Figure 6B). 

The levels of pAMPK were also lower in the DMetD group (Figure 6C). Enzyme activities of citrate 

synthase (CS), lactate dehydrogenase (LDH) and 3-OH acyl CoA dehydrogenase (HOAD) were similar 

between groups (Figure 6D–F).

Figure 6

Protein levels of the AMPK light (A) and heavy bands (B), pAMPK (C) and enzyme activity of CS (D), 

LDH (E) and HOAD (F), in CON and DMetD animals. *p < 0.05 versus CON by unpaired t-test. AMPK 

AMP-activated protein kinase, pAMPK phosphorylated AMPK, CS citrate synthase, LDH lactate 

dehydrogenase, HOAD 3-hydroxyacyl-CoA dehydrogenase. Full-length gel blots are shown in 

Supplementary Figure S5.
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Genome-wide gene expression

Genome-wide gene expression analyses indicated that transcription of 63 different genes were 

statistically significantly differentially expressed, with 29 genes up-regulated and 34 genes down-

regulated by DMetD, of which many were related to alterations in glucose and fatty acid metabolism 

(Supplementary Table S6). The most significantly affected networks were ‘glucose metabolism 

disorder’ and ‘transport of lipids’ and within these networks we identified three transcriptional factors 

being involved, i.e. FOX A2, CEBPA and PPARA (Figure 7).

Figure 7

Myocardial genes and their networks in DMetD are connected to two major pathways associated with 

glucose and lipid metabolism disorders.
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Discussion 

The present study was designed to investigate the early cardiac functional and structural 

abnormalities produced by DMetD in a human-like, translational large animal model, at the level of 

gene and protein expression, cellular and tissue composition as well as organ function. The main 

findings were that: (i) After five months of DMetD, no changes in LV weight, LV end-diastolic-pressure, 

-volume, and -pressure–volume relation, and LA volume were observed. Similarly, no LV myocardial 

fibrosis or cardiomyocyte hypertrophy was observed, indicating the absence of overt remodeling at 

the LV chamber or myocardial tissue level. (ii) In contrast, cardiomyocyte resting tension was 

increased, which was accompanied by an elevated E/e’ and a lower LV peak untwist velocity in DMetD, 

reflecting early impairments in LV diastolic function. (iii) Mitochondrial dysfunction in DMetD swine 

was also present with lower mitochondrial complex I function and lower maximal respiration, despite 

minor changes in mitochondrial protein content or mitochondrial density. (iv) DMetD also resulted in 

marked perturbations in LV myocardial nitroso-redox balance, due to increased superoxide and 

reduced nitric oxide production. (v) These abnormalities were accompanied by differential expression 

of a significant number of genes, many of which related to perturbations in glucose and fatty acid 

metabolism. The implications of these findings will be discussed. 

 

DMetD-associated LV diastolic dysfunction in the absence of LV remodeling 

DMetD is a major risk factor for heart failure, in particular heart failure with preserved ejection 

fraction (HFpEF).19,20 HFpEF is characterized by an increased LV diastolic stiffness and LV concentric 

remodeling, while at the myocardial ultrastructural level fibrosis and concentric myocyte hypertrophy 

are typically observed.21,22 In the present study, 5 months of DMetD did result in robust hyperglycemia 

and dyslipidemia, with hypercholesterolemia and increased plasma triglycerides, in the absence of 

liver or kidney dysfunction (see Supplementary Table S5), consistent with our and others’ findings in 

similar animal models.7,23,24 However, despite these clear metabolic alterations DMetD did not—yet—

result in LV or cardiomyocyte hypertrophy or increased LV end-diastolic stiffness or produce 

myocardial fibrosis, suggesting that overt LV structural changes were still absent. Additionally, no 

macroscopic atherosclerosis development could be observed at this point in any of the large epicardial 

coronary arteries. In contrast, we observed several functional changes both in LV chamber and 

cardiomyocyte function. Thus, peak untwist velocity—a novel and early functional marker of LV 

diastolic dysfunction—was lower, while E/eʹ—an established marker of diastolic dysfunction—was 

elevated in DMetD versus Control swine at 5 months of DMetD. Interestingly, we recently found that 
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a reduction of peak untwist velocity was already observed after 3 months of DMetD, at a time when 

E/eʹ was still maintained normal.25 The observation in the present study, that 5 months of DMetD 

produced a further reduction in peak untwist velocity and resulted in an elevated E/eʹ, suggests that 

diastolic dysfunction progresses over time. The described increase in E/eʹ ratio and peak untwist 

velocity may be a reflection of the dysfunctional (subendocardial) cardiomyocytes as an early 

manifestation of diastolic dysfunction, before an overt increase in collagen deposition increases 

chamber stiffness more profoundly.26 This may explain why LVEDP and LV end-diastolic elastance, as 

assessed with LV pressure–volume measurements, were still maintained at this stage of the disease. 

However, the lack of difference between DMetD and Control animals with respect to other early 

diastolic function variables, including Tau and LV dP/dtmin is not readily explained. One potential 

explanation is that echocardiography was performed under light sedation, while LV pressure–volume 

measurements were obtained under deep general anaesthesia with pentobarbital; the latter may 

have obscured subtle differences in early diastolic function parameters between DMetD and Control 

animals. 

Indeed, the changes in LV diastolic function were accompanied by an increased passive force 

of single cardiomyocytes, suggesting that altered cardiomyocyte function, rather than structural 

changes, were responsible for the observed LV diastolic dysfunction. A higher resting cardiomyocyte 

tension has been shown in patients with HFpEF21,27 as well as in DMetD patients28 and animal 

models7,29,30. The increased resting tension has initially been ascribed to changes in titin isoform 

expression.31 However, in line with more recent studies suggesting that changes in titin 

phosphorylation (rather than the isoform changes) are principally responsible for the increased 

resting tension32,33, we also failed to observe differences in titin isoform expression. There is 

increasing evidence that hypo-phosphorylation of titin is the result of reduced NO-cGMP-PKG 

signaling.27,33 Interestingly, we observed a reduced nitric oxide production in DMetD swine, 

warranting further investigation of changes in titin phosphorylation in DMetD animals in future 

studies. 

 

Oxidative stress and impaired nitric oxide formation 

Five months of DMetD resulted in substantially higher superoxide production in LV myocardium 

compared to Control swine. Superoxide production was already significantly higher at basal state, 

which was principally NOS mediated. In addition, superoxide production was further aggravated in 

DMetD myocardium upon exposure to NADPH, which appeared to be mediated by both NOS and 
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NADPH oxidase. These findings are in line with other studies demonstrating oxidative stress in DMetD 

and suggest that a variety of mechanisms can contribute to oxidative stress in DMetD.34,35 Moreover, 

the increased superoxide production was likely directly related to abnormalities in NO bio-availability. 

An increased NOS dependent superoxide production is consistent with our finding that 

monomer/dimer ratio of eNOS was significantly higher in DMetD myocardium. This suggests 

substantial eNOS uncoupling, which resulted in superoxide— rather than NO-production by eNOS. 

Moreover, although total eNOS was not different between the groups, the ratio of phosphorylated 

and unphosphorylated eNOS was reduced in DMetD, which may have been the result of the observed 

lower levels of AMPK and pAMPK.36,37 In line with these findings, reduced NO levels, as indicated by 

the NO metabolites nitrite-and nitrate, were present in the DMetD myocardium. Reduced NO levels 

are not only detrimental for coronary vascular function38, but also for myocardial function36,39, and 

the loss of NO, and consequently NO-cGMP-PKG signaling, likely explains the observed increase in 

cardiomyocyte resting tension27. 

 

AMPK and enzymatic activities in the LV 

We observed an inhibition or deactivation of the AMPK system in DMetD, as we measured lower 

AMPK phosphorylation and AMPK light band levels. AMPK is an important regulator of cellular energy 

pathways and is activated by stressful situations such as prolonged exercise when AMP/ADP ratio is 

elevated.37,40 Unlike in rodents, in fish and swine two AMPK bands can be detected. The physiological 

meaning of these two bands has not been fully elucidated, but they may represent different isoforms 

of AMPK. The downregulation of AMPK was likely the result of the increased circulating glucose and 

lipid levels in conjunction with the higher tissue glycogen levels in DMetD swine, which was previously 

observed also in mouse models of DMetD.41,42 A decrease in AMPK activity explains, at least in part, 

the increased NADPH oxidase activity as well as the reduced peNOS levels in DMetD swine, and thus 

likely contributed to the perturbations in nitroso-redox signaling and the consequent increase in 

cardiomyocyte resting tension.37 

 

Metabolic and mitochondrial function 

Myocardial glycogen content was higher in DMetD, which is consistent with findings in previous 

studies.43,44 The higher number of vacuoles in the DMetD LV myocardium likely reflects increased fat 

deposits, but could also be part of enlarged peroxisomes (for fatty acid oxidation) or sarcoplasmic 
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reticulum. Unfortunately, delineation between these possibilities cannot be derived from our electron 

microscopy images. However, the lack of functional alterations in systolic cardiac function in DMetD 

suggests that the sarcoplasmic reticulum remains intact in this animal model and these enlarged 

vacuoles are likely related to lipid overload, and a state of lipotoxicity.6 

Additionally, mitochondrial density and connectivity were not affected in DMetD, while total 

mitochondrial complex protein content was slightly higher. No significant alterations were detected 

in the maximal activity of myocardial enzymes essentially involved in cardiomyocyte energy 

generation, including CS, LDH and HOAD. Maximally stimulated mitochondrial respiration was lower 

in DMetD, due to a lower NADH-linked (complex I) respiration. Mitochondrial complex I is the most 

vulnerable complex for mitochondrial (supercomplex) damage, and dysfunction has been seen in 

other models of heart failure16, and type 2 diabetes mellitus45. Likely, the mitochondrial complex I 

dysfunction causes bioenergetic dysfunction and ADP insensitivity of the heart, contributing to ADP-

induced stiffening of the heart.46 The cause of this impaired mitochondrial complex I function is 

currently unknown, but could relate to local inflammation and/or lipotoxicity,6,45 or oxidative stress-

induced alterations in supercomplex formation6, 16 that in turn can cause an increase in mitochondrial 

superoxide formation47. Further studies are required to understand the contribution of mitochondrial 

dysfunction and the role of oxidative stress in the development of diastolic dysfunction in DMetD. 

 

Gene expression profiles 

Our genome-wide gene expression data analysis indicated that after 5 months of DMetD transcription 

of 364 different genes was either up-or down-regulated by DMetD by at least twofold. From these 

364 genes two highly significant networks emerged that were related to abnormalities in glucose 

metabolism (glucose metabolism disorder) and fatty acid metabolism (transport of lipid). After p-

value correction (FDR < 0.1), 63 genes remained statistically significant, of which several genes are 

particularly relevant in relation to the diabetic cardiomyopathy. 

First, the upregulation of UCP3 (uncoupling protein 3) which results in dissipation of energy 

as heat, can protect mitochondria against lipotoxicity and lipid-induced oxidative stress, observed 

here. Expression levels of UCP3 increase when fatty acid supply to mitochondria exceeds their beta-

oxidation capacity and the protein enables the export of excess fatty acid load from mitochondria.48 

Another upregulated gene, ANGPTL4, encodes for the protein Angiopoietin-like 4, of which expression 

is induced by low oxygen levels and is also directly involved in regulating lipid metabolism. In diabetes, 

increased expression leads to reduced triglyceride clearance in blood, and explains, at least in part, 
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the observed hypertriglyceridemia in DMetD swine. Additionally, we observed upregulated CPT1A, 

carnitine palmitoyltransferase 1A, which has a rate-limiting role for long chain fatty acid oxidation in 

cardiac mitochondria. Its expression has been shown to be increased in hypertrophied rat 

cardiomyocytes49, resulting in impaired fatty acid oxidation50. Although the mechanisms responsible 

for such increase in the present study are unclear, and may be related to an impaired inhibition of 

malonyl-CoA by glucagon in the DMetD hearts, it may contribute to accumulation of fatty acid 

metabolites in the myocardium, contributing to the increased lipotoxicity.50 Lipase E was also up-

regulated in DMetD hearts, and is known to regulate hydrolysis of stored triglycerides to free fatty 

acids. Perilipin 2 (PLIN2) coats intracellular lipid storage droplets, and its up-regulation together with 

lipase E indicates enhanced free fatty acid traffic in the DMetD myocardium, and suggests that the 

higher number of vacuoles in DMetD indeed represent lipid accumulation. The protein encoded by 

the CREB3L3 is a transcription factor that may act during endoplasmic reticulum stress by activating 

unfolded protein response target genes, suggesting that endoplasmic reticulum stress is present in 

the DMetD myocardium.51 

Out of the most down-regulated genes (largest fold-change), the physiological meaning of 

the protein encoded by GNMT gene (an enzyme that catalyzes the conversion of S-adenosyl-L-

methionine to S-adenosyl-L-homocysteine and sarcosine) is currently unclear in the diabetic heart. 

The observed down-regulation of SLC2A1 gene, which normally provides instructions for producing 

glucose transporter protein type 1 (GLUT1) is consistent with reduced glucose uptake in diabetic 

myocardium.52 Furthermore, HAPLN3 (Hyaluronan and proteoglycan link protein 3) has previously 

been associated with diabetes in epidemiological studies. The ALDH4A1 gene codes for the enzyme 

delta-1-pyrroline-5-carboxylate dehydrogenase, which is a mitochondrial matrix NAD-dependent 

dehydrogenase producing glutamate; its down-regulation confirms early impairments in NADH-linked 

respiration. Down-regulation of CYP4F55 (cytochrome P450) also suggests overall alterations in 

mitochondrial substrate oxidation, but the role of the cytochrome P450 system in the heart is largely 

unknown.53 

Although we did not investigate the causal relation between the observed alterations in 

gene-expression and the cardiac phenotype in DMetD animals, it could be speculated that some of 

these genes, expecially those related to mitochondrial function, could serve as potential drug targets 

to treat diabetic cardiomyopathy. Future studies are therefore needed to determine the therapeutic 

potential of interfering with (or enhancing) the DMetD-induced alterations in gene-expression. 
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Conclusions 

The present study shows that diabetic metabolic derangement in a large animal model, with high 

resemblance to the human heart, resulted in myocardial oxidative stress, eNOS uncoupling and 

reduced NO production, together with an altered metabolic gene expression profile and 

mitochondrial dysfunction. These myocardial tissue alterations were associated with cardiomyocyte 

stiffening and early left ventricular diastolic dysfunction, before any overt structural cardiac 

remodeling occurs. Therapies should be directed to ameliorate these early DMetD-induced 

myocardial changes to prevent the development of overt cardiac failure. 
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Table S1 Body weight, left atrium and conventional ventricular echocardiography characteristics 
from baseline to 5-month follow-up. 
  Baseline 5-MONTH 

Body weight (kg) CON 32 ± 2 37 ± 1 
 DMetD 31 ± 2 40 ± 3 

LA volume (mm3) CON 28 ± 3 26 ± 2 
 DMetD 23 ± 2 25 ± 3 

Relative LA volume (mm3/kg) CON 0.86 ± 0.07 0.71 ± 0.05 
 DMetD 0.75 ± 0.06 0.63 ± 0.06 

LVEDD (mm) CON 41 ± 2 40 ± 1 

 
DMetD 41 ± 1 40 ± 1 

Relative LVEDD (mm/kg) CON 1.31 ± 0.26 1.10 ± 0.16 

 
DMetD 1.36 ± 0.02 1.05 ± 0.24 

PWd (mm) CON 5.4 ± 0.3 5.9 ± 0.4 

 
DMetD 5.6 ± 0.3 5.9 ± 0.3 

IVSd (mm) CON 5.9 ± 0.2 6.3 ± 0.4 
 DMetD 5.9 ± 0.4 5.8 ± 0.3 

E (cm/s) CON 55 ± 3 51 ± 3 

 
DMetD 53 ± 3 53 ± 5 

RWT (unitless) CON 0.26 ± 0.02 0.30 ± 0.02 
 DMetD 0.27 ± 0.02 0.29 ± 0.05 

E/A ratio CON 1.37 ± 0.12 1.47 ± 0.18 

 
DMetD 1.39 ± 0.12 1.46 ± 0.19 

e’ mean (cm/s) CON 10.5 ± 0.2 10.4 ± 0.7 
 DMetD 11.1 ± 0.5 8.9 ± 0.6 

E/e’ ratio CON 7.0 ± 0.3 7.1 ± 0.3 
 DMetD 7.2 ± 0.6 8.6 ± 0.6* 

DET (ms) CON 114 ± 5 132 ± 13 
 DMetD 125 ± 12 124 ± 9 

CON=healthy controls (n=8), DMetD=diabetic metabolic dysfunction (n=9).  LA=left atrium, 
Relative=normalized for body weight, LVEDD=left ventricular end diastolic diameter, 
PWd=posterior wall diameter, IVSd=intraventricular septum thickness end-diastole, RWT=relative 
wall thickness (2*PWd)/LVEDD), E=early diastolic filling velocity, E/A ratio=ratio between early and 
late filling velocities, e’ mean=early diastolic tissue relaxation velocity, mean of lateral and septal 
wall, DET=deceleration time of early diastolic filling. *p<0.05 vs CON by unpaired t-test at 5 
months’ time-point. Data are mean±SEM. 
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Table S2. Left ventricular speckle tracking echocardiography characteristics from baseline to 5-
month time points. 

  BASELINE 5-MONTH 

Peak rotation basal (°) CON 0.34 ± 0.68 0.82 ± 0.53 
 DMetD 1.26 ± 0.54 1.17 ± 0.41 

Peak rotation apical (°) CON 3.8 ± 0.9 5.6 ± 1.5 
 DMetD 5.1 ± 2.0 3.0 ± 0.9 

Peak velocity basal rotation (°/ms) CON 5.4 ± 1.0 5.4 ± 2.0 
 DMetD 5.3 ± 1.2 7.4 ± 3.4 

Peak velocity apical rotation (°/ms) CON -27.4 ± 9.5 -35.7 ± 14.2 
 DMetD -26.7 ± 8.6 -13.3 ± 3.5 

Peak twist (°) CON 4.6 ± 1.7 4.8 ± 1.7 
 DMetD 4.9 ± 2.1 2.3 ± 0.8 

Time to peak twist (s) CON 0.43 ± 0.02 0.40 ± 0.01 
 DMetD 0.47 ± 0.07 0.42 ± 0.03 

Peak untwist velocity (°/ms) CON -34 ± 9 -58 ± 17 
 DMetD -35 ± 8 -22 ± 8*† 

Time to peak untwist velocity (s) CON 0.40 ± 0.02 0.48 ± 0.02 
 DMetD 0.38 ± 0.02 0.44 ± 0.02 

CON=healthy controls (n=8), DMetD=diabetic metabolic dysfunction animals (n=9). *p<0.05 as 
time•diabetes interaction by two-way ANOVA, †p<0.05 versus CON by Bonferroni post-hoc 
analysis. Data are mean±SEM. 
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Table S3. Hemodynamic characteristics of DMetD and CON animals at sacrifice measured by Millar 
or Swan Ganz catheter. 

 CON DMetD t-test 

HR (bpm) 100 ± 7 85 ± 9 0.20 

MAP (mmHg) 74 ± 5 88 ± 7 0.13 

SAP (mmHg) 82 ± 5 95 ± 7 0.15 

DAP (mmHg) 66 ± 6 79 ± 7 0.16 

LV SP (mmHg) 86 ± 3 95 ± 7 0.24 

LV dP/dtmax (mmHg s-1) 1323 ± 54 1286 ± 153 0.83 

LV dP/dtmin (mmHg s-1) -1181 ± 106 -1441 ± 114 0.12 

LV EDP (mmHg) 9.2 ± 1.1 8.7 ± 1.3 0.76 

Tau (ms) 63 ± 6 68 ± 9 0.61 

DTF 0.42 ± 0.02 0.49 ± 0.03 0.11 

SV (ml) 24 ± 3 27 ± 2 0.44 

CO (L min-1) 2.4 ± 0.2 2.2 ± 0.2 0.57 

SVR (mmHg L-1 min-1) 33 ± 3 42 ± 4 0.11 

CON=healthy controls (n=8), DMetD=diabetic metabolic derangement animals (n=9). HR=heart rate, 
MAP=mean arterial pressure, SAP=systolic arterial pressure, DAP = diastolic arterial pressure, LV SP 

= maximal left ventricular pressure, LV dP/dtmax= maximum rate of rise of left ventricular pressure, 
LV dP/dtmin=maximum rate of fall of left ventricular pressure, LV EDP=left ventricular end diastolic 
pressure, Tau=diastolic time constant, DTF=diastolic time fraction, SV stroke volume, CO cardiac 
output, SVR systemic vascular resistance. Data are mean±SEM. 
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Table S4. Left ventricular end diastolic and end systolic volumes and pressures and stroke volume 
and ejection fraction based on pressure-volume loop analyses. 
 Preload 

reduction 
Baseline Preload 

increase 

LV EDV (ml) CON 30 ± 5 43 ± 6 71 ± 9* 

 DMetD 37 ± 4* 58 ± 6 103 ± 10*† 

LV ESV (ml) CON 7 ± 3 15 ± 3 36 ± 7* 

 DMetD 16 ± 4 28 ± 5 62 ± 11*† 

LV EF (%) CON 78 ± 8 65 ± 4 49 ± 5 

 DMetD 62 ± 7 54 ± 4 42 ± 7 

SV (ml) CON 23 ± 5 28 ± 4 35 ± 6 

 DMetD 21 ± 2 30 ± 2 40 ± 6 

LV EDP (mmHg) CON 6.8 ± 1.7 9.7 ± 1.8 14.3 ± 2.1* 

 DMetD 7.6 ± 2.0* 12.0 ± 1.9 20.0 ± 2.5* 

LV ESP (mmHg) CON 56 ± 6 68 ± 7 94 ± 9* 

 DMetD 73 ± 6* 91 ± 6 113 ± 11* 

CON=healthy controls (n=6), DMetD=diabetic metabolic derangement animals (n=8). All 
measurements were obtained during inspirational breath hold. EDV=end diastolic volume, ESV=end 
systolic volume, EF=ejection fraction, SV = stroke volume, EDP=end diastolic pressure, ESP end 
systolic pressure. *p < 0.05 versus corresponding baseline, †p<0.05 versus corresponding control by 
two-way ANOVA and Bonferroni post-hoc analysis. Data are mean±SEM. 
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Table S5. Plasma metabolic parameters of CON and DMetD animals measured at sacrifice. 

 CON DMetD t-test 

Liver function 

ASAT (U L-1) 34 ± 2 30 ± 4 0.44 

ALAT (U L-1) 55 ± 4 17 ± 2 <0.001 

 

Renal function 

Urea (mmol L-1) 2.9 ± 0.3 1.7 ± 0.3 0.009 

Creatinine (µmol L-1) 111 ± 6 92 ± 8 0.07 

Albumin (g L-1) 44 ± 1 45 ± 2 0.59 

CON=healthy controls (n=8), DMetD=diabetic metabolic derangement animals (n=9); ASAT 
aspartate aminotransferase; ALAT alanine aminotransferase. Data are mean±SEM. 
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Table S6. Gene expression of significantly up- or down-regulated genes in DMetD compared to 
controls. 
Gene-symbol logFC logCPM LR PValue FDR 

CREB3L3 4.53 1.07 16.96 3.818E-05 1.32E-02 

UCP3 4.41 2.23 31.12 2.420E-08 3.24E-05 

MARCO 3.93 0.12 20.40 6.274E-06 3.06E-03 

ALAS2 3.54 3.76 11.78 5.973E-04 9.15E-02 

CDH9 3.29 -0.65 13.52 2.359E-04 4.96E-02 

AIRE 3.04 -0.13 17.97 2.239E-05 8.57E-03 

MYO5B 2.98 2.52 31.74 1.767E-08 2.91E-05 

HS3ST2 2.59 -0.76 12.67 3.724E-04 6.82E-02 

FCN1 2.19 0.22 16.33 5.333E-05 1.68E-02 

ANGPTL4 2.16 5.87 28.13 1.136E-07 1.11E-04 

MYOZ1 2.16 1.35 12.71 3.637E-04 6.82E-02 

PLIN2 2.15 6.59 30.91 2.709E-08 3.42E-05 

BPIFC 1.96 0.12 11.96 5.428E-04 8.74E-02 

SLCO6A1 1.87 0.09 12.59 3.879E-04 6.93E-02 

LIPE 1.85 5.29 36.59 1.460E-09 3.91E-06 

CPT1A 1.84 4.91 23.10 1.535E-06 9.97E-04 

HTR4 1.71 1.65 19.03 1.288E-05 5.52E-03 

RETSAT 1.56 7.95 25.37 4.739E-07 3.50E-04 

PGLYRP2 1.46 0.00 12.11 5.020E-04 8.28E-02 

CA4 1.44 5.40 18.13 2.063E-05 8.19E-03 

RBP1 1.38 4.53 23.66 1.152E-06 7.96E-04 

BTNL9 1.35 5.75 14.38 1.497E-04 3.56E-02 

C7 1.25 5.95 12.97 3.163E-04 6.16E-02 

LY96 1.18 2.18 11.93 5.514E-04 8.76E-02 

SRPX 1.17 4.76 13.62 2.235E-04 4.74E-02 

PDGFD 1.17 1.61 15.69 7.457E-05 2.16E-02 

UCP2 1.04 3.37 18.89 1.388E-05 5.83E-03 

CDC14A 1.01 1.00 11.62 6.512E-04 9.69E-02 

ART4 1.00 3.92 16.49 4.886E-05 1.61E-02 

OVOL3 -4.51 -1.98 13.44 2.461E-04 5.12E-02 

CYP1A1 -2.99 3.04 12.63 3.791E-04 6.85E-02 

SLC2A1 -2.25 2.99 28.70 8.437E-08 8.61E-05 

STRC -2.25 -0.35 15.83 6.917E-05 2.09E-02 
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GNMT -2.19 3.45 29.78 4.850E-08 5.20E-05 

SLC16A6 -2.15 0.99 20.59 5.675E-06 2.83E-03 

ALDH4A1 -1.87 6.19 41.10 1.445E-10 1.03E-06 

SLC26A6 -1.79 1.65 17.53 2.832E-05 1.03E-02 

MCCC2 -1.78 4.35 27.56 1.525E-07 1.42E-04 

AASS -1.72 3.90 20.35 6.456E-06 3.08E-03 

CYP4F55 -1.65 5.32 37.87 7.547E-10 2.70E-06 

IZUMO4 -1.61 3.37 26.66 2.428E-07 2.08E-04 

SQLE -1.54 1.73 12.21 4.752E-04 7.96E-02 

HAPLN3 -1.50 5.23 48.09 4.062E-12 8.71E-08 

CYP4F2 -1.50 3.01 45.52 1.514E-11 1.62E-07 

BDH1 -1.49 3.90 19.43 1.044E-05 4.66E-03 

ADHFE1 -1.45 7.07 36.23 1.755E-09 4.18E-06 

SYCE2 -1.42 4.12 18.45 1.740E-05 7.17E-03 

BCKDHB -1.40 5.60 29.83 4.722E-08 5.20E-05 

WBSCR27 -1.38 0.75 17.01 3.711E-05 1.31E-02 

MUT -1.34 5.30 31.26 2.263E-08 3.23E-05 

CBX8 -1.33 0.75 12.37 4.365E-04 7.49E-02 

MPND -1.33 5.11 20.64 5.532E-06 2.83E-03 

CAMKV -1.32 1.21 13.37 2.563E-04 5.28E-02 

MCCC1 -1.31 5.64 31.38 2.124E-08 3.23E-05 

MOCS1 -1.31 3.57 20.63 5.579E-06 2.83E-03 

GCDH -1.29 3.03 25.70 3.989E-07 3.17E-04 

ALDH6A1 -1.27 6.98 36.99 1.189E-09 3.64E-06 

CCT6B -1.25 0.98 12.22 4.737E-04 7.96E-02 

RANGRF -1.24 5.50 25.07 5.516E-07 3.94E-04 

SLC25A29 -1.24 5.65 34.75 3.752E-09 7.31E-06 

PC -1.19 3.17 12.30 4.519E-04 7.69E-02 

GNB3 -1.02 4.04 14.86 1.160E-04 2.96E-02 

The genes differentially affected by diabetes. LogFC=log fold change, logCPM=log counts per million, 
LR=likelihood ratio, FDR=false discovery rate. Absolute logFC > 1 with a P-value < 0.001, indicating a 
minimal 2 fold change in gene expression; FDR<0.1. 
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Figure S3 (related to Figure 5G). Mitochondrial protein concentrations in the myocardium of CON and 
DMetD swine.

A. Typical example of a Western blot with an antibody cocktail against five complexes: complex I (C.I) 

subunit NDUFB8 at 20 kDa, complex II (C.II) subunit at 30kDa, complex III (C. III) core protein 2 at 48 

kDa, complex IV (C.IV) subunit I at 40 kDa and ATP synthase (ATP synt) α-subunit. Note that C.III did 

not cross-react between rats and pigs. Samples from different blots were normalized based on a 

reoccurring rat sample and protein concentration. B: Total mitochondrial protein content was higher 

in DMetD, which was due to higher protein concentration of mitochondrial complex I and II subunits 

only. n=6 each group, in duplo. *: P<0.05 vs. CON.

B
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Figure S4. (related to Figure 5H), Cardiac mitochondrial respiration is lower in DMetD compared to 

CON. 

High-resolution respirometry was performed in permeabilized cardiac fibers from 6 CON and 7 DMetD 

hearts. A: Leak respiration with NADH-substrates (glutamate, pyruvate and malate) tended to be 

lower in DMetD compared to CON (#: P=0.06). NADH-linked respiration (B), OXPHOS capacity (with 

additional succinate, C) and electron transport capacity (D) were significantly lower in DMetD. 

Succinate-linked respiration via complex II, under the presence of the complex I blocker rotenone (E) 

was not different between groups (P=0.22), indicative that the lower maximal respiration was due to 

NADH-linked, complex I, dysfunction. The normalized flux (flux control ratio; FCR) for NADH-linked 

respiration correlated with the FCR for succinate, indicative that complex II partly compensates for 

the lower NADH-linked respiration in DMetD. Measurements performed in duplo and averaged. *: 

P<0.05 vs. CON
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Abstract 
Heart failure (HF) and chronic kidney disease (CKD) co-exist, and it is estimated that about 50% of HF 

patients suffer from CKD. Although studies have been performed on the association between CKD and 

HF with reduced ejection fraction (HFrEF), less is known about the link between CKD and heart failure 

with preserved ejection fraction (HFpEF). Approximately, 50% of all patients with HF suffer from 

HFpEF, and this percentage is projected to rise in the coming years. Therapies for HFrEF are long 

established and considered quite successful. In contrast, clinical trials for treatment of HFpEF have all 

shown negative or disputable results. This is likely due to the multifactorial character and the lack of 

pathophysiological knowledge of HFpEF. The typical co-existence of HFpEF and CKD is partially due to 

common underlying comorbidities, such as hypertension, dyslipidemia and diabetes. Macrovascular 

changes accompanying CKD, such as hypertension and arterial stiffening, have been described to 

contribute to HFpEF development. Furthermore, several renal factors have a direct impact on the 

heart and/or coronary microvasculature and may underlie the association between CKD and HFpEF. 

These factors include: (1) activation of the renin-angiotensin-aldosterone system, (2) anemia, (3) 

hypercalcemia, hyperphosphatemia and increased levels of FGF-23, and (4) uremic toxins. This review 

critically discusses the above factors, focusing on their potential contribution to coronary dysfunction, 

left ventricular stiffening, and delayed left ventricular relaxation. We further summarize the directions 

of novel treatment options for HFpEF based on the contribution of these renal drivers. 
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Introduction 

Heart failure with preserved ejection fraction (HFpEF) is characterized by impaired relaxation of the 

heart during diastole and accounts for over 50% of all patients with heart failure (HF).1, 2 Both the 

proportion of HFpEF-patients and morbidity, mortality and healthcare costs associated with this 

disease are rising.3-6 Multiple processes including cardiomyocyte hypertrophy, interstitial fibrosis, 

impaired calcium handling and increased passive cardiomyocyte stiffness contribute to the left 

ventricular stiffening characteristic for HFpEF.7-9  

The current paradigm for HFpEF proposes that commonly present comorbidities such as 

diabetes mellitus (DM), obesity and hypertension lead to a systemic pro-inflammatory state. This pro-

inflammatory state causes coronary microvascular dysfunction, evidenced by an imbalance between 

nitric oxide (NO) and reactive oxygen species (ROS) leading to stiffening of the left ventricle (LV).9, 10 

Excessive ROS-production in the endothelium of the coronary microvasculature lowers NO 

bioavailability through scavenging of NO. Loss of NO reduces soluble guanylate cyclase (sGC) activity 

in the cardiomyocytes, thereby lowering cGMP levels and decreasing PKG activity. The latter results 

in hypophosphorylation of titin and induces cardiomyocyte hypertrophy.10, 11 Given the proposed 

central role for disruption of the NO pathway in pathogenesis of HFpEF, it is rather surprising that all 

large clinical trials which targeted the NO-cGMP-PKG pathway failed to date. Organic and inorganic 

nitrates are therapeutic agents that can be metabolized to NO systemically and thus act as NO-donors. 

However, the NEAT-HFPEF trial showed that isosorbide mononitrate, a long working organic nitrate, 

reduced physical activity and did not improve quality of life and exercise capacity.12 Inhaled nebulized 

inorganic nitrate, did not improve exercise capacity, as recently shown in the INDIE-HFpEF trial.13 The 

phase 2b SOCRATES-PRESERVED trial showed no reduction of NT-pro-BNP or left atrial dimensions at 

12 weeks after treatment with the sGC stimulator Vericiguat.  However, Vericiguat was well tolerated 

and increased quality of life, warranting further research.14 Inhibition of the cGMP degrading enzyme 

phosphodiesterase 5 with Sildenafil did not improve clinical status rank score or exercise capacity15, 

and failed to improve vascular and cardiac function.16 Therefore, new therapeutic targets need to be 

identified that can interfere with the development and progression of HFpEF. 

The so-called cardio-renal syndrome describes the co-existence of HF and chronic kidney 

disease (CKD). Approximately 50% of the patients with HFpEF also suffer from CKD.17 Although this 

co-existence is partially due to shared risk factors, such as hypertension, DM and obesity, it has also 

been proposed that HF directly impacts kidney function, and, vice versa, CKD worsens cardiac 

function.18 Interdependence of the heart and kidneys, similarities between their microvascular 
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networks, and the coexistence of CKD and HF further imply a role for microvascular dysfunction in 

development and progression of both diseases.17

It is important to note that the impact of microvascular dysfunction on cardiac structure and 

function is not limited to dysfunction of the NO-cGMP-PKG pathway. Indeed, upregulation of VCAM-

1 and E-selectin on the coronary microvascular endothelium induces transendothelial leucocyte 

migration and activation, increased transforming growth factor β (TGF-β) levels, thereby promoting 

pro-fibrotic pathways and differentiation of fibroblast to myofibroblasts10, 19 and increasing interstitial 

fibrosis.8, 20 Secretion of autocrine and paracrine factors, such as apelin, TGF-β, and endothelin-1, by 

dysfunctional coronary microvascular endothelial cells can also directly induce left ventricular 

hypertrophy.21 Finally, capillary rarefaction and inadequate angiogenesis could contribute to a 

decreased oxygen supply and subsequent left ventricular myocardial stiffening.9

Given the co-incidence of HFpEF and CKD, the present review aims to provide a mechanistic 

link between CKD and HFpEF, by describing potential pathways through which CKD can induce or 

aggravate coronary microvascular dysfunction and thereby contribute to the development and 

progression of left ventricular hypertrophy and diastolic dysfunction. These include mechanical 

effects, neurohumoral activation, systemic inflammation, anemia and changes in mineral metabolism 

as induced by CKD (Figure 1). 

Figure 1 Schematic overview of the risk factors that can contribute to the development of heart failure 

with preserved ejection fraction (HFpEF) in patients with chronic kidney disease (CKD)



Chapter 6 

 164 

As some of these CKD-induced effects may induce HFpEF and contribute to cardiovascular 

disease in general, they may provide targets to intervene with development of diastolic dysfunction 

and/or its progression towards HFpEF. Hence, this review will also describe the (potential) druggable 

therapeutic targets within these pathways, and where applicable, clinical trials intervening with these 

pathways. 

 

Clinical associations between CKD, coronary microvascular dysfunction 

and HFpEF 

CKD is defined as a progressive decline of renal function and is associated with hypertension, 

proteinuria and the loss of nephron mass.22 CKD is an independent risk factor for development of HF, 

with increasing cardiovascular risk and mortality as renal function declines.23, 24 Additionally, HF is the 

major cause of death among patients with CKD.25, 26 Although renal dysfunction is present in about 

half of the patients with HF in general27, 28, and is an important prognostic marker for adverse 

outcomes1, 29, 30, particularly the association between HFpEF and CKD is very strong. In a cohort 

comparing patients with HFrEF, HF with mid-range ejection fraction and HFpEF, renal dysfunction was 

most prevalent in HFpEF and was associated with increased mortality in all HF subtypes.31 Gori et al. 

showed that 62% of the patients with HFpEF display abnormalities in at least one marker of renal 

insufficiency, with different markers correlating with different HFpEF phenotypes.32 Further evidence 

for a causal relationship between CKD and HFpEF comes from a rat model, in which CKD was mimicked 

by nephrectomy of one whole kidney and 2/3 of the remaining kidney. Loss of nephron mass in these 

rats results in a cardiac HFpEF-like phenotype, with LV hypertrophy and diastolic dysfunction, but 

critical HFpEF features such as lung congestion and exercise intolerance were not reported.33 In 

accordance with CKD as a causative factor for HFpEF, the majority of patients on hemodialysis display 

diastolic dysfunction and left ventricular hypertrophy, whereas systolic dysfunction and HFrEF are 

visible in only a minority of these patients.34, 35 In a prospective cohort study, 74% of the patients 

admitted for dialysis displayed left ventricular hypertrophy. In contrast, systolic dysfunction and left 

ventricular dilatation were present in only 15% and 32% of the patients respectively.36 Left ventricular 

hypertrophy is not restricted to end stage CKD, but already highly prevalent in the general CKD 

population.37 Indeed, the first visible myocardial alteration in patients with CKD is left ventricular 

hypertrophy38, developing early in the progression of kidney dysfunction39, 40 and often co-occurring 

with myocardial fibrosis and diastolic dysfunction41. Hypertension is an important predictor for 
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development of left ventricular hypertrophy and HFpEF in patients with CKD39, 42, while blood pressure 

reduction is associated with a lower cardiovascular risk43. 

  

Vascular consequences of CKD 

Arterial remodeling in CKD patients is characterized by arterial stiffening, increasing pulse pressure, 

as a consequence of premature ageing and atherosclerosis of the arteries.44, 45 Premature vascular 

ageing is common in both CKD and HFpEF. Increased aortic stiffness has been strongly associated with 

both left ventricular dysfunction, and markers of renal dysfunction46, 47, which precede and increase 

cardiovascular risk in patients with CKD.48, 49 Stiffer arteries result in an increased pulse pressure, as 

well as an increased pulse wave velocity, which cause the increased pulsatility to be transmitted into 

the microvasculature.50 Renal and coronary microvascular networks are very vulnerable to pulsatile 

pressure and flow, thus failure in decreasing pulsatility can result in damage of the capillary 

networks50, 51 and thereby contribute to coronary microvascular dysfunction. Fukushima et al. showed 

an impaired global myocardial flow reserve in CKD patients, even with a normal regional perfusion 

and function of the LV.52 Furthermore, coronary microvascular dysfunction was shown to be present 

in patients with end stage CKD53, and was associated with an increased risk of cardiac death in patients 

with renal failure.54  

Hypertension in CKD is thought to be mainly a consequence of volume overload due to 

increased sodium reabsorption by the kidneys.55, 56 Increased sodium loading might also contribute to 

HFpEF development independent of hypertension, through inducing a systemic pro-inflammatory 

state which is detrimental to the coronary microvasculature.57 Indeed, empagliflozin, a sodium 

glucose co-transporter-2 (SGLT2) inhibitor, initially developed as an anti-diabetic drug, resulted in 

decreased cardiovascular mortality in an initial type 2 diabetes cohort.58 Interestingly, these effects 

seem to, at least for some part, be specific for empagliflozin as canagliflozin protected less against 

cardiovascular death.59 Although the mechanisms of action have not completely been elucidated yet, 

multiple pre-clinical studies are being conducted to investigate the myocardial effects of SGLT2-

inhibitors.60, 61 Currently three mechanisms have been proposed to contribute to reduced 

cardiovascular mortality in patients receiving SGLT2-inhibitors in general and/or empaglifozin in 

particular62; (i) osmotic diuresis and natriuresis lower blood pressure and subsequently reduce left 

ventricular afterload; (ii) empagliflozin may instigate a shift to cardiac ketone bodies oxidation, 

increasing respiratory efficiency and reducing  ROS production; (iii) empagliflozin can lower 

intracellular Na+ by inhibition of the cardiac Na+/H+ exchanger (NHE) and induce coronary 
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vasodilation.60 This effect is especially promising as increased intracellular Na+, as present in failing 

cardiomyocytes, results in altered mitochondrial Ca2+ handling and subsequent ROS production, which 

may therefore be ameliorated by SGLT2-inhibitors.62 SGLT2-inhibitors therefore seem promising in 

the cardiorenal field as they are both cardio- and reno-protective.63 The effect of empagliflozin on 

cardiovascular mortality in HFpEF specifically, regardless of diabetic status, is being investigated in the 

ongoing EMPEROR-Preserved trial (ClinicalTrials.gov NCT03057951).  

 

Neurohumoral consequences of CKD 

CKD is associated with RAAS hyperactivation in response to renal hypoxia resulting in volume 

overload64, which may contribute to development and/or progression of HFpEF. RAAS activation can 

increase myocardial workload, by elevating systemic resistance and left ventricular afterload, through 

vasoconstriction of systemic blood vessels in response to angiotensin II or by causing volume 

expansion due to increased sodium and water reabsorption in response to increased aldosterone 

levels65, 66. It is not clear if angiotensin II can also induce myocardial cell hypertrophy and fibrosis 

independently of hypertension. Although in vitro studies have shown that there is a hypertension-

independent effect of angiotensin-II on cardiomyocytes, multiple in vivo studies could not confirm 

these findings, suggesting that the effect of angiotensin II is blood pressure dependent.67, 68 

Furthermore, RAAS-activation induces coronary microvascular endothelial dysfunction, through 

NADP(H)-oxidase activation and subsequent ROS formation.69, 70 Myocardial perfusion might also be 

impaired by the vasoconstrictor effects of angiotensin II. During prolonged exercise, vasoconstriction 

within metabolically less active tissues, mediated by angiotensin II and endothelin-1, is inhibited in 

metabolically active tissues by NO and prostanoids, resulting in an efficient distribution of blood.71 In 

a state of systemic inflammation, locally decreased NO bioavailability in the coronary 

microvasculature might result in disinhibition of angiotensin II-mediated vasoconstriction, resulting in 

reduced blood delivery to the heart.  

Downstream from angiotensin II in the RAAS, aldosterone regulates blood pressure and 

sodium/potassium homeostasis through the mineralocorticoid receptor in the kidneys, by enhancing 

sodium reabsorption in the kidneys, thereby contributing to hypertension and high plasma sodium 

levels. Besides the renal effects, aldosterone has been shown to directly promote myocardial fibrosis, 

left ventricular hypertrophy and coronary microvascular dysfunction, acting through endothelial and 

myocardial mineralocorticoid receptors, independently of angiotensin II.65 
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RAAS inhibition is the preferred therapeutic strategy to slow down progression of renal 

failure and reduce proteinuria in CKD.72 Despite the fact that most data show RAAS overactivation in 

HFpEF, clinical trials in HFpEF with drugs acting on the RAAS-system, have failed to improve (all-cause) 

mortality so far.73, 74 It is, however, important to note that AT1-blockade with Irbesartan reduced 

mortality and improved outcome on cardiovascular endpoints in patients with natriuretic peptides 

below the median, but not in patients with higher natriuretic peptide levels75, suggesting that RAAS 

inhibition may be beneficial in early HFpEF. Furthermore, post hoc analysis of the TOPCAT trial 

demonstrated geographical different effects of the mineralocorticoid receptor blocker 

spironolactone, with small clinical benefits in patients from the Americas.76 However, these patients 

were generally older, had a higher prevalence of atrial fibrillation and diabetes, were less likely to 

have experienced prior myocardial infarction, had a higher ejection fraction and had a worse renal 

function76, suggesting that a benefit of spironolactone was associated with a more HFpEF-like 

phenotype. A more recent post-hoc analysis of this trial further showed that spironolactone did show 

an improvement in primary endpoints in patients with lower levels of natriuretic peptides and hence 

less advanced disease.77 Consistent with this suggestion, a recent meta-analysis showed that 

mineralocorticoid receptor antagonists do improve indices of diastolic function and cardiac structure 

in HFpEF patients.78 Interestingly, treatment of DM type 2 with mineralocorticoid receptor antagonists 

also improved coronary microvascular function.79 Altogether, these data suggest that intervening with 

the RAAS is beneficial in patients with less advanced HFpEF, whereas beneficial effects are lost in 

patients with more advanced disease. Therefore, clinical studies investigating HFpEF progression and 

clinical trials focusing on reducing or preventing progression of early HFpEF into advanced HFpEF need 

to be conducted. 

Another approach intervening with the RAAS system is the use of Entresto, an angiotensin 

receptor neprilysin inhibitor (ARNI) which is a combination of valsartan (AT1 receptor blocker) and 

sacubitril (neprilysin inhibitor). Neprilysin inhibition exerts its beneficial effects through inhibition of 

the breakdown of natriuretic peptides. Entresto was superior to the standard therapy, enalapril, in 

patients with HFrEF in reducing mortality and number of hospitalizations for HF.80 In hypertensive rats 

with diabetes, ARNI reduced proteinuria, glomerulosclerosis and heart weight more strongly than AT1 

receptor blockade, and this occurred independently of blood pressure.81, 82 In a phase 2 double-blind 

randomized controlled trial in HFpEF patients, Entresto reduced NT-pro-BNP plasma levels and left 

atrial diameters to a greater extent than valsartan.83 These findings led to the ongoing PARAGON-HF 

trial (ClinicalTrials.gov NCT01920711) which investigates the long-term effect (26 months) of Entresto 

compared to Valsartan in HFpEF.84 
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Both CKD and HFpEF are accompanied by autonomic dysregulation.85 Sympathetic 

hyperactivity has a detrimental effect on both the heart and the kidney and aggravates hypertension 

and proteinuria. Furthermore, HFpEF patients show attenuated withdrawal of parasympathetic tone 

and excessive sympatho-excitation during exercise, that cause β-adrenergic desensitization, 

chronotropic incompetence and may thereby contribute to the limited exercise tolerance of these 

patients.86 A critical role for CKD in this process was suggested by Klein et al87, showing a clear 

correlation between CKD, decreased heart rate variability, chronotropic incompetence in HFpEF and 

decreased peak VO2. Unfortunately, neither the SENIORS trial88, nor the OPTIMIZE-HF registry89 

showed a beneficial effect of beta-adrenoceptor blockade on all-cause mortality or cardiovascular 

hospitalizations. Furthermore, beta-adrenoceptor blockade failed to improve LV systolic or diastolic 

function in patients with ejection fraction >35%, as measured in the SENIORS echocardiography sub-

study.90 It should be noted that in the SENIORS trial ejection fraction cutoff was at 35%, which is lower 

than current consensus about the cutoff of reduced and preserved ejection fraction. Additionally, in 

these studies, beta-adrenoceptor blockade was administered on top of existing medication, which 

often included RAAS-inhibitors. Conversely, in patients with treatment resistant hypertension, renal 

sympathetic denervation did improve diastolic function and reduce left ventricular hypertrophy, 

besides reducing blood pressure91, suggesting that there is indeed an interaction between CKD, 

sympathetic hyperactivity and diastolic cardiac function. 

 

Systemic inflammatory consequences of CKD 

A pro-inflammatory state is already present in early stages of CKD92, and is likely an important risk 

factor for cardiovascular morbidity and mortality on the long term93, 94. In HFpEF, a systemic pro-

inflammatory state has been proposed to be a critical causal factor in coronary microvascular 

endothelial dysfunction as inflammatory cytokines can directly induce coronary microvascular 

endothelial cell dysfunction, cause upregulation of adhesion molecules on coronary microvascular 

endothelial cells, and reduce NO bioavailability, resulting in impaired vasodilation and pro-fibrotic 

signaling (Figure 2).10, 95 

Targeting this proinflammatory state with 14 days of treatment with the recombinant 

human IL1 receptor antagonist Anakinra, increased peak VO2 which correlated with a reduction in C-

reactive protein (CRP) in the D-HART trial including 12 patients.96 Unfortunately, prolonged treatment 

(12 weeks) in the follow-up D-HART2 trial in 28 patients, did not increase VO2, despite small 
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improvements in exercise duration and quality of life, as well as reductions in CRP and NT-pro-BNP 

compared to baseline values.97  

It is possible that targeting systemic inflammation in general to ameliorate HFpEF is too 

broad to be successful. In the subsequent paragraphs, the contribution of the individual systemic 

factors: anemia, proteinuria and reduced excretion of so-called uremic toxins as consequences of 

renal dysfunction and possible contributors to systemic inflammation, development of microvascular 

dysfunction and HFpEF will be considered in more detail.  

 

Anemia 

Anemia is an independent risk factor for development of HFpEF32, 36, and is strongly associated with 

CKD42. Although hemoglobin levels decreased with worsening of kidney function in both patients with 

HFpEF and HFrEF, hemoglobin levels were slightly lower in patients with HFpEF as compared to 

HFrEF.98 The main causes for anemia are iron deficiency and deficient erythropoietin production in 

the renal tubular cells. In addition, urinary loss of red blood cells through enlarged fenestrations of 

endothelial cells in diseased glomeruli, hemolysis, vitamin B12 deficiency, hyperparathyroidism and 

hemodilution may contribute to anemia in CKD patients.99, 100 Furthermore, the bone marrow 

erythropoietic response to erythropoietin is impaired in CKD patients.99 Finally, the proinflammatory 

cytokine Il-6 can impair erythroid development, by inducing production of the iron regulatory peptide 

hepcidin by hepatocytes, increasing degradation of iron exporter ferroportin, and decreasing iron 

delivery to developing erythrocytes.101 Hence, the systemic inflammatory state in CKD, but also HFpEF, 

can aggravate anemia. 
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Figure 2A proposed schematic overview of the pathological mechanisms that underlie the progression 

of CKD to HFpEF

Blue box depicts renal factors; green box depicts coronary microvascular factors; and red box depicts 

myocardial changes contributing to HFpEF. AGEs, advanced glycation products; CKD, chronic kidney 

disease; EC, endothelial cell; FGF-23, fibroblast growth factor 23; HFpEF, heart failure with preserved 

ejection fraction; LV, left ventricle; NO, nitric oxide; RAAS, renin-angiotensin-aldosterone system; ROS, 

reactive oxygen species; VSMC, vascular smooth muscle cell.

It is unknown whether anemia, iron deficiency and/or reduced EPO are causal factors in the 

development of HFpEF or mere markers of CKD. The most obvious effect of anemia is a general 

reduction in O2 transport. In 75% of the HFpEF patients, peripheral oxygen consumption was impaired 

due to impaired diffusive oxygen transport and utilization.102 Hence, cardiac output needs to be 

increased to maintain systemic oxygen delivery. Both the consequent increase in myocardial work, 

and the reduced oxygen-carrying capacity of the blood may contribute to an impaired myocardial O2

balance. Such a disbalance between myocardial oxygen demand and supply is also present in ischemia 
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with no obstructive coronary artery disease (INOCA), in which myocardial oxygen supply is limited by 

coronary microvascular dysfunction. Indeed, INOCA is recently being recognized as a risk factor for 

development of HFpEF.103, 104 

Anemia can also directly affect microvascular function as red blood cells can modulate 

microvascular tone.105, 106 Red blood cells release NO which is produced, particularly at low oxygen 

tensions, from deoxygenated hemoglobin and nitrite, to stimulate vasodilatation, cGMP formation in 

smooth muscle cells and cardiomyocytes, and to inhibit mitochondrial respiration.107 Thus, low levels 

of red blood cells simulate a condition of coronary microvascular dysfunction, with increased ROS and 

reduced NO, thereby inducing true coronary microvascular dysfunction and cardiomyocyte damage, 

which eventually can contribute to progression of HFpEF (Figure 2). 

CKD patients on erythropoietin therapy have shown signs of cardiovascular improvement 

and reversal of left ventricular hypertrophy108, 109, suggesting that correction of anemia may prevent 

progression of HFpEF. In addition to promoting red blood cell formation and correction of anemia, 

erythropoietin can protect cardiomyocytes against ischemic injury and induce NO production by 

endothelial cells, thereby improving microvascular function.99 Erythropoietin can induce tissue 

protective properties by activating the erythropoietin receptor and β common receptor, which are 

found on multiple peripheral tissues such as endothelial cells. EPO sensitivity can be increased by 

hypoxia but is decreased by a pro-inflammatory state which is considered a hallmark of HFpEF, 

therefore lower eNOS expression due to lower EPO or lower EPO receptors on the endothelium can 

contribute to the lower NO-bioavailability in coronary microcirculation.110 Interestingly, in patients, 

EPO resistance is shown to be present in early CKD before EPO levels decrease, later stages of CKD 

show a decrease in EPO levels.111 However, in a randomized controlled trial conducted in older adults 

with HFpEF, erythropoietin supplementation with epoetin alfa did not improve left ventricular 

geometry or exercise capacity despite increases in hemoglobin levels.112 One potential explanation 

would be that the 1.5 g/dL increase in hemoglobin in the treatment group was insufficient, particularly 

since the placebo-treated patients also showed an 0.8 g/dL increase in hemoglobin. Alternatively, 

decreased endothelial and/or cardiomyocyte sensitivity to, rather than too low levels of 

erythropoietin and/or anemia are important in the progression of HFpEF.99 If so, it would be more 

beneficial to restore erythropoietin sensitivity of specific cells rather than changing its levels. Reducing 

the pro-inflammatory phenotype of endothelial cells could potentially be beneficial in increasing 

endothelial erythropoietin sensitivity. Alternatively, although not specific an enhancer of 

erythropoietin sensitivity, targeting the protective tissue-specific effects of erythropoietin might 
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prove a viable therapeutic target, although to date, this is mostly evaluated in neurological 

disorders.113 

Iron deficiency, even without anemia, was also shown to be detrimental to the functional 

capacity of advanced HFpEF patients114, while diastolic dysfunction was not associated with functional 

iron deficiency.115 Functional iron deficiency is detrimental to cardiomyocyte function as it reduces 

antioxidant capacity and limits oxidative phosphorylation thereby limiting energy production, 

potentially impairing energy-dependent Ca2+ reuptake during diastole.116 Currently, iron 

supplementation with IV ferric carboxymaltose is being investigated in both anemic and non-anemic 

HFpEF patients in the FAIR-HFpEF trial (ClinicalTrial.org NCT03074591). 

 

Proteinuria 

Proteinuria, an abnormal high protein concentration in urine, is present in up to 26% of CKD patients 

with an eGFR below 30 mL/minute/1.73 m2.117, 118 Not only proteinuria, but also, more specifically, 

elevated urinary levels albumin, were associated with declining renal function.119-121 Proteinuria is not 

just a mere marker of CKD, but also contributes to the exacerbation of CKD, by aggravating renal 

interstitial inflammatory cell influx resulting in interstitial fibrosis (Figure 2).122, 123 

 In 1989, Deckert et al. already introduced the Steno hypothesis, which implies that 

albuminuria is not just reflecting local renal disease, but indicating more general endothelial 

microvascular dysfunction.124 Indeed, large population based studies have shown that 

microalbuminuria correlates with a decrease in flow mediated endothelium-dependent vasodilation 

in brachial arteries125, as well as in coronary arteries of diabetic patients126. In patients with essential 

hypertension, microalbuminuria was shown to correlate with levels of circulating von Willebrand 

factor, a marker for endothelial damage.127 Multiple studies have shown that (micro)albuminuria is 

highly prevalent in HFpEF, being associated with LV remodeling, and is a prognostic marker for further 

disease development.18, 32, 128-130  

Currently, it is unclear, whether microalbuminuria just reflects a more generalized 

microvascular endothelial dysfunction or may act as a causal contributing factor to HFpEF 

development by inducing coronary microvascular endothelial damage. 
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Uremic toxins 

Insufficient glomerular filtration results in the retention of a variety of biologically active compounds 

in the blood, called uremic toxins. The accumulation of uremic toxins can have a deleterious effect on 

multiple organs, of which the cardiovascular system is most severely affected.131 Increased levels of 

uremic toxins are associated with an increased cardiovascular morbidity and mortality.132 Moreover, 

blood urea nitrogen was shown to be an independent predictor for the progression from preclinical 

diastolic dysfunction to HFpEF, but not HFrEF.133 

The mechanisms mediating the detrimental effects on the vascular system are multiple. The 

elevated uremia-associated pro-inflammatory cytokine levels, together with the associated chronic 

inflammatory state, can inhibit proliferation and enhance apoptosis of endothelial cells (Figure 2).132 

Furthermore, uremic toxins can increase von Willebrand factor levels, decrease NO bioavailability by 

inhibition of endothelial nitric oxide synthase (eNOS), and increase circulating endothelial 

microparticles.134 Additionally, chronic low grade inflammation increases expression of adhesion 

molecules on endothelial cells and induces leukocyte activation with differentiation of fibroblasts to 

myofibroblasts, with subsequent production of collagen in the extracellular matrix, and migration and 

proliferation of vascular smooth muscle cells.10, 135 Tryptophan-derived toxins can specifically activate 

the aryl hydrocarbon receptor pathway, and thereby induce endothelial dysfunction, and activate pro-

fibrotic pathways in the myocardium, further enhancing inflammation and increasing vascular 

oxidative stress.136 These processes all contribute to (coronary) microvascular dysfunction and 

remodeling. Uremic toxins might also directly affect the left ventricular relaxation. Exposure of 

cardiomyocytes to uremic serum of CKD patients elicited inhibition of Na+/K+-ATPase, increased 

contractile force, impaired calcium re-uptake, and delayed relaxation (Figure 2).137 

Elevated circulating and cellular levels of advanced glycation end products (AGEs) have been 

measured in patients with CKD.138 This is the result of impaired renal clearance of AGEs together with 

their increased formation resulting from oxidative stress and/ or diabetes mellitus. Elevated 

circulating AGEs are linked to development and progression of both HFpEF and HFrEF139, 140 and 

correlated positively with increased diastolic dysfunction in patients with diabetes mellitus type 1141. 

In the LV, AGEs are particularly prominent in the coronary microvasculature, where their presence 

induces a pro-inflammatory phenotype142, endothelial dysfunction by increasing oxidative stress and 

decreasing NO bioavailability and vascular stiffening by crosslinking of extracellular matrix (ECM) 

proteins140, 143. In the myocardium, AGE-induced crosslinking of ECM proteins increased myocardial 

stiffness.140, 143 Furthermore, AGEs impair calcium handling in cardiomyocytes.144 The latter is 

mediated by carbonylation of SERCA2a, which impairs its activity145, as well as by enhancing calcium 
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leakage from the sarcoplasmic reticulum through the ryanodine receptor (RyR2), thereby promoting 

mitochondrial damage and oxidative stress146. Hence, reducing production and enhancing breakdown 

of AGEs could be a therapeutic option in HFpEF patients147, particularly in patients with diabetes and 

CKD. 

Besides glycemic control, there are 3 classes of drugs that can reduce AGEs: inhibitors of de 

novo AGE synthesis, drugs that break pre-existing AGE crosslinks and AGE receptor blockers.148 

Although, to our knowledge, none of these have been tested in HFpEF patients, aminoguanidine, a 

small hydrazine-like molecule capable of inhibiting AGE formation through interaction with and 

quenching of dicarbonyl compounds treatment resulted in a decrease of diabetes mellitus associated 

myocardial stiffening in rats, albeit without altering fibrosis.149 Furthermore, in DM type 2 patients, 

benfotiamine, a transketolase activator that blocks several hyperglycemia-induced pathways, 

prevented microvascular endothelial dysfunction and oxidative stress after an AGE rich meal.150 

Similarly, treatment with the AGE crosslink breaker alagebrium improved endothelial function in 

patients with isolated systolic hypertension, which was associated with reduced vascular fibrosis and 

vascular inflammation.151  For an overview of trials conducted with AGE-lowering therapies in CKD 

patients we refer to Stinghen et al.138 Some of these therapies which reduced AGEs in CKD patients 

might also be a viable chronic treatment option, to prevent or reverse AGE-associated microvascular 

dysfunction and subsequent diastolic dysfunction in HFpEF. 

Lowering uremic toxin levels in general might also provide a viable, but challenging 

treatment option for HFpEF. The main challenges are to identify the specific uremic toxins that play a 

role in the pathogenesis of HFpEF, and to target a large variety of uremic toxins with just one class of 

drugs. Clinical trials with allopurinol, a therapy to decrease uric acid levels, resulted in slower disease 

progression and a decreased cardiovascular risk in patients with CKD.152, 153 Even asymptomatic 

hyperuricemic patients may benefit from allopurinol treatment, as they showed improvements in 

endothelial function and eGFR.154 
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Consequences of CKD on mineral metabolism 

Vitamin D deficiency 

Declining renal function results in a reduced capacity to perform 1α-hydroxylation and in progressive 

loss of active vitamin D.155 Loss of active vitamin D subsequently leads to increased parathyroid 

hormone (PTH) production, so-called secondary hyperparathyroidism, eventually contributing to 

increased calcium, phosphate and FGF-23 levels. In patients on hemodialysis, an association was 

reported between low vitamin D levels, systemic inflammation, and myocardial hypertrophy156 

Furthermore, low levels of vitamin D in these patients were related to increased cardiovascular 

mortality.156-158 In non-dialysis CKD patients, lower vitamin D levels were shown to be associated with 

decreased flow mediated dilatation in the brachial artery, reflecting systemic endothelial 

dysfunction.159 Low vitamin D correlates with reduced coronary flow reserve in patients with atypical 

chest pain, suggesting that vitamin D also affects coronary microvascular function.160 Recently, in a 

large cohort of patients with diastolic dysfunction or HFpEF, lower vitamin D levels were associated 

with increased cardiovascular hospitalizations but not with 5-year mortality.161 Furthermore, in a 

univariate analysis, calcidiol, but not its active metabolite, calcitriol, was associated with new onset 

HFpEF in the PREVEND study, but the association disappeared after adjustment for confounding 

variables.162 However, in patients with established HFpEF, vitamin D levels were lower as compared 

to healthy, sex–, race- and age-matched controls, and inversely correlated with exercise capacity.163 

In a trial of vitamin D supplementation by cholecalciferol therapy, reductions were observed 

in the left ventricular mass, inflammatory markers and brain natriuretic peptide levels of CKD patients 

on hemodialysis.164 In contrast, in the PRIMO-trial, 48 weeks of treatment with paricalcitol in a CKD 

cohort with preserved systolic function neither resulted in improved diastolic function nor reduced 

left ventricular mass.165 However, cardiac MRI unveiled that just a minority of the included patients 

had left ventricular hypertrophy at baseline, possibly explaining lack of a beneficial effect. Although 

the administration of vitamin D has positive effects through inhibition of PTH secretion, it also results 

in increased serum phosphate levels, with opposing effects (see next paragraph for details). When 

modulating vitamin D status, one should consider the use of vitamin D analogues, such as paricalcitol, 

which inhibit PTH synthesis, without substantially inducing hyperphosphatemia, providing promising 

therapies for restoration of vitamin D levels.166  
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Phosphate and Parathyroid Hormone 

In large cohorts of patients on hemodialysis, strong associations were found between serum 

phosphate, calcium, hyperparathyroidism, and an increased risk for overall cardiac mortality, elevated 

levels of cardiac injury markers and a worse systolic and diastolic cardiac function.167, 168 Additionally, 

in a cohort of hospitalized patients with CKD, serum phosphate was related to elevated left ventricular 

concentric remodeling and diastolic dysfunction.169 Furthermore, in late stage CKD patients—on 

peritoneal dialysis—phosphate was independently associated to impairment of left ventricular 

diastolic function.170 At the structural level, elevated levels of phosphate (hyperphosphatemia) and 

PTH have been associated with the presence of hypertrophy and fibrosis of the LV specifically.167, 171 

In addition, in a small cohort of patients on chronic hemodialysis, higher levels of calcium phosphate 

product were associated with higher CRP levels, and thus with a pro-inflammatory state. In this cohort, 

intensive lowering of phosphate levels resulted in lower CRP levels, and a significantly improved 

inflammatory status.172 

Hyperphosphatemia can also directly induce coronary endothelial  dysfunction173, and also 

acts directly on human vascular smooth muscle cells (VSMC), resulting in VSMC calcification.174 

Furthermore, hyperphosphatemia can contribute to microvascular dysfunction and HFpEF 

pathogenesis by reducing prostaglandin synthesis.17 Prostaglandins synthesized in the blood vessel 

wall act as autocrine or paracrine factors and play a pivotal role in regulation of coronary 

microvascular function by exerting strong vasodilator effects and by inhibiting platelet aggregation. In 

clinical practice, supplementation of prostanoids is mostly used in patients with pulmonary 

hypertension. Prostacyclin analogues are available, such as Selexipag, an oral prostacyclin receptor 

agonist which has vasodilator, antiproliferative and antifibrotic effects. Currently there is one trial 

ongoing, which investigates oral Treprostinil, a prostacyclin analogue, in pulmonary hypertension 

caused by HFpEF (ClinicalTrials.org NCT03037580).  

PTH can cause left ventricular interstitial fibrosis and coronary microvascular dysfunction, 

via its inflammatory effects on monocytes and interstitial fibroblasts.175 Interestingly, primary 

hyperparathyroidism resulted in coronary microvascular dysfunction which was restored after 

parathyroidectomy, underlining the effect of PTH on coronary microvascular function.176 In 

hemodialysis patients with secondary hyperparathyroidism, 20 weeks of treatment with cinacalcet 

ameliorated endothelial dysfunction, diastolic dysfunction and cardiac hypertrophy by decreasing 

oxidative stress and increasing nitric oxide production (Figure 2).177 
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Fibroblast growth factor 23 (FGF-23) 

Fibroblast growth factor-23 (FGF-23) is a hormone produced by osteoblasts and osteocytes, which 

inhibits phosphate reabsorption in the kidneys and suppresses circulating calcitriol, effectively 

lowering plasma phosphate levels in physiological conditions.178 In CKD, FGF-23 is no longer is able to 

reduce phosphate levels due to loss of renal Klotho-FGF receptor 1 complex, resulting in both high 

phosphate and high FGF-23 levels.179 Elevated levels of FGF-23 are associated with an increased 

cardiovascular risk in patients with CKD180, and with left ventricular hypertrophy in a cohort of CKD 

patients181. These findings were confirmed in rats, where FGF-23 could directly induce left ventricular 

hypertrophy while ejection fraction was preserved.182 Furthermore, FGF-23 is associated with new-

onset HFpEF in a large cohort study of people who were free of cardiovascular disease at baseline.183 

Interestingly, in a cohort of HFpEF patients, FGF-23 was not associated with increased mortality, while 

this was the case for a cohort of HFrEF patients184, suggesting that FGF-23 may be linked to disease 

onset rather than progression. 

 Mechanistically, FGF-23 induces chronic inflammation by stimulating cytokine secretion 

from the liver, but is also locally produced by M1 macrophages, and can thereby further modulate 

inflammation in the heart (Figure 2).185 FGF-23 inhibits ACE2, resulting in reduced degradation of 

angiotensin I and II into their vasodilator metabolites angiotensin-(1-9) and angiotensin-(1-7)185, and 

consequently increased stimulation of AT1 receptors by angiotensin II. High levels of FGF-23 were 

further shown to cause endothelial dysfunction, increase superoxide formation, and decrease NO 

bioavailability in mouse aortas.186 Finally, FGF-23 causes inhibition of 1α-hydroxylase, and can thereby 

contribute to microvascular damage and cardiac dysfunction due to vitamin D deficiency.185 Hence, 

elevated FGF-23 levels can contribute to development of HFpEF by attenuating coronary 

microvascular function and by enhancing angiotensin II induced vascular and myocardial fibrosis. 

Indeed, preliminary data of Roy et al, suggest that FGF-23 levels correlated with interstitial fibrosis in 

HFpEF.187 Furthermore, FGF-23 counteracted the beneficial effect of paricalcitol on left ventricular 

hypertrophy, by modulation of the calcineurin/nuclear factor of activated T cell (NFAT) pathway in a 

rat model of CKD.188 FGF-23 inhibition with KRN23, an anti-FGF antibody, is a viable treatment option 

as open label phase 1/2 studies for X-linked hypophosphatemia, and showed an increase in serum 

inorganic phosphate and active vitamin D in all subjects.189 Further research into a potential causal 

role of FGF-23 in HFpEF development is required, prior to embarking on therapeutic interventions.  
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Conclusion 

The kidneys and heart are interdependent organs, that are highly connected through multiple systems 

on both macrovascular and microvascular level. Unfortunately, many studies on the cardiorenal 

connection have not been conducted in specific HFpEF populations. Pathological processes which are 

present in CKD, such as vascular changes, deficiencies in kidney produced factors, and impairments in 

renal filtration can cause and/or contribute to development of HFpEF via several processes, as 

summarized in Figure 2. Elevated levels of phosphate, PTH, FGF-23, AGEs and uremic toxins, but also 

anemia and proteinuria can induce a systemic proinflammatory state. This state can lead to left 

ventricular stiffening and coronary microvascular dysfunction by initiating endothelial cell 

dysfunction, oxidative stress, and vascular smooth muscle cell proliferation. Arterial stiffening, volume 

expansion, hypertension and RAAS activation, as consequences of CKD, increase left ventricular 

workload and hypertrophy.  

The complexity, and multitude of connections between the heart and kidney, make it 

unlikely that there is a single causal contributor for progression from CKD to HFpEF. Multiple large 

trials have been conducted with treatments for HFpEF, targeting different pathophysiological 

processes but unfortunately failed to show clinical benefit. Therefore, current guidelines on treatment 

of HFpEF focus on lifestyle interventions and the management of comorbidities such as diabetes 

mellitus, hypertension, obesity and CKD. In addition, it has been proposed that different HFpEF 

phenotypes exist that should be targeted with different therapeutic strategies.  CKD patients are likely 

an interesting, identifiable subgroup of HFpEF patients, whom warrant further investigation both in 

pathogenesis as in clinical trials to further investigate cardiorenal connection in HFpEF specifically and 

to identify the unique mechanistic pathways involved in various phases of the disease.  
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Abstract 
Aims More than 50% of patients with heart failure have preserved ejection fraction characterized by 

diastolic dysfunction. The prevalence of diastolic dysfunction is higher in females and associates with 

multiple comorbidities such as hypertension (HT), obesity, hypercholesterolemia (HC), and diabetes 

mellitus (DM). Although its pathophysiology remains incompletely understood, it has been proposed 

that these comorbidities induce systemic inflammation, coronary microvascular dysfunction, and 

oxidative stress, leading to myocardial fibrosis, myocyte stiffening and, ultimately, diastolic 

dysfunction. Here, we tested this hypothesis in a swine model chronically exposed to three common 

comorbidities. 

Methods and results DM (induced by streptozotocin), HC (produced by high fat diet), and HT (resulting 

from renal artery embolization), were produced in 10 female swine, which were followed for 

6 months. Eight female healthy swine on normal pig-chow served as controls. The DM + HC + HT group 

showed hyperglycemia, HC, hypertriglyceridemia, renal dysfunction and HT, which were associated 

with systemic inflammation. Myocardial superoxide production was markedly increased, due to 

increased NOX activity and eNOS uncoupling, and associated with reduced NO production, and 

impaired coronary small artery endothelium-dependent vasodilation. These abnormalities were 

accompanied by increased myocardial collagen content, reduced capillary/fiber ratio, and elevated 

passive cardiomyocyte stiffness, resulting in an increased left ventricular end-diastolic stiffness 

(measured by pressure–volume catheter) and a trend towards a reduced E/A ratio (measured by 

cardiac MRI), while ejection fraction was maintained. 

Conclusions The combination of three common comorbidities leads to systemic inflammation, 

myocardial oxidative stress, and coronary microvascular dysfunction, which associate with myocardial 

stiffening and LV diastolic dysfunction with preserved ejection fraction. 
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Introduction 

More than 50% of patients with heart failure present with heart failure with preserved ejection 

fraction (HFpEF), characterized by diastolic dysfunction.1 Hospitalized patients with HFpEF have high 

mortality and rehospitalization rates, and there is currently no effective treatment available for these 

patients.2–4 Common metabolic and cardiovascular risk factors appear to be critical in the onset of 

diastolic dysfunction and its progression towards HFpEF, as the incidence of HFpEF increases with 

rising prevalence of obesity, hypertension (HT), chronic kidney disease, female sex, and type 2 

diabetes mellitus (DM).5–7 Furthermore, studies in HFpEF patients have shown alterations in 

myocardial structure, function, and cell signaling that are unique to this form of heart failure.8–

11 However, the pathophysiology of HFpEF is still not fully understood, particularly at the myocardial 

tissue level. Findings from these earlier studies have led to the proposition of a novel paradigm, in 

which multiple comorbidities, including obesity, HT, hypercholesterolemia (HC), and DM induce a 

systemic pro-inflammatory state that leads to coronary microvascular dysfunction and oxidative 

stress. In turn, these disease mechanisms result in myocardial stiffening and ultimately left ventricular 

diastolic dysfunction.12 Nevertheless, direct experimental evidence for this unifying hypothesis is still 

lacking. We set out to investigate the chain of events as proposed in this novel paradigm, using a large 

animal model chronically exposed to three common comorbidities that associate with diastolic 

dysfunction, i.e. hyperglycemia, HC, and HT. Since the prevalence of this disease is predicted to 

increase in our aging Western societies,13 such unique large animal model that mimics the complex 

disease mechanisms of diastolic dysfunction would offer a much-needed platform for testing novel 

drug and lifestyle therapies. 

 

2. Methods 

2.1 Animals 

Experiments were performed in accordance with the ‘Guiding Principles in the Care and Use of 

Laboratory Animals’ as approved by the Council of the American Physiological Society, and with 

approval of the Animal Care Committee at Erasmus University Medical Center, Rotterdam. Fourteen 

female (21.7 ± 0.3 kg at 2–3 months of age) Yorkshire x Landrace swine were included to study the 

effects of DM, HC, and HT (DM + HC + HT), while 12 healthy female swine of similar age were studied 

as controls (Control). Finally, six fresh control hearts from slaughterhouse female swine of similar body 
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weight as the control animals (∼100 kg at sacrifice) were included to additionally study vascular 

function characteristics. 

 

2.2 Induction of risk factors 

The induction of risk factors in the DM + HC + HT group is described in detail in the Supplementary 

material online, Supplementary Methods. Briefly, DM was produced by injection of streptozotocin 

(50 mg/kg/day i.v. for 3 days, Bio-connect B. V., Huissen, The Netherlands). 9- to 11 days later, animals 

were sedated with intramuscular Zoletil (tiletamine/zolazepam; 5 mg/kg), Rompun (xylazine; 

2.25 mg/kg) and atropine (1 mg), and artificially ventilated (O2 and N2 [1:2]), to which 1–2% (vol/vol) 

isoflurane was added. HT was produced by micro-embolization of the global right kidney as well as 

the lower pole of the left kidney using 75 mg of polyethylene microspheres (38–42 μm diameter, 

Cospheric, Santa Barbara, CA, USA) per kidney. One week after HT induction, a high fat diet 

(see Supplementary material online, Table S1), supplemented with 10 g NaCl/day was gradually 

introduced to produce HC. 

 

2.3 Hemodynamic assessment 

At 6 months follow-up, extensive in vivo hemodynamic assesment was performed with the animals 

under anesthesia (pentobarbital, 20 mg/kg i.v.) and in the awake state. All procedures are described 

in detail in the Supplementary material online, Supplementary Methods. Briefly, LV function was 

assessed using MRI (Discovery MR450, GE Medical System, Milwaukee, Wisconsin, USA), including 

end-diastolic volume (EDV), end-systolic volume (ESV), E/A ratio, stroke volume (SV), and ejection 

fraction (EF), and using a pressure–volume catheter (CD Leycom, The Netherlands), including EDV, 

ESV, SV, EF, end-diastolic (EDPVR), and end-systolic (ESPVR) pressure–volume relationships. Eight 

animals (4 DM + HC + HT, and 4 Control) were instrumented between 5- and 6-month follow-up with 

a Transonic flow probe around the ascending aorta and fluid filled catheters in the left atrium and 

aorta for hemodynamic measurements at rest and during exercise and the evaluation of kidney 

function. 
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2.4 Coronary small artery function in vitro 

In order to assess coronary vascular endothelial function, coronary small arteries (∼300 µm diameter) 

were isolated from the epicardial surface of the LV apex and studied in vitro using a Mulvany wire 

myograph as presented in the Supplementary material online, Supplementary Methods. In short, the 

concentration–response curves (CRC) were measured for the endothelium-dependent vasodilator 

bradykinin (BK, 10−10 to 10−6 mol/l, Sigma–Aldrich, Zwijndrecht, The Netherlands) and the exogenous 

NO-donor, S-nitroso-N-acetylpenicillamine (SNAP, 10−10 to 10−5 mol/l, Sigma–Aldrich, Zwijndrecht, 

The Netherlands) following preconstriction with 10−6 mol/l thromboxane-A2 analogue U46619 

(Sigma–Aldrich, Zwijndrecht, The Netherlands). 

 

2.5 Tissue analysis 

All analyses are described in detail in the Supplementary material online, Supplementary Methods. 

Briefly, snap frozen samples of the subendocardium of the LV anterior free wall were analysed for 

mRNA expression levels of various genes (see Supplementary material online, Supplementary 

Methods Table S2), involved in different phases of development of diastolic dysfunction, reactive 

oxygen species (ROS), and NO production for NO-ROS balance, eNOS expression, and phosphorylation 

in order to asess eNOS uncoupling and activity. Myocardial levels of cyclic guanosine monophosphate 

(cGMP), and activity of phosphodiesterase 5 (PDE5) and protein kinase G (PKG) were measured using 

ELISA kits, to assess alterations in the downstream signalling pathway of NO. Calcium-force relations 

of single cardiomyocytes were performed for cardiomyocyte stiffness measurements. In addition, titin 

isoform- (N2BA and N2B) expression and phosphorylation were measured as previously 

described.14 Furthermore, histological analyses of myocardial collagen deposition, capillary density, 

and myocyte size were performed for myocardial structure characterization. Finally, the upper pole 

of the left kidney was used for analysis of tubulo-interstitial (TI) damage. Scored variables were the 

amount of inflammatory infiltrate between tubuli, interstitial fibrosis, tubular atrophy, and dilatation. 

A total TI damage score was calculated by summing the scores for the four variables. Fat deposition 

in the liver was also analysed for liver steatosis. 
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2.6 Data analysis 

Data are presented as mean ± SEM. Comparison of variables between the two groups was performed 

by unpaired Student’s t-test (StatView 5.0 SAS Institute Inc.). Vasodilator responses to BK and SNAP 

were expressed as percentage of the preconstriction to U46619. Vasoconstrictor responses to U46619 

were normalized to 10−1 mol/l KCl. Statistical analysis of CRCs, changes in mean aortic pressure over 

time and the measurements of Fpas were performed using two-way ANOVA and the analysis of the 

LAP measurements during exercise using regression analysis. P < 0.05 was considered statistically 

significant. 

 

3. Results 

3.1 Model characteristics 

At 6-month follow-up, DM + HC + HT animals had lower body weights (79±3 kg) than their age-

matched controls (102±4 kg, P < 0.05). No significant group differences were detected in LV-, left 

atrial-, or right ventricular weights, when normalized to body weight (see Supplementary material 

online, Table S3). 

A significant decrease in insulin as well as significant increases in glucose, total cholesterol, 

LDL-, and HDL-cholesterol values, and the LDL/HDL ratio and to a lesser extent in triglycerides 

(P = 0.07), were observed in DM + HC + HT compared to controls (Table 1). Metabolic dysregulation 

was also accompanied by increased mRNA-expression of pyruvate dehydrogenase lipoamide kinase 

isozyme 4 (PDK4, a regulator of glucose metabolism and a marker of diastolic dysfunction15), in 

DM + HC + HT as compared to controls (1.91±0.24 vs. 1.00±0.22 AU, P < 0.05, see Supplementary 

material online, Table S4), which correlated with plasma glucose levels (P < 0.05). TNF-α plasma levels 

were significantly higher than those of healthy controls, consistent with a chronic inflammatory status 

in these animals, which correlated with the levels of glucose (see Supplementary material online, 

Figure S1A, P < 0.05), but not with plasma lipids (see Supplementary material online, Figure S1B). 

Plasma levels of ASAT were similar between groups (42±11 in DM + HC + HT vs. 40±2 U/l in Control), 

but ALAT was significantly lower in DM + HC + HT as compared to controls (24±4 vs. 51±2 U/l, P < 0.05), 

despite a significant increase in fat deposition in the liver of DM + HC + HT animals (0.86 ± 0.31% vs. 

0.03 ± 0.01%; P < 0.05). These data are consistent with findings in other pig models of metabolic 

dysfunction and might be related to the high fructose and high sucrose content of the diet.16,17 
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Table 1. Arterial blood characteristics in DM+HC+HT swine group versus Control, obtained at fasting 

state under anesthesia. GFR was measured in chronically instrumented swine in the awake state. 

Parameter Control (N=8) DM+HC+HT (N=10) 

Metabolic function       

Glucose (mmol/l) 6.1 ± 0.7 22.7 ± 0.9* 

Insulin (ng/l) 39 ± 14 12 ± 1* 

Cholesterol (mml/l) 2.2 ± 0.12 16.8 ± 3.4* 

LDL-cholesterol (mmol/l) 1.1 ± 0.1 14.0 ± 3.2* 

HDL-cholesterol (mmol/l) 1.1 ± 0.1 5.1 ± 0.7* 

LDL/HDL-Cholesterol 1.1 ± 0.1 2.7 ± 0.4* 

Triglycerides (mmol/l) 0.35 ± 0.05 1.16 ± 0.36# 

Renal function       

Urea (mmol/l) 4.2 ± 0.5 3.8 ± 0.4 

Creatinine (µmol/l) 130 ± 6 129 ± 11 

Cystatin C (mg/l) 0.42 ± 0.01   0.51 ± 0.03* 

Aldosterone (pg/ml) 1.4 ± 0.1 10.2 ± 4.1# 

GFR§ (ml/min) 202 ± 7 123 ± 12* 

Inflammation       

TNF-a (pg/ml) 74 ± 24 231 ± 64* 

IL-6 (pg/ml) 21 ± 8 67 ± 32 

LDL=low density lipoprotein, HDL=high density lipoprotein, GFR=glomerular filtration rate, TNF-

a=tumor necrosis factor alpha, IL-6=interleukin-6; §N=4 DM+HC+HT and 4 Controls  *P≤0.05, #P≤0.07, 

DM+HC+HT vs Control 

 

Mean aortic pressure, measured under general anesthesia, rose from 62±3 mmHg 

immediately prior to injection to 87±4 mmHg following infusion of the polyethylene beads in the 

kidneys (P < 0.05). The increase in aortic pressure was well maintained over time, as indicated by the 

biweekly measurements in the awake state, with animals standing quietly in their cage (Figure 1A). 
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Figure 1

Mean arterial pressure (MAP), measured in resting awake state, was increased over time in 
DM + HC + HT as compared to healthy control swine from our laboratory (unpublished data) 
performed in the same time period (A). Representative PAS stained sections of the top part of the left 
kidney of control and DM + HC + HT swine at a magnification of 200×. Scale bar = 50 μm (B). Increased 
tubulo-interstitial damage in kidney sections of DM + HC + HT swine compared to control healthy 
swine (C). Total tubulo-interstitial damage score was calculated by summing the scores for peritubular 
inflammatory infiltrate (not shown), interstitial fibrosis (D), atrophy (E) and dilatation (F) 
(Control N = 8, DM + HC + HT N = 11). *P < 0.05, #P = 0.06.

Figure	1.

Mean	arterial	pressure	(MAP),	measured	in	resting	awake	state,	was	increased	over	time	in	

DM+HC+HT	as	compared	to	healthy	control	swine	from	our	laboratory	(unpublished	data)	

performed	in	the	same	time	period	(A).	Representative	PAS	stained	sections	of	the top	part	of	the	

left kidney	of	control	and	DM+HC+HT swine	at	a	magnification	of	200x.	Scale	bar	=	50	μm (B).

Increased	tubulo-interstitial	damage	in	kidney	sections	of	DM+HC+HT	swine	compared	to	control	

healthy	swine (C). Total	tubulo-interstitial	damage score	was	calculated	by	summing	the	scores	for	

peritubular	inflammatory	infiltrate	(not	shown),	interstitial	fibrosis	(D),	atrophy	(E)	and	dilatation	(F)	

(Control	N=8,	DM+HC+HT	N=11).	*P<0.05,	#P=0.06.

Mean arterial pressure

0 4 8 12 16 20
50

75

100

125

150 DM+HC+HT (N=8)
Historic control (N=8)

Weeks

M
AP

 (m
m

H
g)

0

2

4

6

Total TI-score

To
ta

l T
I-s

co
re

     Control    DM+HC+HT

0.00

0.05

0.10

0.15

0.20

Atrophy

At
ro

ph
y 

Sc
or

e

     Control    DM+HC+HT

0.0

0.5

1.0

1.5

2.0

2.5

Fibrosis

Fi
br

os
is

 S
co

re

     Control    DM+HC+HT

0.0

0.5

1.0

1.5

2.0

Dilatation

D
ila

ta
tio

n 
Sc

or
e

     Control    DM+HC+HT

C D

E F

A B
Control

DM+HC+HT

50	µm

Renal histology



Chapter 7 

 200 

Kidneys of the DM + HC + HT animals were smaller than kidneys of controls; however, when 

corrected for body weight, these differences were no longer apparent (see Supplementary material 

online, Table S3). Representative histology is shown for control and DM + HC + HT kidney cortex 

(Figure 1B). Total tubulo-interstitial (TI) damage score was higher in the DM + HC + HT group 

(P < 0.001, Figure 1C). The DM + HC + HT group showed no increase in peritubular infiltrate (data not 

shown), but showed more interstitial fibrosis (Figure 1D), a trend towards atrophy (Figure 1E, P = 0.06) 

and increased dilatation (Figure 1F) of the tubuli compared to controls. Consequently, GFR, measured 

by inulin clearance, was significantly reduced in DM + HC + HT as compared to healthy controls, 

indicative of kidney dysfunction (P < 0.05, Table 1). Although no differences in plasma creatinine or 

urea values were observed between the groups, cystatin C levels were significantly higher in the 

DM + HC + HT group (P < 0.05). Cystatin C strongly correlated with the levels of TNF-α (P = 0.005, 

see Supplementary material online, Figure S1C). There was a trend towards an increase in plasma 

aldosterone (10.4±4.1 vs. 1.4±0.01 pg/ml, P = 0.06). 

 

3.2 Coronary small artery function 

Small arteries from DM + HC + HT showed similar preconstriction to 10−6 M U46619 as control vessels, 

i.e. 65±6% vs. 70±16% of the response to 10−1 mol/l KCl in the BK experiments, and 62±8% vs. 64±8% 

in the SNAP experiments (both P = NS). The vasorelaxation to the endothelium-dependent vasodilator 

BK was significantly blunted in DM + HC + HT (Figure 2A), whereas the vasorelaxation to the 

endothelium-independent vasodilator SNAP was maintained (Figure 2B), indicative of endothelial 

dysfunction. Interestingly, in isolated small arteries obtained from five additional DM + HC + HT swine, 

pretreatment with the ROS scavenger N-2-mercaptopropionyl glycine (MPG) restored the vasodilator 

response to bradykinin (see Supplementary material online, Figure S2). 

 

3.3 Myocardial ROS measurements 

Myocardial production of the NO metabolites NO2− and NO3− was significantly lower in the 

DM + HC + HT compared to control suggesting reduced NO production (Figure 3A). However, neither 

myocardial cGMP levels (DM + HC + HT: 5.74 ± 2.14 pmol/mg protein, control swine: 

8.12 ± 2.16 pmol/mg protein, P = 0.4), nor PDE5 activity (1.03 ± 0.49 vs. 1.40 ± 1.04 AU/µg 

protein, P = 0.6), were significantly altered, resulting in preserved PKG activity (0.49 ± 0.01 vs.  
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Figure 2

Concentration response curves to bradykinin (BK, A) and the NO-donor S-nitroso-N-
acetylpenicillamine (SNAP, B) in small arteries isolated from DM + HC + HT and healthy control hearts. 
*P < 0.05 DM + HC + HT vs. Control by 2-way ANOVA.

0.50 ± 0.02 AU/µg protein, P = 0.7). Although total eNOS expression was increased in DM + HC + HT as 

compared to control (Figure 3B), this increase was principally due to an increase in eNOS monomer, 

as the monomer/dimer ratio was markedly higher than in controls (Figure 3C). In addition, eNOS 

phosphorylation of residue Ser1177 was higher (possibly reflecting phosphorylation of the eNOS 

monomer18), suggesting that not only eNOS expression but also eNOS activity was increased 

(Figure 3D). The increase in monomer/dimer ratio in DM + HC + HT reflects uncoupling of eNOS. 

Accordingly, basal superoxide production was 3-fold higher in DM + HC + HT (Figure 3E) with the 

increased superoxide values correlating with inflammation (see Supplementary material online, 

Figure S1D) and the decrease in cardiac NO production (P = 0.008, see Supplementary material online, 

Figure S1E). This increase was suppressed by both L-NAME and VAS2870 (both P < 0.05), indicating 

that both NOS and NADPH oxidase contributed to superoxide production (Figure 3E). NADPH resulted 

in exaggerated—and VAS2870-inhibitable, but not L-NAME-inhibitable—superoxide production in 

DM + HC + HT as compared to controls (Figure 3F), confirming NADPH oxidase as a major source of 

superoxide in DM + HC + HT animals in addition to the uncoupled NOS-dependent superoxide 

production. NOX2 and 4 expression in the myocardium of DM + HC + HT did not differ from controls 

(see Supplementary material online, Table S4), suggesting that enzyme activity rather than 

transcriptional activation was higher in these animals. In contrast, gene expression of SOD-1 and 

Figure	2.

Concentration	 response	 curves	 to	 bradykinin	 (BK,	 A)	 and the	 NO-donor	 S-nitroso-N-

acetylpenicillamine	(SNAP,	B) in	small	arteries	isolated	from	DM+HC+HT	and	healthy	control	hearts.	

*P<0.05	DM+HC+HT	versus	Control by	2-way	ANOVA.	
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Figure 3

NO production was decreased in the LV subendocardium of DM + HC + HT (N = 10) vs. Controls (N = 8) 
(A). However, myocardial eNOS expression was increased in DM + HC + HT (B), as was the 
monomer/dimer (MoDi) ratio (C), suggestive of eNOS uncoupling. Phosphorylation of eNOS (peNOS) 
was also significantly increased in DM + HC + HT (D) (N = 10) vs. Control (N = 8). Superoxide generation 
was increased in the LV subendocardium of DM + HC + HT vs. Controls and was suppressed by L-NAME 
and VAS2870 (E). Upon NADPH oxidase stimulation, the superoxide anion production was dramatically 
increased (F), which was inhibited by VAS2870 but not by L-NAME treatment. *P < 0.05 DM + HC + HT 
vs. Control; †P < 0.05 vs. corresponding basal.

catalase were higher in the DM + HC + HT as compared to controls (SOD-1 1.30 ± 0.09 vs. 

1.00 ± 0.08, P < 0.05; catalase 2.44 ± 0.21 vs. 1.00 ± 0.22 AU, P < 0.05), likely representing a feedback 

mechanism to compensate for the increased oxidative stress. In accordance with the expression data, 

myocardial catalase activity was also increased in DM + HC + HT swine as compared to the healthy 

controls (22.3 ± 1.4 vs. 12.1 ± 0.3 nmol/min/mg protein, P = 0.0001). Both catalase (P = 0.0007) and 

SOD-1 (P = 0.02) expression correlated with superoxide production (see Supplementary material 

online, Figure S1F and G).

Figure	3.

Basal	NO	production	was	decreased	in	the	LV	endocardium	of	DM+HC+HT	(N=10)	versus	Controls	(N=8),	

(A). However,	myocardial	eNOS	expression	was	increased	in	DM+HC+HT	(B),	as	was	the	monomer/dimer	

(MoDi)	ratio	(C),	suggestive	of	eNOS	uncoupling.	Phosphorylation	of	eNOS	(peNOS)	was	also	significantly	

increased	in	the	DM+HC+HT,	(D),	(N=10)	versus	Control,	(N=8).	Superoxide	generation	was	increased	in	

the	LV	endocardium	of	DM+HC+HT	versus	Controls	andwas	suppressed	by	L-NAME	and	VAS2870,	(E).	Upon	

NADPH	oxidase	stimulation, the	superoxide	anion	production	was	dramatically	increased	(F),	this	response	

being	impaired	by	VAS2870	but		not	by	L-NAME	treatment.	*P<0.05	DM+HC+HT	versus	Control;	†P<0.05	

vs	corresponding	basal.
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3.4 Myocardial structure: collagen content, myocardial hypertrophy, and capillary density 

The histological findings in the subendocardial layer of the LV anterior wall of animals from both 

groups are shown in Figure 4 and summarized in Figure 5. Total collagen deposition (collagen type 

I + III, Figure 4A and D) was assessed in the subendocardial and subepicardial layers of the LV. Collagen 

deposition was significantly increased in the subendocardium of DM + HC + HT as compared to control 

swine (Figure 5A), which correlated with the superoxide production (P = 0.0001, see Supplementary 

material online, Figure S1H). No difference was found between the subendocardium and the 

subepicardium in each group (data not shown). Moreover, molecular data suggest reduced matrix 

turnover in the subendocardium of DM + HC + HT animals, since expression of both MMP-2 and TIMP-

2 was lower, while expression of MMP-9 and TIMP-1 was unaltered in DM + HC + HT animals as 

compared to controls (see Supplementary material online, Table S4). The MMP-2/TIMP-2 ratio was 

also significantly lower in the DM + HC + HT groups compared to control animals (0.72 ± 0.05 vs. 

0.89 ± 0.03, P = 0.01), while the ratio MMP-9/TIMP-1 was similar (1.17 ± 0.21 vs. 1.73 ± 0.51, P = NS). 

The measurement of the cardiomyocyte cross-sectional area (Figure 4B and E), revealed 

that cardiomyocytes from the DM + HC + HT were significantly smaller than those of control swine, 

which was observed in both subendocardium (413±42 μm2 vs. 598±23 μm2, P < 0.05; Figure 5B) and 

subepicardium (379±29 μm2 vs. 676±31 μm2, P < 0.05; data not shown in Figure 5B). Cardiomyocyte 

size was inversely correlated with the levels of cystatin C (P = 0.02), a potent risk factor for 

cardiovascular disease associated mortality and a strong marker for renal dysfunction. Interestingly, 

when normalized to body weight, the difference in myocyte area between Control and DM + HC + HT 

was no longer observed. In line with the observed reduction in cardiomyocyte size in DM + HC + HT, 

myocardial ATF4 expression was significantly higher in the DM + HC + HT as compared to controls 

(1.51 ± 0.12 vs. 1.00 ± 0.08 AU, P < 0.05), which may suggest increased ER stress in the cardiomyocytes 

as a result of the comorbidities. The gene expressions of ANF/NPPA, UBE2H, and ACTA1 and 2 in the 

myocardium were not different between groups (see Supplementary material online, Table S4), in line 

with the lack of myocyte hypertrophy in DM + HC + HT. 

Capillary density (Figure 4C and F) was similar between the groups (Figure 5C) and also 

between the subendocardium and subepicardium in each group (data not shown). However, the 

capillary-to-fiber ratio was significantly lower in DM + HC + HT as compared to controls, suggestive of 

capillary rarefaction (Figure 5D). No differences were observed between the subendocardium and 

subepicardium of either group (not shown). Unpublished data from our laboratory obtained in weight-

matched DM + HC + HT animals showed no difference in myocyte size vs. control animals, while 
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showing a significant reduction in capillary density (1237 ± 81 in DM + HC + HT vs. 1548 ± 88 

capillaries/mm2 in control, P = 0.03).

Figure 4

Examples of histological staining for quantification of collagen deposition (Picrosirius Red A, D), 
myocyte size (Gomori B, E), and capillary density (Lectin C, F) in the LV subendocardium in Control 
(CON), and DM + HC + HT animals
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Figure 5

Increased collagen deposition (A) but no myocyte hypertrophy (B) was recorded in LV 
subendocardium of the DM + HC + HT animals. Capillary density was similar between groups (C), 
however the capillary-to-fiber ratio was significantly reduced in DM + HC + HT (D). *P < 0.05 
DM + HC + HT (N = 10) vs. Control (N = 8).

3.5 Single myocyte force measurements

Increased maximal force (Fmax, Figure 6A) as well as increased passive stiffness (Fpas, Figure 6B) of the 

cardiomyocytes isolated from the subendocardium of the LV anterior wall was observed in 

DM + HC + HT as compared to controls. Myocardial N2BA/N2B titin expression showed a shift towards 

the stiff N2B titin isoform (Figure 6C, P = 0.01), consistent with the increased passive stiffness of the 

cardiomyocytes, while no significant change in total phosphorylation of either isoform was observed 

(N2BA: 0.76 ± 0.06 AU in Control vs. 0.74 ± 0.05 AU in DM + HC + HT; N2B: 0.98 ± 0.11 AU in Control 

vs. 0.92 ± 0.07 AU in DM + HC + HT).

Figure	5.

Increased	collagen	deposition	(A)	but	no	myocyte	hypertrophy	(B)	was	recorded	in	LV	subendocardium	of	

the	DM+HC+HT	animals.	Capillary	density	was	similar	between groups	(C), however	the	capillary-to-fiber	

ratio	was	significantly	reduced	in	DM+HC+HT	(D).	*P<0.05	DM+HC+HT,	(N=10)	versus	Control,	(N=8).
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Figure 6

Increased maximal (Fmax, A) and passive force (Fpas, B) were seen in DM + HC + HT as compared to 

Controls. Cardiomyocyte data were averaged for all measured cells and group averages are shown. 

Titin N2BA/N2B isoforms ratio was significantly decreased in DM + HC + HT animals (C). Typical 

examples of E and A waves in Control (D) and DM + HC + HT (E) animals and pressure–volume 

relationships (G) are presented. The early to late filling (E/A) ratio tended to be lower in the 

DM + HC + HT animals (F). End-diastolic elastance (slope of EDPVR, sEDPVR) was significantly 

increased (H) while a trend towards significance in the end-systolic elastance (slope of ESPVR, sESPVR) 

was recorded (I), *P < 0.05, #P = 0.10 DM + HC + HT vs. Control.

3.6 Cardiac MRI and global LV function

MRI and PV loop variables as well as typical examples of E and A waves (Figure 6D and E) and 

pressure–volume loops (preload reduction, Figure 6G) are shown in Table 2 and Figure 6. LV EDV and 

SV, indexed to body weight, and ejection fraction were not different between the two groups, 

Figure	6.

Increased	maximal	(Fmax,	A)	and	passive	force	(Fpas,	B)	were	seen	in	DM+HC+HT	as	compared	to	Controls.	

Cardiomyocyte	 data	 were	 averaged	 for	 all	 measured	 cells	 and	 group	 averages	 are	 shown.	 Titin	

N2BA/N2B	isoforms	ratio	was	significantly	decreased	in	DM+HC+HT	animals	(C). Typical	examples	of	E	

and	A	waves	 	 in Control	 (D)	and	DM+HC+HT	 (E)	animals	and	pressure-volume	relationships	 (G)	are	

presented. The	early	to	late	filling	(E/A)	ratio	was	significantly	reduced	in	the	DM+HC+HT	animals	(F).	

End-diastolic	elastance	(EDPVR)	was	significantly	increased	(H)	while	a trend	towards	significance	in	

the	end-systolic	elastance	(ESPVR)	was	recorded	(I),	*P<0.05,	#P≤0.1	DM+HC+HT	versus	Control.
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measured by either MRI or PV loop catheter (Table 2). Late gadolinium enhancement did not show 

any difference between the groups (data not shown), despite an increased collagen content in the LV 

of DM + HC + HT animals as measured histologically (Figure 5A). However, E/A ratio tended to be 

lower in the DM + HC + HT group, suggestive of early diastolic dysfunction (Figure 6F). These findings 

were complemented by the pressure–volume data, showing that DM + HC + HT animals had increased 

LV end-diastolic elastance, indicative of increased passive stiffness of the LV in 

vivo (Figure 6H, P < 0.05). The increase in LV end-diastolic elastance correlated with the increased 

collagen deposition in the subendocardium (see Supplementary material online, Figure S1I, P = 0.05). 

LV end-systolic elastance also tended to be higher in these animals, although this failed to reach 

statistical significance (Figure 6I, P = 0.10), which correlated well with the maximal force development 

of single cardiomyocytes (P = 0.006). Although no significant group differences were observed in LV 

end-diastolic pressure, dP/dtmax, LV dP/dtmin, or tau (Table 2), we did observe a shift in the relation 

between left atrial pressure and cardiac index (Figure 7) in chronically instrumented DM + HC + HT 

compared to control swine during exercise (P < 0.05). These data indicate that in swine in the awake 

state, at similar levels of cardiac index higher atrial filling pressures were observed in DM + HC + HT 

compared to control swine.

Figure 7

Relation between left atrial pressure (LAP) and cardiac index (CI) at rest and during treadmill exercise 
in chronically instrumented Control (N = 4; 97 ± 6 kg, white circles) and DM + HC + HT (N = 4; 94 ± 7 kg, 
black circles) swine. *P < 0.05 DM + HC + HT vs. Control.

Figure	7.

Relation	between	left	atrial pressure	(LAP)	and	cardiac	index	(CI) at	rest	and	during	treadmill	

in	 chronically	 instrumented	Control	 (N=4;	97±6 kg)	and	DM+HC+HT	 (N=4;	94±7 kg)	 swine.
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Table 2. LV function in Control and DM+HC+HT swine under anaesthesia. 

Parameter Control DM+HC+HT 

Body weight (kg) 
102 ± 4 79 ± 3* 

Pressure/Volume Catheter N=8 N=10 
Heart rate (bpm) 85 ± 3 91 ± 5 

LV EDV (ml) 174 ± 22 113 ± 11* 

LV EDVi (ml/kg) 1.5 ± 0.2 1.5 ± 0.2 

SV (ml) 75 ± 3 55 ± 4* 

SVi (ml/kg) 0.75 ± 0.03 0.74 ± 0.08 

Ejection fraction (%) 47 ± 5 50 ± 3 

Millar Catheter N=8 N=10 
Heart rate (bpm) 88 ± 4 85 ± 3 

dP/dt max (mmHg/s) 1470 ± 138 1604 ± 214 

dP/dt min (mmHg/s) -2510 ± 322 -2687 ± 266 

Tau (ms) 49 ± 3 48 ± 3 

LV EDP  (mmHg) 9 ± 2 9 ± 2 

MRI N=6 N=7 
Heart rate 89 ± 7 71 ± 3* 

LV EDV (ml) 189 ± 12 162 ± 11 

LV EDVi (ml/kg) 1.8 ± 0.1 2.1 ± 0.1 

SV (ml) 98 ± 9 73 ± 7* 

SVi (ml/kg) 0.93 ± 0.07 0.94 ± 0.06 

Ejection fraction (%) 51 ± 3 45 ± 4 

       

LV= left ventricle, SV=stroke volume, EDV=End-diastolic volume, EDVi=End-diastolic volume indexed 
for body weight, ESV= End-systolic volume, ESVi= End-systolic volume indexed for body weight, dP/dT 
min and dP/dT max = minimum and maximum rate of pressure change in the left ventricle, LV EDP=left 
ventricle end diastolic pressure, Tau=time constant of isovolumic relaxation; *P<0.05 compared to 
Controls. 
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4. Discussion

In the present study, we report that in the absence of major geometrical alterations in the heart, the 

co-existence of three common comorbidities leads to LV diastolic dysfunction as evidenced by 

increased passive LV stiffness and a trend towards reduced LV diastolic early-to-late filling velocities, 

while EF was still preserved. The cascade of events leading to diastolic dysfunction is summarized 

in Figure 8,19 in which the events that were observed in the present study are highlighted in bold.

These include the presence of chronic systemic inflammation and decreased endothelium-dependent 

vasodilation in the coronary arteries as assessed in vitro. We also observed reduced capillary-to-fiber 

ratio, elevated superoxide production due to NOX activation, eNOS uncoupling, and reduced 

myocardial NO production, all likely to be important mechanisms for the observed increases in LV 

collagen content and cardiomyocyte passive force contributing to LV stiffening and thereby reduced 

diastolic function.12

Figure 8

In a large animal, chronic exposure to multiple common comorbidities results in systemic 
inflammation, endothelium-dependent coronary artery dysfunction, capillary rarefaction, oxidative 
stress, and perturbed nitric oxide production, which are associated with increased myocardial fibrosis 
and passive cardiomyocyte stiffness, resulting in LV diastolic dysfunction. Adapted with permission 
from Ter Maaten et al.19 The findings of the present study that are in agreement with the hypothesis 
are presented in bold.

Paulus and Tschöpe12 proposed that a systemic inflammatory state produced by 

cardiovascular comorbidities is common in many HF patients, particularly those with HFpEF.20,21 The 

inflammatory state promotes coronary microvascular endothelial dysfunction, which is characterized 

by generation of reactive oxygen species and reduced NO bioavailability, and leads to a cascade of 

signaling events that ultimately promotes cardiac fibrosis and myocyte stiffness. Indeed, it is now well 

Figure	8.

In	a	large	animal,	chronic	exposure	to	multiple	common	co-morbidities	results	in	systemic	inflammation,	endothelium-dependent	coronary	artery	dysfunction,	

capillary	 rarefaction,	 oxidative	 stress,	 and	 perturbed	 nitric	 oxide	 production,	 which	 are	 associated	 with	 increased	 myocardial	 fibrosis	 and	 passive	

cardiomyocyte	stiffness,	resulting	in	LV	diastolic	dysfunction. Adapted with	permission	from	Ter	Maaten	et	al.19 The	findings	of	the	present	study	that	are	in	

agreement	with	the	hypothesis	are	presented	in	bold.
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established that multiple common comorbidities, including obesity, DM, and HT, are strongly 

associated with HFpEF.5–7,22–24 This cascade of events could be faithfully recapitulated in the present 

study, although the causality between the various steps remains to be tested. Firstly, a pro-

inflammatory state was documented by markedly elevated levels of circulating TNF-α in diseased 

animals. TNF-α values correlated with the levels of glucose and cystatin C, confirming that DM and 

kidney dysfunction (as evidenced by high tubulo-interstitial damage score, increased cystatin C levels, 

and impaired GFR, despite normal urea and creatinine levels), are important contributors to increased 

systemic inflammation. Secondly, coronary small artery endothelial dysfunction was also evident as 

relaxation responses to bradykinin were diminished, while smooth muscle cell function was preserved 

as indicated by the preservation of vascular responses to the exogenous NO donor SNAP and the 

maintained cGMP-PDE5-PKG signaling, although the latter was measured in the myocardium and 

might also, partly, reflect cardiomyocyte signaling. Thirdly, and perhaps most importantly, ROS 

production was markedly increased and correlated with the decreased cardiac NO production. 

Specifically, the basal superoxide production was increased 3-fold in DM + HC + HT as compared to 

control swine. This increase was significantly suppressed by L-NAME as well as by VAS2870, indicating 

that both NOS and NADPH oxidase were sources of superoxide production. Upon stimulation of NOX, 

myocardial superoxide production was markedly increased in DM + HC + HT as compared to controls, 

confirming NOX as the major source of superoxide. This was probably due to the increase in NOX-

activity, as myocardial gene expression was not significantly different between groups. Furthermore, 

although increased eNOS expression and phosphorylation levels were observed in DM + HC + HT 

animals, the monomer/dimer ratio was increased almost 3-fold, indicating that eNOS-uncoupling 

accounted for the aggravated NOS-dependent superoxide production. The increased myocardial 

superoxide levels in conjunction with low NO levels suggest direct quenching of NO by superoxide as 

a major factor contributing to the reduced NO bioavailability in the present animal model, both basal 

and agonist induced. This is in agreement with data from Paolocci et al. in isolated rat hearts.25 In our 

model, the increase in superoxide production correlated with the levels of TNF-α, confirming that 

inflammation is one of the important mechanisms leading to the increase in oxidative stress in the 

diseased animals. Interestingly, catalase activity, as well as the expression of catalase and SOD-1 were 

also significantly increased in the diseased animals, representing a possible compensatory mechanism 

for increased oxidative stress as both expression levels correlated with superoxide production. 

The observed functional alterations were associated with structural vascular impairments in 

the myocardium of DM + HC + HT animals. We observed capillary rarefaction as evidenced by lower 

capillary-to-fiber ratio in the diseased hearts. Capillary rarefaction has been asociated with metabolic 

syndrome in animal models26 and has only been sparsely investigated in previous studies of diastolic 
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dysfunction, but our findings are in accordance with a study by Mohammed et al. who reported a 

reduced capillary density in the myocardium of HFpEF patients.27 Capillary rarefaction may have 

important clinical implications, particularly when occurring simultaneously with the observed 

coronary arterial endothelial dysfunction, as it will impair myocardial oxygenation especially during 

physical exercise.28 These microvascular alterations, at the level of both small arteries and capillaries, 

may contribute to reduced exercise tolerance in HFpEF patients.29 The observed vascular changes 

were accompanied by an increase in total collagen, which together with the increased passive stiffness 

of single cardiac myocytes (likely due to the shift towards the stiffer titin N2B isoform), translated into 

higher LV stiffness30–32 as demonstrated by increased LV end-diastolic elastance and the trend 

towards a decreased E/A ratio, both clear indicators of diastolic dysfunction. Indeed, the increase in 

collagen correlated with the increased LV end-diastolic elastance, indicating collagen deposition in the 

myocardium as an important determinant of increased stiffness. The activation of pro-fibrotic 

pathways in the myocardium and the resulting increase in collagen deposition is likely due to the 

increased oxidative stress and inflammation modulating the TGF-beta/SMAD3 signalling 

pathway.33 Furthermore, Westermann et al.34 have shown in patients with HFpEF that cardiac 

inflammation results in accumulation of extracellular matrix contributing to the development of 

diastolic dysfunction. Disturbed turnover of extracellular matrix, mediated through dysregulation of 

MMPs and their tissue inhibitors (TIMPS) is likely to play a role in this process. Our data suggest a 

reduced, rather than increased, matrix turnover in the myocardium of the animals with comorbidities 

at this stage of the disease. In addition, data obtained in a dog model of subacute heart failure indicate 

that persistent neurohumoral activation, which is also likely to be present in our porcine model, may 

result in high-energy phosphate depletion and enhancement of AMP deaminase activity contributing 

to myocardial stiffening irrespective of changes in extracellular matrix.35 The structural abnormalities 

observed in the present study translated into a shift in the relation between left atrial pressure and 

cardiac index in exercising swine, indicating that also during exercise higher filling pressures were 

required to achieve a similar level of cardiac index, consistent with a stiffer heart. Interestingly, the 

increased maximal force of single cardiomyocytes correlated with the observed trend towards 

increased LV end-systolic elastance. It could therefore be speculated that the increase in contractility 

acted as a compensatory mechanism to maintain LV function particularly in the face of the elevated 

blood pressure in the absence of LV hypertrophy.36 
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4.1 Aspects of the experimental model 

The animal model presented here is complementary to a recently reported porcine model of diastolic 

dysfunction.37 Schwarzl et al. induced HT and HC using DOCA-salt and western diet containing high 

amounts of salt, fat, and cholesterol. An important difference between the two studies, besides the 

longer follow-up in our study (6 months vs. 12 weeks), was the induction of diabetes and kidney 

dysfunction in our model. The type of diabetes induced in our study is not consistent with either DM 

type I or with early DM type II, but rather with a late stage DM type II with impaired insulin production. 

In addition, the animals with comorbidities had a lower body weight, despite increased lipid plasma 

levels which may be due to growth retardation, which has also been shown in children with chronic 

kidney disease.38 Although Schwarzl et al.37 reported several similar functional findings, including 

increased LV end-diastolic stiffness, increased superoxide production, and eNOS uncoupling, some 

findings are distinctly different. Diabetes, which is a common comorbidity in HFpEF patients, likely 

contributed to the endothelial dysfunction and activation of NOX, which are also observed in HFpEF 

patients.18 Moreover, whereas concentric LV hypertrophy occurred in response to the pressure-

overload in the study of Schwarzl et al. cardiomyocyte area was reduced in our model, indicating that 

in the present model, myocyte hypertrophy is not a factor contributing to myocardial stiffening. The 

lack of myocyte hypertrophy, is in agreement with the maintained PKG activity levels in our animals 

and in accordance with the concept that severe hyperglycemia induces muscle cell atrophy both in 

skeletal39,40 and cardiac muscle.41,42 Furthermore, myocyte size inversely correlated in our animals 

with the levels of cystatin C suggesting a role of the chronic kidney dysfunction in this process. 

Schwarzl et al. only evaluated renal function by creatinine and urea, but not inulin clearance and 

cystatin C. Our study shows that marked reductions in glomerular filtration rate are not detected by 

urea and creatinine in hypertensive swine. Increased LV fibrosis was documented in the present study 

and correlated with the increased diastolic elastance, but was not observed in the study by Schwarzl 

et al., most likely because hyperglycemia in addition to inflammation is an important trigger for 

extracellular matrix remodeling in HFpEF.43,44 Diabetes is known to lead to vascular deficiency, 

mediated by miR-320 according to a recent study45 as documented here as capillary rarefaction. In 

the study by Schwarzl et al.37 reduced phosphorylation of titin, the giant molecular ‘spring’ that is 

considered as one of the most important factors responsible for cardiomyocyte passive stiffness, was 

observed and a shift towards its stiffer isoform N2B was reported, supporting the concept that both 

collagen and titin contribute to myocardial stiffness in HFpEF patients.30 In the present model, while 

the shift in titin isoform towards the stiff N2B isoform was also documented, a change in total 

phosphorylation was not observed. Altogether, data from both models suggest that the presence of 

different comorbidities may initiate partially different pathologic pathways, that may provide 
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potential targets for further study and mechanistic interventions. Based on the data from the present 

animal model, chronic treatment with antioxidants aiming at increasing NO bioavailability and 

alleviating oxidative stress, lowering inflammation, as well as sGC stimulators might result in reduction 

of collagen deposition, cardiomyocyte stiffening, and delay of onset of diastolic dysfunction. 

 

4.2 Conclusions 

As summarized in Figure 8, the present study demonstrates that in a large animal, chronic exposure 

to multiple common comorbidities results in systemic inflammation, endothelium-dependent 

coronary microvascular dysfunction, capillary rarefaction, oxidative stress, and perturbed nitric oxide 

production, which are associated with increased myocardial fibrosis and passive cardiomyocyte 

stiffness in the absence of myocyte hypertrophy, resulting in LV diastolic dysfunction. Future studies 

are needed to address the exact mechanisms connecting the different steps in the process; however, 

this large animal model provides an excellent translational tool for improving our understanding of 

the early pathophysiology of heart failure with preserved ejection fraction and for testing novel 

therapeutic interventions, including drugs, exercise, and diet interventions, for the treatment of the 

patients with this type of heart failure. 

 

Supplementary material Supplementary material is available at Cardiovascular Research online. 

(https://academic.oup.com/cardiovascres/article/114/7/954/4844872) 
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Supplementary Results 

To exclude an effect of the surgical procedures on the plasma levels of TNF-α, we measured TNF-α 

levels in a subgroup of control animals (N=3) both prior to surgery and 2-3 weeks after surgery. We 

observed similar levels of TNF-α at both time points: 27.3±5.1 at 3 weeks after surgery vs 24.7 ±5.4 

pg/ml before surgery, indicating that the sustained inflammatory response was due to the risk factors 

and not the result of surgical interventions. 

 

Supplementary Table 1 Composition of the high fat diet. 

Ingredients % 

Soybean hulls 19.65 

Potato protein 2.5 

Wheat gluten flour 8.6 

Sugar 10 

Fructose 15 

Pea starch 15 

Lard 25 

Premix vitamins 1 

Chalk 0.96 

Monocalciumphosphate 1.08 

Salt 0.47 

Cholesterol 1 

Lysine HCl 0.24 

Sodium cholate 0.7 
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Supplementary Table 2 Primer sequences. 

 Forward sequence Reverse sequence 

Beta-actin GCATCCTGACCCTCAAGTAC CACGCAGCTCGTTGTAGAAG 

PDK4 TGCAATGAGGGCTACAGTCG CGGTCAATGATCCTCAGGGG 

SOD-1 TGGGCAATGTGACTGCTGGC TCATGGACCACCATTGTGCGG 

Catalase TGCCACCGGCAACTATCCCT TCGCTGTGAGGCCAAACCTTG 

NOX 2 CCGCATTGTTGGCGACTGGA CCCGTCCACAGCGATCTTAGG 

NOX 4 ACCAGATGCTGGGGGATTGTG CCTCGAAGGTAAGCCAGGAGTGT 

ACTA 1 GAGAGCAGCAGAAACCCGACG ACGATGGACGGGAACACAGC 

ACTA 2 ATGGTGGGAATGGGACAA GTGATGATGCCGTGTTCT 

UBE2H GAGGCGGATGGACACAGACG CCTTCATACGGTGTTCCCTGTGG 

NPPA ACCGTGAGCTTCCTCCTCGT TCCAAGTGGTCCAGCAAATTCTTG 

ATF4 TTAGGCCATGGCGCTTCTCAC TCGGCCATGTTGCGGAGTTT 

MMP 2 GCAGTGATGGCAAGTTGTGG TTGACATCGTCGTGGGACAG 

MMP 9 TCGACGTGAAGACGCAGAAG ACCTGATTCACCTCGTTCCG 

TIMP 1 GATCTATGCTGCTGGCTGTGA GTCTGTCCACAAGCAGTGAGT 

TIMP 2 TTGCAATGCAGACGTAGTGA GCCTTTCCTGCGATGAGGT 

PDK4= Pyruvate Dehydrogenase Kinase isosyme 4;  SOD 1= Superoxide Dismutase 1; 

NOX 2= NADPH Oxidase 2; NOX 4= NADPH oxidase 2; ACTA 1= Alpha Actin 1; ACTA 2= 

Alpha Actin 2; UBE2H= Ubiquitin-Conjugated Enzyme E2H; ANF/NPPA= Atrial Natriuretic 

Factor; ATF4= Activating Transcription Factor 4, MMP 2, 9= matrix metalloproteinase 2, 

9, TIMP 1,2= tissue inhibitor of matrix metalloproteinase 1, 2. 
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Supplementary Table 3 Kidneys and heart weights at sacrifice. 

 Controls (N=8) DM+HC+HT (N=10) 

 

Body weight (kg) 

 

102 

 

± 

 

4 

 

79 

 

± 

 

3* 

 Kidneys       

Left kidney     - absolute (g)                 176 ± 12 127 ± 7* 

 - relative (g/kg) 1.69 ± 0.09 1.64 ± 0.10 

Right kidney   - absolute (g)               173 ± 14 132 ± 10* 

 - relative (g/kg) 1.66 ± 0.12 1.71 ± 0.14 

 

Heart 
    

 
 

LV                  - absolute (g)         231 ± 17 184 ± 9* 

 - relative (g/kg) 2.2 ± 0.1 2.3 ± 0.1 

RV                  - absolute (g)                 73 ± 8 58 ± 3 

 - relative (g/kg) 0.68 ± 0.08 0.74 ± 0.02 

LA                  - absolute (g)               21 ± 1 16 ± 1* 

 - relative (g/kg) 0.20 ± 0.01 0.21 ± 0.01 

RA                  - absolute (g)                        14 ± 1 13 ± 1 

 - relative (g/kg) 0.13 ± 0.01 0.17 ± 0.01* 

LV= left ventricle, RV= right ventricle, LA= left atrium, RA= right atrium. Data are presented as 

absolute value and as relative values normalised to body weight. *P<0.05 DM+HC+HT vs. 

Controls. 
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Supplementary Table 4 Gene expression in left ventricular myocardium 

 Controls (N=8) DM+HC+HT (N=10) 

   

Beta-actin 1.00 ± 0.44 1.03 ± 0.26 

PDK4 1.00 ± 0.22  1.91 ± 0.24* 

SOD-1 1.00 ± 0.08  1.30 ± 0.09* 

Catalase 1.00 ± 0.22  2.44 ± 0.21* 

NOX 2 1.00 ± 0.12 1.52 ± 0.38 

NOX 4 1.00 ± 0.13 0.91 ± 0.15 

ACTA 1 1.00 ± 0.22 0.88 ± 0.03 

ACTA 2 1.00 ± 0.16 1.37 ± 0.16 

UBE2H 1.00 ± 0.10 1.26 ± 0.09 

ANF/NPPA 1.00 ± 0.47 0.72 ± 0.23 

ATF4 1.00 ± 0.08   1.51 ± 0.12* 

MMP 2 1.00 ± 0.06 0.59 ± 0.05* 

MMP 9 1.00 ± 0.26 0.73 ± 0.08 

TIMP 1 1.00 ± 0.04 1.03 ± 0.06 

TIMP 2 1.00 ± 0.09 0.73 ± 0.07* 

PDK4= Pyruvate Dehydrogenase Kinase isosyme 4;  SOD 1= Superoxide 

Dismutase 1; NOX 2= NADPH Oxidase 2; NOX 4= NADPH oxidase 2; ACTA 1= Alpha 

Actin 1; ACTA 2= Alpha Actin 2; UBE2H= Ubiquitin-Conjugated Enzyme E2H; 

ANF/NPPA= Atrial Natriuretic Factor; ATF4= Activating Transcription Factor 4, 

MMP 2, 9= matrix metalloproteinase 2, 9, TIMP 1,2= tissue inhibitor of matrix 

metalloproteinase 1,2. Results were normalized to the housekeeping gene beta-

actin and relative changes in expression levels were calculated relative to the 

Control group, and presented as Mean ±SEM. *P<0.05. DM+HC+HT vs. Controls. 
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Supplementary Fig. 1

Correlations between the risk factors, inflammatory state, oxidative stress in the myocardium, fibrosis 

and left ventricular end diastolic elastance.

Supplementary Fig. 2

Concentration-response curves to bradykinin (BK) in baseline conditions and upon pretreatment with 

the free radical scavenger N-2-mercaptopropionyl glycine (MPG) in DM+HC+HT animals.
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Abstract 
Introduction: Comorbidities of ischemic heart disease, including diabetes mellitus (DM), 

hypercholesterolemia (HC) and chronic kidney disease (CKD), are associated with coronary 

microvascular dysfunction (CMD). Increasing evidence suggests that CMD may contribute to 

myocardial ‘Ischemia and No Obstructive Coronary Artery disease’ (INOCA). In the present study, we 

tested the hypothesis that CMD results in perturbations in myocardial perfusion and oxygen delivery 

using a novel swine model with multiple comorbidities. 

Methods and Results: DM (streptozotocin), HC (high fat diet) and CKD (renal embolization), were 

induced in 10 female swine (DM+HC+CKD-group), while 12 healthy female swine on a normal diet 

served as controls (Normal). After 6 months, at a time when coronary atherosclerosis was still 

negligible, myocardial blood flow, metabolism and function were studied at rest and during treadmill 

exercise. DM+HC+CKD animals showed hyperglycemia, hypercholesterolemia and impaired kidney 

function. During exercise, DM+HC+CKD demonstrated perturbations in myocardial blood flow and 

oxygen delivery, necessitating a higher myocardial oxygen extraction – achieved despite reduced 

capillary density – resulting in lower coronary venous oxygen levels. Moreover, myocardial efficiency 

was lower, requiring higher oxygen consumption for a given level of myocardial work. These 

perturbations in myocardial oxygen balance were associated with lower myocardial lactate 

consumption, stroke volume and LVdP/dtmax, suggestive of myocardial ischemia and dysfunction. 

Further analyses showed a reduction in adenosine-recruitable coronary flow reserve, but this was 

exclusively the result of an increase in basal coronary blood flow, while maximal coronary flow per 

gram of myocardium was maintained; the latter was consistent with the unchanged arteriolar 

wall/lumen ratio, arteriolar density and peri-arteriolar collagen content. However, isolated small 

arteries displayed selective blunting of endothelium-dependent vasodilation in response to 

bradykinin in DM+HC+CKD swine, suggesting that changes in coronary microvascular function rather 

than in structure contributed to the perturbations in myocardial oxygen delivery. 

Conclusion: Common comorbidities in swine result in CMD, in the absence of appreciable 

atherosclerosis, which is severe enough to produce perturbations in myocardial oxygen balance, 

particularly during exercise, resembling key features of INOCA.  
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Introduction 

Common comorbidities of cardiovascular disease, including diabetes mellitus (DM), 

hypercholesterolemia (HC), chronic kidney disease (CKD), are well-known risk factors for the 

development of coronary artery disease of both large epicardial arteries and smaller coronary 

arteries.1-4 While it is well-established that obstructive coronary artery disease (CAD) is a major cause 

of myocardial ischemia5, there is increasing evidence that coronary microvascular dysfunction (CMD) 

also contributes to myocardial ischemia, not only in the presence of obstructive CAD6-9, but also in 

patients without obstructive CAD, a situation referred to as ‘Ischemia and No Obstructive Coronary 

Artery disease’ (INOCA).2, 9-11 Clinical studies have shown that INOCA is present in approximately one-

third of men and two-thirds of women undergoing angiography for suspected ischemic heart disease 

and that cardiovascular death or myocardial infarction occurred in 6.7% of the patients without any 

signs of CAD and in 12.8% of patients with non-obstructive CAD.12, 13  

 Although the mechanisms underlying INOCA remain incompletely understood, there is 

increasing evidence that CMD, in particular impaired endothelium-dependent vasodilation, plays an 

important role.3, 10, 14, 15 In agreement with these clinical observations, experimental data obtained in 

swine, chronically exposed to multiple comorbidities, also demonstrate endothelial dysfunction of 

isolated small coronary arteries studied in vitro, in the absence of obstructive CAD.16-18 However, 

whether these perturbations of coronary microvascular endothelial function translate into impaired 

myocardial perfusion and oxygen delivery in vivo, i.e. result in INOCA, was not assessed in these 

studies. Consequently, we tested the hypothesis that combined comorbidities as frequently present 

in patients, result in perturbations in myocardial perfusion and oxygen delivery, causing a shift 

towards anaerobic metabolism and cardiac dysfunction, particularly during increased myocardial 

oxygen demand. To test our hypothesis, we studied swine that were chronically (six months) exposed 

to a combination of three common comorbidities – DM+HC+CKD, and have been extensively 

phenotyped in our previous study.16 Here, swine were chronically instrumented after 5 months 

exposure to DM+HC+CKD to allow assessment of systemic and coronary hemodynamics as well as 

myocardial metabolism and function in the awake state, at rest and during treadmill exercise. 
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Materials and Methods 

Animals  

All animal experiments were approved by the Animal Care Committee at the Erasmus University 

Medical Center (Rotterdam, The Netherlands) and performed in accordance with the “Guiding 

Principles in the Care and Use of Laboratory Animals” as approved by the Council of the American 

Physiological Society. Ten female Yorkshire x landrace swine (25±1 kg) were included in the 

DM+HC+CKD group while 12 healthy female Yorkshire x landrace swine of similar age and weight were 

used as controls (Normal). Two swine assigned to the DM+HC+CKD group died prematurely. One 

animal died two weeks after CKD induction and one animal died during chronic instrumentation due 

to surgical complications. In the Normal group, also two swine were lost. One animal died during 

chronic instrumentation, while another animal experienced severe lameness prior to chronic 

instrumentation and was excluded from further study. Four additional swine (2 Normal and 2 

DM+HC+CKD) were included for measurement of coronary flow reserve (CFR) in vivo and small artery 

function ex vivo. An overview of the experimental design and technical procedures is presented in 

Figure 1.  

 

Induction of comorbidities 

The induction of comorbidities in the DM+HC+CKD group has been described in detail elsewhere.16 

Briefly, DM was produced by injection of streptozotocin (Bio-connect B.V., Huissen, The Netherlands) 

in a dose of 50 mg kg-1 day-1 i.v. on 3 consecutive days. The severity and stability of DM was monitored 

bi-weekly by measurement of blood glucose and ketone levels.  

Two weeks after DM induction, animals were sedated with intramuscular injection of a cocktail of 

Zoletil (tiletamine/zolazepam; 5 mg kg-1), Sedazine (xylazine; 2.25 mg kg-1) and atropine (2 mg) and 

artificially ventilated (O2 and N2 [1:2 vol/vol], to which 1–2% (vol/vol) isoflurane was added for 

anesthesia). CKD was produced by micro-embolization of the global right kidney as well as the lower 

pole of the left kidney. For this purpose, the renal arteries were catheterized under fluoroscopy 

guidance (right renal artery and selective catheterization of the artery perfusing the left lower renal 

pole) with a Swan-Ganz catheter, inserted through a 9F sheath in the right common carotid artery. 

Following inflation of the balloon to prevent back-flow into the aorta, 75 mg of polyethylene 

microspheres with a diameter of 38-42 μm (Cospheric, Santa Barbara, CA, USA) were infused in each 

kidney. The wound was closed and the animals were allowed to recover. 
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One week after CKD induction, a high fat and high sugar diet containing 10% sucrose, 15% 

fructose, 25% saturated fats and 1% cholesterol (Research Diets Services BV, Wijk bij Duurstede, The 

Netherlands) supplemented with sodium chloride (20 g day-1) was gradually introduced. The Normal 

group continued to receive regular swine-chow. Animals were housed in pairs but were fed separately 

and had ad libitum access to drinking water. 

Figure 1 

Experimental timeline of the DM + HC + CKD swine from induction of the comorbidities to the 

termination. High-fat + high-sugar +high-salt diet was composed of 10% sucrose, 15% fructose, 25% 

saturated fats, and 1% cholesterol supplemented with sodium chloride (20 g day−1). Normal swine 

were weight- and age-matched to the DM + HC + CKD swine, were fed normal chow without receiving 

the induction of any comorbidities, and underwent chronic instrumentation, in vivo experiments and 

termination according to a similar protocol as DM + HC + CKD swine. DM diabetes 

mellitus, CKD chronic kidney disease, HC hypercholesterolemia, GFR glomerular filtration 

rate, CFR coronary flow reserve
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Chronic Instrumentation 

After an overnight fast, Normal swine and DM+HC+CKD swine (5 months after CKD induction) were 

sedated with an intramuscular injection of a cocktail of Zoletil (tiletamine/zolazepam; 5 mg kg-1), 

Sedazine (xylazine; 2.25 mg kg-1) and atropine (2 mg), and artificially ventilated (O2 and N2 [1:2; 

vol/vol]), to which 2–2.5% (vol/vol) isoflurane was added. As described in detail elsewhere19, a 

thoracotomy was performed in the fourth left intercostal space under sterile conditions and fluid-

filled polyvinylchloride catheters were placed in the left ventricle, aorta, pulmonary artery and left 

atrium for pressure measurements and blood sampling. Additionally, two flow probes (Transonic 

Systems, Ithaca, NY) were placed, one around the aorta for cardiac output measurement, and one 

around the proximal left anterior descending coronary artery for measurement of coronary blood 

flow. Finally, two small angio-catheters (one as back-up) were inserted into the anterior inter-

ventricular vein for coronary venous blood sampling. In one Normal and in one DM+HC+CKD animal 

the coronary venous angio-catheters lost patency prior to the exercise study. Electrical wires and 

catheters were tunneled subcutaneously to exit at the back and protected with a vest. Then, the chest 

was closed and animals were allowed to recover, receiving analgesia (0.3 mg buprenorphine i.m.) and 

a slow-release fentanyl patch (50 μg h-1) for 6 days, and antibiotic prophylaxis (25 mg kg-1 amoxicillin 

i.v.) for 7 days. All catheters were flushed daily with heparinized saline (1,000–5,000 IU ml-1 saline) to 

prevent the formation of blood clots and to maintain catheter patency. One DM+HC+CKD swine had 

a malfunctioning coronary flow probe. 

 

In Vivo Experiments in Awake Swine 

Experiments started one week after surgery. First, the glomerular filtration rate (GFR) was measured 

at rest, using continuous inulin infusion 16. On a subsequent day, myocardial perfusion and function 

at rest and during exercise were assessed using a motor-driven treadmill exercise protocol. Briefly, 

resting hemodynamic measurements, blood samples, and rectal temperature were obtained with 

swine standing quietly on the treadmill. Then, swine were subjected to a three-stage incremental 

treadmill exercise protocol (2, 3 and 4 km h-1 at 0% inclination, 3 min per stage). Hemodynamic 

variables were continuously recorded digitally on a Codas workstation (ATCODAS, Dataq Instruments, 

Akron, OH) with blood samples collected during the final 30 s of each exercise stage when steady-

state hemodynamics had been achieved. Blood samples were analyzed for pO2, pCO2, pH, 

bicarbonate, O2 saturation, and hemoglobin concentration (ABL-800, Radiometer, Copenhagen).  
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 Coronary blood flow was measured in awake resting swine (4 Normal and 4 DM+HC+CKD) 

under basal conditions and during maximal coronary vasodilation using intravenous infusion of 

adenosine (0.5 mg kg-1 min-1) in combination with phenylephrine (5-7.5 µg kg-1 min-1) to maintain 

mean arterial pressure at baseline levels.6 CFR was calculated as maximal coronary blood flow divided 

by basal coronary blood flow. 

 

Sacrifice 

At sacrifice, swine were sedated by intramuscular injection with a cocktail of Zoletil 

(tiletamine/zolazepam; 5 mg kg-1), Sedazine (xylazine; 2.25 mg kg-1) and atropine (2 mg) and 

anesthetized with pentobarbital (9 mg kg-1 h-1 i.v.). Subsequently, a sternotomy was performed and 

ventricular fibrillation was induced using a 9 V battery, and immediately the heart, kidneys, liver and 

pancreas were excised, weighed and prepared and stored for later biochemical, molecular and 

histological analyses. 

 

In vitro coronary small artery function  

In a subgroup of animals (3 Normal and 3 DM+HC+CKD), coronary small arteries (∼300 µm diameter) 

were isolated from the epicardial surface of the left ventricular apex and studied in vitro using a 

Mulvany wire myograph (DMT, Aarhus, Denmark). Vasodilation to 3x10−9, 10−8 and 3x10-8 mol L-1 of 

the endothelium-dependent vasodilator bradykinin (BK, Sigma–Aldrich, Zwijndrecht, The 

Netherlands) and to 10-7, 3x10-7 and 10-6 mol L-1 of the NO-donor, S-nitroso-N-acetylpenicillamine 

(SNAP, Sigma–Aldrich) were measured following preconstriction with 10−6 mol L-1 of the 

thromboxane-A2 analogue U46619 (Sigma–Aldrich). 

 

Plasma and Tissue Analyses 

Fasting arterial blood samples were obtained at the time of instrumentation and stored at -80 oC, for 

later determination of plasma glucose, triglycerides, total cholesterol, low-density lipoprotein (LDL), 

high-density lipoprotein (HDL), aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), 

albumin, sodium and creatinine, as previously described.16 Arterial plasma concentrations of tumor 

necrosis factor alpha (TNF-α, R&D Systems Europe Ltd., Abingdon, UK), neutrophil gelatinase-
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associated lipocalin (Pig NGAL, BioPorto Diagnostics A/S, Hellerup, Denmark) and fasting insulin 

(Porcine Insulin, Mercodia AB, Uppsala, Sweden) were determined using ELISA kits. 

 Samples of the pancreas, liver, kidney, left anterior descending artery, right coronary artery, 

left circumflex artery and left ventricular anterior free wall were excised, cryo-embedded in Tissue-

Tek or fixated in 4% buffered formaldehyde and embedded in paraffin for histological analyses. 4.5 

μm thick slides of the pancreas were stained for insulin (FLEX polyclonal anti-insulin, Agilent 

Technologies, Santa Clara, CA). Six to eight fields at 20x magnification were analyzed and data were 

averaged per animal. Cryosections of the liver (4 μm thick) were stained with oil red O (Oil Red O, 

Sigma-Aldrich) for quantification of liver fat deposition. Five to seven liver lobes were analyzed and 

data were averaged per animal. 

From formaldehyde-fixed, paraffin-embedded kidneys, 3 μm sections were sliced and stained. For the 

analysis, the upper pole of the left kidney, that was not embolized, was used. Tubulo-interstitial 

damage and glomerulosclerosis were scored on Periodic-Acid Schiff stained sections in a blinded 

manner. The tubulo-interstitial damage was scored in at least 20 different non-overlapping fields per 

animal at a magnification of 200x. The amount of inflammatory infiltrate between tubuli, interstitial 

fibrosis, tubular atrophy and dilatation were scored on a scale of 0-5, with 0 indicating not present, 

and 5 indicating that >75% of all tubuli were affected. A total TI damage score was calculated by 

summing the scores for the four variables. Glomerular score was scored at a magnification of 400x on 

50 separate glomeruli by quadrants, with 0 indicating that no quadrant was affected and 4 indicating 

that the whole glomerulus was affected. Scored variables were matrix expansion, sclerosis, adhesion 

of Bowman’s capsule and dilation, from which a total glomerulosclerosis score was then calculated. 

Glomerular volume was assessed using a computerized image analysis system consisting of a high-

resolution digital camera (Leica ICC50 W) attached to a microscope (Leica DM750). All renal 

histological analyses were performed by observers blinded to the treatment of the animal. 

Left ventricular anterior wall sections (4.5 μm thick) were stained for quantification of myocardial 

collagen deposition, myocyte size and capillary density. Six to eight fields were examined in the 

endocardial part of each slide, at 20× magnification. Collagen deposition was assessed using 

picrosirius red staining, with interstitial and perivascular collagen deposition being analyzed 

separately. Using light microscopy, interstitial collagen was measured as area occupied by all collagen 

fibers and expressed as a percentage of the myocardial area, perivascular collagen being excluded 

from this analysis. Using a linear polarization filter, the percentage area of the myocardium occupied 

specifically by collagen type I and III fibers was measured.20 Perivascular collagen deposition was 

measured for all coronary arterioles (diameter 10-100µm) encountered in the left ventricular section 
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at 20x magnification (± 150mm2) and expressed as a percentage of the perivascular area. The latter 

was defined as the area delineated by two times the distance from the lumen center to the external 

elastic lamina in all directions. Cross-sectional areas of cardiomyocytes with clearly visible nuclei were 

measured for each slide, using a Gomori silver stain. Capillary density was quantified using an 

endothelial cell staining with biotin-labeled lectin (lectin 1/100 in 1% bovine serum albumin in PBS, 

Sigma-Aldrich). All vessels smaller than 10 μm in diameter and without vascular smooth muscle cells 

were counted. Capillary to fiber ratio was calculated by dividing capillary density by the total number 

of cardiomyocytes per mm2.  

Right coronary artery, left circumflex artery, left anterior descending artery and left ventricular 

sections were stained with resorcin-fuchsin solution to assess media-to-lumen ratios of large coronary 

arteries and coronary arterioles (10-100µm inner diameter). Smooth muscle actin was stained 

(EnVision G|2 doublestain rabbit/mouse, Agilent Technologies, Santa Clara, CA, USA) in left ventricular 

sections to determine coronary arteriolar densities, according to an earlier described protocol21, in 

short we counted arterioles of 20-100µm inner diameter with >2 smooth muscle layers. All 

measurements, except for renal histological measurements, were performed using a microscopy 

image analysis system (Impak C, Clemex Vision Image analysis system, Clemex Technologies, Quebec, 

Canada).  

 

Data Analysis and Statistics 

Data are presented as mean ± SEM. Digital recording and offline analysis of hemodynamic data 

obtained at rest and during exercise. Body O2 consumption (BVO2) was calculated as the product of 

cardiac output and the difference in O2 content between arterial and mixed venous blood. Systemic 

vascular conductance (SVC) was computed by dividing the cardiac output by the mean arterial 

pressure. Myocardial O2 and lactate delivery were computed as the product of coronary blood flow 

and arterial blood O2 content or arterial lactate concentration. Myocardial O2 (MVO2) and lactate 

consumption were calculated as the product of coronary blood flow and the difference in O2 content 

or lactate concentration between arterial and coronary venous blood. Myocardial oxygen extraction 

was computed as 100% • MVO2/MDO2. Myocardial work was computed as the product of cardiac 

output • systolic arterial pressure. Systemic parameters, including cardiac output, BVO2, systemic 

vascular conductance, cardiac work and stroke volume, were normalized for body weight in kilograms 

(kg). Myocardial parameters, including MVO2, coronary blood flow, myocardial oxygen delivery and 
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myocardial lactate consumption were normalized per gram (g) of myocardium perfused by the left 

anterior descending coronary artery, which was estimated to be 40% of the left ventricle.22, 23 

 Statistical analysis was performed in SPSS Statistics 21.0 (IBM Corp, Armonk, NY). Two-way 

ANOVA for repeated measures was used to analyze tabular in vivo hemodynamic and myocardial 

oxygen balance responses to graded treadmill exercise as well as the ex vivo microvascular function 

with Bonferroni post-hoc testing when appropriate. A two-way ANCOVA was used to analyze 

hemodynamic and myocardial oxygen balance data expressed as a function of whole body - or 

myocardial - oxygen consumption. Comparison of other variables between the two groups was 

performed by unpaired Students t-test. Correlations were calculated by Pearson’s correlation. 

Statistical significance was accepted when p<0.05 (two-tailed).  

 

3. Results 

Model characteristics 

Metabolic, renal, inflammatory, and cardiac characteristics of the DM+HC+CKD swine model at 5 

months follow-up are presented in Table 1, while representative histological sections of pancreas, 

liver, kidney, left anterior descending coronary artery and left ventricular anterior wall are shown in 

Figure 2. Metabolic dysfunction was present in DM+HC+CKD swine, with markedly elevated levels of 

plasma glucose, total cholesterol and LDL/HDL ratio, and similar triglyceride levels (p=0.10) as 

compared to healthy Normal swine. Pancreas staining demonstrated an ~80% reduction of the insulin-

producing ß-cells in the islets of Langerhans of the pancreas in DM+HC+CKD swine, but insulin plasma 

levels were maintained. There was no difference in ASAT plasma levels between groups, while ALAT 

levels even decreased in DM+HC+CKD compared to Normal swine. In addition, DM+HC+CKD showed  
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an number of animals analyzed in Normal group, bn number of animals analyzed in the DM+HC+CKD 
group, cGFR obtained in awake animals, 1 week after surgery. Plasma samples were obtained under 
anesthetized basal conditions after onset of surgery. HOMA-IR homeostatic model assessment-insulin 
resistance, ALAT alanine aminotransferase, ASAT aspartate aminotransferase, NGAL neutrophil 
gelatinase-associated lipocalin, BW body weight, TNF- α tumor necrosis factor alpha, CSA cross 
sectional area, LAD left anterior descending artery, LCX left circumflex artery, RCA right coronary 
artery. Data are mean±SEM. *p<0.05 Normal vs DM+HC+CKD.  

Table	1:	Metabolic,	renal,	inflammatory	and	myocardial	characteristics	of	Normal	and	DM+HC+CKD	swine	
			 n

a
	 n

b
	 Normal	 DM+HC+CKD		

Body	weight	(kg)	 10	 9	 93	 ±	 6	 104	 ±	 6	

	 	 	 	

Metabolic	function		 	 	

Plasma	fasting	glucose	(mmol	L
-1
)	 10	 9	 8.4	 ±	 0.8	 19.2	 ±	 1.5*	

Plasma	insulin	(µg	L
-1
)	 9	 9	 0.08	 ±	 0.03	 0.26	 ±	 0.16	

HOMA-IR	 8	 9	 1.13	 ±	 0.60	 7.36	 ±	 4.61	

β-cells	islets	of	Langerhans	(%)	 6	 7	 100	 ±	 12	 17	 ±	 4*	

Plasma	total	cholesterol	(mmol	L
-1
)	 10	 9	 1.72	 ±	 0.08	 8.28	 ±	 0.86*	

LDL/HDL	cholesterol	ratio		 10	 9	 1.19	 ±	 0.08	 3.51	 ±	 0.57*	

Plasma	triglycerides	(mmol	L
-1
)	 10	 9	 0.20	 ±	 0.03	 0.29	 ±	 0.05	

Plasma	ALAT	(U	L
-1
)	 10	 9	 52	 ±	 4	 24	 ±	 4*	

Plasma	ASAT	(U	L
-1
)	 10	 9	 32	 ±	 7	 23	 ±	 3	

Liver	steatosis	(%)	 6	 7	 0.04	 ±	 0.02	 1.41	 ±	 0.80	

	 	 	 	
Renal	function	and	structure		 	 	

Plasma	creatinine	(µmol	L
-1
)	 10	 9	 122	 ±	 4	 170	 ±	 11*	

Glomerular	filtration	rate	(ml	min
-1
)
c
	 7	 7	 197	 ±	 10	 132	 ±	 14*	

Plasma	sodium	(mmol	L
-1
)	 10	 9	 141	 ±	 1	 134	 ±	 1*	

Plasma	albumin	(g	L
-1
)	 10	 9	 40	 ±	 1	 31	 ±	 2*	

Plasma	NGAL	(ng	ml
-1
)	 6	 9	 128	 ±	 16	 164	 ±	 16	

Right	kidney	weight	(g)	 10	 9	 200	 ±	 14	 184	 ±	 20	

Left	kidney	weight	(g)	 10	 9	 207	 ±	 11	 177	 ±	 22	

Right	kidney	weight/BW	(g	kg
-1
)	 10	 9	 1.96	 ±	 0.15	 1.80	 ±	 0.13	

Left	kidney	weight/BW	(g	kg
-1
)	 10	 9	 2.06	 ±	 0.13	 1.75	 ±	 0.14	

Tubulo-interstitial	injury	score	 6	 5	 2.1	 ±	 0.4	 4.3	 ±	 0.6*	

Glomerular	sclerosis	score	 6	 5	 18.2	 ±	 3.0	 32.4	 ±	 3.7*	

	 	 	 	

Inflammation	 	 	

TNF-α	(pg	ml
-1
)	 8	 9	 25	 ±	 5	 52	 ±	 5*	

	 	 	 	

Cardiac	structure	 	 	 	

Left	ventricular	weight	(g)	 10	 9	 277	 ±	 12	 251	 ±	 16	

Left	ventricular	weight/BW	(g	kg
-1
)	 10	 9	 2.9	 ±	 0.2	 2.4	 ±	 0.2	

Cardiomyocyte	CSA	(µm
2
)	 10	 7	 582	 ±	 44	 663	 ±	 110	

Capillary	density	(#	mm
-2
)	 10	 7	 1921	 ±	 157	 1381	 ±	 172*	

Capillary	to	fiber	ratio	 10	 7	 1.33	 ±	 0.17	 0.84	 ±	 0.09*	

Total	Collagen	(%	of	myocardium)	 10	 7	 5.7	 ±	 0.7	 9.6	 ±	 1.9*	

	 	 	 	

Large	coronary	structure	 	 	 	

LAD	media-to-lumen	ratio	 10	 7	 0.55	 ±	 0.05		 0.63	 ±	 0.11		

LCX	media-to-lumen	ratio	 7	 6	 0.70	 ±	 0.09		 0.57	 ±	 0.10		

RCA	media-to-lumen	ratio	 9	 7	 0.72	 ±	 0.10		 0.78	 ±	 0.10		
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Figure 2

Representative histological sections of pancreas, liver, kidney, coronary artery and left ventricle of 
Normal and DM+HC+CKD swine. Representative insulin stained pancreas sections (a and b), Oil Red O 
stained liver sections (c and d) at 100x magnification, scale bar=250µm. Periodic acid Schiff stained 
sections of a glomerulus (e and f) at 400x magnification, scale bar=40μm and tubuli (g and h) from the 
top part of the left kidney at 200x magnification, scale bar=100µm. Representative resorcin-fuchsin 
stained sections of the left anterior descending artery (i and j) at 50x magnification, scale bar=1mm. 
Representative sections of the endocardium of the left ventricle, lectine stained (k and l), Gomori 
stained (m and n), picrosirius red stained (o and p) at 200x magnification, scale bar=200µm.

a trend towards an increase in liver fat deposition (p=0.09), which correlated positively with plasma 

levels of total cholesterol (r2=0.519, p<0.05) and correlated inversely with ASAT (r2=0.466, p<0.05). 

Although kidney weights were not different from Normal swine, renal dysfunction was present in 

DM+HC+CKD swine reflected in increased creatinine plasma levels and a significantly impaired 

glomerular filtration rate (GFR) as measured by inulin clearance, increased histological scores of 

tubulo-interstitial injury and glomerular sclerosis. Metabolic and renal dysfunction resulted in 

elevated TNF-a plasma levels. Absolute and relative left ventricular weights were not different 

between groups. Similarly, cardiomyocyte cross-sectional area showed no significant differences 
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between groups. In contrast, total collagen deposition (collagen type I and III) was elevated in 

DM+HC+CKD compared to Normal swine. Interestingly, this elevation was due to deposition of 

collagen type I fibers, known to form thick and stiff bundles, in DM+HC+CKD compared to Normal 

while deposition of the compliant thin collagen fibers (collagen type III) was unaltered (Supplemental 

Figure). Furthermore, significant decreases in left ventricular subendocardial capillary density as well 

as capillary-to-fiber ratios were observed in DM+HC+CKD swine. Macroscopic and microscopic 

examination of the large coronary arteries, showed no signs of atherosclerosis and no changes in 

media-to-lumen ratio in DM+HC+CKD swine. 

 

Systemic Hemodynamics and Metabolism 

The impact of comorbidities on systemic hemodynamics and metabolism was assessed at rest and 

during graded treadmill exercise (Table 2). Although heart rates were similar at rest, the exercise-

induced increase in heart rate was blunted in DM+HC+CKD compared to Normal swine, suggestive of 

chronotropic incompetence. Stroke volume was lower in DM+HC+CKD swine at rest (Table 2). These 

alterations in cardiac function resulted in a lower cardiac output in DM+HC+CKD compared to Normal 

both at rest and during exercise (Table 2, Figure 3a). Although renal embolization resulted in an acute 

increase in blood pressure, which we previously showed to be sustained for at least 2 months16, 

hypertension was no longer present at 6 months after renal embolization. The normalization of mean 

aortic blood pressure was likely the result of the reduction in cardiac output, as systemic vascular 

conductance was still lower in DM+HC+CKD swine (Figure 3b). The lower cardiac output during 

exercise was only partly compensated for by an increase in body oxygen extraction (Figure 3c). 

Consequently, the exercise-induced increase in BVO2 was blunted in DM+HC+CKD animals, which was 

associated with increased circulating levels of lactate (Figure 3d), indicative of systemic anaerobic 

metabolism and hence exercise intolerance. Both arterial pCO2 and bicarbonate levels (arterial HCO3- 

at rest DM+HC+CKD 23.6±0.7 vs. Normal 26.7±0.3 mmol L-1, p=0.01) were lower in DM+HC+CKD swine 

at rest and during low intensity exercise, while arterial pH was not different between groups (Table 

3), suggesting full respiratory compensation of metabolic acidosis. 
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Figure 3

Systemic exercise response in DM + HC + CKD and Normal swine. DM + HC + CKD swine show a lower 

cardiac output (a), a lower systemic vascular conductance (SVC b), a higher body oxygen (O2) 

extraction (c), and higher arterial lactate levels (d) for the same level of body oxygen consumption as 

compared to Normal. Data are mean ± SEM. DM + HC + CKD n = 8 and Normal n = 10. *p < 0.05 

DM + HC + CKD versus Normal by repeated measures two-way ANCOVA.

Table	2 Systemic	hemodynamics	and	metabolism	of	Normal and	DM+HC+CKD	swine	at	rest	and	during	treadmill	exercise

Rest Exercise	(km	h-1)

n 2 3 4

Heart	rate	(beats	min-1) Normal 10 122 ± 3 184 ± 11* 184 ± 10* 232 ±

DM+HC+CKD 8 117 ± 4 164 ± 9* 177 ± 11*† 197 ±

Cardiac	index	(ml min-1	kg-1) Normal 10 127 ± 6 188 ± 7* 195 ± 8* 212 ±

DM+HC+CKD 8 107 ± 4† 150 ± 7*† 160 ± 7*† 150 ±

Stroke	volume	(ml kg-1) Normal 10 1.07 ± 0.05 1.04 ± 0.05 0.96 ± 0.06* 0.93 ±

DM+HC+CKD 8 0.92 ± 0.03† 0.92 ± 0.03 0.92 ± 0.03 0.89 ±

LVdP/dtmax	(mmHg	s-1) Normal 4 3390 ± 230 4660 ± 660 4970 ± 760 5310 ±

DM+HC+CKD 7 2990 ± 370 3800 ± 490* 4060 ± 610* 4070 ±

LVdP/dtmin	(mmHg	s-1) Normal 4 -2330 ± 180 -2740 ± 210 -3050 ± 250 -3450 ±

DM+HC+CKD 7 -2360 ± 200 -2770 ± 200* -2910 ± 220 -2950 ±

mLAP	(mmHg) Normal 9 6 ± 1 13 ± 2* 15 ± 1* 18 ±

DM+HC+CKD 7 5 ± 1 9 ± 1* 11 ± 2*† 13 ±

MAP	(mmHg) Normal 10 89 ± 2 95 ± 3* 98 ± 3* 100 ±

DM+HC+CKD 8 87 ± 2 94 ± 3* 95 ± 4* 96 ±

SVC	(ml mmHg -1 min-1	kg-1) Normal 10 1.49 ± 0.10 2.02 ± 0.14* 2.04 ± 0.14* 2.16 ±

DM+HC+CKD 8 1.27 ± 0.06 1.64 ± 0.07*† 1.72 ± 0.07* 1.84 ±

Hemoglobin	(mmol	L-1) Normal 10 9.7 ± 0.4 10.9 ± 0.5* 10.9 ± 0.5* 11.2 ±

DM+HC+CKD 8 9.5 ± 0.4 10.8 ± 0.5* 11.0 ± 0.3* 10.8 ±

Arterial	SaO2 (%) Normal 10 98 ± 1 98 ± 1 97 ± 1 97 ±

DM+HC+CKD 8 98 ± 1 97 ± 1 98 ± 1 98 ±

Mixed	venous	SaO2 (%) Normal 10 57 ± 2 39 ± 2* 35 ± 3* 29 ±

DM+HC+CKD 8 50 ± 1† 34 ± 1* 33 ± 2* 28 ±

BVO2 (mmol	min-1 kg-1) Normal 10 0.33 ± 0.03 0.77 ± 0.05* 0.84 ± 0.07* 1.01 ±

DM+HC+CKD 8 0.31 ± 0.02 0.66 ± 0.05* 0.73 ± 0.07* 0.80 ±
LVdP/dtmax maximum	rate	of	rise	of	left	ventricular	pressure,	LVdP/dtmin maximum	rate	of	fall	of	left	ventricular	pressure,	mLAP	mean	left	atrial	pressure,	
MAP	mean	arterial	pressure,	SVC	systemic	vascular	conductance,	SaO2 oxygen	saturation,	BVO2 body	oxygen	consumption.	Values	are	mean±SEM.	*p<0.05	
versus	rest	within	group; †p<0.05	versus	corresponding	Normal.
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Myocardial Oxygen Balance, Perfusion and Metabolism 

Compared to normal swine, DM+HC+CKD swine required higher levels of MVO2 for each level of 

cardiac work, particularly during exercise, reflecting decreased myocardial efficiency (Figure 4a). The 

higher levels of MVO2 in DM+HC+CKD swine were not fully met by commensurate increases in 

coronary blood flow (Figure 4b) and MDO2 (Figure 4c), necessitating an increase in myocardial oxygen 

extraction (Figure 4d), that resulted in reductions in coronary venous pO2 (Figure 4e) and coronary 

venous SaO2 (Figure 4f) in DM+HC+CKD compared to Normal swine, both at rest and during exercise. 

Consistent with the impaired MDO2 during exercise, a decrease in myocardial lactate extraction for a 

given level of myocardial oxygen consumption (Figure 4g) or myocardial lactate consumption for a 

given level of myocardial lactate delivery (Figure 4h) was observed in DM+HC+CKD swine compared 

to Normal, suggestive of anaerobic metabolism. 

  

Table	3	Myocardial	metabolism	of	DM+HC+CKD	and	Normal	swine	at	rest	and	during	treadmill	exercise	

	 	 Rest	 Exercise	(km	h-1)	

	 	 n	 	 2	 3	 4	

Art	SaO2	(%)	 Normal	 9	 98	 ±	 1	 98	 ±	 1	 97	 ±	 1	 97	 ±	 1	
	 DM+HC+CKD	 8	 98	 ±	 1	 97	 ±	 1	 99	 ±	 1	 98	 ±	 1	
CV	SaO2	(%)	 Normal	 9	 22	 ±	 1	 23	 ±	 1	 20	 ±	 1	 20	 ±	 2	
	 DM+HC+CKD	 8	 17	 ±	 1†	 16	 ±	 1†	 16	 ±	 1	 15	 ±	 1†	
Art	pO2	(mmHg)	 Normal	 9	 109	 ±	 4	 102	 ±	 5*	 101	 ±	 5*	 99	 ±	 4*	

	 DM+HC+CKD	 8	 110	 ±	 3	 101	 ±	 3*	 108	 ±	 5	 107	 ±	 5	
CV	pO2	(mmHg)	 Normal	 9	 24	 ±	 1	 25	 ±	 1	 24	 ±	 1	 24	 ±	 1	
	 DM+HC+CKD	 8	 20	 ±	 1†	 21	 ±	 1†	 21	 ±	 1†	 20	 ±	 1†	
Art	lactate	(mmol	L-1)	 Normal	 9	 0.76	 ±	 0.08	 1.12	 ±	 0.12*	 1.89	 ±	 0.45*	 2.83	 ±	 0.70*	
	 DM+HC+CKD	 8	 1.84	 ±	 0.50†	 2.56	 ±	 0.74	 2.93	 ±	 0.88	 3.85	 ±	 1.39	
CV	lactate	(mmol	L-1)	 Normal	 9	 0.36	 ±	 0.04	 0.81	 ±	 0.23	 1.19	 ±	 0.32	 1.95	 ±	 0.54*	
	 DM+HC+CKD	 8	 1.76	 ±	 0.49†	 1.98	 ±	 0.63	 2.65	 ±	 0.96	 3.28	 ±	 1.44	

Art	pH	 Normal	 9	 7.44	 ±	 0.01	 7.46	 ±	 0.01*	 7.46	 ±	 0.01*	 7.46	 ±	 0.01*	
	 DM+HC+CKD	 8	 7.43	 ±	 0.01	 7.46	 ±	 0.01*	 7.47	 ±	 0.01*	 7.47	 ±	 0.01*	
CV	pH	 Normal	 9	 7.36	 ±	 0.01	 7.35	 ±	 0.01	 7.35	 ±	 0.01	 7.33	 ±	 0.01	
	 DM+HC+CKD	 8	 7.36	 ±	 0.01	 7.38	 ±	 0.01	 7.38	 ±	 0.02†	 7.36	 ±	 0.02	

Art	pCO2	(mmHg)	 Normal	 9	 39	 ±	 1	 37	 ±	 1*	 36	 ±	 1*	 35	 ±	 1*	
	 DM+HC+CKD	 8	 36	 ±	 1†	 34	 ±	 1†	 31	 ±	 1*†	 30	 ±	 1*†	

CV	pCO2	(mmHg)	 Normal	 9	 51	 ±	 1	 50	 ±	 2	 50	 ±	 2	 48	 ±	 2	
	 DM+HC+CKD	 8	 46	 ±	 1†	 44	 ±	 1†	 42	 ±	 1*†	 44	 ±	 2*	
MVO2	(µmol	min-1	g-1)	 Normal	 9	 5.6	 ±	 0.4	 8.5	 ±	 0.5*	 9.5	 ±	 0.5*	 11.1	 ±	 0.7*	
	 DM+HC+CKD	 7	 6.5	 ±	 0.9	 10.5	 ±	 1.6*	 11.5	 ±	 1.6*	 12.6	 ±	 1.8*	

Art	arterial,	SaO2	oxygen	saturation,	CV	coronary	venous,	pO2	partial	pressure	of	oxygen,	pCO2	partial	pressure	of	carbon	
dioxide,	MVO2	myocardial	oxygen	consumption	per	gram	of	myocardium.	Values	are	mean±SEM.	*p<0.05	versus	rest	within	
group;	†p<0.05	versus	corresponding	Normal.	
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Figure 4

Myocardial blood flow and oxygen balance in DM + HC + CKD and Normal swine at rest and during 
graded treadmill exercise. Myocardium of DM + HC + CKD swine shows increased oxygen consumption 
for the same level of cardiac work (a), a trend towards impaired coronary blood flow especially during 
exercise (b), have a lower myocardial oxygen delivery (c), and a higher oxygen extraction (d), which 
results in lower coronary venous oxygen pressure (cvPO2 e) and coronary venous oxygen saturation 
(cvSaO2 f). Lower myocardial lactate extraction (g) and lower myocardial lactate consumption for a 
given level of myocardial lactate delivery (h) were measured in DM + HC + CKD as compared to Normal 
animals. Data are mean ± SEM. DM + HC + CKD: n = 7–8, Normal: n = 9. *p < 0.05 DM + HC + CKD 
versus Normal, (*)p < 0.1 DM + HC + CKD versus Normal by repeated measures two-way ANCOVA.

Coronary Flow Reserve, Structure and Endothelial Function

Consistent with an impaired recruitment of vasodilator reserve during exercise in DM+HC+CKD, CFR 

was reduced by 25% from 3.64±0.24 in Normal to 2.69±0.27 in DM+HC+CKD swine (p=0.038), which 

appeared principally due to a small increase in basal flow while maximal flow was unaltered (Figure 

5). The latter was consistent with the lack of alterations in morphology or density of left ventricular

small arterioles, evidenced by similar perivascular collagen content (Figure 6a-c), media-to-lumen 

ratios (Figure 6d-f) and arteriolar densities (Figure 6g-i) between groups. Interestingly, coronary 

microvascular function measurements in vitro confirmed coronary microvascular endothelial 

dysfunction as vasodilation to bradykinin was blunted in DM+HC+CKD compared to Normal (Figure 

7a), while vascular smooth muscle cell function was maintained (Figure 7b). 



Chapter 8

240

Figure 5 

Coronary blood flow during baseline conditions and during maximal vasodilation to adenosine (a) 
resulting in a decrease in coronary flow reserve in DM + HC + CKD (b) compared to Normal swine at 
rest and awake state. Data are mean ± SEM. DM + HC + CKD: n = 4, Normal: n = 4. *p < 0.05 
DM + HC + CKD versus Normal by unpaired t test.

Figure 6

Typical examples of small arterioles (< 100 µm) stained with picrosirius red staining of Normal (a) and 
DM + HC + CKD (b) and perivascular fibrosis quantification as area collagen corrected for lumen 
diameter (c). Typical examples of small arterioles (< 100 µm) stained with resorcin–fuchsin of Normal 
(d) and DM + HC + CKD (e) and media thickness corrected for lumen diameter (f). Typical examples of 
small arterioles stained for smooth muscle actin of Normal (g) and DM + HC + CKD (h) and 
quantification of coronary arteriolar density (< 100 µm, i). Normal n = 10, DM + HC + CKD n = 7. Data 
are mean ± SEM.



8

Perturbations in myocardial oxygen balance in swine with multiple risk factors

241

Figure 7

Ex vivo endothelium-dependent and endothelium-independent vasoreactivity of coronary 
microvessels. Small coronary arteries (~ 300 µm) of DM + HC + CKD have impaired bradykinin (BK)-
induced vasodilation, suggesting endothelial dysfunction (a), while endothelium-independent 
vasodilation to nitric oxide donor sodium nitroprusside (SNAP) was unaltered, indicating maintained 
vascular smooth muscle cell function (b). Normal n = 3 and DM + HC + CKD n = 3. Data are 
mean ± SEM. Error bars are presented but might be too small to be visible. *p < 0.05 DM + HC + CKD 
versus Normal by repeated measures two-way ANOVA.

Left Ventricular Function

The perturbations in myocardial oxygen balance in DM+HC+CKD swine were associated with a lower 

stroke volume, both at rest and during exercise (Figure 8a), as well as a trend towards a lower 

LVdP/dtmax during exercise (Figure 8b). No differences were observed in LVdP/dtmin (Figure 8c) or left 

atrial pressure (Figure 8d), either at rest or during exercise, between the two groups.
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Figure 8

Left ventricular function in DM + HC + CKD and Normal swine at rest and during graded treadmill 
exercise. DM + HC + CKD swine have a lower stroke volume (a), a trend towards an impaired left 
ventricular systolic function (LVdP/dtmax, b), similar left ventricular diastolic function (LVdP/dtmin, c) 
for the identical body oxygen consumption levels, and similar mean left atrial pressures for the same 
level of cardiac output (d) compared to Normal. Stroke volume, mean left atrial pressure and cardiac 
output measurements: DM + HC + CKD n = 8 and Normal n = 10; LVdP/dtmax and LVdP/dtmin: 
DM + HC + CKD n = 7 Normal n = 4. Data are mean ± SEM. *p < 0.05 DM + HC + CKD versus Normal, 
(*)p = 0.053 DM + HC + CKD versus Normal by repeated measures two-way ANCOVA

4. Discussion

The present study tested the hypothesis that prolonged exposure to comorbidities results in 

perturbations in myocardial blood flow and oxygen delivery, leading to a shift towards anaerobic 

metabolism and cardiac dysfunction in exercising swine. The main findings were that (i) the 

combination of diabetes mellitus, hypercholesterolemia and chronic kidney disease resulted in lower 

cardiac output at rest and during exercise, which was accompanied by impaired systemic 

vasodilatation and increased circulating levels of lactate. (ii) Exposure to these comorbidities resulted 

in increased levels of oxygen consumption at similar levels of cardiac work, indicating reduced 

myocardial efficiency. (iii) The comorbidities also resulted in perturbations in myocardial perfusion 

and oxygen delivery, at a time when coronary atherosclerosis was negligible. (iv) The perturbations in 

myocardial oxygen balance were associated with lower lactate consumption and reductions in stroke 

volume and LVdP/dtmax, suggestive of myocardial ischemia and dysfunction. (v) Adenosine-recruitable

coronary flow reserve was reduced, which was due to an increase in basal resting coronary blood flow 

per gram of myocardium. (vi) In contrast, maximal coronary blood flow per gram of myocardium was 

not altered, consistent with maintained arteriolar densities and wall/lumen ratios and maintained 

perivascular collagen content. (vi) Coronary small arteries demonstrated selective blunting of 

endothelium-dependent vasodilation. The implications of these findings will be discussed.
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Coronary Microvascular dysfunction 

The presence of risk factors, including DM, HC and CKD, has been associated with CMD and INOCA in 

both experimental17, 18, 24 and clinical10, 11, 25, 26 studies. For example, we previously showed that CMD 

was already present in swine 2.5 months after induction of diabetes and high fat diet in the absence 

of coronary atherosclerosis.18 Furthermore, CMD remained present in swine with 15 months diabetes 

and hypercholesterolemia with modest non-obstructive atherosclerosis17, and was also found in a 

swine model of familial hypercholesterolemia (FH) with moderate (20-60%) coronary plaque burden.24 

Here, we observed coronary microvascular endothelial dysfunction in isolated small arteries studied 

ex vivo, in absence of atherosclerosis which is in line with our previous study.16 Taken together, these 

studies indicate that CMD is present well before coronary atherosclerosis occurs and remains present 

once the process of atherosclerosis advances. 

The present study in chronically-instrumented swine demonstrates that comorbidities can cause 

significant perturbations in myocardial oxygen balance both at rest and particularly during exercise. 

Thus, DM+HC+CKD animals demonstrated increased myocardial oxygen consumption at a given level 

of cardiac work, particularly during exercise causing a counterclockwise rotation in the relation 

between cardiac work and oxygen consumption (Figure 4A). This reduced myocardial efficiency in 

DM+HC+CKD is commonly seen in metabolic disorders, including diabetes and dyslipidemia.24, 27, 28 

The mechanisms underlying the observed myocardial inefficiency in DM+HC+CKD swine were not 

investigated in the present study, but could be several-fold. First, a myocardial substrate shift towards 

free fatty acid utilization, leading to a reduced phosphate/oxygen ratio could have contributed to the 

increased oxygen consumption.27, 29, 30 Second, and more likely, mitochondrial uncoupling27, 28, 30, 31, 

possibly due to oxidative stress27, could also lead to a decrease in phosphate/oxygen ratio, thereby 

increasing oxygen consumption at a given level of cardiac work.  

Although mitochondrial function was not measured in the present study, a direct link between cardiac 

mitochondrial dysfunction and microvascular dysfunction in animal models of metabolic disease was 

recently proposed.24, 28 In accordance with this concept, we observed a reduction in CFR of 

approximately 25% in DM+HC+CKD swine, as compared to Normal swine, which was principally due 

to an increase in basal coronary blood flow as a result of an increase in myocardial oxygen 

consumption. Strikingly, maximal myocardial blood flow was maintained, which was in accordance 

with the normal arteriolar morphology and density, and unaltered peri-arteriolar collagen content. 

Our finding of a reduction in CFR due to an increase in basal coronary flow, rather than a decrease in 

maximal flow, is in also good agreement with observations in a variety of patient groups. Thus, in 

INOCA patients with functional CMD32, in patients with residual CMD after undergoing percutaneous 
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coronary intervention for obstructive CAD33, and in patients with diabetes mellitus34, an increase in 

basal coronary blood flow per gram of myocardium32 or increases in basal coronary flow velocity33, 34, 

as compared to healthy individuals, appears primarily responsible for the reduction in CFR. Moreover, 

patients with a reduced CFR and an increased basal blood flow demonstrate an increased 

cardiovascular mortality risk compared to patients with normal basal coronary blood flow and CFR.35 

Also, among patients with diabetes, women had a lower CFR than men due to higher basal myocardial 

blood flow.36 Interestingly, the increase in basal myocardial blood flow correlated with diastolic 

dysfunction in women, not in men, while CFR did not correlate with diastolic dysfunction in either 

sex.36 In light of these observations, it was recently proposed that basal myocardial blood flow could 

represent a potentially superior marker of CMD in certain settings.37 

The present study further shows that the basal higher oxygen consumption in DM+HC+CKD was not 

fully met by a commensurate increase in myocardial oxygen delivery, which necessitated an increase 

in myocardial oxygen extraction, resulting in lower levels of coronary venous oxygen content. 

Cardiovascular comorbidities can cause perturbations in myocardial oxygen delivery by affecting the 

coronary circulation at different levels, including proximal obstructive CAD, distal small artery and 

arteriolar dysfunction, and alterations in capillary structure and function.38 In the present study, the 

increase in oxygen extraction occurred in the absence of coronary atherosclerosis and despite a 

reduction in capillary density, which acts to reduce oxygen extraction capacity.38 Moreover, coronary 

microvascular structure and maximal coronary blood flow per gram of myocardium were maintained. 

Hence the increased oxygen extraction most likely reflects perturbations in the regulation of 

resistance tone – likely involving endothelial dysfunction – resulting in impaired myocardial blood flow 

and oxygen delivery in the face of increased oxygen consumption.38, 39 

The perturbations in myocardial oxygen delivery were accompanied by a reduction in lactate 

consumption – particularly during exercise – indicating a shift towards anaerobic metabolism, 

suggestive of myocardial ischemia.40 Although the reduction in lactate consumption may in part be 

caused by a DM-induced reduction in pyruvate dehydrogenase activity41, in three out of eight 

DM+HC+CKD swine we observed net lactate production under resting conditions, which can only be 

explained by anaerobic metabolism.40 Our observations are consistent with the concept that CMD, in 

the absence of coronary atherosclerosis, can impair myocardial oxygenation severely enough to 

produce myocardial ischemia.3, 11-13, 42, 43 Furthermore, these findings are in agreement with 

accumulating clinical evidence that myocardial ischemia can also occur in the absence of obstructive 

CAD, termed INOCA10, 11, 42-44, indicating that swine with DM+HC+CKD represent a bona fide large 

animal model of INOCA. 
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Coronary Microvascular Dysfunction and Diastolic Dysfunction 

There is increasing evidence that comorbidities such as DM, dyslipidemia and CKD are linked not only 

to INOCA2, 3, 10 but also to the development of diastolic dysfunction and heart failure with preserved 

ejection fraction (HFpEF), involving endothelial dysfunction.45 It has thus been proposed that INOCA 

and HFpEF both originate from CMD but that the paracrine effect of endothelial dysfunction is exerted 

on distinctive cell types, i.e. arteriolar vascular smooth muscle cells in INOCA versus cardiomyocytes 

in HFpEF, respectively.46 Although we did not observe perturbations in active left ventricular 

relaxation, as evidenced by the maintained relation between LVdP/dtmin and body O2 consumption, 

we observed in our previous study (using the same animal model), an increase in left ventricular 

passive stiffness evidenced by an increase in the slope of the end-diastolic pressure volume relation, 

in the presence of a maintained ejection fraction. The present study in the same animal model, shows 

that not only capillary rarefaction, but also impaired regulation of myocardial perfusion by the 

coronary resistance vessels occurs, which is associated with endothelial dysfunction.16 These 

experimental findings are in agreement with recent clinical studies, demonstrating the coexistence of 

diastolic dysfunction or HFpEF and microvascular angina.26, 46, 47 Reduced coronary or myocardial flow 

reserve, independent of coronary artery stenosis, is considered to be a marker of microvascular 

endothelial dysfunction and is present in patients with HFpEF or diastolic dysfunction.47-49 Thus, the 

common denominator linking HFpEF and INOCA appears to be CMD induced by the comorbidities.45, 

50, 51 

Our DM+HC+CKD swine model represents a model of early diastolic dysfunction (or pre-HFpEF), as 

left atrial pressures were not elevated either at rest or during exercise. Nevertheless, cardiac output 

was decreased which was due to a decrease in stroke volume as well as to chronotropic 

incompetence, i.e. limited capacity of the DM+HC+CKD swine to increase their heart rate during 

exercise. The latter is a common feature seen in HFpEF patients with CKD52, as well as diabetic 

patients53. Chronotropic incompetence is thought to be the result of downregulation and/or 

desensitization of myocardial β-adrenergic receptors due to increased levels of catecholamines.54 

Although the HFpEF phenotype was still mild, advanced CMD was already present, indicating that 

CMD may precede advanced diastolic dysfunction and HFpEF. This was also suggested by a recent 

clinical study showing that in patients with a reduced CFR, diastolic function worsens progressively 

over time and is associated with an increased risk of HFpEF hospitalization.47 Taken together, these 

findings are consistent with the concept of CMD being the primary defect that subsequently leads to 

diastolic dysfunction eventually progressing to overt HFpEF. 
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Methodological Considerations 

Although several large and small animal models (for CMD) have been described, no single animal 

model perfectly emulates the human disease.55 In the present study, CMD was induced by prolonged 

exposure to diabetes, high fat diet and CKD, risk factors commonly observed in patients with INOCA.10 

A type 2-like DM phenotype, with significant hyperglycemia was induced using multiple low dose 

streptozotocin injections combined with a high fat and high fructose diet, as previously described.16-

18, 55-57 Although disease development differs from the slow-onset DM type 2 in humans, this approach 

produces sustained hyperglycemia without insulin-dependency and results in progressive insulin 

resistance.16-18 Moreover, in conjunction with the high fat and high fructose diet, this experimental 

approach results in dyslipidemia16-18, 55, thereby mimicking several features of metabolic dysregulation 

as observed in the clinical setting.  

It is increasingly recognized that CKD is an important risk factor for development of CMD.58, 59 The 

exact mechanisms of the detrimental effects of CKD on coronary microvascular function are 

incompletely understood, but low grade inflammation and increased circulation of uremic toxins are 

proposed to play a role.60 In humans, CKD is often the result of local renal inflammation, hypoxia, and 

loss of glomeruli and tubuli, with subsequent hyperfiltration of healthy regions, resulting in a vicious 

cycle of progressive kidney damage.61 Animal models of renovascular hypertension, 5/6 nephrectomy 

and unilateral ureteric obstruction have been used by other investigators to mimic various aspects of 

CKD.62, 63 Here, partial renal microembolization with microspheres was used to induce CKD. This 

method results in glomerulosclerosis and tubulointerstitial damage not only in the embolized areas, 

but also in the remodeled, non-obstructed upper pole of the left kidney.16 These key features of 

human CKD resulted in a reduced GFR, measured by gold-standard inulin clearance, and increased 

creatinine levels. The combination of DM, HC and CKD resulted in a phenotype resembling INOCA in 

humans. However, the specific contribution of the individual factors and their potential synergistic 

action remains to be established. 

The present study further demonstrates that functional changes in the coronary microvasculature are 

already present before overt plaque formation occurs. These early changes result in an impaired 

myocardial oxygen balance and reduced cardiac efficiency. The observation in a small group of animals 

that endothelial function in isolated coronary small arteries was perturbed, suggests a role for the loss 

of nitric oxide in mediating the impairments in myocardial oxygenation in DM+HC+CKD animals. 

Future studies should focus in more detail on the mechanisms underlying the increased myocardial 

oxygen consumption as well as the perturbations in oxygen delivery.  
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Although our data provide valuable information regarding the mechanisms of CMD at this 

early stage, without the influence of proximal obstructive CAD which can affect distal microvascular 

function and structure6, it is increasingly recognized that there may be an interaction between non-

obstructive and obstructive CAD. Thus, CMD may decrease proximal shear stress and aggravate 

proximal CAD, whereas proximal CAD may further induce CMD, potentially mediated by multiple 

processes involving microembolization and the release of vasoconstrictors.6, 64, 65 Investigation of such 

interaction of obstructive CAD with CMD, by combining a chronic proximal coronary artery stenosis6, 

65 with the current model of comorbidities-induced CMD, should be the topic of future studies. Such 

studies should then also include the assessment of flow distribution across the left ventricular wall, as 

the presence of a coronary artery stenosis causes a regional flow redistribution away from the 

subendocardium towards the subepicardium39, whereas comorbidities in the absence of obstructive 

CAD appear to result in more diffuse and transmurally homogeneous reductions in myocardial blood 

flow.24, 32, 66 

 

Conclusion 

The present study is the first to investigate the effects of three common comorbidities on myocardial 

oxygen balance in swine at rest and during graded treadmill exercise. Our findings demonstrate that, 

in the absence of coronary atherosclerosis, comorbidities can result in CMD that is severe enough to 

critically impair myocardial oxygenation, thereby resulting in anaerobic metabolism. Thus, our 

DM+HC+CKD swine model represents a bona fide large animal model of INOCA. A link between CMD 

and left ventricular diastolic dysfunction has recently been shown in clinical studies. In our model, 

overt CMD is present at a time when diastolic dysfunction is still modest.16 These findings are in 

agreement with clinical observations26, 46, 47 and support the concept that CMD is one of the drivers of 

diastolic dysfunction in patients with comorbidities, suggesting that CMD represents a prime target 

for therapeutic interventions in INOCA as well as diastolic dysfunction / HFpEF.  
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Supplementary results 

Supplemental Fig  

 

Supplemental Fig Total and specific collagen fiber content of interstitial fibrosis in Normal and 
DM+HC+CKD measured with a linear polarization filter. Significant increase in total collagen content 
of the left ventricle (a). This was mainly due to an increase in interstitial collagen I fiber content (b) 
while the collagen type III content was unchanged (c) in DM+HC+CKD swine compared to Normal. 
Normal n=10, DM+HC+CKD n=7. Data are mean±SEM.*p<0.05 DM+HC+CKD versus Normal by 
unpaired t-test. 
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Summary, general discussion and future perspectives 
In this thesis, we used large animal models to investigate functional and structural 

cardiovascular alterations in response to metabolic derangements in the absence (Part I) and 

presence (Part II) of chronic kidney disease (CKD). Our findings are highly relevant given the 

projected increase in the global prevalence of common cardiovascular risk factors in coming 

years1, 2, not only in the high-income countries of North America and Western Europe but 

especially in low- and middle-income countries.3 For example, the economic development of 

China and India and subsequent increase in socioeconomic status has resulted in a 

concomitant increase in cardiovascular disease risk.3, 4 How the risk factors lead to 

cardiovascular disease development remains incompletely understood, and good treatment 

options are not always available. Therefore, there is a continuing demand for translational 

models to investigate the pathogenesis of cardiovascular disease, especially models that also 

recapitulate the multimorbidity state that is often observed in patients.5 This is increasingly 

recognized by the scientific community, as also underlined by the scientific statements by the 

American Heart Association, concerning animal models for heart failure6 and hypertension7. 

Moreover, improving the translational value of animal disease models will help to bridge the 

translational gap and implement findings from animal models to clinical practice more 

precisely, especially with regard to new treatment options.5  

 

Alterations in cardiac function and structure due to multimorbidity 

Metabolic derangements, such as diabetes mellitus (DM), dyslipidaemia and obesity, are the 

most well-known and common risk factors for cardiovascular disease.8 For decades the focus 

of cardiovascular research has been on macrovascular disease and the development of 

atherosclerosis after chronic exposure to metabolic derangements. In chapter 2, we 

summarized the mechanisms which are at play in obesity-induced microvascular dysfunction 

in multiple organs. Although the specific underlying mechanisms differ between regional 

vascular beds, possibly due to inherent differences in specific organ physiology, microvascular 

dysfunction plays an important role in the development of multiple diseases. Indeed, in heart 

failure with preserved ejection fraction (HFpEF), coronary microvascular dysfunction (CMD) 

has been suggested to be the main contributor to cardiac dysfunction.9 In addition to classical 

cardiovascular risk factors as discussed above, i.e. DM, dyslipidaemia, and obesity, less 
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conventional (non-cardiac) risk factors for the development of HFpEF have been described. 

Among these factors, which also include anaemia and chronic obstructive pulmonary disease, 

CKD is one of the most important factors.9-11 In chapter 6 we presented an overview of the 

pathophysiological processes by which CKD, mainly through CMD, can induce cardiovascular 

dysfunction and particularly HFpEF. CKD is not a completely new risk factor for cardiovascular 

disease, as dysfunction of heart and kidneys have been shown to be interrelated.12 This so-

called cardiorenal syndrome encompasses five different types of interactions between 

cardiovascular and renal diseases, of which type 4—chronic CKD resulting in heart failure12—

is most relevant for our studies. Interestingly, the association between CKD and myocardial 

dysfunction has been suggested to be more pronounced in HFpEF patients when compared 

to heart failure with reduced ejection fraction.10 In HFpEF, CKD is associated with worse 

myocardial function, and outcome.11, 13 Uremic toxins in CKD patients can contribute to a state 

of systemic inflammation, multiorgan microvascular dysfunction and result in (ir)reversible 

effects in the myocardium, such as fibrosis and cardiomyocyte stiffening characteristic of 

HFpEF (chapter 6). To date, HFpEF remains one of the major challenges for researchers and 

clinicians. Currently, the European Society of Cardiology guidelines for treatment of HFpEF 

recommend treating underlying comorbidities in combination with diuretics to treat heart 

failure-related symptoms but, to date, no HFpEF-specific treatment to slow down progression 

and to reduce morbidity or mortality is available.14 Life-style modifications, and exercise-

training in particular, have shown some promise in that quality of life and cardio-respiratory 

fitness are improved in HFpEF patients. Yet, no beneficial effects were seen on systolic and 

diastolic function, and implementation of exercise training in an older patient cohort with 

multimorbidity is challenging.15 In chapter 6 we presented an overview of the clinical trials 

conducted for HFpEF treatments. Although most of these trials do not show an improvement 

in primary endpoint, some treatments should not be discarded yet, as patient-selection and -

phenotyping is still proving difficult in HFpEF and, it can be argued that, with a better patient 

selection, some treatments should still be considered for specific HFpEF phenotypes.16 Better 

understanding of the pathophysiological cascade of HFpEF is therefore imperative to 

determine different HFpEF phenotypes and the microvascular and cardiac mechanisms 

involved. Cardiopulmonary exercise testing (CPET) may facilitate delineation of microvascular 

and cardiac dysfunction and thereby expedite early recognition of HFpEF.17-19 Furthermore, 
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animal models, in which more invasive measurements are possible can help to identify factors 

that discriminate between HFpEF phenotypes. 

In chapter 4, we used a miniswine model exposed to 2 comorbidities, DM and 

dyslipidaemia, for 5 months to study the effect of exposure to these metabolic derangements, 

with a particular focus on myocardial function. We studied early myocardial changes at the 

molecular, mitochondrial and cellular level in conjunction with signs of early-stage diastolic 

dysfunction—left ventricular peak untwisting velocity and E/e’—as measured by 

echocardiography. Diastolic dysfunction appeared to be mainly due to intrinsic cardiomyocyte 

stiffening, as no structural changes were observed in the left ventricular myocardium. Indeed, 

isolated cardiomyocytes showed increased passive force and maximal force in this model. 

Although we observed no shift in titin isoforms, associated to increased passive force, titin 

hypophosphorylation by increase in oxidative stress and subsequent impaired nitric oxide 

(NO) signalling can also cause a passive force increase, as shown in patient studies.9, 20-22 

Indeed, increased left ventricular oxidative stress was observed with reduced NO-levels and 

endothelial NO synthase (eNOS) uncoupling, increasing vascular oxidative stress.21 

Additionally, impaired mitochondrial complex I respiration—both cause and consequence of 

increased oxidative stress—was present in this model, which can result in bioenergetic 

dysfunction and thus increase myocardial stiffness.23 Furthermore, RNA sequencing revealed 

63 genes to be differentially expressed in the left ventricular myocardium after 5 months 

exposure to metabolic derangements. Subsequent pathway analysis indicated that mainly 

glucose and free fatty acid metabolism pathways were altered. Healthy myocardium is able 

to switch between different substrates to meet metabolic demand and maintain oxygen 

utilization efficiency, which is impaired in metabolic derangements and contributes to 

cardiomyocyte dysfunction, by limiting ATP-bioavailability and increasing oxidative stress.24 

Mitochondrial dysfunction is thus suggested to be an important early mediator of myocardial 

dysfunction in metabolic derangements.25, 26  

To gain more mechanistic insight in the relation between metabolic derangement, 

CKD and HFpEF, we developed and characterized a swine model with CKD as a comorbidity in 

addition to DM and dyslipidaemia. These three morbidities result in a systemic pro-

inflammatory state (increased circulating tissue necrosis factor (TNF-)α levels), which 

interestingly, correlated strongest with a marker of CKD and less with glucose, while a 

correlation with total cholesterol levels was absent. This triple morbidity swine model, as 
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presented in chapters 7-10, represents a model of early diastolic dysfunction (or pre-HFpEF), 

evidenced by an upward shift in the end diastolic pressure-volume relationship measured by 

pressure volume loop and a trend towards a decrease in MRI-derived E/A ratio, under 

anaesthesia, although left atrial pressures were not elevated either at rest or during exercise. 

In chapter 7, we dissected some of the pathological cardiac processes leading from the initial 

induction of risk factors to diastolic dysfunction. In agreement with our findings in chapter 4, 

we showed that these three morbidities resulted in a pro-inflammatory state, uncoupling of 

eNOS, an increased myocardial and vascular oxidative stress—correlating with TNF-α—

associated with reduced NO-bioavailability. However, in contrast to the findings in the animal 

model used in chapter 4, in the triple morbidity animal model we did observe structural 

myocardial alterations—a loss of capillary density and increased collagen deposition—that 

are both also observed in patients with HFpEF.27 Furthermore, the increase  in cardiomyocyte 

passive force, as also observed in chapter 4, was accompanied by a titin isoform- shift towards 

N2B, the stiffer titin isoform.  

Five months of exposure to DM, hypercholesterolemia and CKD also resulted in 

CMD, evidenced by impaired endothelium-dependent vasodilation, while endothelium-

independent vasodilation was maintained in isolated small coronary arteries. Endothelium-

dependent vasodilation  was restored by anti-oxidant treatment, which is in line with findings 

in clinical studies, demonstrating that increased vascular oxidative stress is an important 

pathophysiological mechanism in morbidity-induced diastolic dysfunction.9, 21, 22 Altogether, 

the findings presented in both chapter 4 and 7 demonstrated that both animal models 

recapitulate features of HFpEF and elucidated some of the mechanisms by which metabolic 

derangements alone or in combination with CKD can induce left ventricular diastolic 

dysfunction associated with increased oxidative stress, CMD and loss of NO. Our findings are 

in line with findings in HFpEF patients9, 28, 29 and the ZSF-1 HFpEF rat model21, 30. Importantly, 

the findings in chapter 4 and 8 suggest that adding CKD results in a faster development and/or 

a more severe phenotype of diastolic dysfunction. 

In chapter 8 we further studied CMD in relation to myocardial oxygen balance and 

cardiac function in the triple morbidity animal model in the awake state, using chronic 

instrumentation and exercise testing to reveal more subtle alterations. We observed reduced 

myocardial oxygen utilization efficiency at rest and during exercise, evidenced by the higher 

myocardial oxygen consumption for the same level of cardiac work, which could be attributed 
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to a myocardial substrate shift or a reduction in mitochondrial function consistent with the 

findings from chapter 4.31 We showed several mechanisms which might underlie the observed 

mitochondrial dysfunction; i.e. oxidative stress (chapter 4 and 7-9), lipotoxicity (chapter 4), 

lower specific mitochondrial complex respiration (chapter 4) or upregulation of uncoupling 

protein 3 (chapter 4). In line with our findings, myocardial mitochondrial dysfunction is also 

observed in diabetic patients undergoing elective cardiac surgery32-35, as well as in swine 

models of familial hypercholesterolemia36, 37 and metabolic derangement and moderate 

atherosclerosis.38 Metabolic derangement-induced mitochondrial dysfunction is also linked to 

a loss of coronary vasodilator function and a reduction in myocardial oxygen efficiency 

(relationship between myocardial blood flow and cardiac work), which could all be restored 

by restoring mitochondrial function.39 In chapter 8-9, we observed a similar loss of 

endothelium-dependent vasodilation in isolated small coronary arteries in vitro as well as at 

rest and during exercise in vivo, using chronic instrumentation, as evidenced by perturbations 

in myocardial oxygen delivery and reduced coronary flow reserve (CFR). This shows that 

advanced CMD was already present, indicating that CMD may precede advanced diastolic 

dysfunction and HFpEF. Indeed, reduced coronary flow reserve (CFR), in the absence of 

obstructive coronary artery stenosis, is considered to be a marker of microvascular 

(endothelial) dysfunction and is present in patients with HFpEF or diastolic dysfunction.40-42 

Furthermore, HFpEF development and prognosis are also predicted by CFR, as shown by a 

recent clinical study demonstrating that, in patients with a reduced CFR, diastolic function 

worsens progressively over time and is associated with an increased risk of HFpEF 

hospitalization.42 In chapter 8-9 we observed CMD both at rest and during exercise with 

evidence of anaerobic metabolism, suggestive of myocardial ischemia, providing further 

support for a link between diastolic dysfunction and ischemia and no obstructive coronary 

artery disease (INOCA). These findings are in agreement with recent clinical studies, 

demonstrating the co-existence of diastolic dysfunction or HFpEF and INOCA.42-44 In chapter 

9 we further explored the mechanisms underlying CMD in small coronary arteries, responsible 

for impaired myocardial oxygen delivery, showing that CMD was mediated by loss of 

endothelium-dependent vasodilation principally due to a loss of NO bioavailability (figure 1), 

possibly through NO-scavenging by reactive oxygen species. Such increased microvascular 

oxidative stress and loss of NO-bioavailability in HFpEF was demonstrated in chapter 4 and 7. 

Whereas in HFpEF, CMD in the capillary endothelial compartment results in a loss of the 
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paracrine effect of NO signalling in the cardiomyocytes (chapter 4 and 7), CMD in endothelium 

of coronary small arteries and arterioles, with a loss of NO bioavailability, results in impaired 

control of coronary resistance vessels and subsequent INOCA features (chapter 8-9). CMD 

precedes INOCA and is the most common cause of myocardial ischemia in INOCA.45, 46 Thus, 

the common denominator linking HFpEF and INOCA appears to be CMD (most notably loss of 

NO signalling) induced by the comorbidities (figure 2).21, 27, 47 Notwithstanding the importance 

of the available research investigating the link between HFpEF and INOCA, a significant 

knowledge gap persists that warrants further research. For example, it is still unclear which 

syndrome, HFpEF or INOCA, presents in which patients, so that there might either be a timing 

effect, or there may be modulating factors that determine the development of the different 

syndromes (figure 2).48 

 Multiple studies tried to unravel the different phenotypes within the HFpEF 

continuum and different classification methods can be employed.49 At the moment, 3 major 

HFpEF phenotypes have been suggested, based on phenomapping, composed of a younger 

group with low brain natriuretic peptide, a group with high prevalence of obesity and DM and 

a group with CKD and pulmonary disease, phenotype 1, 2 and 3 respectively.50 Our triple 

morbidity model may represent a combination of phenotype 2 and 3, as in chapter 9 we 

demonstrate that early pulmonary vascular changes are already present in response to 

metabolic derangements and CKD. As presented in chapter 7, after exposure to DM, 

dyslipidaemia and CKD for 6 months, we demonstrated that both intrinsic cardiomyocyte 

stiffening and extracellular matrix expansion by increased collagen deposition occurred which 

can both contribute to increased myocardial stiffening. From our study in chapter 7 we could 

not determine the contribution of each risk factor to the decreased left ventricular diastolic 

function. However, in chapter 4, we showed that, in swine with metabolic derangements 

without CKD, diastolic dysfunction was principally mediated by intrinsic cardiomyocyte 

stiffening as no extracellular matrix expansion was observed. These findings demonstrate that 

although diastolic dysfunction might be present in a variety of patients with multimorbidity, 

the underlying mechanisms could be different per patient. Additionally, CKD might aggravate 

the diastolic dysfunction phenotype with extracellular matrix expansion being associated 

advanced disease. Indeed, in HFpEF patients, intrinsic cardiomyocyte stiffness51, 52 and 

extracellular matrix deposition27, 51 are also the main determinants of myocardial stiffening, 

and good phenotyping is essential to evaluate what underlying mechanism(s) should be 
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treated in which patient.53 Although all animal models have advantages and disadvantages54 

and modelling of HFpEF proves to be complex55, animal models are needed to study 

underlying HFpEF pathophysiology, to help delineate which risk factor contributes to a specific 

phenotype and to test new treatments directed at these processes specifically. Herein lies the 

biggest challenge for future clinical trials for the treatment of HFpEF—good phenotyping of 

your population and targeting the right patients—ultimately leading to personalized medicine 

for the individual patient.56  

 

Effect of multimorbidity on coronary microvascular function and INOCA 

For decades, the focus of cardiovascular research has been on macrovascular disease and the 

development of atherosclerosis after chronic exposure to metabolic derangements. 

Consequently, the coronary microvasculature has been under-investigated with regard to 

cardiovascular disease. However, more than 50% of the patients with signs and symptoms of 

myocardial ischemia do not have flow-limiting coronary obstructions, suggesting that the 

microvasculature is also dysfunctional.45, 46 Therefore, investigating pathophysiology and 

treating (coronary) microvascular dysfunction might prove to be the new frontier in 

cardiovascular health and disease.57 Indeed, as we summarized in chapter 2, the possible 

underlying mechanisms for metabolic derangement-induced microvascular dysfunction are 

numerous, and in the coronary circulation can result in HFpEF as well as INOCA, as shown in 

chapter 6-7. The lack of a deeper understanding of the pathophysiological cascade of INOCA, 

impairs a designated diagnostic workup and no evidenced-based treatment options. In the 

clinical setting, diagnosing INOCA is still challenging due to the complexity of the syndrome 

and the current workup for chest pain is not yet optimized for diagnosing INOCA and the 

underlying aetiologies.58 Additionally, the options of assessing coronary microcirculatory 

endothelial function in the clinical setting is still rather limited, thereby complicating the 

diagnosis of INOCA.59 
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Figure 1 Main alterations in vasomotor control in the pulmonary and coronary 
microcirculation of the triple morbidity swine model as presented in this thesis

ET-1 endothelin 1, eNOS endothelial nitric oxide synthase, ETB endothelin receptor B, ETA 

endothelin receptor A, ECE endothelin converting enzyme, NO nitric oxide, cGMP cyclic 

guanosine monophosphate, PDE5 phosphodiesterase, ROS reactive oxygen species.
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Figure 2 Proposed hypothesis of coronary microvascular dysfunction in different vessels sizes 
in response to multimorbidity

Diabetes mellitus (DM), dyslipidaemia and chronic kidney disease (CKD) induces coronary 
microvascular dysfunction which can result in atherosclerosis, ischemia with no obstructive 
coronary artery (INOCA) and heart failure with preserved ejection fractions (HFpEF) by 
affecting vessels of different sizes. Which vessels are affected might be determined by 
modulating factors or all might be present (yet subclinical) and influence each other 
continuously or in a time-dependent manner, starting with the vessels most sensitive to 
metabolic changes (capillaries->arterioles->small arteries->large arteries). Adapted from 
Taqueti and Di Carli.60

Current consensus on the diagnostic flowchart incorporates invasive coronary angiography 

for the evaluation of coronary obstructions with invasive diagnostic fractional flow reserve if 

needed, coronary flow reserve (CFR) measurements for the evaluation of microvascular 

dysfunction, and a vasoreactivity test to acetylcholine and a nitrate for the assessment of 

endothelial dysfunction with/without vasospasm.45, 46, 58 Although, great efforts have been 

undertaken to improve the diagnostic workup for INOCA, current testing methods only 

differentiate between an endothelium-dependent or –independent cause of CMD.58 Testing 

Multimorbidity	 (DM	+	dyslipidemia	+	CKD)

Modulating	factors?

Atherosclerosis INOCA HFpEF

Continues	 influence	or	 time-dependent?
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for specific underlying mechanisms is not yet applicable, which in part is due to a lack of 

pathophysiological knowledge, which also limits the therapeutic options available for the 

treatment of INOCA. Indeed, treatment of myocardial ischemia has traditionally been 

stenosis-centred, but recognition of the clinical syndrome INOCA requires are new and 

different treatment approach. This notion is further supported by the recent findings of the 

ISCHEMIA trial, which demonstrated that, in patients with moderate or severe ischemia and 

stable coronary artery disease, invasive treatment was not superior to conservative 

treatment.61 Unfortunately, an evidenced-based (conservative) treatment for INOCA 

specifically, besides treating underlying comorbidities, is currently not available in clinical 

practice.45 This is explained in part by the fact that INOCA is only recently being recognized as 

a syndrome of myocardial ischemia, but is also due to a lack of translational animal models 

which can be used for investigation of pathophysiological pathways and testing of novel 

compounds.54 

As we showed in chapter 8 and 9, CFR, as measured as the relative increase in 

coronary blood flow in response to intravenous adenosine infusion in awake animals, was 

reduced in swine with triple morbidity reflecting the clinical characteristics of INOCA. 

Furthermore, we demonstrated in the same model, that not only pharmacologically-induced 

vasodilation was impaired but also resting and exercise coronary resistance vessel function. 

We observed these alterations both in vivo, evidenced by a reduced myocardial oxygen 

delivery, and in vitro, in isolated coronary vessel experiments. CMD reduced myocardial 

oxygen delivery and induced anaerobic metabolism as evidenced by a reduced myocardial 

lactate consumption and, in some animals, even net lactate production. This together with a 

decrease in myocardial oxygen utilization efficiency, as discussed above, resulted in an 

impaired myocardial oxygen balance, aggravating myocardial anaerobic metabolism 

suggestive of myocardial ischemia. As presented in chapter 9, we observed a loss of 

endothelium-dependent vasodilation, which was principally mediated by a loss of NO 

bioavailability, and appeared to be the consequence of increased NO scavenging by reactive 

oxygen species rather than dysfunctional eNOS, as levels of eNOS protein and activity were 

similar between groups (Figure 1). To compensate for the loss of NO bioavailability, vascular 

smooth muscle cell sensitivity to NO was increased in vivo in our swine model with multiple 

morbidities. Previous research showed similar results using in vitro techniques in swine with 

combined high fat diet-induced obesity and hypertension62, in obese rats63 and even in 



Chapter 11 

 328 

hypertensive and obese patients64. Possible underlying mechanisms include increased soluble 

guanylyl cyclase (sGC) activity65, or may act downstream of sGC by potentiating protein kinase 

G activity66. Phosphodiesterase 5 (PDE5)-activity was also similar between groups, suggesting 

that the impaired vasodilator response was not due to alterations in PDE5 activity nor was 

there a compensatory downregulation of PDE5 activity. Interestingly, the observed CMD 

appeared to be due to functional changes in vasomotor control, as we observed no structural 

vascular alterations, which is in line with recent findings in INOCA patients.67, 68 These findings 

might help us understand which pathophysiological mechanisms play a role in INOCA, 

especially during exercise-induced angina. 

 CMD with loss of endothelium-dependent vasodilation has been previously 

described in coronary microvessels isolated from swine models of metabolic derangements 

with62, 69 or without70 CKD, or familial hypercholesterolemia36, from obese rats63 and also from 

DM patients71. Although there was quite some variation in the exposure time, type and 

combination of risk factors between studies, the common mechanism was a decrease in 

endothelium-dependent vasodilation. A combination (high fat diet and hypertension) of risk 

factors induced a more pronounced attenuation of endothelium-dependent vasodilation than 

one single risk factor, suggesting a synergistic effect.62 Consistent with our findings, in the 

majority of these studies the loss of NO-bioavailability was the principal mechanism 

underlying CMD62, 63, 70-72, although loss of endothelium-derived hyperpolarizing factor with 

maintained NO-mediated vasodilation has also been reported.36 Some small randomized 

clinical trials have been conducted in the past which fit in the concept presented in the current 

thesis that endothelial dysfunction plays a central role in CMD, and also show that 

improvement of endothelial dysfunction/NO-bioavailability restore microvascular function. 

Treatment with statins alone73-75 as well as in combination with a calcium channel blocker76 

or angiotensin-converting enzyme inhibitor77 resulted in beneficial effects in INOCA patients. 

These treatments reduced exercise-induced ischemia, increased CFR or restored flow-

mediated vasodilation, while endothelium-independent vasodilation was unchanged. These 

effects were independent of the lipid-lowering effects of the statins and was associated with 

an improved endothelial function, or NO-bioavailability more specifically76-78 which was 

associated with reduced oxidative stress.77 Additionally, long-term enalapril alone has also 

been shown to increase NO bioavailability and thus improve coronary flow reserve and 

myocardial ischemia symptoms in patients with INOCA79 as well as improve exercise-induced 
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angina.80 Moreover, 6 months of oral supplementation of L-arginine, the substrate for eNOS 

required to form NO, results in increased coronary blood flow response to acetylcholine and 

decreased symptoms scores in INOCA patients, further underlining the importance of altered 

NO signalling in INOCA.81 Although all aforementioned drugs or supplements have different 

primary sites of action, their common mechanism of action is through increasing NO 

bioavailability. 

Other therapies targeting the NO signalling pathway that are currently available 

include NO-donors, sGC-activators or -stimulators and PDE5 inhibition. NO-donors can be 

divided into direct NO donors, i.e. sodium nitroprusside (SNP) and S-Nitroso-N-acetyl-DL-

penicillamine SNAP, which do not need an enzymatic conversion to release NO and (in)organic 

nitrates (i.e. nitroglycerine and isosorbide dinitrate) which act as pro-drugs and do need 

enzymatic conversion.82, 83 Interestingly, previous research has shown that acute treatment 

with organic nitrates such as isosorbide dinitrate might even have a detrimental effect on 

coronary microcirculation and angina symptoms while it has a beneficial effect on patients 

with obstructive coronary artery disease.84-86 It is hypothesized that high doses of organic 

nitrates, and to a lesser extent SNP87, are necessary to achieve sufficient vasodilation of small 

coronary arterioles as opposed to large arteries and collaterals.82 SNP, which we used in vivo 

in this thesis, would be the most suitable compound for inducing coronary arteriolar 

vasodilation and it has been used effectively in patients for decades. However it is only used 

for the treatment of severe hypertension, as it can only be administered parentally and has a 

short half-life, complicating chronic treatment.83, 88 Additionally, SNP can induce coronary 

steal syndrome, reducing regional myocardial blood flow in patients with coronary artery 

disease89 and increase myocardial arterio-venous shunting90, which could be detrimental in 

myocardial ischemia due to regional perfusion deficits such as INOCA. Moreover, there may 

be organ-specific sensitivity to NO-donors both in health and disease91, resulting in systemic 

side-effects before noteworthy coronary vasodilation is achieved. We observe a similar 

phenomenon in chapter 9, as in our three comorbidities swine model we had to abort the 

infusion of the NO donor SNP in some animals due to dangerously low systemic blood 

pressure, while coronary vascular conductance was just moderately increased. In contrast to 

direct NO-donors, prolonged treatment with organic nitrates can result in nitrate-tolerance 

and also has been shown to be detrimental to endothelial function as it also plays a role in the 

redox balance and induce increased oxidative stress, limiting the role of organic nitrates in the 
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treatment of INOCA.82 Altogether, the use of organic nitrates or direct NO-donors seem to 

have some important limitations for the treatment of INOCA, therefore other therapeutic 

options which can increase NO-bioavailability indirectly should be considered. Inorganic 

nitrates, available via bioconversion from dietary sources, do not result in tolerance, induce 

less oxidative stress and have been investigated in angina patients with obstructive coronary 

artery disease.92 In a recent study, inorganic nitrates improved nitrite and nitrate plasma 

levels as well as maximum exercise time, but failed to reach statistical significance on time to 

1mm ST-depression on electrocardiogram treadmill testing (P=0.10), suggesting a possible 

small antianginal effect of inorganic nitrates in these patients.93 However, conflicting results 

have been published concerning the effect of inorganic nitrates on endothelial function, 

necessitating further research.92  

In chapter 9, we observed only a modest coronary microvascular vasodilator 

response to PDE5 inhibition in both groups. In patients with INOCA, limited clinical data about 

the effect of PDE5 inhibition are available and the two clinical studies that are available show 

conflicting results.94, 95 These considerations suggest that the potential of PDE5 inhibition in 

the treatment of CMD in INOCA patients is uncertain, but should be further investigated. sGC 

activators and stimulators are two novel classes of drugs, which can induce NO-independent 

stimulation of the NO-sGC-cGMP pathway.96, 97 In healthy animals and models of pulmonary 

hypertension these drugs were capable of inducing dose-dependent vasodilation in the 

pulmonary circulation as well as in the systemic circulation.98 In a rat model of isoproterenol-

induced myocardial ischemia, the sGC activator cinaciguat was able to restore myocardial 

damage, reduce oxidative stress and improve myocardial function.99 In a canine model of 

global myocardial ischemia/reperfusion by cardiac bypass clamping, cinaciguat restored left 

ventricular function, coronary blood flow and acetylcholine-induced coronary vasodilation in 

vivo and in vitro in canine coronary arteries stimulated with peroxynitrite.99, 100 In a proof of 

concept study, acute decompensated heart failure patients showed improved hemodynamics 

with cinaciguat infusion.101 Besides the beneficial effect of these drugs on the myocardium in 

congestive heart failure, renal blood flow increased and GFR was maintained without 

activation of the renin-angiotensin-aldosterone system, making them particularly  interesting 

in patients with cardiorenal syndrome.102, 103 Notwithstanding the importance of these 

findings, the therapeutic properties of these compounds on the coronary circulation should 
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be determined in more depth, but might prove valuable new drugs in the treatment of both 

INOCA and HFpEF.  

 

Multimorbidity-induced generalized endothelial dysfunction 

In chapter 2 we summarized the mechanisms which are at play in obesity-induced 

microvascular dysfunction in multiple organs. Although the specific underlying mechanisms 

differ between regional vascular beds, possibly due to inherent differences in specific organ 

physiology, microvascular dysfunction plays an important role in the development of many 

diseases of multiple organs. As stated before, multimorbidity results in HFpEF due to a 

systemic pro-inflammatory state, therefore non-cardiac microvascular beds and organs are 

involved in HFpEF pathogenesis.53 Pulmonary hypertension (PH) is present in about 36-83% 

of the HFpEF (HFpEF-PH) patients104, 105, and it is of clinical importance, as multiple studies 

have demonstrated that HFpEF-PH patients have a more severe phenotype with a worse 

outcome than patients without PH.104, 106 In part this is due to PH, with subsequent right 

ventricular dysfunction, being considered a late (end-stage) complication in HFpEF due to left 

ventricular backward failure.107 However, it has also been suggested that a portion of the 

HFpEF-PH patients might be erroneously classified as type 2 PH (due to left heart disease) as 

it resembles pulmonary arterial hypertension (type 1 PH), a pre-capillary PH phenotype.107-109 

The pathophysiology of how comorbidities associated with HFpEF result in pulmonary 

vascular disease remains unclear. In conjunction with the lack of clear pathophysiological 

mechanisms, an evidenced-based treatment regimen for HFpEF-PH specifically is not yet 

available.110 In chapter 10 we showed that in our triple morbidity swine model with diastolic 

dysfunction, pulmonary vascular resistance was increased and pulmonary vasomotor control 

was impaired. Although no clear increase in pulmonary artery pressure was observed, which 

was due to a lower cardiac output, these early changes demonstrate that pulmonary 

microvascular dysfunction is already present before overt PH and right ventricular dysfunction 

occur. We observed no changes in pulmonary arterial structure in our model. However, we 

observed an increase in endothelin 1-mediated vasoconstriction, in combination with an 

increased PDE5 activity, contributing to an increased pulmonary vascular resistance (figure 2). 

Consistent with our findings, in HFpEF-PH patients increased circulating endothelin 1 has been 

observed, which was associated with a higher pulmonary vascular resistance, an abnormal 
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pulmonary vasodilation and a more severe HFpEF-PH phenotype.111 Despite these 

observations that endothelin 1 may play a detrimental role in development of pulmonary 

vascular disease in HFpEF, no beneficial effects of 12 weeks of endothelin-receptor 

antagonism with either bosentan or macitentan were observed in patients with HFpEF-PH in 

the BADDHY112 and the MELODY-1113 trials respectively. Nevertheless, our study suggests that 

endothelin receptor blockade may be beneficial, particularly in early pulmonary vascular 

disease secondary to multimorbidity. In chapter 10 we also demonstrated that in the presence 

of NO synthase inhibition the pulmonary vasodilator effect of endothelin receptor blockade 

was enhanced in control swine while, surprisingly, it was abolished in the triple morbidity 

swine, suggesting an altered interaction between NO and endothelin. It has been shown in 

the past that the NO and endothelin interact on multiple levels. For example, the endothelial 

ETB receptor promotes NO production by eNOS.114 Vice versa, NO inhibits endothelin-

mediated contraction and endothelin 1 production/release.115 In contrast, it was shown that, 

further downstream of NO, an increased PDE5 activity, resulting in reduced cGMP levels, can 

induce an increased endothelin vasoconstrictor influence in lung vasculature.116 In chapter 10 

we also observed an increase PDE5 influence in pulmonary vasomotor control while NO 

bioavailability was unaltered. Although the role of PDE5 inhibition in the pathogenesis of 

HFpEF-PH has not been thoroughly investigated, due the success of PDE5 inhibition in type 1 

PH resulted in multiple trials which tested PDE5 inhibition in HFpEF-PH. However, conflicting 

results have been published with respect to the efficacy of PDE5 inhibition in HFpEF-PH, and 

recent meta-analyses concluded that there is no beneficial effect of PDE5 inhibition on 

pulmonary hemodynamics or exercise capacity117, 118, although some individual studies do 

show a beneficial effect. It should be noted, however, that there were substantial differences 

in study populations. Thus, the studies with negative results had a higher proportion of post-

capillary PH patients119, 120, while the patients included in the study by Guazzi et al.121 had 

higher pulmonary vascular resistance resembling the pre-capillary arterial phenotype present 

in our swine model. Stratifying patients based on underlying disease may prove critical, to 

identify subgroups of HFpEF-PH patients that may benefit from endothelin receptor 

antagonism or PDE5 inhibition. Moreover, combined treatment might be beneficial as we 

demonstrated that there is an altered NO-endothelin interaction, and PDE5 inhibition can 

reduce endothelin vasoconstrictor influence.116 This altered interaction should be further 

explored in our triple morbidity swine model by combined acute treatment at rest and during 
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exercise, and subsequently the effects of chronic treatment could be explored in the future. 

Personalized medicine by careful patient selection, together with earlier detection, possibly 

by incorporation of CPET into routine HFpEF diagnostics18, 122, and prevention of progression 

towards end-stage HFpEF-PH might help to improve clinical status of HFpEF-PH patients. 

Besides the role of the vascular endothelium in regulating resistance vessel tone, 

and hence tissue perfusion, microvascular endothelium in particular also plays an important 

role in maintaining coagulation homeostasis. Von Willebrand Factor (VWF) is mainly produced 

in endothelial cells and is a key pro-coagulant protein that mediates platelet adhesion and 

aggregation.123 VWF also functions as carrier protein in the circulation for factor VIII, another 

important protein in the coagulation cascade, thereby preventing degradation of factor VIII. 

Recently, it was demonstrated that the age-related increase in circulating VWF is associated 

with an increased prevalence in comorbidities in an ageing population.124 Moreover, higher 

circulating levels of VWF and also factor VIII have been associated with an increase in 

cardiovascular disease and worse cardiovascular outcome.125 However it is presently unclear 

whether this association reflects a direct effect of the comorbidities on VWF levels or whether 

this occurs secondary to endothelial dysfunction and/or atherosclerosis. Therefore, in chapter 

5 we retrospectively studied vWF and factor VIII levels in the model described in chapter 4. 

VWF was not elevated after 5 months’ exposure to DM and hypercholesterolemia at a time 

when coronary endothelial dysfunction and coronary atherosclerosis are not (yet) present. 

Conversely, factor VIII was increased in the group with metabolic derangements compared to 

the healthy controls (Figure 3). The dissociation between factor VIII and VWF might be due to 

the high levels of lipids as factor VIII can bind to lipids, prolonging its half-life.126 Furthermore, 

hyperglycaemia can induce a loss of endothelial glycocalyx127 and an increase in myocardial 

oxidative stress128, both resulting in increased factor VIII. To further investigate the relation 

between VWF and comorbidities, these were measured in swine exposed to dyslipidaemia or 

DM+dyslipidaemia for 15 months, that showed overt coronary endothelial dysfunction and 

atherosclerosis. In this cohort, the increase in circulating VWF between 9 and 15 months 

exposure coincided with the atherosclerosis development and endothelial dysfunction, 

suggesting that VWF may represent a biomarker of advanced cardiovascular disease (figure 

3). However, since VWF has a potent pro-coagulant effect, it might also be a mediator of 

cardiovascular diseases by promoting (micro)thrombi formation and thus could be regarded 

as a potential target in novel treatments.129  
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Figure 3 Summary of the association between comorbidities, endothelial dysfunction and 

atherosclerosis and circulating levels of von Willebrand factor and factor VIII.

Proposed relationship between comorbidities (diabetes mellitus and dyslipidemia) and the 
coagulation proteins von Willebrand factor (VWF) and factor VIII (FVIII). Aging results in an 
increase in comorbidities which increase VWF mediated by coronary microvascular 
endothelial dysfunction and/or coronary atherosclerosis.

However, causality remains to be proven, as conflicting results have been published. For 

example, patients with von Willebrand disease, a bleeding disorder due to a complete or 

partial loss or a loss of function of VWF, have a lower prevalence of arterial thrombosis.130 In 

contrast, in patients (>55 years of age) with high VWF due to a genetic variation, VWF-levels 

were not associated with coronary heart disease during a mean follow-up time of 10.8 

years.131 However, whether atherosclerosis is also prevented in patients with von Willebrand 

disease remains to be determined. Clinical observations in 47 von Willebrand disease patients 

suggest that atherosclerosis, measured by carotid and femoral artery intima-media thickness, 

does develop.132 However, pigs with von Willebrand disease showed resistance to aortic 

atherosclerosis and there might also be resistance to coronary atherosclerosis, but evidence 

is still inconclusive.133, 134 One explanation for these findings in pigs with von Willebrand 

disease, is that pigs also carry a polymorphism in apolipoprotein B100 which results in reduced 

diet-induced hypercholesterolemia, thus limiting atherosclerosis development.135 Further 

research on the casual role of VWF in the development of endothelial dysfunction and/or 

atherosclerosis is required to determine its potential as a therapeutic target. 
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Current standings and future perspectives 

CMD is clearly one of the new frontiers in cardiovascular research.57 However, due to the 

inherent difficulties of CMD study in humans, animal models which emulate human CMD 

more precisely are needed. In Chapter 3, we present an overview of the currently available 

experimental animal models of CMD. Although small animal models have clear advantages 

with regard to costs, housing, handling and genetic manipulation, large animal models hold 

greater translational capacity to the human situation, given their close resemblance of 

cardiovascular anatomy, physiology and metabolism. Whereas the use of canine models has 

decreased in the last decade, mostly due to societal pressure, swine models have proven to 

be an excellent alternative. While some swine breeds, such as the Ossabaw and Rapacz swine, 

have a spontaneous genetic variation making them susceptible to cardiovascular disease, they 

are not widely available.136 However, besides these two, most other swine breeds do not 

develop cardiovascular disease spontaneously in a timeframe suitable for research 

purposes.136 Hence, induction of metabolic derangement in swine has been used in multiple 

studies and has been well validated. Figure 4 gives an overview of the most commonly used 

methods, surgical or chemical reduction of β-cell mass, dietary intervention and genetic 

engineering, of inducing DM in swine used in cardiovascular research.136 All of these methods 

have distinctive diabetic phenotypes as a result and all have their unique challenges and 

advantages. 136 In our studies, we used a combination of low-dose streptozotocin and a high-

fructose, high-sucrose and high fat diet, which indeed induced pronounced hyperglycaemia 

and dyslipidaemia both in the miniswine model (chapter 4-5), the dyslipidemic farm swine 

model with DM (chapter 5), and the triple morbidity model (chapter 7-10). Although this 

regimen of streptozotocin injections induces a type 2 DM-like phenotype, no 

hyperinsulinemia was observed due to the use of streptozotocin.137 In humans, DM with 

insulin resistance with hyperinsulinemia is observed in the majority of the patients, and it has 

been shown that hyperinsulinemia is also an important mediator of cardiovascular disease.138, 

139 Our data in swine exposed for 15 months to only high fat diet140 showed only mild insulin 

resistance without hyperglycaemia in the absence of streptozotocin treatment, indicating that 

DM-induction without streptozotocin using only a diet is difficult in farm swine, time-

consuming and expensive.136 Furthermore, in view of the genetic selection for the meat 

industry, which has resulted in a rapid body growth, their increase in size and body weight 

limits follow-up time and age of inclusion. In accordance, farm swine are often studied at  
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Figure 4 Different methods for inducing diabetes mellitus in swine models for studying 
cardiovascular disease

relative young age (<9 months) due to their size and body weight increase and at this age they 

have just reached sexual maturity (~6 months).141 Since most cardiovascular diseases occur 

principally in older individuals, this limits the translational capacity of these animal models. 

Additionally, younger animals likely have a higher regenerative/repair capacity, that alleviates 

organ damage over time, thereby complicating induction of morbidities, as has been observed 

in streptozotocin induced DM.136 We observed a similar phenomenon after the induction of 

hypertension by CKD. Namely, in chapter 7 we demonstrated that the mean arterial pressure 

increased (to ~110 mmHg) acutely after CKD-induction by subtotal renal embolization and 

remained elevated at least up to 12 weeks. However, at >20 weeks, mean arterial pressure 

(chapter 8) had returned to levels similar to control swine (~90mmHg). As summarized in 

chapter 6, there are multiple mechanisms by which CKD can induce CMD and cardiac diastolic 

dysfunction besides CKD-associated hypertension. Notwithstanding these methodological 

considerations, our triple morbidity model represents a relevant translational model for CMD 

with subsequent features of HFpEF and INOCA. Based on the findings in this thesis and findings

discussed above, we recommend two different directions for future research. 
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Firstly, the current triple morbidity model has been phenotyped extensively and this 

animal model will prove a valuable tool to test new therapeutic strategies for CMD-associated 

syndromes, in particular HFpEF and INOCA. Depending on the disease of interest (INOCA or 

HFpEF) therapies that could be considered should target cardiac dysfunction, CMD or both. 

Previously we discussed sGC-activators and -stimulators as possible treatment options for 

CMD, given our findings in this thesis in conjunction with observations from other 

investigators. Such a compound, which targets both NO-cGMP signalling in resistance vessels 

(and thus INOCA) and in capillaries-cardiomyocytes (and thus HFpEF), should be investigated 

in future studies. Another class of drugs, sodium glucose cotransporter 2 inhibitors (SGLT2i), 

which were developed for the treatment of DM by promoting glycosuria and thus lowering of 

plasma glucose, may also target cardiac and vascular dysfunction directly. This class of drugs 

has been shown to lower the incidence of major adverse cardiac events in major clinical trials, 

independent of DM-status of the patients and their glucose-lowering effect.142, 143 Indeed, a 

large clinical trial (EMPEROR-PRESERVED, NCT03057951) for the treatment of HFpEF with 

empagliflozin is currently being conducted.144 However, exactly how SGLT2i influences cardiac 

function is presently unclear, although several mechanisms have been proposed and are 

worthy of further exploration.144 Two of these proposed mechanisms are of interest for the 

findings in current thesis. Namely, improvement of myocardial oxygen efficiency by a 

metabolic substrate shift towards ketone bodies145 and reduction of endothelial oxidative 

stress and thus improved endothelial function, NO-bioavailability and subsequent increased 

coronary blood flow.146, 147 This combined effect on both cardiac and microvascular function 

makes SGLT2 inhibitors a promising therapy in cardiovascular diseases associated with CMD. 

In addition, compounds that improve mitochondrial function such as elamipretide which 

targets cardiolipin in cardiomyocytes are also of potential interest for the treatment of 

HFpEF.148, 149 Since, mitochondrial dysfunction also likely contributes to the impaired 

myocardial oxygen balance in our triple morbidity model, this might be a good therapeutic 

option to test whether by improving mitochondrial function it can also improve myocardial 

oxygen balance and mitigate diastolic dysfunction. Finally, new therapeutic targets may arise 

from the current animal model. Thus, we are currently exploring an –omics approach, 

including transcriptomics, proteomics and metabolomics to find novel targets for HFpEF as 

well as for INOCA. These relatively novel techniques are developing to become widely 

applicable, sensitive and less expensive. These unbiased approaches may aid in discovering 



Chapter 11 

 338 

new leads for pathophysiological mechanisms and therapeutic targets.150 However, validation 

in human disease is needed to eliminate species-specific pathways or targets. 

Secondly, improving the current animal model to further enhance translational 

power should help to narrow the translational gap, for instance by using older animals. Age 

can influence cardiovascular disease on multiple levels; the risk factors that a person develops 

with aging, which are mimicked in our studies by the induction of risk factors, age-related 

changes in sex hormones (i.e. puberty and menopause)151 or alterations in the immune 

system, such as immune senescence.152 This is just a selection of the age-related effects that 

influence cardiovascular (dys)function. While some of these factors might be possible to 

mimic also in young animals, such as menopause by ovariectomy, mimicking all of the age-

related effects will be virtually impossible. Since using older animals in farm swine is 

practically challenging, switching to a miniswine, such as the Göttingen miniswine as 

employed in chapter 4-5, is a viable alternative. Another option is to genetically engineer 

swine to undergo accelerated aging, which has been successfully done in mouse models.153, 

154 In the last two decades, genetically engineering of swine has become easier, more 

accessible and successful, mostly due to CRISPR-Cas technology.155 This has resulted in the 

development of new DM type 1 and type 2 swine models.136 For instance, swine with a 

deficient glucose-dependent insulinotropic polypeptide receptor, showed a pre-diabetic 

phenotype with impaired glucose tolerance at younger age (11 weeks of age) that progressed 

to loss of pancreatic β-cell mass at 5 months and 11 months.156 Interestingly, this model also 

developed renal dysfunction from a young age onward (8 weeks).157 Such genetic-engineered 

models might be interesting to study in combination with a western diet to aggravate the 

cardiovascular phenotype and study cardiac and microvascular function, both at a young age, 

but especially at an older age. Altogether, genetic engineering of swine, particularly in a 

miniswine background, to make them susceptible to develop DM, obesity, dyslipidaemia 

and/or CKD, will tackle some of the remaining disadvantages of using swine for cardiovascular 

research and will further improve translation from pre-clinical research into the clinic. 
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Conclusion 
The findings in this thesis indicate that (coronary) microvascular disease, due to metabolic 

derangement, is common in a variety of cardiovascular diseases. Chronic kidney disease, a 

common non-classical cardiovascular risk factor, can aggravate cardiovascular dysfunction in 

combination with metabolic derangement. The pathophysiological mechanisms involved in 

microvascular dysfunction are multifold and—importantly—appear to be organ-specific. CMD 

with a loss of NO-bioavailability is a hallmark of both HFpEF and INOCA and seems to be the 

linking factor between these syndromes, as we demonstrated in our newly developed 

multimorbidity swine model. Strikingly, in this model, pulmonary vascular disease was already 

present before overt left ventricular backward failure occurred, with increased 

vasoconstrictor influence of PDE5 and endothelin 1, distinctively different from the coronary 

circulation. Besides altering vascular tone control, metabolic derangement also affects 

coagulation homeostasis, another important endothelial (micro)vascular function. Factor VIII 

increased directly in response to metabolic derangement without an increase in von 

Willebrand Factor, the latter becoming increased when overt CMD and atherosclerosis were 

present. Altogether, these findings demonstrate the variety of functions of the 

microcirculation and show that metabolic derangements and CKD can disrupt these functions 

in an organ-specific manner, causing multiple clinical syndromes in need of further 

phenotyping and novel targeted treatment options. 
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Nederlandse samenvatting 
In 2018 waren naar schatting, in Nederland 1,6 miljoen mensen met cardiovasculaire ziekten waarvan 

37.769 mensen zijn overleden (25% van alle sterfte in Nederland).1 Volgens de World Health 

Organisation betreft de wereldwijde cardiovasculaire sterfte ongeveer 17.9 miljoen mensen per jaar, 

en is daarmee de meest voorkomende doodsoorzaak wereldwijd.2 De belangrijkste risicofactoren 

voor het ontstaan van cardiovasculaire ziekten en uiteindelijk hartfalen zijn diabetes mellitus (DM), 

obesitas en hypertensie.1,2 Deze risicofactoren zullende komende jaren naar verwachting alleen nog 

maar in prevalentie toe gaan nemen3, 4, voornamelijk in ontwikkelingslanden met lage- tot 

middeninkomens.5  Dit gaat gepaard met de gelijktijdige toename in sociaaleconomische status, zoals 

in landen als China en India.5, 6  Hoe deze risicofactoren leiden tot cardiovasculaire ziekten, en met 

name tot hartfalen, is nog niet geheel opgehelderd, zeker als er meerdere risicofactoren in één patiënt 

voorkomen. Er wordt gedacht dat niet alleen de grote bloedvaten, maar vooral de microcirculatie 

gevoelig is voor metabole veranderingen en in een vroeg stadium wordt aangetast door deze 

risicofactoren. Een voorbeeld van een cardiovasculaire aandoening waar de microcirculatie is 

aangedaan, is hartfalen met een behouden ejectie fractie (HFpEF), wat in ongeveer de helft van de 

hartfalen patiënten voorkomt.7 Het onderzoeken van de microcirculatie, zeker die van hart en longen, 

is in mensen niet eenvoudig vanwege het gebrek aan niet-invasieve, sensitieve methoden. Om de 

microvasculaire (dys)functie te onderzoeken, de pathofysiologie te begrijpen en om nieuwe 

therapieën te ontwikkelen zijn diermodellen nodig die deze cardiovasculaire ziekten met de 

onderliggende risicofactoren kunnen nabootsen. In dit proefschrift hebben we onderzoek gedaan 

naar de invloed van veelvoorkomende risicofactoren, zoals DM, dyslipidemie en chronische 

nierschade, op het ontstaan van cardiovasculaire ziekten en dit in twee verschillende delen 

besproken. 

In deel I van dit proefschrift beschreven we wat de invloed is van de metabole 

veranderingen DM en dyslipidemie, op de myocardiale en coronaire functie. In hoofdstuk 2 hebben 

we een overzicht gegeven van de verschillende mechanismen die microvasculaire dysfunctie kunnen 

induceren, zowel functioneel als structureel, in dyslipidemie geassocieerd met obesitas. In dit 

hoofdstuk gaven we weer dat, alhoewel er overeenkomstige mechanismen zijn in de verschillende 

organen die we beschreven hebben, er juist ook verschillende mechanismen tussen organen die een 

rol kunnen spelen. Dit benadrukt dat de microcirculaties van de verschillende organen uniek zijn, 

waarschijnlijk vanwege hun eigen kenmerkende fysiologie. In hoofdstuk 3 gaven we een overzicht van 

verschillende kleine en grote diermodellen met metabole ontregeling met coronair microvasculaire 

dysfunctie (CMD) tot gevolg. Daarnaast beschreven we welke pathofysiologische mechanismen 
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aangetoond zijn in die diermodellen. We bespreken in dit hoofdstuk dat er tussen verschillende 

diersoorten een grote variatie bestaat in cardiovasculaire anatomie, fysiologie en metabolisme, en 

concluderen dat de grote diermodellen op deze vlakken het meest overeenkomstig zijn met de mens. 

Alhoewel kleine en grote diermodellen beide hun voor- en nadelen hebben, geen diermodel perfect 

de humane situatie nabootst en je keuze afhankelijk moet zijn van je onderzoeksvraag, zouden grote 

diermodellen over het algemeen de beste translatie naar de humane cardiovasculaire ziekten mogelijk 

maken. Daarom hebben we in het onderzoek beschreven in hoofdstuk 4, een Göttingen minivarken 

vijf maanden aan DM en dyslipidemie blootgesteld hebben om verandering in het linkerventrikel te 

kunnen bestuderen. Hier zagen we dat DM en dyslipidemie resulteerden in linkerventrikel diastolische 

dysfunctie, gemeten door middel van echocardiografie. Dit leek vooral het gevolg te zijn van 

intrinsieke veranderingen in de individuele cardiomyocyten, zoals toegenomen passieve kracht 

(stijfheid), aangezien er geen structurele veranderingen in het myocardium aangetoond konden 

worden. Tevens werd er toegenomen myocardiale oxidatieve stress aangetoond, welke  geassocieerd 

zou kunnen zijn met de aanwezige mitochondriële dysfunctie. Daarnaast liet RNA-sequencing zien dat 

er 63 genen in het myocard anders gereguleerd waren en dat de glucosemetabolisme en vrije 

vetzuurmetabolisme netwerken vooral aangedaan waren. In hoofdstuk 5 hebben we, in hetzelfde 

model, laten zien dat coronaire microvasculaire endotheelfunctie (nog niet) aangedaan was ten 

opzichte van gezonde controle varkens en dat er nog geen tekenen van coronaire atherosclerose 

waren. Dit was geassocieerd met een toename van factor VIII, terwijl von Willebrand Factor (VWF)-

waarden onveranderd waren op dit tijdstip. Een langere (vijftien maanden) blootstelling aan 

dyslipidemie alleen of in combinatie met DM in boerderijvarkens, resulteerde wel in coronaire 

microvasculaire dysfunctie en atherosclerose met een gelijktijdige toename in VWF in de tijd, 

gedurende de blootstelling aan de risicofactoren. Dit suggereert  dat een stijging van VWF mogelijk 

geassocieerd is met coronaire microvasculaire dysfunctie en/of atherosclerose, en niet direct met DM 

of dyslipidemie. 

 In deel II hebben we onderzocht wat de bijdrage is van chronische nierschade (CNS) naast 

DM, en dyslipidemie op de ontwikkeling van myocardiale, coronaire microvasculaire en pulmonale 

microvasculaire functie. In hoofdstuk 6 hebben we een overzicht gegeven van hoe CNS kan lijden tot 

diastolische dysfunctie en HFpEF. Naast CNS-geïnduceerde hypertensie kan CNS via verschillende 

mechanismen HFpEF tot gevolg hebben. We hebben laten zien dat een deel van deze mechanismen 

hun effect direct op cardiomyocyten uitoefenen, terwijl het merendeel indirect hun effect uitoefenen 

via pro-inflammatie en CMD. Daarnaast hebben we in hoofdstuk 6 een overzicht gegeven van reeds 

uitgevoerde klinische trials betreffende HFpEF en hebben we, op basis van de besproken 

mechanismen van CNS-geïnduceerde HFpEF, nieuwe behandelopties gesuggereerd die getest zouden 
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kunnen worden. Hoofdstuk 7 beschrijven we een nieuw boerderijvarkenmodel waarin HFpEF werd 

geïnduceerd door middel van blootstelling aan DM, dyslipidemie en CNS, met een pro-inflammatoire 

staat tot gevolg. In dit model zagen we linkerventrikel diastolische dysfunctie, gemeten onder 

anesthesie met behulp van een druk-volume loop analyse, (grotere helling eind diastolische druk 

volume relatie). Daarnaast, vonden we structurele veranderingen in het myocardweefsel van deze 

dieren, namelijk een afname van capillaire dichtheid en toename in extracellulaire matrix. Tevens was 

hier sprake van een toegenomen passieve kracht van de individuele cardiomyocyten. Zoals eerder 

gezien in hoofdstuk 4 was hier ook sprake van myocardiale oxidatieve stress, een verlies van 

stikstofmonoxide en dysregulatie van het enzym (eNOS), welke stikstofmonoxide produceert in de 

coronaire microcirculatie. Deze myocardiale afwijkingen waren geassocieerd met CMD, gemeten in 

geïsoleerde kleine coronaire arteriën. CMD leek dus te resulteren in het verlies van stikstofmonoxide 

geproduceerd door capillairen, welke normaal fungeert als signaalmolecuul voor cardiomyocyten, wat  

uiteindelijk leidde tot HFpEF. In hoofdstuk 8 hebben we vervolgens in meer detail de cardiovasculaire 

functie onderzocht, in ditzelfde diermodel met drie risicofactoren, in de afwezigheid van 

atherosclerose. Dit hebben we gedaan met dieren in zowel wakkere toestand in rust als tijdens 

toenemende inspanning. De dieren met de risicofactoren toonden een afname van het 

hartminuutvolume, waardoor er een verstoring was in de systemisch zuurstofbalans met een 

verhoogde systemische lactaatproductie. Het linkerventrikel liet een verlaagde efficiëntie in 

zuurstofverbruik zien, welke in combinatie met een verlaagd zuurstofaanbod, door CMD, resulteerde 

in een verhoogde zuurstofextractie. Ondanks deze verhoogde extractie bleef er een tekort aan 

zuurstof, wat resulteerde in een verminderde myocardiale lactaatconsumptie, een teken van 

anaeroob metabolisme. Tevens werd een lichte mate van systolische linkerventrikelfunctie gezien 

tijdens rust en inspanning. De CMD, werd aangetoond door een afname in de farmacologisch-

bepaalde coronaire flow reserve, en leek het gevolg te zijn van functionele veranderingen sinds er 

geen structurele veranderingen waren waargenomen. Dit model lijkt dus representatief te zijn voor 

CMD, waarbij de coronaire arteriolen en kleine coronaire arteriën zijn aangedaan, met daaruit volgend 

ischemie zonder obstructief coronair lijden (‘ischemia and no obstructive coronary artery disease’, 

INOCA). In hoofdstuk 9 hebben we verder de CMD onderzocht in dit model met drie risicofactoren. 

Hierin lieten we zien dat CMD inderdaad functioneel van aard is en dat er een afname is van 

farmacologisch-geïnduceerde endotheel-afhankelijke relaxatie, gemeten in zowel in vivo in wakkere 

varkens als in vitro in geïsoleerde kleine coronair arteriën. De endotheel dysfunctie was het gevolg 

van een verminderde beschikbaarheid van stikstofmonoxide gemeten in vivo in rust en tijdens 

inspanning en in geïsoleerde kleine coronair arteriën, door middel van inhibitie van eNOS. Primair was 

dit niet het gevolg van een verandering in eNOS hoeveelheid of functie, maar door een verhoogde 
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oxidatieve stress welke stikstofmonoxide wegving. In de vasculaire gladde spiercel, verderop in de 

stikstofmonoxide signaleringscascade, bleek de phosphodiesterase-5 activiteit onveranderd. 

Vervolgens onderzochten wij in hoofdstuk 10 de functie van de pulmonaire vaatbed in dit model. We 

lieten zien dat, ondanks dat er nog geen sprake was van linkerventrikelfalen met longoedeem, er al 

wel een verhoogde pulmonale vasculaire weerstand gemeten kon worden zowel in rust als tijdens 

inspanning. Histologisch onderzoek van de longen liet zien dat er geen veranderingen waren 

opgetreden in de pulmonale vaten die de verhoogde pulmonale vasculaire weerstand konden 

veroorzaken. Functioneel waren er geen veranderingen in stikstofmonoxide beschikbaarheid, terwijl 

er wel een toename was van phosphodiesterase-5 activiteit, wat zorgde voor verminderde cyclisch 

guanosinemonofosfaat beschikbaarheid en dus afgenomen vasodilatatie. Daarnaast was er ook een 

toename van circulerende endotheline-1 alsmede een toegenomen endotheline-1 gemedieerde 

pulmonale vasoconstrictie. Ondanks de toename in pulmonale vasculaire weerstand, was er op dit 

moment nog geen verandering is de functie van het rechterventrikel, zowel gemeten in rust als tijdens 

inspanning en onder anesthesie gemeten met MRI, wat suggereert dat het vroege pulmonale 

vasculaire dysfunctie betreft.  

 Concluderend laten we in dit proefschrift zien dat blootstelling aan veelvoorkomende 

risicofactoren zoals DM, obesitas en CNS een belangrijke rol spelen in de ontwikkeling van 

cardiovasculaire ziekten. Daarbij is er een belangrijke rol voor de microvasculatuur weggelegd die 

normaal gesproken de bloedtoevoer van organen en de uitwisseling van voedingsstoffen reguleert. 

Afhankelijk van het orgaan en van de grootte van de aangedane vaten kan dit resulteren in 

karakteristieke pathofysiologische veranderingen in orgaanfunctie en in karakteristieke 

cardiovasculaire syndromen zoals HFpEF of INOCA. 
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Dankwoord 
Het doen van goed wetenschappelijk onderzoek en daarmee ook het halen van een PhD is een 

teamprestatie. In het huidige wetenschappelijk klimaat is het noodzakelijk om samen te werken met 

experts uit verschillende gebieden. Zeker in translationeel onderzoek waarin we de brug proberen te 

slaan tussen fundamentele ontdekkingen en klinische vraagstukken. Tijdens mijn PhD heb ik mogen 

samenwerken met veel verschillende mensen, die ik graag daarvoor zou willen bedanken. 

 

Allereerst wil ik mijn promotoren prof.dr. Duncker en prof.dr. Merkus en mijn copromotor dr. Sorop 

bedanken voor de begeleiding tijdens mijn promotietraject.  

Beste Dirk, mijn eerste ontmoeting met jou was tijdens de colleges in het eerste jaar. Daar 

stond je vol overtuiging en passie te vertellen over coronaire flowregulatie en linkerventrikelfunctie. 

Wellicht dat mijn interesse voor cardiovasculaire fysiologie daar al werd gewekt. Je bent een echte 

motivator en kan iedereen enthousiast krijgen voor nieuwe resultaten en nieuwe onderzoekideeën. 

Daarnaast heb je me geleerd altijd kritisch te denken en over alles te durven twijfelen, zowel over je 

eigen resultaten als die van anderen. Tevens ben ik onder de indruk van je punctualiteit en je oog voor 

detail. Hoe vaak ik wel niet bolletjes van 5 naar 4 heb gezet is niet op de handen van de gehele 

commissie te tellen. Ik hoop nog een hoop van je te kunnen leren in de toekomst. Bedankt voor de 

energie die je me hebt gegeven tijdens mijn promotietraject en de tijd en energie die je in de inhoud 

van dit proefschrift hebt gestoken.  

Beste Daphne, tijdens mijn promotietraject ben je heel belangrijk geweest als 1e 

aanspreekpunt samen met Oana. Jouw deur stond (letterlijk) altijd open voor een vraag over 

resultaten of over een specifieke zin in een manuscript. Je bent van grote waarde geweest voor het 

tot stand komen van mijn proefschrift. Je hebt me veel geleerd over hemodynamische signalen en het 

doen van in vivo experimenten. Je bent ontzettend pragmatisch in je aanpak en dat neem ik zeker 

mee naar nieuwe projecten en mijn werk in de kliniek. Het is mooi om te zien hoe ook jij bent 

veranderd in de relatief korte tijd dat ik op de experimentele cardiologie heb gewerkt. Eigenlijk vind 

je nog steeds niks leuker dan het uitvoeren van experimenten en bezig zijn met 

(inspannings)fysiologie. Sinds vorig jaar mag je ook dienst doen als professor Experimental Medicine 

bij de Ludwig-Maximilians-Universität München. Een positie die je hard verdiend hebt en ik hoop dat 

we in de toekomst samen kunnen nadenken over projecten die Rotterdam en München verbinden. 

Beste Oana, jij had als mijn dagelijkse begeleider de zware taak om van mij een echte 

onderzoeker te maken. Ik had me geen betere persoon kunnen wensen die deze taak op zich had 

kunnen nemen. Je beschikt over een geweldige hoeveelheid aan informatie en vaardigheden, waarvan 

je een deel aan mij hebt kunnen overbrengen. Je wist zowel wanneer je me achter mijn broek aan 



  Dankwoord 

 367 

moest zitten en wanneer je me de ruimte kon geven. De vrijheid die ik daardoor ervaarde werkte voor 

mij perfect om dingen gedaan te krijgen, zonder ooit het gevoel te hebben dat ik je niet om hulp kon 

vragen. We hebben in de afgelopen 4 jaar veel uren doorgemaakt op de operatiekamers, aan de 

loopband, in Graphpad/SPSS en in het lab en dat zal ik gaan missen als ik weer in de kliniek werk. 

Buiten het werk hadden we een goede klik en hebben we een hoop gelachen en leuke momenten 

meegemaakt zowel in Rotterdam als op reis. Je hebt zonder twijfel een super groot aandeel gehad in 

de inhoud van die proefschrift en dat waardeer ik ontzettend. Mulțumesc pentru tot. 

 

Daarnaast wil ik graag alle leden van mijn promotiecommissie, prof.dr. Verhaar, prof.dr. Danser, 

prof.dr. Zijlstra, dr. Eringa, dr. Joles bedanken voor het lezen en beoordelen van mijn proefschrift. Ik 

zie uit naar de gedachtewisseling.  

Marianne, bedankt voor de wijze adviezen die je me hebt gegeven als mentor. Deze 

adviezen hebben mij geholpen een helder plan te vormen over mijn toekomst als onderzoeker en hoe 

ik dit kan combineren met werken als internist in de toekomst. Beste Jan, bedankt voor onze 

samenwerking bij een aantal projecten. Ik hoop dat we in de toekomst ook nog samen kunnen werken, 

wellicht met een klinisch internistisch probleem? Jaap, ik ben onder de indruk van hoe je bij werkelijk 

elk onderzoek de kern kan begrijpen en de meest relevante vragen weet te stellen. Bij WP3 meetings 

wist je vervolgens ook altijd met goede suggesties voor aanvullende analyses te komen. Ik vind het 

prachtig dat ik momenteel samen met je een artikel mag schrijven over een deel van je eigen 

levenswerk (over de functie van albumine). Hopelijk kruisen onze wegen zich nog vaker, ondanks dat 

je officieel met ‘pensioen’ bent. 

 

Mijn paranimfen Jarno en Tim wil ik graag bedanken dat ze naast mijn zijde zullen staan tijdens de 

gedachtewisseling.  

Jarno, de man met vele namen. Niemand op de afdeling weet helemaal zeker hoe je nou 

echt heet, Jarno, Jors, Jurriën of toch gewoon Jens? Sterker nog, ik heb je een half jaar gemaild en 

kreeg nooit een mailtje terug. Nou ja uiteindelijk kreeg ik een mailtje dat ik moest stoppen met haar?? 

te mailen. We hebben veel leuke momenten met elkaar meegemaakt tijdens onze promotietrajecten, 

eigenlijk teveel om er maar eentje uit te lichten. We zijn over de loop de jaren ook goede vrienden 

geworden. Succes met je laatste jaar (<12 maanden…) als arts-onderzoeker op de experimentele 

cardiologie. Ik weet zeker dat je ook een prachtig proefschrift zult afleveren met kwalitatief goed en 

uniek onderzoek. Ik hoop dat we nog vaak na het werk samen op een terras/borrel/feestje terecht 

komen. 
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Tim, ik heb je gelijk de eerste dag van de eurekaweek mogen ontmoeten samen met Nick 

als mijn gidsen. Ondanks dat het voornamelijk ik was die jullie moest gidsen die week, zijn we met zijn 

drieën altijd goed bevriend gebleven. Samen hebben we mooie avonden, festivals en vakanties 

meegemaakt. Ik heb jullie zelfs warm gekregen voor een regelmatig bezoek aan Oeteldonk gedurende 

carnaval. Nick durfde het zelfs aan om mij in huis te nemen toen ik net in Rotterdam kwam wonen. 

Tim je hebt me altijd geholpen met mijn ambitie om internist te worden door contacten te leggen en 

mij advies te geven. Ik wens je heel veel succes met het afronden van je eigen promotietraject. Jullie 

hebben allebei een belangrijke rol gespeeld tijdens mijn studie en de periode daarna, waarvoor dank. 

Ik hoop dat we met zijn drieën nog eens naar een Jody Bernal concert kunnen! 

 

Beste Ruben, wij hebben afgelopen vier jaar nauw samengewerkt aan dit project met Oana samen. 

Dit boekje als resultaat is daarom ook grotendeels jouw verdienste. Je hebt je als researchanalist altijd 

fantastisch ingezet. Samen een nierklaring experiment doen op de vrijdag voordat we begonnen met 

inspanningsexperimenten was, en ik denk dat ik voor ons beide spreek, het hoogtepunt van de 

afgelopen vier jaar! Waar ik de achtergrond mis van een scala aan moleculaire/histologische analyses 

in het lab, was jij daar gelukkig om mij te helpen of het geheel uit mijn handen te nemen. Waarvoor 

al mijn dank en respect. Ik denk dat je de juiste keuze hebt gemaakt om ook nu zelf een PhD-traject 

te starten en ik wens je heel veel succes en plezier! 

Maarten, je bent een echte allemansvriend die altijd in is voor een grapje. Met als 

hoogtepunt ons bezoek aan Wenen, waar je vakkundig bent teruggepakt door team Daphne, Oana en 

Caro. Nooit zal ik vergeten hoe je demonstreerde hoe goed de motoriek van een laborant is tijdens 

het bowlen in Florida na 3 Corona’s. Gelukkig neem je als post-doc die 7 jaar ervaring als PhD-student 

mee en ben je iets rustiger en tactischer geworden. Je bent een geweldige wetenschapper en je hebt 

het in je om in de wetenschap te blijven. Je kennis en je vermogen om probleemoplossend te denken 

zijn indrukwekkend. Vaak hebben we daar gebruik van mogen maken waarvoor bedankt. Ik hoop dat 

je besluit in de wetenschap te blijven zodat we in de toekomst nog eens samen aan een project zouden 

kunnen werken. Wie weet heb je tegen die tijd ook wel een Master diploma behaald!  

Michelle, we hebben direct samen mogen werken aan ons review over HFpEF en CKD. Maar 

daarnaast zijn we regelmatig samen op pad geweest. Je bent altijd wel te porren voor een klein 

borreltje op vrijdagmiddag of een wat groter borreltje in het liftencomplex van de Ee-toren. Veel 

succes met het afronden van jouw PhD, alhoewel ik er niet aan twijfel dat het helemaal goed gaat 

komen.  
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Ik wil alle collega’s van de afdeling experimentele cardiologie bedanken voor hun hulp, iedereen is 

van belang voor het goed functioneren van de afdeling. Monique, je bent altijd behulpzaam geweest 

en kon me altijd verder helpen met wat voor lastige vragen ik ook langskwam. Je bent niet alleen een 

belangrijke steunpillaar van Dirk maar ook van de gehele afdeling. Annemarie bedankt voor je 

geweldige playlist en alle hulp en expertise. Ik heb veel van je geleerd als het gaat om 

operatietechnieken, dierenwelzijn en inspanningsexperimenten. Ik moet wel bekennen dat ik het 

nummer “Let it go” van Frozen niet meer aan kan horen omdat het zo vaak gedraaid is op de 

operatiekamers tijdens de lange dagen aan tafel. Richard en Kelly, jullie waren de ervaren PhD-ers op 

de afdeling toen ik begon en daarom kon ik vaak terecht bij jullie voor vragen. Ook al waren jullie het 

groepje PHAEDRA/PH, we hebben samen leuke dingen meegemaakt. Waarbij het zingen van “let it 

go” om 03:30 uur in de Alla in Maastricht toch wel tot een hoogtepunt behoord. Ilona bedankt voor 

alle moeite en tijd die je hebt gestoken in alle verschillende kleuringen waarin we opeens weer in 

geïnteresseerd waren. Zongye, we started about the same time at the department and we attended 

some nice meetings together. I wish you all the luck with your specialist training in China. Siyu, 

unfortunately we did not have the chance to work together but I wish you good luck with finishing 

your own thesis. Ranga, you are the newest member of room Ee-2369 but you fit in well with your 

humor. Keep up the good work and I am sure that you will finish a beautiful thesis. Metin, bedankt 

voor alle keren dat je geholpen hebt bij onze experimenten, ik hoop dat je een leuke nieuwe baan 

vindt die bij je past. Ik zal je oneindige zelfspot en je bruur over de gang gaan missen. Maaike bedankt 

voor alle hulp bij CCD-aanvragen, werkprotocollen en praktisch werk. Martine, bedankt voor de 

gesprekken die we gehad hebben over het PhD leven waarbij je wist ook een andere invalshoek te 

belichten. We hebben daarnaast een aantal mooie congressen mogen bezoeken, waar we ontzettend 

gelachen hebben. Marc, je was altijd in voor een gesprek over een serieus of minder serieus 

onderwerp waarvoor bedankt. Ook voor al de gezelligheid op de afdeling en in Florida.  Liesbeth, 

bedankt voor alle technische ondersteuning die je hebt geleverd. Zowel op ICT niveau als een 

technisch mankement bij ons apparatuur, we konden je altijd vragen om mee te kijken. Esther, je was 

altijd een beetje huiverig als ik op het lab verscheen en werd een beetje zenuwachtig. Ik hoop dat ik 

je enigszins heb kunnen laten zien dat artsen ook wel iets op het lab kunnen. Bedankt voor alle keren 

dat je Ruben en mij uitleg hebt gegeven over protocollen en je hulp bij de uitvoering. Lau, jij hebt met 

je sloot aan ervaring zoveel analyses al eens in het verleden gedaan. Daarom kwamen we bijna 

standaard even informeren bij je of je ons verder kon helpen met een oud protocol. Je bent vast gek 

geworden van de velen keren dat je de oude labjournaals van Yanti moest doorpluizen. Daarnaast heb 

je vaak ook analyses voor ons uitgevoerd waarvoor mijn dank. Aladdin, succes met het restant van je 

promotietraject, Wakanda forever! Heleen, Mathijs, Sharad, Joachim and Francesca, although we 
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never worked together intensively, thanks for all the input on the Monday morning meetings and help 

with histological measurements. 

Ik wil alle studenten die ik heb mogen begeleiden, Metin, Daphne, Marjoke en Maaike 

bedanken voor het werk dat ze hebben verzet. Ik wens jullie allemaal succes in jullie verdere carrières. 

Fanny merci beaucoup et tout de succès dans ta carrière en science. 

 

Ik wil ook de mensen waarmee ik samengewerkt heb buiten de afdeling hartelijk danken voor de 

samenwerking. Ferdows, nadat we samen ons oudste coschap hebben doorlopen in het Maasstad 

Ziekenhuis, was het volgens mij een COEUR cursus over sex/gender in cardiovasculaire aandoeningen 

waar je me aansprak. Je had wel interesse in mijn model vanwege je eigen onderzoeksproject naar 

Von-Willebrand factor. Samen met mijn promotoren en jouw promotor prof.dr. Leebeek zijn we aan 

een leuk project begonnen, wat geresulteerd heeft in een mooi manuscript welke nu ter revisie ligt 

bij een mooi tijdschrift. Bedankt voor je inzet en de samenwerking. Laten we in de toekomst vaker 

samenwerkingen tussen onze afdelingen faciliteren. Isabel, we hebben een aantal keer succesvol 

mogen samenwerken aan een aantal mooie manuscripten. Door jullie expertise van de nieren en onze 

expertise van het hart konden we elkaars manuscripten completer maken. Bedankt voor alle uren die 

je in de extra analyses heb gestoken en succes met het afronden van je eigen PhD. 

 Ik wil alle mede-onderzoekers van het RECONNECT consortium heel erg bedanken. De 

meetings hebben ons project verder geholpen en het mogelijk gemaakt om nieuwe analyses te 

exploreren. Daarnaast hebben we met de ‘young talents’ altijd goed contact onderhouden en leuke 

avonden meegemaakt op de summerschools. Ik wens iedereen succes met zijn projecten en hoop dat 

ik nog vaker met jullie kan samenwerken.  

Ik wil alle medewerkers van het EDC bedanken voor de goede zorgen en alle ondersteuning 

bij de praktische zaken, zonder jullie is het niet mogelijk om zulk onderzoek uit te voeren.  

Jelmer bedankt dat je me begeleid hebt tijdens mijn Masteronderzoek en dat je me de vraag 

stelde wat ik in de toekomst wilde doen. Door mijn antwoord en jouw inzet daarna ben ik mede 

terecht gekomen bij deze promotieplek. Ik hoop in de toekomst met samen je te mogen werken in de 

kliniek.  

 

Valentijn en Jaap, jullie hebben een belangrijke rol gespeeld tijdens mijn studie en mijn 

promotietraject. Ondanks de afstand zagen we elkaar nog regelmatig in Den Bosch, Nijmegen, Breda 

of Rotterdam. We kwamen graag bij elkaar op bezoek voor een gezellig avondje. Ook konden jullie 

het goed vinden met mijn vrienden uit Rotterdam en gingen jullie mee op reisjes zoals Marokko, 

Berlijn en MELT. We hebben geweldige momenten meegemaakt met zijn allen en ik hoop dat we in 
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de toekomst elkaar nog vaak zo zullen zien. Bedankt voor alle interesse in mijn promotieonderzoek 

en bedankt voor alle keren dat jullie me afleiding konden geven. 

Christophe, vanaf het moment dat we elkaar hebben leren kennen op de afdeling nefrologie 

in het Maasstad ziekenhuis, konden we al goed met elkaar opschieten. Of we elkaar nou zien om hard 

te lopen, voor een kleine Limoncello of een Valpolicella, het is altijd gezellig. Daarnaast hebben jouw 

ervaringen als onderzoeker bij de elektrofysiologie mij geholpen met mijn eigen onderzoek. Laten we 

hopen dat we nog vaker kunnen samenwerken, zowel klinisch als wetenschappelijk. 

Juul, je hebt vorig jaar een bewogen jaar achter de rug maar je houdt goede moed en een 

positieve instelling. Je bent een van de vaste gasten bij ons in Rotterdam en je bent altijd in voor een 

spontaan uitje. Ik hoop dat we nog lang zo goed bevriend mogen blijven. 

 

Promovendi es muy rica! Daan en Yaar, vanaf Geneeskunde jaar 2 zijn we intensiever met elkaar om 

gegaan. Onze wegen hebben zich tijdens verschillende momenten in de studie mogen kruisen; 

keuzeonderwijs, minor en coschappen. We hebben veel tijd doorgebracht met zijn drieën en kunnen 

nu altijd nog bij elkaar terecht. Alle drie hebben we ons mogen ontwikkelen tot dokters met eigen 

interessegebieden. Nu zijn we allemaal net begonnen of bijna klaar met onze promotieonderzoek. 

Jullie hebben het echter al geschopt tot cardioloog en cardiothoracaal chirurg in opleiding, waarvoor 

al mijn lof. Daan, bedankt voor de goede vriendschap die we hebben opgebouwd, we hebben super 

gave dingen samen gedaan en een aantal jaar met heel veel plezier samen op de Hondius gewoond. 

Ik hoop dat we nog veel mooie momenten met elkaar mee mogen maken met zijn drieën zoals in 

Costa Rica en dat deze vriendschap nog lang bestaat. 

 

Lieve (oud)bewoners van de Hondius, RJ, Thomas, Paul, en Pieter bedankt voor de leuke tijden die ik 

heb gehad met jullie. Ons huis stond altijd open voor iedereen en we hebben vaak leuke dingen mogen 

organiseren in ons huis. Bedankt voor alle interesse die jullie getoond hebben in mijn onderzoek en 

de nodige afleiding zodra ik thuis kwam. 

 

David, Louis, Marco, Floris en Sjoerd, bedankt voor alle mooie jaren vriendschap die tijdens de studie 

is begonnen en nu nog steeds zo sterk is. Van reisjes naar Berlijn, vrijgezellenfeestje tot het 

traditionele kerstdiner met alle aanhang, alles is met jullie continu gezellig en lachen. Ik wens jullie 

allemaal succes met jullie eigen toekomstplannen en hoop dat we elkaar nog vaak zullen zien.  
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geneeskunde studiejaren boven mij, werd ik geadopteerd in 2016. We hebben geweldige reizen en 

feesten samen mogen meemaken en ik kijk alweer uit naar de volgende uitjes. 

 

H17, beste mannen, er is niks fijner dan op dinsdagavond en zondag met jullie op het veld te staan, 

hoe druk de weken soms ook waren. Ondanks dat we soms de sterren van de hemel spelen en soms 

niet, het is altijd lachen en goede afleiding waarvoor dank. Hopelijk kunnen wel snel weer TD-en met 

z’n alle. Beste West boys, bedankt voor alle gezellige West-borrels, spelletjes avonden, uitjes naar 

Hung Kee en Chinese Fire Drills.  

 

Bossche vrienden + Bobby; Rik, Danny, Maarten, Nelis, Nick, Paul, Ramon, Rick en Stijn en natuurlijk 

aanhang, jammer dat ik niet onze echte groepsnaam kan afdrukken in dit dankwoord, maar het leek 

me beter van niet. De afstand en drukke levens van iedereen maakt het soms lastiger om elkaar 

regelmatig te zien. Gelukkig zijn er nog een paar tradities die we trouw in standhouden. Ik hoop dat 

we deze nog jaren aanhouden en dat we nog mooie herinneringen met elkaar mogen maken. 

 

Ellen, ik wil je heel graag bedanken voor de tijd en moeite die je hebt gestoken in de afbeeldingen 

voor de omslag van mijn thesis. Je hebt zowel mijn ideeën/wensen als je eigen creativiteit 

samengevoegd tot een prachtig eindresultaat! 

 

Lieve Floor, ondanks je angst voor bloed en slangetjes, heb je altijd een oprechte en uitgebreide 

interesse getoond in mijn bezigheden in het ziekenhuis. Jij, als echte organisator en sociaal mens, 

komt helemaal tot je recht in je huidige baan. Ik kan nog zoveel van leren van deze sociale, 

communicatieve en organisatorische vaardigheden die jij bezit. Ik ben trots op wat je allemaal al 

bereikt hebt! Blijf zo doorgaan en ik wens je een mooi leven samen met Bram. 

 

Lieve mam en pap, jullie zijn zonder meer mijn grootste drijfveren. Met veel respect heb ik altijd naar 

jullie carrières gekeken, niet alleen op professioneel vlak maar ook persoonlijk. Jullie hebben allebei 

altijd heel hard gewerkt om te komen waar jullie nu zijn en dat zal ik altijd meenemen. Jullie hebben 

mij altijd gesteund in mijn keuze om Geneeskunde te gaan doen, zelfs al zou dat een uitstapje naar 

een ander land inhouden. Door jullie ben ik nooit gestopt om mijn droom na te jagen om arts te 

worden. Wie had ooit gedacht dat daarnaast nu ook de academische titel van doctor bijkomt. Bedankt 

voor alle steun en vertrouwen die jullie in mij hebben gehad. 
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Lieve Ren, je hebt mij gesteund vanaf het moment dat ik het voor het eerst met je over dit 

promotieonderzoek heb gehad. Tijdens de afgelopen 4 jaar zijn onze levens flink veranderd. Zo ben jij 

van Nijmegen naar Rotterdam verhuisd om te kunnen samenwonen en nu zijn we zelfs sinds afgelopen 

september samen huiseigenaar. Laten we samen hier verder ons leven opbouwen en zien wat de 

toekomst ons brengt. Jij hebt ook de keuze gemaakt om promotieonderzoek te gaan doen en ik weet 

zeker dat het de beste keuze is. Je gaat het zonder twijfel goed doen en ook succesvol afronden met 

een mooi proefschrift. Bedankt voor hoe fijn we het hebben en al het plezier dat we hebben. Bedankt 

voor al de steun en alle mooie momenten van afgelopen jaren en bovenal bedankt voor alle keren dat 

je me zei vakantie of rust te nemen. Laten we nog jaren zoveel plezier met elkaar hebben. Ik hou van 

je.  
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