P2P Media Streaming with HTMLS and WebRTC

Jukka K. Nurminen, Antony J. R. Meyn, Eetu Jalonen, Yrjo Raivio and Rail Garcia Marrero
Department of Computer Science and Engineering, Aalto University, Finland
Email: jukka.k.nurminen@aalto.fi, ajrmeyn@gmail.com, eetu.jalonen@aalto.fi, yrjo.raivio@gmail.com, serulo@ gmail.com

Abstract—Video-on-demand (VoD) services, such as YouTube,
generate most of the Internet traffic today, and the popularity
of video services is growing. Service and CDN providers have
to invest more and more in distribution networks, which cre-
ates pressure to innovate novel approaches. Peer-to-peer (P2P)
streaming is a viable alternative that is scalable and can meet the
increasing demand. The emerging HTMLS standard introduces
APIs that give web browsers an ability to communicate directly
with each other in real time. New standards also enable a setup,
where browsers can act as P2P nodes. This paper reviews whether
the new HTMLS5 and WebRTC standards are a fit for P2P video
streaming, evaluates the performance challenges and proposes
solutions. Preliminary analysis indicates that HTML5 can be
applied to VoD, but there are concerns.

I. INTRODUCTION

The interest towards HTMLS is strongly increasing. Be-
sides new visualization possibilities HTMLS brings a number
of new opportunities to run increasingly sophisticated web
applications with novel features such as parallel processing,
data storage and real-time communication (RTC), without
any additional add-ons or plug-ins. These features are avail-
able through APIs, which browser applications can call from
JavaScript. It is rather clear that simple standalone applications
can be implemented with HTMLS, but the situation is more
challenging when we start to analyze diverse applications with
high computation and communication needs.

The main use case we study is video-on-demand (VoD) us-
ing peer-to-peer (P2P) approach. Unlike a video conferencing
use case, the P2P VoD is a good example of a communication
intensive application that requires complex local operations
to download and upload streaming content, to manage the
download schedule, and to play the content. Similar operations
are typical of many distributed applications and therefore the
experiences gained have a wider applicability beyond the video
streaming use case.

However, implementing P2P streaming with HTMLS has
still challenges. Firstly, the standards are under preparation,
and therefore browser implementations have issues with sup-
ported functions, stability and interoperability. Secondly, video
streaming sets substantial requirements on CPU performance
and bandwidth consumption. In mobile space these issues are
even more critical. This research proposes an experimental
system for P2P VoD service applying several new HTMLS5
APIs that have recently been standardized.

II. BACKGROUND

There are various ways to implement streaming with P2P
technologies. In this work we focus on how to apply BitTorrent
and HTMLS for P2P streaming [1]. However, regular BitTor-
rent is focused on the P2P file sharing rather than the VoD

streaming [2]. For that reason a few modifications are required
to guarantee the order and timeliness of video pieces and
furthermore, to ensure an uninterrupted viewing experience.
BitTorrent functionality can be added to web browsers via
a few different methods. Plug-ins and in-application web-
servers are already available, but our proposed JavaScript based
P2P/BitTorrent client is still to be realized. Having a platform
independent P2P client, running on PCs and mobile devices
and dealing with the issues related with the differing platforms
is the goal.

HTMLS Web Real Time Communication (WebRTC) stan-
dard plays a key role in browser-to-browser communica-
tion. The WebRTC standard enables real-time communica-
tion and also introduces UDP based communication to web
browsers to complement the normally used TCP communi-
cation with HTTP. The standard enables three modes and
APIs for browser-to-browser communication: Peer Connection
API offers connection establishment, Media Stream API video
streaming functions and Data Channel API arbitrary data
sharing operations [3].

III. IMPLEMENTATION

The design mirrors the BitTorrent architecture and the
same entities Tracker, Seeder and Peers - are used. Figure 1
illustrates the functionality. Initially a Peer creates a torrent file
containing the metadata of the video, hashes of each piece of
the video, and uploads the torrent file to the Tracker (1). The
actual video is uploaded to the Seeder (2). When another Peer
requests the same video, the Peer first obtains the respective
tracker file and starts downloading the video pieces from the
Seeder or the original Peer or both (3). Eventually, as the video
becomes popular, missing pieces are shared by Peers, which
decreases the load on the original Peer and Seeder. Periodic
access to the Tracker for requesting the latest Peer information
is needed (4).

< -
et

@ f

Network Architecture for the P2P VoD service.

Video metadata

—\/ideo content

2—7 g
@

1/
~—
0

Fig. 1.



The video publishing process begins when a user starts
a web application and selects a video to share. This phase
involves the creation of the meta-data of the video file for the
Tracker, and moving the file to a location accessible to the web
application. Part of the meta-data creation is the generation
of cryptographic MD5 hash values. The HTMLS5 File API is
initially used to store the video file to be distributed, and once
that process is complete, the file is moved to permanent storage
using the IndexedDB API. Finally, once the file hashes have
been generated, the newly created torrent file and the data file
are sent to a Seeder for wider distribution.

When a user requests a video, the meta-data of the video
file (torrent file) is downloaded to the user’s browser along
with a list of Peers who currently have the video available.
Then the web application starts downloading the pieces of
the video file from the Peers using the Data Channel API.
When enough pieces for the beginning of the video have
been downloaded and their MD5 checksum values have been
successfully verified, the playback will start using HTMLS’s
Video element. Offline Application Caching API can be used to
load and execute a copy of the HTMLS5 JavaScript code stored
on the client, even when the web browser is not connected to
the Internet. This API allows playing the stored videos also
when no connection to Internet is available.

IV. FEASIBILITY ANALYSIS

During the experiment and writing phases of the original
paper, no Data Channel API implementation was available
on the mainstream browsers to do testing on (Firefox Aurora
releases since November 2012 have had support for WebRTC
Data Channel API). Instead, the focus was on the then mea-
surable parts of the project, in particular, the performance of
MD?5 on Javascript and how much load the video conferencing
solution based on WebRTC generated. The calculation of MD5
hashes is computationally intensive, and using too much CPU
consumption on this operation can adversely affect the speed
of getting content to play and to the power consumption of the
system, especially on mobile devices.

The options for improving hashing algorithm performance
in browsers include providing a standardized, open API for the
more popular hash functions that can be called by web pages.
The others are trying to improve the overall performance
of Javascript in browsers and lastly trying to improve the
Javascript implementations of the hashing functions them-
selves. The site jsPerf [4] provides comparisons between
different browser versions and implementations of the MD5
algorithm, and the tests there indicate that there can be over
tenfold performance differences between different browser
versions.

There are other considerations as well, such as network and
file system performance, but the standard deviation of those is
usually much smaller then compared to the more processor
intensive operations such as file hashing. The video decoding
and encoding processes evaluated with the WebRTC video
conference experiment indicated that handling two streams,
incoming and outgoing, is manageable with current desktop
and near-future mobile devices. Increasing the load further
with additional conference peers will severely degrade the
frame rate of the incoming streams and will ultimately result

in an unusable user experience. Hardware support for the more
widely used codecs (H.264, WebM and OGG) can alleviate the
situation somewhat. The assumption we can make from this
is that a VoD type service implemented with HTMLS, with
a single incoming video stream from multiple sources, should
not be an insurmountable task for even current mobile devices,
at least, in regard to video decoding performance.

V. CONCLUSIONS

HTMLS can be used to perform P2P video streaming
between browsers without any additional plug-ins. However,
some limitations exist. Part of the challenges arise from limita-
tions in current browser implementations, part of performance
issues. The resources available through browsers are much
more limited than for native applications. Further study would
be needed to understand how much these limitations are fun-
damental in the browser technology or simply initial problems
of premature implementations. The work does not end by
implementing a P2P based solution for media streaming, but
performance measurements over various platforms, including
mobile devices, must be carried through. Mobile devices offer
limited CPU and bandwidth capacity, and thus streaming
applications must be well optimized for the scarce resources.

As we do not have a clear understanding of the load distri-
bution between the different elements with an HTMLS based
VoD service, the next step is to implement a working P2P
VoD client on the latest Firefox versions, find out the relative
importance of each part and locate the largest bottlenecks. The
performance of the Data Channel API, file hashing and video
decoding on the target browser are the main focus areas. The
proposed P2P VoD design and implementation only works over
a homogenous P2P network where all participants are using the
HTMLS5 based solution, but for the end user it would be useful
to get access to existing P2P networks such as BitTorrent.
Allowing access to the vast number of existing content sharing
and video streaming solutions is another avenue for future
work.

ACKNOWLEDGMENT
The work is supported by Tekes (the Finnish
Funding Agency for Technology and Innovation,

www.tekes.fi) as a part of the Cloud Software Program
(www.cloudsoftwareprogram.org) of Tivit (Strategic Centre
for Science, Technology and Innovation in the Field of ICT,
www.tivit.fi).

REFERENCES

[1] A. Bakker, R. Petrocco, M. Dale, G. J., G. V., R. D., and P. J., “Online
Video Using BitTorrent and HTML5 Applied to Wikipedia,” in Peer-to-
Peer Computing (P2P), 2010 IEEE Tenth International Conference on,
Aug. 2010, pp. 1-2.

[2] J. Mol, A. Bakker, J. Pouwelse, D. Epema, and H. Sips, “The Design
and Deployment of a BitTorrent Live Video Streaming Solution,” in
Multimedia, 2009. ISM °09. 11th IEEE International Symposium on, Dec.
2009, pp. 342-349.

[3] S. Loreto and S. Romano, “Real-time communications in the web: Issues,
achievements, and ongoing standardization efforts,” Internet Computing,
IEEE, vol. 16, no. 5, pp. 68-73, Sept.-Oct. 2012.

[4] M. Bynens, “jsPerf — MDS5 Shootout Revision 14,” October 2012.
[Online]. Available: http://jsperf.com/md5-shootout/14



