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ABSTRACT: The mathematical aspects of diffusion tensor magnetic resonance imaging
(DTMRI, or DTI), the measurement of the diffusion tensor by magnetic resonance imaging
(MRI), are discussed in this three-part series. Part III begins with a comparison of different
ways to calculate the tensor from diffusion-weighted imaging data. Next, the effects of noise
on signal intensities and diffusion tensor measurements are discussed. In MRI signal
intensities as well as DTI parameters, noise can introduce a bias (systematic deviation) as
well as scatter (random deviation) in the data. Propagation-of-error formulas are explained
with examples. Step-by-step procedures for simulating diffusion tensor measurements are
presented. Finally, methods for selecting the optimal b factor and number of b � 0 images
for measuring several properties of the diffusion tensor, including the trace (or mean
diffusivity) and anisotropy, are presented. © 2006 Wiley Periodicals, Inc. Concepts Magn

Reson Part A 28A: 155–179, 2006
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INTRODUCTION

This three-part series discusses the mathematical as-
pects of diffusion tensor magnetic resonance imaging
(DTMRI, or DTI). Part I explained a few concepts

about diffusion and its measurement with magnetic
resonance imaging (MRI). Vectors and tensors were
introduced in both two dimensions (2D) and three
dimensions (3D), and their rotations were discussed.
Rotationally invariant properties of the tensor were
described. The calculation of eigenvectors and eigen-
values from the tensor was explained. A list of errors
in DTI-related publications was included as an appen-
dix. Part II began with a discussion of different ways
to evaluate the degree of anisotropy of a tensor, which
is commonly expressed as a diffusion anisotropy in-
dex (DAI). Calculation of the diffusion-weighting b
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factor was explained next. The last section explored
different gradient sampling schemes for diffusion-
weighted imaging (DWI) and DTI.

Part III of this series explains how the tensor is
calculated from DWI data in six or more directions,
including weighted and unweighted linear and nonlinear
least-squares fits. Noise in MRI images, and how noise
in the raw data propagates into the tensor and parameters
derived from the tensor, are discussed next. An expla-
nation of Monte Carlo computer simulations of DTI
measurements is provided. These simulations are impor-
tant for confirming propagation-of-error predictions and
for understanding the bias in DTI parameters that is not
predicted by standard propagation-of-error formulas. Fi-
nally, an explanation of how to optimize DTI data ac-
quisition is based on the information from noise propa-
gation and computer simulations.

CALCULATING THE DIFFUSION TENSOR
FROM DWI DATA

The purpose of this section is to explain and compare
published methods of calculating the diffusion tensor
from DWI data.

Vector Representations of the Tensor, the
Gradient Encoding Directions, and
the b Matrix

The diffusion tensor can be calculated from DWI data
collected with diffusion-sensitizing gradients in six or
more directions. For notational convenience, the fol-
lowing formulas assume that there are N total mea-
surements, M with b � 0 and N – M with b � 0.

One approach (1) is to represent the six distinct
tensor elements and the logarithm of the b � 0 signal
intensity as a seven-element column vector �:

� � �Dxx, Dyy, Dzz, Dxy, Dxz, Dyz, ln�S0��
T [1]

where S0 is the signal intensity with b � 0. Each
individual b matrix is represented by a six-element
row vector bi

bi � �bxxi, byyi, bzzi, 2bxyi, 2bxzi, 2byzi� [2]

which is part of a seven-element row vector Bi:

Bi � ��bxxi, �byyi, �bzzi, �2bxyi, �2bxzi, �2byzi, 1�

[3]

These row vectors are combined into one large N 	 7
B matrix:

B

� ��bxx1 �byy1 �bzz1 �2bxy1 �2bxz1 �2byz1 1
···

···
···

···
···

···
···

�bxxN �byyN �bzzN �2bxyN �2bxzN �2byzN 1
�

[4]

In the absence of noise, the logarithms of the pre-
dicted signal intensities are given by an N 	 1 column
vector 
:


i � Bi� � ln�Si� � ln�S0� � bi:D [5]


i � �bxxiDxx � byyiDyy � bzziDzz � 2bxyiDxy

� 2bxziDxz � 2byziDyz � ln�S0� [6]


 � B� � � �bxx1Dxx � byy1Dyy � bzz1Dzz � 2bxy1Dxy � 2bxz1Dxz � 2byz1Dyz � ln(S0)···
�bxxNDxx � byyNDyy � bzzNDzz � 2bxyNDxy � 2bxzNDxz � 2byzNDyz � ln(S0)

� [7]

The B matrix has a row for each measurement, both
b � 0 and b � 0, and the � vector contains an element
for each measurement. The noisy observed data are
represented as an N 	 1 column vector x:

x � �
ln(S1)
ln(S2)···
ln(SN)

� [8]

The noisy data for each acquisition can then be ex-
pressed as

x � B� � � � 
 � � [9]

where � is a noise vector.
Another approach (2–4 ) is to represent the tensor

as a six-element column vector, d:
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d � �Dxx, Dyy, Dzz, Dxy, Dxz, Dyz�
T [10]

Each individual encoding matrix is represented as a
six-element row matrix, Hi, which is derived from the
normalized gradient components gxi, gyi, and gzi.

Hi � �gxi
2 , gyi

2 , gzi
2 , 2gxigyi, 2gxigzi, 2gyigzi� [11]

The Hi vectors can then be combined into one large
M 	 6 matrix, H.

H � �H1
TH2

T· · ·HM
T �T [12]

H � �
gx1

2 gy1
2 gz1

2 2gx1gy1 2gx1gz1 2gy1gz1

gx2
2 gy2

2 gz2
2 2gx2gy2 2gx2gz2 2gy2gz2···

···
···

···
···

···
gxM

2 gyM
2 gzM

2 2gxMgyM 2gxMgzM 2gyMgzM

�
[13]

This time the observed data are expressed as the
individual measured apparent diffusion coefficients
(ADCs) instead of the logarithms of the individual
signal intensities:

Yi � ln�S0/Si�/b [14]

Y � �ln�S0/S1�/b, ln�S0/S2�/b, . . . , ln�S0/SM�/b�T [15]

The noisy data for each acquisition can then be ex-
pressed as

Y � Hd � � [16]

Although these two approaches have some similarities
(cf. Eq. [1] with Eq. [10], Eq. [3] with Eq. [11], Eq. [4]
with Eq. [13], and Eq. [9] with Eq. [16]), there are
noteworthy differences. In the second approach (Eqs.
[10–16]), all the b � 0 images must be averaged to
produce a single value of S0. In the first method (Eqs.
[1–9]), the separate b � 0 acquisitions can be combined,
or they can be treated individually. However, errors in
the tensor elements and derived parameters will be less
if the b � 0 images (and any other repeated data points)
are combined before calculating the tensor.

Four types of solutions to Eqs. [9] and [16] will be
considered here. First, an exact solution exists when there
are only six directions. Second, an unweighted linear least-
squares fit can be calculated (4). Third, a weighted linear
least-squares fit can be calculated (1). Fourth, a nonlinear
least-squares fit can be calculated (5).

Exactly Six Directions with the H Matrix

With exactly six directions, there is an exact analytic
solution to Eq. [16]. The six measured ADCs can be
written as

Di � b� gxi
2 Dxx � gyi

2 Dyy � gzi
2 Dzz � 2gxigyiDxy

� 2gxigziDxz � 2gyigziDyz� [17]

where gxi, gyi, and gzi are the normalized gradient com-
ponents. These six equations in six unknowns can be
solved by standard methods, such as Cramer’s rule (6).
Because it is impossible to distinguish � from d, � � 0
in Eq. [16], and d can be determined by multiplying both
sides of Eq. [16] by the inverse of H, H�1:

�H�1H�d � d � H�1Y [18]

For the gradient scheme in Table II-6, the measured
ADCs are given by

D1 � �Dxx � 2uDxy � u2Dyy�/�1 � u2� [19]

D2 � �Dxx � 2uDxy � u2Dyy�/�1 � u2� [20]

D3 � �Dyy � 2uDyz � u2Dzz�/�1 � u2� [21]

D4 � �Dyy � 2uDyz � u2Dzz�/�1 � u2� [22]

D5 � �Dzz � 2uDxz � u2Dxx�/�1 � u2� [23]

D6 � �Dzz � 2uDxz � u2Dxx�/�1 � u2� [24]

Dav � �D1 � D2 � D3 � D4 � D5 � D6�/6

� �Dxx � Dyy � Dzz�/3 [25]

Equation [25] is an explicit demonstration of the ability
to calculate Dav directly from encoding schemes 6p and
6v without calculating the tensor elements (see part II).
The tensor elements can be computed as

h�u� � �1 � u2�/�2�1 � u6�� [26]

h�1� �
1
2

[27]

Dxx � h�D1 � D2 � u2�D3 � D4� � u4�D5 � D6��

[28]

Dyy � h�D3 � D4 � u2�D5 � D6� � u4�D1 � D2��

[29]
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Dzz � h�D5 � D6 � u2�D1 � D2� � u4�D3 � D4��

[30]

Dxy � �D1 � D2��1 � u2�/4u [31]

Dxz � �D3 � D4��1 � u2�/4u [32]

Dyz � �D5 � D6��1 � u2�/4u [33]

After the tensor elements have been calculated, the
eigenvalues, DAIs, and eigenvectors can be calculated
as described in parts I and II.

When data are collected in each gradient direction
and in each negative direction, cross-terms can be
eliminated by taking the geometric mean of the signal
intensities of each �/� pair, or the arithmetic mean of
their calculated ADCs, before the tensor is calculated
(Eq. [II-141]). If the arithmetic mean is used instead
of the geometric mean, or the individual data sets are
all treated equally in calculating the tensor elements,
the cross-terms theoretically are not completely elim-

inated, but the residual error is likely to be much less
than the original errors, and much less than the noise.

Unweighted Linear Least-Squares Fit with
the H Matrix

With more than six gradient directions, the H matrix
is not a square matrix, so there is no true inverse H�1.
However, Eq. [16] can still be solved by calculating a
pseudoinverse H such that

HH � I6	6 [34]

even though H H does not necessarily equal IM 	 M.
One way to do this is to form the matrix product HT

H, which is a square 6 	 6 matrix and therefore has
a true inverse (4 ). From Eq. [9],

HTY � HTHd [35]

�HTH��1HTHd � d � �HTH��1HTY [36]

H � �HTH��1HT [37]

HTH � �
�
i�1

M

gxi
4 �

i�1

M

gxi
2 gyi

2 �
i�1

M

gxi
2 gzi

2 2 �
i�1

M

gxi
3 gyi 2 �

i�1

M

gxi
3 gzi 2 �

i�1

M

gxi
2 gyigzi

�
i�1

M

gyi
2 gxi

2 �
i�1

M

gyi
4 �

i�1

M

gyi
2 gzi

2 2 �
i�1

M

gxigyi
3 2 �

i�1

M

gxigyi
2 gzi 2 �

i�1

M

gyi
3 gzi

�
i�1

M

gxi
2 gzi

2 �
i�1

M

gyi
2 gzi

2 �
i�1

M

gzi
4 2 �

i�1

M

gxigyigzi
2 2 �

i�1

M

gxigzi
3 2 �

i�1

M

gyigzi
3

2 �
i�1

M

gxi
3 gyi 2 �

i�1

M

gxigyi
3 2 �

i�1

M

gxigyigzi
2 4 �

i�1

M

gxi
2 gyi

2 4 �
i�1

M

gxi
2 gyigzi 4 �

i�1

M

gxigyi
2 gzi

2 �
i�1

M

gxi
3 gzi 2 �

i�1

M

gxigyi
2 gzi 2 �

i�1

M

gxigzi
3 4 �

i�1

M

gxi
2 gyigzi 4 �

i�1

M

gxi
2 gzi

2 4 �
i�1

M

gxigyigzi
2

2 �
i�1

M

gxi
2 gyigzi 2 �

i�1

M

gyi
3 gzi 2 �

i�1

M

gyigzi
3 4 �

i�1

M

gxigyi
2 gzi 4 �

i�1

M

gxigyigzi
2 4 �

i�1

M

gyi
2 gzi

2

� [38]

This corresponds to an unweighted linear least-
squares fit of the logarithms of the signal intensi-
ties. The pseudoinverse can also be calculated by
singular value decomposition (SVD), which de-
composes a matrix H into the product of three
matrices (7 ).

H � UWVT [39]

U � M � 6 column-orthogonal [40]

V � 6 � 6 �row- and column-� orthogonal [41]
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W � 6 � 6 diagonal [42]

Since V is orthogonal and U is column orthogonal,

VV T � I6	6 [43]

UTU � I6	6 [44]

Because W is diagonal, the diagonal elements of
W�1 are

�W�1�ij � 1/Wij [45]

Thus, VW�1UT is the pseudoinverse of H, H, be-
cause

VW�1UTH � VW�1UTUWVT � I6	6 [46]

Clearly, the pseudoinverse calculated by these two
methods must be equal, so

�HTH��1HT � VW�1UT � H [47]

Exactly Six Directions with the B Matrix

With exactly six directions, there is an exact solution
to Eq. [9], which can be written as

�B�1B�� � � � B�1x [48]

Because it is impossible to distinguish noise � from
the true tensor �, � in Eq. [9] is set equal to 0. This
solution must be the same as the solution calculated
with the H matrix, so Eqs. [19–33] apply.

Unweighted Linear Least-Squares Fit with
the B Matrix

The pseudoinverse of B, B, can be calculated as it
was for the H matrix, yielding

�B TB��1BTB� � � � �BTB��1BTx [49]

�B TB��1BT � B [50]

The B matrix can also be calculated by SVD. This
corresponds to an unweighted linear least-squares fit
of the logarithms of the signal intensities.

Weighted Linear Least-Squares Fit with
the B Matrix

In the unweighted linear least-squares fits with either
the H matrix or the B matrix, all data points are
treated as if they were equally accurate. This is gen-
erally true for the original signal intensities, so it is
not true for their logarithms. If the signal intensities
have the same variance, then the uncertainty in ln(Si)
is proportional to 1/Si. Thus, the least-squares fit
should give more weight (importance) to the ln(Si) of
high Si values and less weight to ln(Si) of low Si

values. Mathematically, this is accomplished by mod-
ifying Eq. [49] as follows (1):

� � �B T��1B��1�BT��1�x [51]

where ��1 is a diagonal N 	 N matrix whose ele-
ments are Si

2/�i
2:

��1 � diag�Si
2/�i

2� [52]

��1 � �
S1

2

�1
2 0 · · · 0

0
S2

2

�2
2 · · · 0

···
···

· · ·
···

0 0 · · ·
SN

2

�N
2

� [53]

B T��1 � �
�bxx1

S1
2

�1
2 �bxx2

S2
2

�2
2 · · · �bxxN

SN
2

�N
2

�byy1

S1
2

�1
2 �byy2

S2
2

�2
2 · · · �byyN

SN
2

�N
2

�bzz1

S1
2

�1
2 �bzz2

S2
2

�2
2 · · · �bzzN

SN
2

�N
2

�2bxy1

S1
2

�1
2 �bxy2

S2
2

�2
2 · · · �bxyN

SN
2

�N
2

�2bxz1

S1
2

�1
2 �bxz2

S2
2

�2
2 · · · �bxzN

SN
2

�N
2

�2byz1

S1
2

�1
2 �byz2

S2
2

�2
2 · · · �byzN

SN
2

�N
2

S1
2

�1
2

S2
2

�2
2 · · ·

SN
2

�N
2

�
[54]
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B T��1B �





 �

i�1

N

bxxi
2

Si
2

�i
2 �

i�1

N

bxxibyyi

Si
2

�i
2 · · · 2 �

i�1

N

bxxibyzi

Si
2

�i
2 � �

i�1

N

bxxi

Si
2

�i
2

�
i�1

N

byyibxxi

Si
2

�i
2 �

i�1

N

byyi
2

Si
2

�i
2 · · · 2 �

i�1

N

byyibyzi

Si
2

�i
2 � �

i�1

N

byyi

Si
2

�i
2

�
i�1

N

bzzibxxi

Si
2

�i
2 �

i�1

N

bzzibyyi

Si
2

�i
2 · · · 2 �

i�1

N

bzzibyzi

Si
2

�i
2 � �

i�1

N

bzzi

Si
2

�i
2

2 �
i�1

N

bxyibxxi

Si
2

�i
2 2 �

i�1

N

bxyibyyi

Si
2

�i
2 · · · 4 �

i�1

N

bxyibyzi

Si
2

�i
2 �2 �

i�1

N

bxyi

Si
2

�i
2

2 �
i�1

N

bxzibxxi

Si
2

�i
2 2 �

i�1

N

bxzibyyi

Si
2

�i
2 · · · 4 �

i�1

N

bxzibyzi

Si
2

�i
2 �2 �

i�1

N

bxzi

Si
2

�i
2

2 �
i�1

N

byzibxxi

Si
2

�i
2 2 �

i�1

N

byzibyyi

Si
2

�i
2 · · · 4 �

i�1

N

byzi
2

Si
2

�i
2 �2 �

i�1

N

byzi

Si
2

�i
2

� �
i�1

N

bxxi

Si
2

�i
2 � �

i�1

N

byyi

Si
2

�i
2 · · · �2 �

i�1

N

byzi

Si
2

�i
2 � �

i�1

N Si
2

�i
2







[55]

If each original image has the same noise level, then
�i

2 is the same in each original image. However, the
�i

2 in ��1 can be modified to reflect different
amounts of signal averaging for individual directions
or for the b � 0 images. Replacing ��1 with the
identity matrix in Eq. [51] yields the unweighted
linear least-squares fit. The (BT ��1 B) matrix is
called the covariance matrix.

The Si values in Eqs. [53–55] should be the true
(noiseless) values. Because these are not known, the
observed (noisy) Si values usually are used. After a
least-squares fit is calculated, it is possible to repeat
the calculation with the fitted Si values, which should
be closer to the true Si values than the original noisy
Si values were.

Comparison of the H and B Matrix
Approaches

In principle, the B matrix approach has several poten-
tial advantages over the H matrix approach. First, the
B matrix allows the use of two or more different b
factors in addition to b � 0. Second, an estimate of
ln(S0) is produced in the least-squares fit with the B
matrix approach, while ln(S0) from the average b � 0
signal intensities is incorporated into the Y vector in
the H matrix approach. Third, the individual b � 0

images can be fitted separately in the B matrix ap-
proach. Fourth, a weighted linear least-squares fit is
possible with the B matrix approach. Fifth, the B
matrix approach yields the covariance matrix (BT

��1 B). The covariance matrix can be used for prop-
agation-of-error calculations and optimization of DTI
parameters, which are discussed in a future section.

In practice, a single b factor is almost always used
in DTI because of nonmonoexponential signal decay.
Furthermore, an estimate of ln(S0) from the b � 0
images is usually adequate. In addition, it is better to
average the b � 0 images than to fit them individu-
ally. Either approach can usually provide a good start-
ing point for a nonlinear least-squares fit of the signal
intensities. The availability of the weighted linear
least-squares fit and the covariance matrix can be
desirable in some circumstances.

Nonlinear Least-Squares Fit

Even the weighted linear least-squares fit is not ideal
with high noise levels because symmetrically distrib-
uted noise in Si is not symmetrically distributed in
ln(Si). For example, variation of Si by �5 changes
ln(100 � 5) by �0.051 to �0.049 units, whereas
ln(20 � 5) changes by �0.288 to �0.223 units, and
ln(10 � 5) changes by �0.693 to �0.405 units. In the
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linear least-squares fit, if the fitted value is Si � 10,
then Si � 5 and Si � 20 are considered equally good
fits, even though Si � 20 is twice as far from the fitted
value. To correct for this, a linear least-squares fit can
serve as a starting point for a nonlinear least-squares
fit of the signal intensities (8 ). Because the noise level
usually is the same in each original image, the non-
linear fit does not need weighting factors. In contrast
to the analytic linear least-squares solution, the non-
linear least-squares solution requires an iterative nu-
merical approach, usually the Levenberg-Marquardt
algorithm (7 ). Although unweighted linear, weighted
linear, and nonlinear fits have been compared in sev-
eral contexts (5, 9), they do not appear to have been
compared directly in tensor calculations with noisy
data in the absence of outliers. More advanced pro-
cessing methods are required for reproducible results
in the presence of outliers, data points that deviate
significantly from the expected value due to patient
motion or cardiac pulsation (5 ).

Important Points in “Calculating the
Diffusion Tensor from DWI Data”

Estimating the tensor elements from noisy data by a
linear least-squares fit can be calculated with a matrix
approach. The B matrix approach (Eqs. [1–9]) is more
flexible than the H matrix approach (Eqs. [11–16])
and allows a weighted fit to be performed. Nonlinear
least-squares fits require an iterative fit, which takes
more time. With exactly six gradient directions, if
repetitions are averaged before the tensor is calculated
so that there are only six data points to be fitted, all the
fitting methods yield the same result.

NOISE AND SIMULATIONS

The purposes of this section are (1) to describe the
effects of noise on MRI signal intensities when the
signal-to-noise ratio (SNR) is low, (2) to explain basic
propagation-of-error formulas, (3) to show how to
simulate DTI measurements, and (4) to explain that
noise introduces a bias (systematic deviation) into
DTI data in addition to the expected scatter (random
deviation).

Noise

Random noise in raw data produces a scatter in the
raw data so that each individual measurement differs
from the true value by a variable amount. This noise
propagates into errors or uncertainty in parameters
derived from the raw data. In addition to this scatter in

the data, noise in DTI data produces a systematic shift
(bias) in some parameters, including eigenvalues (10–
13), DAIs (13–16), and the standard deviations (SDs)
of DAIs (17).

Another type of bias can be introduced by the use
of magnitude data in MR imaging when the SNR is
low. Because of this bias, the effects of noise in DTI
data cannot be completely described by conventional
propagation-of-error formulas. However, such formu-
las are still useful in certain circumstances.

This section discusses the following topics: 1) the
effects of noise in MR images when SNR is low; 2)
applications of propagation-of-error formulas in DTI;
3) simulating DTI measurements; and 4) the bias in
measured DTI parameters caused by noise. For a
more complete discussion of noise and statistics, the
reader is referred to standard references (6 ).

Definitions of Noise Terms

Noise is the deviation of a measured variable, such as
voltage, from the true value. Noise is considered to
have a mean of zero, that is, there are equal probabil-
ities of negative and positive deviations from the true
value �. In addition, the noise is considered to have a
Gaussian distribution with standard deviation �, so
that the relative probability for making a single ob-
servation xi within an interval dxi is given by (6 )

dPi � exp���1/2���xi � ��/��2�/���2��1/ 2�dxi

[56]

Round-off error occurs when an analog variable, such
as voltage, is digitized. In MRI this error is usually
much smaller than the noise, and is commonly ig-
nored in simulations. Round-off error is considered to
be uniformly distributed with a mean of zero.

Scatter refers to the range of observed values of a
parameter. With a single true value, this scatter can
arise from noise, round-off error, and propagation of
errors from raw data into calculated parameters.
When sample heterogeneity is present, as in a biolog-
ical sample, the heterogeneity also can contribute to
the observed scatter. Scatter is a measure of the pre-
cision of a measurement.

The variance, �2, is the mean square deviation of
observed values from the mean value, �:

�2 �
1

N �
i�1

N

� xi � ��2 [57]

Note that this is the “N variance,” not the “N � 1
variance” that is commonly used in statistical compu-
tations.
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The standard deviation (SD), �, is the square root
of the variance.

The expectation value of S, �S�, is the mean value
that would be observed after an infinite number of
measurements. The notation �S� is also used to indi-
cate the mean value of a repeated measurement or
calculation. In contrast, the mean of a number of
measurements of different S values is indicated by S� .

Bias is a systematic deviation of observed values
from the true value, so that �S� is not equal to the true
value, �. This may be caused by physical factors
(faulty equipment, inaccurate calibration, or incorrect
use of equipment) or by formulas used in data anal-
ysis. Bias decreases the accuracy of a measurement,
and it may also increase or decrease the precision of
the measurement.

Error refers to the difference between an observed
value and the true value, including contributions from
noise, round-off error, and bias.

Uncertainty refers to the reliability of a measure-
ment, and typically is indicated by the SD.

Effects of Noise in MR Images
with Low SNR

The effects of noise in MR images with low SNR has
been the subject of several reports (18–26). MRI
signal intensities are usually measured with quadra-
ture detection, so that two orthogonal signal channels
(Re and Im, for real and imaginary) have independent
noise. (The two quadrature channels are sometimes
called A and D for absorption and dispersion signals.
That notation will not be used here, to avoid confu-
sion with the ADC value, D, and the anisotropy index
A. The references cited here use A for the true signal,
which is called S in the present work.) The magnitude
signal is calculated as (18, 22)

S � �Re2 � Im2�1/ 2 [58]

The effects of noise in magnitude images were dis-
cussed in an early article by S. O. Rice (19, 23, 25,
27), and the resulting data are referred to as the
“Rician distribution” for this reason (19, 25). For an
actual signal amplitude S, the measured noisy signal,
M, is (18, 22)

M � ��Re � �R�2 � �Im � �I�
2�1/ 2 [59]

M � �Re2 � Im2 � 2 Re�R � 2Im�I � �R
2 � �I

2�1/ 2

[60]

The noise is assumed to have the same properties in
the Re and Im channels, so that

��R� � ��I� � ��� [61]

but the noise is independent in each channel. If ��R� is
zero, then the expectation value of M2 (18, 19, 22, 23)
is

�M2� � S2 � 2�2 [62]

The expectation value of M (19, 23) is

�M� � ���/ 2�1/ 2exp��K���1 � 2K�I0�K� � 2KI1�K��

[63]

K � S2/4�2 [64]

where I0 is the zero-order modified Bessel function,
and I1 is the first-order modified Bessel function,

I0�K� � �
n�0

� K2n

n!n!22n � 1 �
K2

1!1!22 �
K4

2!2!24 � · · ·

[65]

I1�K� � �
n�0

� K2n�1

n!�n � 1�!22n�1 �
K

0!1!2
�

K3

1!2!23

�
K5

2!3!25 � · · · [66]

For S � 2�, �M� can be approximated as (22, 23)

�M� � �S2 � �2�1/ 2 � �S � �2/ 2S�, �S � 2��

[67]

Thus, for SNR � 2, the fractional increase in the
measured signal compared to the true signal is ap-
proximately

��M� � S�/S � 1/�2SNR2�, �S � 2�� [68]

When S � 0, the noise distribution is called a Ray-
leigh distribution (19–21, 25). The expectation value
of the background signal and its variance can be
calculated with Eqs. [62] and [63] (20, 25):

�M� � ���/ 2�1/ 2, �S � 0� [69]
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�M
2 � �M2� � �M�2 � �2�2 � �/ 2�, �S � 0�

[70]

Equations [69] and [70] are useful for calculating the
noise in an image from the mean and SD of the
background signal. Equation [67] is useful for esti-
mating the average bias in a signal intensity. Plots of
the actual signal bias (�M� � S )/�, from Eq. [63]), the
bias estimated from Eq. [67] ([(S2 � �2)1/2 � S]/�),
and �M/� are shown as a function of S/� (SNR) in Fig.
1. Henkelman showed a good plot of �M�, S, and �M

as a function of S/� (22). Gudbjartsson and Patz

showed a plot of the M/� distribution for integer S/�,
including the mean values, and compared some for-
mulas that attempt to reduce the bias (25).

Propagation-of-Error Formulas

When noisy data are used for the calculation of other
parameters, the noise in the data propagates into the
other parameters in predictable ways (6 ). The com-
monly used propagation-of-error formulas assume a
first-order linear approximation of a function. As the
noise level increases, this approximation breaks
down. However, it is a good approximation for many
applications and can be extended to higher-order de-
rivatives if necessary.

The noise in a calculated parameter can be esti-
mated from the noise in the original data by standard
propagation-of-error formulas, which are of the form

�2� f� x, y, z�� � �x
2� �f

� x�
2

� �y
2� �f

� y�
2

� �z
2� �f

� z�
2

[71]

Therefore, when one parameter can be expressed as a
function of another parameter, for example f(x), Eq.
[71] shows how the error or uncertainty in x propa-
gates into f(x). This formula works as long as there is
a direct analytic expression relating the two parame-
ters.

The formula does not apply in certain situations.
First, the formula does not apply when there is not an
exact expression relating the two parameters. How-
ever, in this case there may be an approximate func-
tion relating the two parameters near a certain value.
In this case, if the noise level is small enough, Eq.
[71] may provide a reasonably good estimate of the
error propagation near that value, though different f(x)
formulas may be needed at other values. Second, the
formula does not apply when the variance in different
parameters is correlated (covariance is nonzero). The
formula can be modified to include the effect of
covariance (6 ).

The formula must be applied carefully in two-stage
calculations. Consider what happens to f(x, y) if x and
y are functions of s and t, x(s, t) and y(s, t). Propaga-
tion of error from s and t to into f can be calculated
correctly by

�f
2 � �s

2� �f

�s�
2

� �t
2��f

�t�
2

[72]

� �f

�s�
2

� � �f

� x

� x

�s
�

�f

� y

� y

�s�
2

[73]

Figure 1 Noise-induced bias in (a) the signal intensity and
(b) measured SD of a magnitude MRI signal, both expressed
in units of �, the true signal standard deviation (SD) in each
quadrature receiver channel. S is the true signal intensity, M
is the measured signal intensity, and �M is the SD measured
in the magnitude signal. In (a), the exact formula is (�M� �
S )/�, with �M� shown in Eq. [63]. The approximate formula
is (S2 � �2)1/2/� (see Eq. [67]). In (b), the ratio �M/� is
shown. The measured �M is calculated from Eq. [70], using
the expressions in Eqs. [62] and [63].
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� �f

�s�
2

� � �f

� x�
2�� x

�s�
2

� � �f

� y�
2�� y

�s�
2

� 2
�f

� x

� x

�s

�f

� y

� y

�s
[74]

��f

�t�
2

� � �f

� x

� x

�t
�

�f

� y

� y

�t �
2

[75]

��f

�t�
2

� � �f

� x�
2�� x

�t �
2

� � �f

� y�
2�� y

�t �
2

� 2
�f

� x

� x

�t

�f

� y

� y

�t
[76]

The last terms in Eqs. [74] and [76] are covariance
terms and are essential for the correct propagation of
errors from s and t into f. A common mistake (28, 29)
is to attempt to propagate errors from s and t into x
and y, and then separately from x and y into f. Prop-
agation of errors from s and t into x and y yields

�x
2 � �s

2�� x

�s�
2

� �t
2�� x

�t �
2

[77]

�y
2 � �s

2�� y

�s�
2

� �t
2�� y

�t �
2

[78]

Propagation of errors from x and y into f yields

�f
2 � �x

2� �f

� x�
2

� �y
2� �f

� y�
2

[79]

� �s
2� �f

� x�
2�� x

�s�
2

� �t
2� �f

� x�
2�� x

�t �
2

� �s
2� �f

� y�
2�� y

�s�
2

� �t
2� �f

� y�
2�� y

�t �
2

[80]

Notice that Eq. [80] lacks the covariance terms found
in Eqs. [74] and [76] and therefore will generally
produce an incorrect result.

As an example, consider the calculation of Dav

from six measurements with gradient pairs (scheme
6p in Table II-11). The measured ADCs are shown in
Eqs. [19–24] with u � 1, and Dav is calculated in Eq.
[25]. The tensor elements can be calculated as in Eqs.
[28–33] with u � 1 and h � 1⁄2. Propagation of the
errors in Di (�i) to Dav (�av) can be calculated from
Eq. [71] and the first half of Eq. [25]:

�av
2 �

1

6 �
i�1

6

�i
2 [81]

Propagation of the Di errors to Dxx, Dyy, and Dzz can
also be calculated from Eq. [71] and Eqs. [28–30]:

�xx
2 � �yy

2 � �zz
2 �

1

2 �
i�1

6

�i
2 [82]

If �av is calculated from Eq. [71] and the second half
of Eq. [25],

�av
2 �

1

3
3

1

2 �
i�1

6

�i
2 �

1

2 �
i�1

6

�i
2 [83]

Thus, the variance calculated by a two-step propaga-
tion of error (Eq. [83]) is three times the actual vari-
ance (Eq. [81]).

Simulating DTI Measurements

Many individual steps in the processing and analysis
of DTI data can be described by analytic formulas.
However, there is no analytic formula to describe the
entire DTI process in the general case. Therefore,
attempts to optimize DTI data acquisition, and to
understand possible problems, often rely on Monte
Carlo simulations. Another reason to perform simu-
lations is that analytic formulas do not consider the
bias introduced by the Rician distribution with low
SNR, as discussed previously. Ideally, simulations
would always be performed with high SNR to show
the intrinsic properties of a process, and low SNR to
show other features that may appear with the biases
introduced by low SNR. Unfortunately, this combina-
tion of simulations is rarely performed.

In Monte Carlo simulations, theoretical signal in-
tensities (SIs) are calculated, then random Gaussian-
distributed noise is added to each signal intensity.
These noisy SIs are then analyzed as DTI data would
be analyzed. This process is repeated many times, and
the means and standard deviations of the resulting
variables are calculated and compared with the known
noise-free values. Each of the following steps will be
described in detail. Steps 1–3 can be performed in any
order:

1. Selection of a diffusion tensor
2. Selection of a b factor and gradient sampling

scheme
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3. Selection of a signal-to-noise ratio (SNR)
4. Calculation of b:D for each gradient direction
5. Calculation of the theoretical SI for b � 0 and

for each gradient direction
6. Addition of noise to each theoretical SI
7. Calculation of the observed bD or D for each

gradient direction
8. Calculation of the six observed tensor ele-

ments from D measured in six or more non-
collinear directions

9. Calculation of parameters derived from the
tensor, such as the trace (I1 � 3Dav), eigen-
values, eigenvectors, and DAIs

10. Repeat steps 6–9 many times
11. Statistical analysis
12. Repeat steps 1–11 while one or more param-

eters change

1. Selection of a diffusion tensor includes choosing
the eigenvalues and the tensor orientation. It is also
possible to model two or more tensors, each with
different anisotropy and orientation. For each tensor,
a diagonal tensor is formed from the three eigenval-
ues. It is common to model diffusion as cylindrically
symmetric, with eigenvalues D1, D2, and D2, for two
reasons. First, this appears to be a reasonably good
approximation of diffusion in brain white matter. Sec-
ond, there is one less parameter to vary in simulations,
so results can be presented more concisely. However,
in some brain regions the intermediate ADC compo-
nent may have a preferential direction, suggesting that
�2 � �3 even in the absence of noise (30).

Typical values of Dav at 37°C are about 2,400
�m2/s in water and 700–800 �m2/s in human brain,
where sRA can reach levels of 0.7 in the splenium of
the corpus callosum, corresponding to D1 � 1,920
�m2/s and D2 � 240 �m2/s if Dav � 800 �m2/s (31).
Each tensor can be rotated by specific angles about
specific axes, or it can be rotated so that the eigen-
vectors are in desired directions, as described in the
tensor rotation section in part I.

2. Selection of a b factor and gradient sampling
scheme. Calculation of an ADC requires measure-
ments with at least two b factors. Usually one b factor
is chosen as b � 0 in simulations, though in practice
the imaging gradients usually provide a b factor
around 1–5 s/mm2. The second b factor is typically set
to about 1,000 s/mm2, but this is one of the parameters
that is commonly varied in simulations, and values up
to 3,000 s/mm2 or even higher may be compared. Two
or more high b factors were sometimes used in early
DTI work, and this required a least-squares fit to
calculate the ADC in each direction, or else a more
complicated least-squares fit of the tensor elements

including data with different b factors and different
gradient directions. It is now generally accepted that a
single b factor provides optimum results for a single
ADC, so most applications and simulations use a
single b factor. Because biexponential signal decay
has been observed in normal brain tissue (32–41), no
single ADC fully characterizes diffusion in each di-
rection. The use of a single nonzero b factor in vivo
provides an “effective ADC” for that b factor, whereas
the use of two or more b factors would be complicated
by combining data with two or more effective ADCs
into a single tensor. With anisotropic diffusion, the
use of two or more b factors may be better than a
single b factor (42), but this would introduce the
complication of different effective ADCs with biex-
ponential signal decay.

Different gradient sampling schemes are often
compared in simulations. Each gradient can be repre-
sented by a b factor and three directional cosines gx,
gy, and gz, with gx

2 � gy
2 � gz

2 � 1. The six unique
elements of the b matrix can then be calculated from
the gradients with the proportionality factor b (Eqs.
[II-134] and [II-135]). Although the imaging gradi-
ents and background gradients usually are ignored in
simulations, they can be included when the b matrix is
calculated, as described in the “Measuring Apparent
Diffusion Coefficients” section of part II.

3. Selection of a signal-to-noise ratio (SNR). The
SNR of a DTI simulation usually refers to the SNR of
the b � 0 data. Data with b � 0 would have lower
SNR, depending on the value of b:D. Typical SNR for
a single DTI acquisition is about 15:1 to 30:1. This
can be increased by signal averaging. With low SNR
and high b factors, the SNR in individual images can
easily approach 3:1 or even lower. In this case it is
important to consider the Rician statistics bias (see
“Effects of Noise in MR Images with Low SNR” in a
previous section). Because low SNR can introduce
artifacts into the data, it may be useful to include
simulations with high SNR (50:1 or higher) to reveal
intrinsic properties and trends, as well as lower SNR
to reveal systematic deviations that may occur in
actual applications.

4. Calculation of b:D for each gradient direction
for each tensor requires forming the inner product
between the tensor and each b matrix (Eq. [II-130]).
Tensor selection was described in step 1. The b ma-
trices were selected in step 2.

5. Calculation of the theoretical SI for b � 0 and
for each gradient direction requires calculation of Eq.
[II-131] for each b:D product in step 4. Biexponential
relaxation requires the use of an equation like
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S � S0� f exp��b:D1� � �1 � f �exp��b:D2��

[84]

where

0 � f � 1 [85]

6. Addition of noise to each theoretical SI. Gener-
ation of random numbers with a mean of zero and a
Gaussian distribution with standard deviation � is
possible with common software packages, including
Excel, IDL�, and Matlab�. Because MRI signals are
calculated as the magnitude signal from two quadra-
ture channels (Eq. [58]), it is standard practice to add
noise with � � S0(b � 0)/SNR to each channel. The
signal can be entirely in one channel, or it can be
divided between the two channels as long as Eq. [58]
is satisfied. The resulting noisy signal intensity is
given in Eqs. [59] and [60]. The �R

2 and �I
2 terms

produce a slight positive bias in the calculated SI, as
explained in the section, “Effects of Noise in MR
Images with Low SNR” (Eqs. [62] and [67]). The data
can be left in floating-point format or they can be
rounded off to the nearest integer to simulate round-
off errors.

7. Calculation of the observed bD and D for each
gradient direction is performed with Eq. [II-102],
which is reproduced here in a slightly different form:

bD � �ln�M/M�b � 0�� � �ln�M�b � 0�� � ln�M�

[86]

where M is the noisy signal intensity. Division by b
then yields D, the effective ADC in this direction. For
two tensors this equation must be modified to

bDeff,n � �ln�M/M�b � 0�� � ln� f exp��b:D1�

� �1 � f �exp��b:D2�� [87]

where Deff,n is the effective ADC in the n-th direction,
defined as �ln[M/M(b�0)]/b.

8. Calculation of the six observed tensor elements
from D measured in six or more noncollinear direc-
tions can be performed analytically for six directions
and requires a fitting procedure for more than six
directions. This was discussed in the previous section
titled “Calculating the Diffusion Tensor from DWI
Data.” For two tensors, the 12 tensor elements are
calculated from D measured in 12 or more directions,
or in six or more directions with two or more b
factors.

9. Calculation of parameters derived from the ten-
sor, such as the trace (I1 � 3Dav), eigenvalues, eig-
envectors, and DAIs. Several parameters can be de-
rived from the tensor, including the trace or Dav (see
Tables I-1 through I-4), eigenvalues and eigenvectors
(“Calculation of Eigenvalues and Eigenvectors” in
part I), and DAIs (“Diffusion Anisotropy Indices” in
part II, and Tables II-1 through II-4). With certain
gradient sampling schemes, the trace and certain
DAIs can be calculated directly from the diffusion
measurements without calculating the tensor elements
(“Selecting Gradient Directions” in part II, especially
Table II-15).

10. Repeat steps 6–9 many times. Steps 6–9 usu-
ally are repeated at least 1,000 times, and often 10,000
to 50,000 times. More repetitions are needed with low
SNRs so that the effects of noise will be averaged out,
and the observed mean values will be close to the
expectation values (the values that would be observed
with infinite repetitions). For example, if a parameter
has an expectation value 10 and SD � 1, then single
observations will have a mean of 10 and SD of 1. If
100 repetitions are averaged, then the SD of the av-
erage decreases to 1/(100)1/2 � 0.1, and if 10,000
repetitions are averaged, the SD of the average de-
creases to 1/(10,000)1/2 � 0.01.

11. Statistical analysis may include calculation of
the mean, SD, and bias (deviation of the expectation
value from the true value) of many parameters, in-
cluding the noisy SI (step 6), ADC in each direction
(step 7), tensor elements (step 8), and parameters
calculated from the tensor (step 9).

12. Repeat steps 1–11 while one or more param-
eters change. The entire simulation process usually is
repeated, with one or more parameters varying in
discrete steps. The variable could be tensor eigenval-
ues (Dav and anisotropy) or eigenvectors (orientation),
SNR, or the gradient magnitude (b) or sampling
scheme (the number of directions, M, or their orien-
tations, or both, and the number of repetitions with
b � 0).

Effects of Noise on DTI Data

Noise in the MRI signal intensities (SIs) causes scatter
in parameters derived from the tensor, including the
mean ADC (or trace), DAIs, eigenvalues, and eigen-
vectors (10, 13, 14 ). In addition to the increased
scatter, simulations have shown that noise also in-
duces a bias (systematic error) in DAIs (13-16) and
eigenvalues (10–13). There has been an elegant ex-
planation, based on perturbation theory, about why
the eigenvalues and DAIs should be biased (11). The
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explanations provided here are more intuitive and less
formal.

It is easy to understand how noise causes apparent
anisotropy when diffusion is really isotropic. In the
presence of noise, it is unlikely that all three eigen-
values would have identical measured values or cal-
culated values. Simply adding noise to the diagonal
tensor elements would create unequal eigenvalues.
However, this does not explain why anisotropic dif-
fusion appears more anisotropic, and it does not com-
pletely explain the magnitude of the DAI bias with
isotropic diffusion. Three mathematical explanations
for the positive bias in scaled relative anisotropy
(sRA) and fractional anisotropy (FA) are considered
here. Because sRA and FA bias must be reflected in
the eigenvalues, these biased eigenvalues would also
produce a positive bias in the other DAIs. Each ex-
planation involves one of the following consider-
ations:

1. The sRA formula for six icosahedral gradient
directions

2. Bias introduced by noise in the sRA and FA
formulas in Table II-2

3. Off-diagonal noise in the 2D case, which can be
extrapolated to 3D

None of these explanations rigorously proves that
the DAIs must have a positive bias, but they help to
understand why the bias exists. The first two expla-
nations are based on the idea that if a positive number
can be expressed as a fraction, and if the numerator
has a greater percentage increase than the denomina-
tor, then the resulting fraction is greater than the
original fraction. The percentage increase in the nu-
merator or denominator is determined by adding a
noise term (�) to each ADC or tensor element and
substituting the noisy values into the appropriate for-
mula. The result will include terms without any noise
components, corresponding to the true value; terms
with linear noise components, � or �1 �2; and terms
with quadratic noise components, �2. If ��� � 0, the
� and �1 �2 terms do not change the expectation value
of the result. The �2 terms are always positive and
produce a bias in the expectation value. The third
explanation takes a different approach, considering
tensor rotation and eigenvalues instead of sRA and FA
formulas.

1. The sRA formula for six icosahedral gradient
directions. With six icosahedral gradient directions,
sRA and FA can be calculated directly from the indi-
vidual ADCs without calculating the tensor elements.
Equation [II-178] can be rearranged to

sRA2 � 1.25D2/D av
2 � 1.25 [88]

The biases in D2 and Dav
2 equal the noisy expectation

values minus the true values. Because noise in the
individual measurements is independent, terms that
are first order in �i have expectation values of zero:

��i� � 0 [89]

��iDi� � 0 [90]

��i�j� � 0 [91]

In the presence of noise, the expectation values of D2

and Dav
2 for N � 6 measurements with b � 0 become

�D2� �
1

N �
i�1

N

�Di � �i�
2 �

1

N �
i�1

N

�Di
2 � 2�iDi � �i

2�

[92]

�D2� � D2 �
1

N �
i�1

N

�i
2 [93]

�Dav� �
1

N �
i�1

N

�Di � �i� �
1

N �NDav � �
i�1

N

�i� [94]

�D av
2 � �

1

N2 �N2D av
2 � �

i�1

N

�i
2� [95]

After subtracting the true values from the noisy val-
ues,

�D2� � D2 �
1

N �
i�1

N

�i
2 [96]

�D av
2 � � D av

2 �
1

N2 �
i�1

N

�i
2 [97]

Thus, the bias in the numerator of D2 /Dav
2 is N times

the bias in the denominator, with N � 6. Because

0 � sRA2 � 1 [98]

inserting this value into Eq. [88] and rearranging
shows that
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1 � D2/Dav
2 � 1.8 [99]

Therefore, the percentage bias in the numerator is at
least 6/1.8 � 3.3 times greater than the percentage
bias in the denominator. As a result, the expectation
value of sRA is greater than the true sRA. A similar
analysis could be performed for FA in Eq. [II-179].
Although this analysis is strictly valid only for six
icosahedral gradient directions, it does not require
calculation of tensor elements. Tensor element calcu-
lations introduce correlations among the noise terms,
complicating the propagation-of-error formulas.

2. Bias introduced by noise in the sRA and FA
formulas in Table II-2. An approach similar to that
used in the icosahedral example can be applied to the
sRA and FA formulas in Table II-2. The scale factors
are considered to be in the denominators, and we
consider sRA2 and FA2. The numerator of both sRA2

and FA2 is Dan:Dan, where Dan is the anisotropic part
of D (Eq. [I-67]). The bias in Dan:Dan can be calcu-
lated from the identity in Eq. [I-71], keeping in mind
Eqs. [89–91]:

�Dan:Dan� � Dan:Dan � �2/3���xx
2 � �yy

2 � �zz
2 �

� 2��xy
2 � �xz

2 � �yz
2 � [100]

The denominator biases can be calculated by a similar
approach:

�6Dav
2 � � 6Dav

2 � �2/3���xx
2 � �yy

2 � �zz
2 � [101]

��D:D�/1.5� � �D:D�/1.5 � �2/3���xx
2 � �yy

2 � �zz
2

� 2��xy
2 � �xz

2 � �yz
2 �� [102]

Each of these denominator biases is less than the
numerator bias. Because sRA � 1 and FA � 1, the
numerators of both sRA and FA are smaller than the
denominators, and they change by a greater amount.
Therefore, the percentage increase in the numerator is
greater than the percentage increase in the denomina-
tor, so �sRA� and �FA� increase in the presence of
noise. Qualitatively, it is expected that the bias would
be greater at lower anisotropy levels, and this is
consistent with published reports (10, 13, 14, 16, 17).

3. Off-diagonal noise in the 2D case. Consider the
three 2D tensors

T1 � ��1 0
0 �2

� [103]

T2 � � �1 Dxy

Dxy �2
� [104]

T3 � ��3 0
0 �4

� [105]

where T1 is the true tensor, T2 is T1 with noise in the
off-diagonal element Dxy, and T3 is the diagonal form
of T2. In this example, the noisy tensor T2 appears to
be a rotated version of the more anisotropic tensor T3,
rather than a noisy version of the less anisotropic
tensor T1. The apparent rotation angle of the reference
frame, ��, can be calculated from Eq. [I-39].

��rot � �arctan�2Dxy/��2 � �1���/2 [106]

According to comment 7 after Eq. [I-42], a rotation
that decreases the magnitude of Dxy to zero must
increase the difference between the two diagonal el-
ements. Thus the expectation value of the larger eig-
envalue increases and the expectation value of the
smaller eigenvalue decreases. This leads to an in-
crease in the calculated anisotropy. This is true
whether Dxy is positive or negative, so that the appar-
ent rotation angle � is negative or positive. Thus,
repeated DAI measurements with noisy data will not
decrease �DAI�. The DAI bias can only be reduced by
increasing the SNR of the original MR images, or by
signal averaging before calculation of the tensor or
DAI.

The 3D case could be analyzed in a similar way,
with three single-axis rotations. The result is that, in
general, the largest eigenvalue appears too large, the
smallest eigenvalue appears too small, and the effect
on the middle eigenvalue depends on the tensor de-
tails.

For a more complete understanding of eigenvalue
bias, a brief discussion of the effects of noise on
eigenvectors is in order because in some cases the
eigenvalue bias is linked to the eigenvectors. Because
the eigenvectors must be orthogonal, an error in one
eigenvector is accompanied by an error in at least one
other eigenvector. With small angular deviations and
well-separated eigenvalues, each noisy eigenvector
can easily be associated with a true eigenvector.
When two eigenvalues are identical, their eigenvec-
tors are not unique, because any linear combination of
the eigenvectors is also an eigenvector. When cylin-
drical symmetry is assumed for simulations, two of
the original eigenvectors are not uniquely defined.
Therefore, the noisy eigenvectors for these eigenval-
ues cannot be uniquely associated with one true eig-
envector. However, the deviation from the plane of
the true eigenvectors can be determined. When two or
three eigenvalues are identical or similar, it is not
always clear how to associate each noisy eigenvector/
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eigenvalue pair with a true eigenvector/eigenvalue
pair.

If the eigenvalues are sorted by magnitude, noise
introduces a bias into the sorted eigenvalues. With
three distinct eigenvalues, the expectation value of the
largest eigenvalue is greater than the true value,

��1� � �1 [107]

the expectation value of the smallest eigenvalue is
smaller than the true value,

��3� � �3 [108]

and the expectation value of the intermediate eigen-
value is usually near the true value (10, 11, 14). Of
course, in any individual measurement or simulation,
these relationships may not apply. With two identical
eigenvalues, magnitude sorting results in one identical
eigenvalue being too high and one being too low,
while the unique eigenvalue is biased away from the
two identical eigenvalues (10, 11, 14). With isotropic
diffusion, magnitude sorting yields three apparently
distinct eigenvalues with statistically different values
(10–12).

In addition to the eigenvalue and DAI bias dis-
cussed previously, an additional bias occurs because
of the noise-induced bias in the MRI signal intensi-
ties, as discussed in “Effects of Noise in MR Images
with Low SNR.” With �M� from Eq. [63] (or from the
approximation in Eq. [67]), this bias in the expecta-
tion value increases from about 0.5% (0.5% from Eq.
[67]) at SNR � 10 to 5.8% (5.6%) at SNR � 3 and
13.6% (12.5%) at SNR � 2. Even with reasonable
SNR at b � 0, diffusion-weighted SNR can easily be
5–10-fold lower with high anisotropy levels if bDav �
1. Thus, the SNR for measurement of a high ADC
value may be very low, resulting in a large positive
bias (overestimation) in M. When the ADC is calcu-
lated from Eq. [II-102] or [86], the ADC is underes-
timated (9, 28). The underestimate in Dav has been
reported in an abstract, but without an explanation
(43). The amount of bias in the largest eigenvalue and
in Dav depends on the tensor orientation when only six
gradient orientations are used. For example, the bias is
greatest if the �1 eigenvector is parallel to one of the
six gradient directions, and less if the eigenvector is
midway between two gradient directions. If time per-
mits more data acquisition, signal averaging of the
raw k-space data or of phase-coherent images before
calculating the magnitude would increase the effec-
tive SNR. Alternatively, the use of 12 or more direc-
tions ensures more uniform spatial coverage and a

decreased influence of a single poor measurement (8,
44, 45).

The underestimation of �1 caused by MRI signal
overestimation can offset the positive DAI bias, so
that the final calculated DAI is closer to the true value
than it would be with either effect alone. That is, if the
SNR of the original MR images is high enough to
prevent significant SI bias, the DAI and �1 would be
overestimated. If the SNR decreases, the DAI and �1

biases could decrease somewhat. With six gradient
directions and a suitable tensor orientation, a �1 un-
derestimation could become significant. As a result,
�1 and the DAI may begin to approach their true
values, whereas Dav would become more underesti-
mated (negative bias). This counterbalancing effect
would be negligible with isotropic diffusion and could
become significant at high anisotropy levels. A re-
ported decrease in FA with increasing noise is prob-
ably caused by this effect (9, 28 ). One moral of this
story is that in simulations, calculating a result near
the true value does not prove the lack of a bias—a
positive bias and a negative bias could counteract
each other.

So far, the discussion of the effects of noise on DTI
data has focused on the bias in the measured ADCs,
Dav, eigenvalues, and DAIs. There is some qualitative
similarity between the DAI bias and the MRI SI bias.
Indeed, both values involve taking the sum of the
squares of some numbers, so that the final result is
never negative. Although the mathematical details are
different, the qualitative trends are similar. It is there-
fore reasonable to expect a negative bias in the SD of
DAIs, similar to the reduced SD of MRI SIs. Although
the positive bias in the DAI values has been known
for some time (13–16), the negative bias in the SD of
DAIs appears to have been recognized only recently
(17). Notice that the decreased SDs in MRI SIs, in
their corresponding ADCs, and in the DAIs are ac-
companied by a bias in the associated values. Thus,
obtaining a lower SD in simulations does not auto-
matically mean that the measurement is more accu-
rate, less biased, or better in any other sense. This SD
bias also has implications for comparing the contrast-
to-noise ratio (CNR) of DAIs, as discussed in “Con-
trast-to-Noise Ratios of Diffusion Anisotropy Indi-
ces” in part II.

Bootstrap Analysis

The variance in parameters derived from experimental
DTI data can be estimated by bootstrap analysis (4,
46, 47). This consists of acquiring multiple replicates
of data in each direction and randomly selecting (with
replacement) one of the replicates in each direction
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for calculation of the tensor. After many repetitions of
this calculation, the mean and SD of various param-
eters can be calculated.

Important Points in “Noise and
Simulations”

Several terms used in the discussion of noise were
defined. Noise causes a positive bias in the measured
MR signal intensity when SNR is low (Eq. [67]).
Propagation-of-error formulas were presented in Eqs.
[71–76]. The need for caution in applying propaga-
tion-of-error formulas to multiple-step propagations
was demonstrated (Eqs. [81] and [83]). A 12-step
approach to simulating DTI data was explained in
detail. Noise in DTI data causes a positive bias in
measured anisotropy, and three ways of understand-
ing this bias were presented.

OPTIMUM b FACTORS

The purposes of this section are to explain 1) the
criteria for choosing optimum acquisition parameters
(b factor, and number of b � 0 images) for DTI
measurements, and how certain factors influence the
optimum b factor; 2) how some optimum b factors can
be calculated analytically; and 3) how much the b
factor and the number of b � 0 images can be
changed without seriously affecting the quality of the
results.

Criteria for Optimum b Factors

Because DTI is highly sensitive to noise, and the SNR
in each MR image is low because of the long echo
time (TE) required for diffusion weighting, it is im-
portant to optimize the collection and analysis of DTI
data. Suggestions for optimally spaced gradient direc-
tions were presented in the section on selecting gra-
dient directions in part II. The equivalence of many
DAIs with respect to CNR was discussed in the sec-
tion on contrast-to-noise ratios of diffusion anisotropy
indices in part II. This section considers what b factor
to use and how many b � 0 images to acquire for
optimum results in various applications. If T2 effects
can be neglected, the product bD is the important
factor. Therefore, the optimum bD product will often
be derived. The effect of the b factor on T2 losses can
then be calculated for a specific T2 and maximum
gradient strength, as discussed in part II.

In discussions of SNR and CNR, the word “signal”
refers to the parameter of interest (e.g., MRI signal
intensity, ADC, or DAI value). The SNR of the ADC

has been called the diffusion-to-noise ratio, or DNR
(48). The optimum b factor is generally the one that
provides the highest SNR for the parameter of interest
in a single tissue, or the highest CNR between two
tissues of interest. Contrast is the signal difference
between two tissues, A and B:

�S � SB � SA [109]

For SNR, noise is the SD of the single measurement,
�. For CNR, noise is the square root of the sum of the
noise variances in the two measurements:

Noise � � � ��A
2 � �B

2�1/ 2. [110]

Thus, SNR and CNR can be calculated as

SNR � SA/�A [111]

CNR � �S/��A
2 � �B

2�1/ 2 � �SB � SA�/��A
2 � �B

2�1/ 2

[112]

The choice of an optimum b factor, bopt, depends on
the parameter being measured—diffusion-weighted
signal intensity (e.g., contrast between ischemic and
normal tissue), ADC, DAI, or eigenvector. The bopt

may depend on many factors, including the mean
ADCs in the regions of interest, the amount of anisot-
ropy, the tensor orientation, the presence or absence
of differences in spin density or T2, and whether TE
changes when the b factor changes. The following
sections calculate optimum b factors for several situ-
ations. Precision (�) is generally within 10% of the
optimum for nearly a twofold range of b factors, from
about 70% to 130% of the optimum value (49). Fur-
ther, because a higher b factor requires a longer TE,
bopt when TE changes is generally 10–20% less than
when TE is constant for all b factors (28, 49). The
exact decline in bopt depends on the maximum gradi-
ent strength, the pulse sequence, the T2 value(s) of the
tissue(s), and the parameter being measured. For the
present calculations, the TE is assumed to be constant,
because this allows analytic expressions to be derived.
The optimum b factors calculated here should be
considered approximate starting values, not the abso-
lute truth.

One recent publication used a numerical approach
to estimate near-optimal ranges of b and n2/n1 (the
ratio of the number of b � 0 images to the number of
b � 0 images) for measuring Dav, FA, and the prin-
cipal eigenvector direction (50). They considered both
one-fiber and two-fiber cases. Although that work
involved extensive Monte Carlo simulations, and con-
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sidered some factors often ignored, it did not produce
analytic formulas to allow easy extension to other
situations. The discussion that follows focuses on
analytic approaches to optimization. Several publica-
tions on optimizing the calculation of Dav from three
measurements with isotropic diffusion are discussed.
In addition, recent abstracts have considered analyti-
cal approaches to optimizing measurements of Dav

(51, 52), anisotropy (51), and eigenvectors (52), as
well as a numerical approach for eigenvectors (51).

Number of b Factors

An exponential decay curve is described by three
parameters: a starting point, an end point, and a rate
constant for the transition from the starting point to
the end point. The considerations that apply to ADC
measurements are similar to those that apply to T1

relaxation (53, 54) and T2 relaxation (54). Lessons
learned about measuring any one of these processes
can be applied to the other processes, with appropriate
modifications.

The end point for DWI signal loss is zero, so only
two parameters need to be determined experimentally.
The problem of a slightly nonzero end point due to
noise in magnitude images has been dealt with else-
where (18, 19, 21–26) and is omitted from the present
discussion.

Clearly, one data point should have the lowest
possible b factor so that the signal and SNR are as
large as possible. In early measurements of T1, T2, and
ADC, several points on the exponential decay curves
were measured in an attempt to improve the precision
of the measurement. If signal decay may be biexpo-
nential, several data points may be required to define
both decay rates adequately. If a wide range of decay
rates is present, several data points may be required to
cover the entire range adequately. However, if a sin-
gle decay constant is present, and a narrow range of
decay constants, precision is optimum if a single
optimum data point is measured in addition to mea-
suring the starting and end points (48, 54, 55). If time
allows more measurements, the optimum point should
be repeated, rather than adding suboptimal data points
(48, 54, 55). It is now generally accepted that a single
optimum nonzero b factor provides the most reliable
results for a single ADC. For multiple ADCs, optimi-
zation depends on what is being measured (e.g., the
individual ADCs, Dav, a DAI, eigenvalues, or eigen-
vectors) and on the criterion being used to evaluate
the results (e.g., average over a given range, or worst
case within a range) (15, 42).

Another reason to use a single b factor is that
diffusion-weighted signal decay in biological tissues

appears to be biexponential. The use of several data
points to fit a monoexponential curve to biexponential
data will yield different results for different choices of
data points. Although precision may be improved by
using at least two nonzero b factors for DWI or DTI
measurements in very anisotropic systems, use of a
single optimum b factor avoids some of the problems
caused by biexponential signal decay.

Although the low b factor is not quite zero, it
usually is chosen to be as near zero as possible. The
formulas calculated below assume that the low b
factor is zero. This will simplify some expressions by
allowing the use of b instead of b2 � b1. If cross-terms
between imaging gradients and diffusion gradients
can be ignored, the small b factor from the imaging
gradients is present with b � 0 and b � 0, and will
cancel when D is calculated from Eq. [II-102] or [86].

MRI Signal Contrast with Isotropic
Diffusion

With isotropic diffusion, diffusion can be measured
with a single b � 0 measurement and a single b � 0
measurement in any desired direction. In this case, the
DWI contrast between two objects depends on each
object’s spin density, T2, and ADC. The diffusion-
weighted signal intensity of an object is given by (49)

S � P exp��TE/T2�exp��bD� � S0exp��bD�

[113]

where P is a function of the proton density and S0 is
the signal intensity without diffusion-sensitizing gra-
dients (b � 0). The contrast between two objects with
DA � DB is given by (49)

�S � SB � SA � S0Bexp��bDB� � S0Aexp��bDA�

[114]

If TE is constant so that S0A and S0B do not change
with b, then setting d�S/db � 0 yields the b factor for
the maximum signal intensity difference �Smax:

d�S/db � �DBS0Bexp��bDB�

� DAS0Aexp��bDA� � 0 [115]

b�S max �

ln�DA

DB
� � ln�S0B

S0A
�

DA � DB
[116]

If S0A � S0B, this reduces to

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a

DIFFUSION TENSOR IMAGING MATHEMATICS: PART III 171



b�S max �
ln�DA� � ln�DB�

DA � DB
[117]

In the limit as DB approaches DA, application of
L’Hôpital’s rule yields

b�SmaxD � 1 [118]

MRI Contrast-to-Noise Ratio with
Anisotropic Diffusion

With anisotropic diffusion, no single D value com-
pletely describes the system. The intensity of a diffu-
sion-weighted image depends on the direction of the
diffusion-weighting gradient. The directional depen-
dence of D and of the diffusion-weighted signal in-
tensity can be eliminated by measuring Dav with any
of the gradient sampling schemes in Tables II-6 and
II-8 through II-15. The signal corresponding to Dav is
Sav. With M separate ADC measurements,

Si � S0exp��bi:D� � S0exp��bDi� [119]

Di � ln�S0/Si�/b � �ln�S0� � ln�Si��/b

[120]

Dav �
1

M �
i�1

M

Di �
1

b �ln(S0) �
1

M �
i�1

M

ln(Si)� [121]

Sav � S0exp��bDav� � ��
i�1

M

Si�1/M

[122]

Note that Dav is the arithmetic mean of the individual
Di, whereas Sav is the geometric mean of the individ-
ual Si, not the arithmetic mean.

When M images are combined to produce a final
image (Eq. [122]), the CNR and the optimum b factor
depend on how the noise in each initial image affects
the final image. Previous work has generally assumed
that the optimum b factor for anisotropic diffusion
was the same as for isotropic diffusion (28). Based on
the following calculations, it can be shown that the
optimum b factor for anisotropic diffusion is always
less than for isotropic diffusion (Fig. 2 in (49)).

With Gaussian noise, the noise variance in the final
DW image is found by applying Eq. [71] to Eq. [122],
yielding

�2�Sav� � ��mSav

M �2 �
i�1

M

Si
�2 [123]

where �m
2 is the noise variance in each original MR

image. With isotropic diffusion each �Si� � Sav, so

�2�Sav� � �m
2 /M �isotropic� [124]

The individual signal intensities can be calculated
from Eq. [119], contrast from Eq. [114], and the noise
variance in the final diffusion-weighted signal inten-
sity from Eq. [123]. After applying Eq. [123] to the
two different tissues, substituting for each Si from Eq.
[119], and substituting for SA/S0A and SB/S0B from Eq.
[113], the resulting noise variances are

�A
2 � ��m

M �2 �
i�1

M

exp�2b�DA,i � DA,av�� [125]

�B
2 � ��m

M �2 �
i�1

M

exp�2b�DB,i � DB,av�� [126]

The CNR can be calculated from Eq. [112] with the
variances shown in Eqs. [125] and [126], and with �S
calculated from Eq. [114] with DB and DA replaced by
DB,av and DA,av, respectively. With isotropic diffu-
sion, the CNR becomes

CNR � �M/ 2�1/ 2�S/�m �isotropic� [127]

Thus, isotropic CNR depends only on the contrast,
�S, the noise in the individual MR images, �m, and
the number of measurements, M. If T2 relaxation is
ignored, the SNR of the b � 0 image is not affected by
the b factor, and isotropic CNR is optimized by opti-
mizing the contrast, just as it was for a single DWI
measurement. This generally is not true with aniso-
tropic diffusion, unless each individual measurement
yields the same ADC. This could occur in two special
cases. First, for three orthogonal measurements along
the x, y, and z axes (scheme 3x), a cylindrically
symmetric ellipsoid can be oriented with its D1 eig-
envector along one of the directions (�1, �1, �1), so
that it makes equal projections along the x, y, and z
axes. Second, for four tetrahedral measurements
(scheme 4t), a cylindrically symmetric ellipsoid can
be oriented with its D1 eigenvector along the x, y, or
z axis, so that it makes equal projections along the
(�1, �1, �1) axes.

The CNR as a function of anisotropy and b factor,
for a cylindrically symmetric diffusion ellipsoid with
its three principal axes along the three diffusion gra-
dient directions, was shown in (49).
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ADC Measurements (DNR)

An ADC can be calculated for a single direction, and
Dav can be calculated as the mean of the individual
ADCs for several sampling schemes, including those
in Tables II-6 and II-8 through II-15. The optimiza-
tion described here is valid for all these cases. Al-
though it is not strictly proven for other sampling
schemes, the results are likely to be valid for any
well-spaced gradient sampling scheme. It is assumed
that the low b factor is 0 s/mm2 in the following
calculations. If this is not true, then b should be
replaced by b2 � b1. As explained above, the small b
factor from the imaging gradients will cancel when D
is calculated from Eq. [II-102] or [86].

The SNR of the measured ADC has been called the
diffusion-to-noise ratio, or DNR (48). Several param-
eters must be selected for a DNR measurement, in-
cluding the high b factor (or the bD or bDav product),
the total number of measurements at b � 0 (n1) and at
the high b factor (n2 � N � n1), and the number of
directions at the high b factor, M. Thus, the number of
measurements at the high b factor in each direction is

n2/M � �N � n1�/M [128]

Optimization involves finding the minimum possible
�av, the SD of Dav (28, 48, 55).

Each signal intensity is calculated from Eq. [119],
the ADC is calculated from Eq. [120], and Dav is
calculated from Eq. [121]. For a given noise level
(SD) in the original images of �m, the SNRs are

SNR0 � S0/�m [129]

SNRi � Si/�m � S0exp��bDi�/�m � SNR0exp��bDi�

[130]

The SDs of each calculated ln(S ), �0 and �i, can be
calculated from the propagation-of-error formula, Eq.
[71]:

�0 � ��ln�S0�� � �md�ln�S0��/dS0 � �m/S0 � 1/SNR0

[131]

�i � ��ln�Si�� � �m/Si � 1/SNRi � exp�bDi�/SNR0

[132]

With multiple measurements of an individual inten-
sity, if the geometric mean of each signal intensity is
calculated as in Eq. [122], then the SDs of ln(S0) and
ln(Si ) become

�0 � 1/�n1
1/ 2SNR0� [133]

�i � exp�bDi�/��n2/M�1/ 2SNR0� [134]

The variance in each Di can be calculated by applying
Eq. [71] to Eq. [120], and the variance in Dav is

�av
2 �

1

b2 ��0
2

n1
�

1

M2 ¥i�1
M �i

2

(N � n1)/M
� � � 1

SNR0
2b2�

� � 1

n1
�

1

M(N � n1)
�
i�1

M

exp(2bDi)� [135]

As discussed above, the minimum TE increases along
with b, so the choice of b indirectly affects SNR0. As
a result, the optimum b factor is typically 10–20%
lower than that calculated for a constant TE at all b
factors (28, 49).

The value of �av
2 can be minimized numerically by

changing b and n1, yielding the optimum values of b
and n1 for a given N, M, and set of Di. For notational
simplicity let

�i �
1

M �
i�1

M

exp�2bDi� [136]

�D �
1

M �
i�1

M

Diexp�2bDi� [137]

When �av
2 is a minimum, the derivatives of �av

2 with
respect to b and with respect to n1 should equal 0.
Setting d�av

2 /db � 0 yields

n2/n1 � b�D � �i [138]

Setting d�av
2 /dn1 � 0 yields

n2/n1 � �i
1/ 2 [139]

When �av
2 is minimized numerically, Eqs. [138] and

[139] can be used to check the validity of the solution.
When both n1 and b are varied, both equations should
be satisfied. If n1 is held constant while b is optimized,
then Eq. [138] is satisfied, whereas Eq. [139] may not
be satisfied. If b is held constant while n1 is optimized,
then Eq. [139] is satisfied while Eq. [138] may not be
satisfied. For isotropic diffusion, Eqs. [136–139] sim-
plify to
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�i � exp�2bD� �isotropic� [140]

�D � D exp�2bD� �isotropic� [141]

n2/n1 � �bD � 1�exp�2bD� �isotropic� [142]

n2/n1 � exp�bD� �isotropic� [143]

For comparison with previously published work, the
sensitivity factor for ADC measurements defined by
Xing et al. (48), �D, can be modified for anisotropic
diffusion:

DNR � Dav/�av � SNR0�D [144]

�D �
bDav

�1

n1
�

�i

N � n1

[145]

Minimizing �av
2 yields the same result as maximizing

�D. For isotropic diffusion, numerical optimization
yields

n2/n1 � 3.591 �optimum� [146]

bD � 1.278 �optimum� [147]

Because n1 and n2 must be integers, the actual exper-
imental parameters must be slightly different than
these optimum values. That is, Eq. [147] can always
be satisfied exactly, whereas Eq. [146] will only be
satisfied approximately. For each N, the two n2/n1

ratios that are just above and just below 3.591 can be
selected. For each n2/n1 ratio, bD can be optimized
numerically (or from Eq. [143] for isotropic diffu-
sion), �av

2 can be calculated from Eq. [135], and �D

can be calculated from Eq. [145]. The n2/n1 ratio with
the higher �D or the lower �av

2 provides the optimum
n1 and n2 values for that N. The results shown in Table
1 are identical to published values for N � 2 to 15
(42) and N � 2 to 7 plus infinity (54). Similar results
have been shown graphically for N � 2 to 16 (55),
and slightly rounded results have been tabulated for
N � 2 to 15 (48). The optimum bD product increases
from 1.11 for N � 2 to 1.19 for N � 3, is in the range
1.22 to 1.34 for N � 4 to 16, and settles at 1.28 for
large N.

When a range of anisotropies and tensor orienta-
tions is present, as in human brain, the optimum
choices of bD and n2/n1 are not as clear. The optimum
bD product and n2/n1 ratio for three orthogonal mea-
surements, parallel to the three eigenvectors, can be
calculated for any value of A. Compared with isotro-

pic diffusion, the optimum b factor and n2/n1 ratio
decrease with anisotropy. Because brain tissue con-
tains a range of tensor orientations and a range of
anisotropy levels up to sRA � 0.7 (17, 31), one
approach is to optimize for sRA � 0.35 with the
extreme orientation possibilities, corresponding to
A � 0 and A � 0.35. Thus, the approximate optimum
values are those for A � 0.2, or bD � 1.09 and
n2/n1 � 3.31. Another approach is to calculate the
variances for the extreme values of A, and to select bD
and n2/n1 so that the worst case measurement is as
good as possible. With six gradient directions, this
worst-case approach should also include the fact that
the measured DTI parameters are more uncertain with
some tensor orientations than with other orientations
(44, 45), and the optimum orientation seems to be
different for eigenvectors than for Dav and anisotropy
(unpublished observations). With 20 or more gradient
directions, the orientational dependence is negligible.

The range of useful bD products and n2/n1 ratios
can be estimated by considering the range where �av

and �D are within 10% of their optimum values. This
is approximately a factor of 3 in n2/n1 and at least
�30% in bD. For the typical case of A � 0.2, the
results are

0.75 � bD � 1.51 �optimum� [148]

1.11 � n2/n1 � 9.87 �optimum� [149]

If the other parameter is adjusted slightly when one
parameter reaches its extreme point, these ranges
could be extended slightly. Thus, it is not important to
have the exact optimum values for good results, but

Table 1 Optimum bD Products for Isotropic
Diffusion with Several Different Values of N

N n1 n2 bD for �max n2/n1

2 1 1 1.11 1
3 1 2 1.19 2
4 1 3 1.25 3
5 1 4 1.30 4
6 1 5 1.34 5
7 2 5 1.22 2.5
8 2 6 1.25 3
9 2 7 1.27 3.5
10 2 8 1.3 4
11 2 9 1.32 4.5
12 3 9 1.25 3
13 3 10 1.27 3.33
14 3 11 1.28 3.67
15 3 12 1.30 4
� n1 3.591 n1 1.278 3.591
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knowledge of the optimum range will facilitate the
optimization of data acquisition.

As discussed previously, the minimum TE in-
creases along with b, so the choice of b indirectly
affects SNR0. As a result, the optimum b factor is
typically 10–20% lower than that calculated for a
constant TE at all b factors (28, 49). The optimum
n2/n1 ratio also decreases along with the optimum b
factor (28).

Diffusion Anisotropy Indices

The optimization of acquisition parameters for mea-
surements of diffusion anisotropy has received little
attention (28). Although several DAIs have been sug-
gested, sRA and FA have gained the most widespread
use. Because sRA and FA have identical CNR, and
their variances are related by Eqs. [II-36] and [II-85],
optimization of one will also optimize the other.
Therefore, this discussion focuses on sRA optimiza-
tion.

As discussed previously, with icosahedral gradient
encoding schemes, sRA can be calculated without
calculating the entire tensor. The following derivation
is based on such icosahedral encoding schemes. Al-
though the derivation is not strictly valid for other
encoding schemes, the range of icosahedral schemes
for which it is valid (including combinations of ico-
sahedral schemes with various rotations) suggests that
it is approximately valid for any set of well-spaced
gradient directions. According to Eq. [II-178],

sRA �
�5 �D

2Dav
�

�5�Di
2 � D av

2 �

2Dav
[150]

Propagation of the error in the MR images to sRA can
be calculated by calculating the derivative of sRA with
respect to each original image intensity, S0 or Si. From
Eqs. [72–76] with f � sRA, x � Dav, y � Di

2 , s � S0,
and t � Si:

�sRA

�S0
�

�sRA

�Dav

�Dav

�S0
�

�sRA

�Di
2

�Di
2

�S0
[151]

�sRA

�Si
�

�sRA

�Dav

�Dav

�Si
�

�sRA

�Di
2

�Di
2

�Si
[152]

The formula for Dav is shown in Eq. [121], and Di
2 is

given by

Di
2 �

1

M �
i�1

M

Di
2 �

1

Mb2 �
i�1

M

�ln S0 � ln Si�
2

�
1

Mb2 �
i�1

M

�ln2S0 � 2 ln S0ln Si � ln2Si� [153]

The derivatives in Eqs. [151] and [152] can then be
calculated:

�sRA

�Dav
�

��5 Di
2

2D av
2 �Di

2 � D av
2

[154]

�sRA

�Di
2

�
�5

4Dav�Di
2 � D av

2
[155]

�Dav/�S0 � 1/bS0 [156]

�Dav/�Si � �exp�bDi�/MbS0 [157]

�Di
2

�S0
�

2Dav

bS0
[158]

�Di
2

�Si
�

�2Diexp�bDi�

MbS0
[159]

Substituting these derivatives into Eqs. [151] and
[152] yields

�sRA

�S0
�

��5 Di
2

2bS0D av
2 �Di

2 � D av
2

�
2�5 Dav

4bS0Dav�Di
2 � D av

2

[160]

�sRA

�Si
�

�5 Di
2exp�bDi�

2MbD av
2 S0�Di

2 � D av
2

�
�2�5 Diexp�bDi�

4MbDavS0�Di
2 � D av

2
[161]

which simplify to

�sRA

�S0
� ���5 �Di

2 � D av
2

2bD av
2 S0

� � �sRA/bDavS0

[162]
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�sRA

�Si
� � sRA

bDav S0
��exp(bDi)(Di

2 � DiDav)

M(Di
2 � D av

2 )
�
[163]

The noise in each S0 or Si image is �m, SNR0 is
defined in Eq. [129], there are n1 acquisitions at b �
0 and n2 � N � n1 acquisitions at the high b factor,
or (N � n1)/M acquisitions at the high b factor in each
direction. After considering that each noise variance
decreases as 1/n1 or 1/(n2/M ) � M/(N � n1), the
variance in sRA can be calculated by application of
Eq. [71] to Eqs. [162] and [163].

�sRA
2 � � sRA

bDav SNR0
�2	 1

n1
�

1

M(N � n1)

� �
i�1

M

exp(2bDi)�Di
2 � DiDav

Di
2 � D av

2 �2
 [164]

For completeness, the following derivatives and vari-
ances of Di

2 and of �� � 2.51/2�D (Eq. [II-177]) are
included.

���/�S0 � 0 [165]

���

�Si
�

�2.5 �Dav � Di�e
bDi

M�N � n1�bSNR0�Di
2 � D av

2 �
[166]

�2���� � � 1

bSNR0
� 2	 2.5

M(N � n1)[Di
2 � D av

2 ]

� �
i�1

M

(Dav � Di)
2e2bDi
 [167]

�2�Di
2� � � 2

bSNR0
� 2	D av

2

n1
�

1

M(N � n1)
�
i�1

M

Di
2e2bDi

[168]

Equations [135] and [164] are valid for 2D with
uniformly spaced gradient directions.

Eigenvectors

Optimization of DTI parameters for eigenvector cal-
culation has been performed with Monte Carlo simu-
lations (50, 51), and an analytic calculation has ap-
peared in abstract form (52). The optimum b factor

seems to be similar to that for sRA (51). However, it
is not necessary to acquire b � 0 data for eigenvector
calculations, so the optimum n2/n1 ratio is as high as
possible. Recent abstracts have discussed an apparent
bias in the principal eigenvector direction (56, 57),
but the factors involved with this bias (gradient sam-
pling scheme, tensor orientation relative to gradient
scheme, b factor, tensor fitting method) have not been
explored.

Important Points in “Optimum b Factors”

The reason for choosing a single b factor was ex-
plained. The optimum b factor differs slightly, de-
pending on the parameter being measured—contrast
between tissues in diffusion-weighted images, ADC,
anisotropy (DAIs), eigenvalues, or eigenvectors. If
the effect of the b factor on TEmin is ignored, with
certain gradient sampling schemes analytic expres-
sions are available for ADC and sRA or FA, and these
expressions appear to be good approximations for
other well-spaced gradient schemes. The optimum b
factor for eigenvectors has been estimated by simula-
tions, and an analytical approach may be published
soon. Results are generally good (SD within 10% of
the optimum) for �30% deviations from the optimum
value of b, and for almost a threefold change in n2/n1.
The optimum number of b � 0 acquisitions is highest
for ADC, intermediate for DAIs, and zero for eigen-
vectors.

BEYOND THE TENSOR

Diffusion tensor imaging has been useful for detecting
anisotropy differences in different brain regions, at
different ages, and in certain diseases. It is easy to
visualize the diffusion ellipsoid associated with the
diffusion tensor. Furthermore, tractography with DTI
has provided some promising results (58–67).
Clearly, DTI has been a significant advance over
simple DWI. However, the limits of DTI should be
understood.

There are certain brain regions where the diffusion
tensor does not adequately describe the diffusion pro-
cess. Such regions include areas where multiple fibers
meet and either cross or diverge (“kiss”). If DWI data
are collected in enough directions, the data can be
analyzed by more advanced methods (68–74). One
such method is to fit the observed diffusivity profile
with spherical or circular harmonics (72–75). Another
approach is to use higher-order tensors—rank 4, 6,
and even higher—in addition to the rank-2 tensor that
is commonly called the diffusion tensor and corre-
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sponds to the diffusion ellipsoid (69, 70). A third
approach is to model the diffusivity as two rank-2
tensors (50).

Even when a single rank-2 tensor appears ade-
quate, the signal’s decay with the b factor’s increase
may not be strictly exponential, especially for the
diffusion in biological tissues (32–41). In these cases,
use of different b factors in addition to many direc-
tions allows more complex processing methods, in-
cluding q-space imaging and its variations (34, 76–
80). Such techniques may provide more complicated
information, such as probability density function
(PDF) or orientation density function (ODF) of the
underlying diffusion process. Clearly, there is much
more to be learned about the self-diffusion process in
brain and other organs. In all these advanced ap-
proaches, little is known about optimization of the
acquisition parameters, and the optimal values may be
very different from the optimal values for simple DTI
of single fibers (50). A solid understanding of the
diffusion tensor model and DTI mathematics will
provide a starting point for understanding those more
advanced models and analyses.
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69. Özarslan E, Vemuri BC, Mareci TH. 2005. Generalized
scalar measures for diffusion MRI using trace, variance,
and entropy. Magn Reson Med 53:866–876.
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