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Abstract

Thresholding is one of the popular and fundamental techniques for conducting image segmentation. Many thresholding
techniques have been proposed in the literature. Among them, the minimum cross entropy thresholding (MCET) have
been widely adopted. Although the MCET method is effective in the bilevel thresholding case, it could be very time-con-
suming in the multilevel thresholding scenario for more complex image analysis. This paper first presents a recursive pro-
gramming technique which reduces an order of magnitude for computing the MCET objective function. Then, a particle
swarm optimization (PSO) algorithm is proposed for searching the near-optimal MCET thresholds. The experimental
results manifest that the proposed PSO-based algorithm can derive multiple MCET thresholds which are very close to
the optimal ones examined by the exhaustive search method. The convergence of the proposed method is analyzed math-
ematically and the results validate that the proposed method is efficient and is suited for real-time applications.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Image segmentation is fundamental to many image analysis tasks such as object tracking, character recogni-
tion, document analysis, just to name a few. Thresholding is one of the most important techniques for performing
image segmentation. The goal of thresholding is to select a set of thresholds which can discriminate object and
background pixels. Bilevel thresholding selects only one threshold which separates the pixels into two classes,
while multilevel thresholding determines multiple thresholds which divide the pixels into several groups. Although
the bilevel thresholding is easily adopted, it is not uncommon that the multilevel thresholding is employed for
more complex analysis tasks such as color image segmentation [21,14] and mixed-type documents analysis [29].

Over the years, many thresholding techniques have been proposed. Comprehensive surveys can be found in
[15,25,27]. These thresholding methods can be roughly divided into two categories. The first category contains
the approaches which determine the optimal thresholds by analyzing the profile characteristics of the image
histogram. Rosenfeld and De la Torre [24] analyzed the concavities of the histogram by calculating its convex
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hull. Lim and Lee [18] presented a valley-seeking approach which smoothes the histogram and detects the val-
leys as thresholds by calculating the derivatives of the smoothed histogram. Yin and Chen [33] proposed
another valley-seeking algorithm based on symmetry and duality and a threshold hierarchy is provided for
satisfying applications with different granularity. The second category belong the thresholding techniques
which determine the optimal thresholds by optimizing a certain objective function. Otsu [19] proposed a thres-
holding technique which maximizes the between-class variance of gray levels of the object and the background
portions. Kittler and Illingworth [12] developed a thresholding method which approximates the histogram by
a mixture of normal distributions and minimizes the classification error probability. Pun [23] found the opti-
mal threshold by maximizing a posteriori entropy of the object and background portions.

Among the tremendous amount of image thresholding techniques, entropy-based approaches have drawn
the attentions of many researchers. Kapur et al. [9] found some flaws in Pun’s derivations and further pre-
sented a corrected version. Yen et al. [32] define the entropic correlation and obtain the threshold that max-
imizes it. Abutaleb [1] extended the entropy thresholding method on a 2D histogram such that the spatial
correlation between the pixels can be taken into account. Cheng et al. [3] developed the fuzzy version of
the entropy thresholding. Sahoo et al. [26] generalized some of the existing entropy thresholding techniques
by Renyi’s entropy using different parameter ranges of Renyi power. Li and Lee [16] proposed a thresholding
method which selects the threshold by minimizing the cross entropy between the original and segmented
images. Brink and Pendock [2] deliberately showed the relationship between the minimum cross entropy thres-
holding technique and other methods. Pal [20] modeled the histogram by a mixture of Poisson distributions
and segmented the image by minimizing the total cross entropy of the object and background portions. Li and
Tam [17] presented a fast iterative implementation for the minimum cross entropy thresholding method. How-
ever, the iterative scheme is hard to extend to multiple thresholds selection.

The deployment of meta-heuristic computing has been flourishing during the last decade. Many meta-heu-
ristic paradigms such as genetic algorithm [8], simulated annealing [11], tabu search [7], ant colony optimiza-
tion [5], and particle swarm optimization [10] have been applied to tackle many well-known NP-hard
problems. Encouraged by their successful applications, we further investigate the feasibility of using meta-heu-
ristic algorithms for solving image thresholding.

The endeavor of this paper is focused on multilevel thresholding using the minimum cross entropy criterion.
We first propose a recursive programming technique which stores the results of preceding tries as the basis for
the computation of succeeding ones. Then, based on the recursive programming technique, a particle swarm
optimization (PSO) algorithm is presented for searching the optimal thresholds. The performance of the pro-
posed method is evaluated by testing on several real images. The experimental results manifest that our
method is efficient and effective.

The remainder of this paper is organized as follows. Section 2 reviews the minimum cross entropy thres-
holding technique. Section 3 describes the proposed method. In Section 4, the experimental results and com-
parative performances are presented. Finally, conclusions are made in Section 5.

2. Minimum cross entropy thresholding

The cross entropy was proposed by Kullback in [13]. Let F = {f1, f2, . . . , fN} and G = {g1,g2, . . . ,gN} be two
probability distributions on the same set. The cross entropy between F and G is an information theoretic dis-
tance between the two distributions and it is defined by
DðF ;GÞ ¼
XN

i¼1

fi log
fi

gi
: ð1Þ
The minimum cross entropy thresholding (MCET) algorithm [16] selects the threshold by minimizing the cross
entropy between the original image and its thresholded version. Let I be the original image and h(i),
i = 1,2, . . . ,L, be the corresponding histogram with L being the number of gray levels. Then the thresholded
image, denoted by It, using t as the threshold value is constructed by
I tðx; yÞ ¼
lð1; tÞ; Iðx; yÞ < t;

lðt; Lþ 1Þ; Iðx; yÞP t;

�
ð2Þ
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where
lða; bÞ ¼
Xb�1

i¼a

ihðiÞ
,Xb�1

i¼a

hðiÞ: ð3Þ
The cross entropy is then calculated by
DðtÞ ¼
Xt�1

i¼1

ihðiÞ log
i

lð1; tÞ

� �
þ
XL

i¼t

ihðiÞ log
i

lðt; Lþ 1Þ

� �
: ð4Þ
The MCET determines the optimal threshold t* by minimizing the cross entropy, viz.,
t� ¼ arg mintfDðtÞg: ð5Þ

The computational complexity for determining t* is O(L2). However, it could be time-consuming under the

multilevel thresholding scenario. For the n-thresholding problem, it requires O(Ln+1).

3. Proposed method

As traditional techniques for deriving MCET thresholds could be computationally intensive, we propose a
fast MCET algorithm based on PSO. We first present a recursive programming technique for computing the
MCET objective function. Then the PSO-based algorithm is devised for searching the optimal thresholds.

3.1. Recursive programming

The MCET objective function (4) can be rewritten as
DðtÞ ¼
XL

i¼1

ihðiÞ logðiÞ �
Xt�1

i¼1

ihðiÞ logðlð1; tÞÞ �
XL

i¼t

ihðiÞ logðlðt;Lþ 1ÞÞ: ð6Þ
Since the first term is constant for a given image, the objective function can be redefined as
gðtÞ ¼ �
Xt�1

i¼1

ihðiÞ logðlð1; tÞÞ �
XL

i¼t

ihðiÞ logðlðt; Lþ 1ÞÞ

¼ �
Xt�1

i¼1

ihðiÞ
 !

log
Xt�1

i¼1

ihðiÞ
 ,Xt�1

i¼1

hðiÞ
!
�

XL

i¼t

ihðiÞ
 !

log
XL

i¼t

ihðiÞ
 ,XL

i¼t

hðiÞ
!

¼ �m1ð1; tÞ log
m1ð1; tÞ
m0ð1; tÞ

� �
� m1ðt; Lþ 1Þ log

m1ðt; Lþ 1Þ
m0ðt; Lþ 1Þ

� �
; ð7Þ
where m0ða; bÞ ¼
Pb�1

i¼a hðiÞ and m1ða; bÞ ¼
Pb�1

i¼a ihðiÞ are the zero-moment and first-moment on partial range of
the image histogram.

Here we propose a recursive programming for expediting the computing process of the objective function
(7) with different trial thresholds. Suppose that the current trial threshold is t and the corresponding objective
value g(t) has been computed. By tallying the intermediate moments m0(1, t), m0(t,L + 1), m1(1, t), and
m1(t,L + 1), the other moments can be computed recursively by the following equation:
m0ð1; t þ 1Þ ¼ m0ð1; tÞ þ hðtÞ; m0ðt þ 1; Lþ 1Þ ¼ m0ðt; Lþ 1Þ � hðtÞ;
m1ð1; t þ 1Þ ¼ m1ð1; tÞ þ thðtÞ; m1ðt þ 1; Lþ 1Þ ¼ m1ðt; Lþ 1Þ � thðtÞ:

ð8Þ
Hence, the computation for g(t + 1) only costs a constant time if the intermediate moments are tallied. As
such, the computational complexity for solving argmint{g(t)} is reduced by an order of magnitude.
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The recursive programming technique is easily extended to multilevel thresholding case. Assume that it is
required to select n thresholds denoted by t1, t2, . . . , tn. For the convenience of illustration, we add two dummy
thresholds t0 � 1, tn+1 � L + 1, and t0 < t1 < � � � < tn < tn+1. The objective function then becomes
gðt1; t2; . . . ; tnÞ ¼ �
Xnþ1

i¼1

m1ðti�1; tiÞ log
m1ðti�1; tiÞ
m0ðti�1; tiÞ

� �
: ð9Þ
Before solving g(t1, t2, . . . , tn), we first conduct the recursive programming for obtaining m0(a,b) and m1(a,b) for
1 < a < b < L, which costs O(L2) for computation. Hence, arg mint1;t2;...;tnfgðt1; t2; . . . ; tnÞg can be solved in
O(nLn + L2) = O(nLn), which is less than the original computational complexity O(Ln+1) for deriving n optimal
thresholds since n� L in practice. Although the computational complexity is reduced, O(nLn) is still compu-
tationally expensive if n P 3. In this paper, we further present a particle swarm optimization algorithm based
on the recursive programming technique for solving arg mint1;t2;...;tnfgðt1; t2; . . . ; tnÞg efficiently and effectively.

3.2. Particle swarm optimization

The particle swarm optimization (PSO) algorithm was first proposed by Kennedy and Eberhart [10]. It is
biologically inspired by observations from social dynamics of bird flocking. Ethologists find that a large num-
ber of birds flock synchronously, change direction suddenly, scatter and regroup iteratively, and finally perch
on a target. This form of social activity not only increases the success rate for food foraging but also expedites
the process. The PSO algorithm simulating bird foraging activity can serve as an optimizer for nonlinear func-
tions of continuous and discrete variables. PSO has exhibited great success in many applications including
evolving structure for artificial neural networks [6], manufacture end milling [30], reactive power and voltage
control [35], state estimation for electric power distribution systems [28], and curve segmentation [34]. The
convergence and parameterization aspects of the PSO have also been discussed [22,4,31]. The general princi-
ples of the PSO algorithm are outlined as follows.

• Particle formulation. The PSO simulates the bird flock by a swarm of particles. Each particle is a candidate
solution to the underlying problem and iteratively moves in the solution space. The particle is a real-valued
vector consists of parameter values that characterize the optimization problem. We denote the ith particle
by Pi = (pi1,pi2, . . . ,pin)T 2 Rn, where n is the number of parameters. The particles are collision free, that is,
multiple particles are allowed to move to the same position.

• Swarm. The PSO explores the solution space by flying a number of particles, called swarm. The initial
swarm is usually generated at random or according to a problem-specific heuristic. The swarm size is usu-
ally kept constant through iterations. At each iteration, the swarm of particles fly to new positions for tar-
geting the optimal solution by referring to previous flying experiences.

• Personal best experience and swarm’s best experience. The PSO enriches the swarm intelligence by collecting
the awareness from individual particle. In particular, the PSO tallies the best positions visited so far by
every particle. We denote by pbesti the best position ever visited by particle i. There are two versions for
recording the swarm’s best position, namely the lbest and gbest. In the lbest version, particle i keeps track
of the best position, denoted by lbesti, attained by its local neighborhood of particles. For the gbest version,
the swarm’s best position, denoted by gbest, is determined by any particles in the entire swarm. Hence, the
gbest model is a special case of the lbest model. Literature has shown that the lbest version is often better
than the gbest version.

• Particle movement. The PSO is an evolutionary algorithm according to which a swarm of particles evolve to
new positions until the stopping criterion is reached. At each iteration, particle i adjusts its velocity vij and
position pij through each dimension j by referring to, with random multipliers, the personal best position
(pbestij) and the swarm’s best position (lbestij) using Eqs. (10) and (11) as follows:
vij ¼ wvij þ c1r1ðpbestij � pijÞ þ c2r2ðlbestij � pijÞ ð10Þ
and
pij ¼ pij þ vij; ð11Þ
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where w is the inertia weight, c1 and c2 are the cognitive coefficients, and r1 and r2 are random real numbers
drawn from U(0,1). Hence the particle flies toward pbest and lbest in a navigated way while still can escape
from the barrier of local optimality by the stochastic mechanism. Clerc and Kennedy [4] has pointed out that
the use of a constriction factor is needed to ensure the convergence of the algorithm by replacing Eq. (10)
with the following:
vij ¼ K½vij þ c1r1ðpbestij � pijÞ þ c2r2ðlbestij � pijÞ� ð12Þ
and
K ¼ 2

j2� u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4u

p
j
; ð13Þ
where u = c1 + c2 and u > 4. Typically, u is set to 4.1 and K is thus 0.729.
• Stopping criterion. The PSO algorithm is terminated with a maximal number of iterations or the best par-

ticle position of the entire swarm cannot be improved further after a sufficiently large number of iterations.

3.3. The proposed algorithm

Inspired by the great success of PSO for solving many complex problems, we present a PSO-based multilevel
MCET algorithm incorporating the recursive programming technique to conquer the curse of high dimensionality.

We formulate each particle as a candidate solution to the multilevel MCET problem. For an n-threshold
MCET problem, the particle is formulated as
P ¼ ðt1; t2; . . . ; tnÞT; subject to 1 < t1 < t2 < � � � < tn < L: ð14Þ

Here, the n parameters in the particle representation correspond to the n multiple thresholds for the MCET
problem and serve as a candidate solution. The initial swarm consists of S particles which are generated ran-
domly according to (14). The values of the moments m0(a,b) and m1(a,b) for 1 < a < b < L are pre-computed
using the recursive programming technique and can be used for expediting the computation of the objective
function with n thresholds as described in Section 3.1.

In PSO, particles are competing for pbest and lbest by evaluating the solution quality, or fitness. For the
MCET problem, the particle deriving the minimal objective value is considered to be the best, so the objective
function (9) can be used for measuring the particle fitness. The velocity updating and particle movement follow
the guidelines of PSO, and the swarm evolves until the maximal number of iterations are experienced. When
the algorithm terminates, the best position visited so far by the entire swarm is output as the optimal solution
found by the algorithm. The PSO-based algorithm for the MCET problem is summarized in Fig. 1.
1. Initialize.

1.1 Compute ),(0 bam and ),(1 bam for L using the recursiveba1

programming technique.

1.2 Generate S particles according to the particle  formulation (14). 

1.3 Generate velocities randomly from [-1.0, 1.0]. 

2. Repeat for a given maximal number of iterations. 

2.1 Evaluate the fitness of each particle using (9) based on the pre-computed moments.

2.2 Determine the personal best position pbesti visited so far by each particle. 

2.3 Determine the local best position lbesti visited so far by the local

neighboring particles of each particle. 

2.4 Update velocities vij using (12) and (13). 

2.5 Update particles’ positions using (11). 

< < <

Fig. 1. PSO-based algorithm for the MCET problem.
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4. Experimental results and comparative performances

We implement the proposed PSO-based algorithm in C++ language with a Pentium IV 1.8 GHz PC. Four
images named ‘‘WORD’’, ‘‘HEAD’’, ‘‘LENA’’, and ‘‘PEPPER’’, with image size of 96 * 105, 468 * 414,
512 * 512, and 512 * 512, respectively, are used for conducting our experiments. The original test images
are shown in Fig. 2.

First, in the bilevel thresholding scenario, the proposed recursive programming technique can find the exact
optimal solution quickly. Fig. 3 shows the optimal bilevel MCET threshold derived by the recursive program-
ming technique and the corresponding segmented images. It is seen that, for images WORD and HEAD, the
minimum cross entropy criterion is feasible and the objects are well segmented. As for images LENA and
PEPPER, the image histograms are more complex, a sophisticated segmentation based on multilevel thres-
holding is needed.

For applying the multilevel thresholding on images LENA and PEPPER, we execute the PSO-based algo-
rithm with three particles for 200 iterations. The exhaustive search method is also conducted for deriving the
optimal solutions for comparison. Table 1 shows the multilevel MCET thresholds derived by the PSO-based
algorithm and the optimal thresholds reported by the exhaustive search method for image LENA. We observe
that the derived MCET thresholds by the PSO-based algorithm are equivalent (for the 2-threshold and 3-
threshold problems) or very close (for the 4-threshold problem) to the optimal thresholds derived by the
exhaustive search method, and the computation times needed for the PSO-based algorithm are negligible.
However, the computation time needed for the exhaustive search method grows exponentially with the num-
ber of required thresholds. Hence, the proposed PSO-based method is useful in finding multiple MCET
thresholds for complex image analysis.
Fig. 2. The test images: (a) WORD, (b) HEAD, (c) LENA, and (d) PEPPER.
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Fig. 3. The optimal bilevel MCET threshold and the segmented images.

Table 1
The MCET thresholds for LENA derived by the PSO-based method and the exhaustive search method, the computation times are
reported in seconds

n thresholds PSO-based Exhaustive

Thresholds CPU time Thresholds CPU time

2 93,147 0.01 93,147 0.26
3 85,127,169 0.01 85,127,169 16.20
4 81,116,145,178 0.01 81,116,146,179 987.12
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Fig. 4 shows the derived multiple MCET thresholds superimposed on the histograms for the PSO-based
method, the corresponding multilevel thresholded images are also illustrated. It is shown that as the number
of thresholds increases, the image quality improves.

Table 2 displays the derived multiple MCET thresholds and the consumed computation times by the PSO-
based algorithm and the exhaustive search method for image PEPPER. Analogous to the previous experiment,
it is seen that the derived MCET thresholds by the PSO-based algorithm are very close to the optimal thresh-
olds derived by the exhaustive search method, and the computation times needed for the PSO-based algorithm
are negligible. On the other hand, because the computation complexity for the exhaustive search is exponen-
tial, the needed CPU times for n P 3 are absolutely unacceptable.

Fig. 5 corresponds to the derived multiple MCET thresholds superimposed on the histograms and the cor-
responding segmented images by the proposed PSO-based method. Similarly, the segmented images are more
informative as the number of thresholds increases. Thus, the proposed PSO-based algorithm is suited for more
complex image analysis.

To analyze the convergence behavior of the proposed PSO-based algorithm, we examine whether all of the
particles of the swarm evolve to the same optimization target. We propose the information entropy for measur-
ing the similarity convergence among the particles as follows. Let pi be the probability with which a particle in
the swarm chooses gray level i as one of the MCET thresholds. We can calculate the particle entropy as follows.
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Fig. 4. The multiple MCET thresholds and the segmented images by the proposed PSO-based method for image LENA.



Table 2
The MCET thresholds for PEPPER derived by the PSO-based method and the exhaustive search method, the computation times are
reported in seconds

n thresholds PSO-based Exhaustive

Thresholds CPU time Thresholds CPU time

2 68,133 0.01 68,134 0.32
3 64,117,163 0.01 64,117,164 21.51
4 51,87,125,167 0.01 51,87,126,167 1037.64
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Fig. 5. The multiple MCET thresholds and the segmented images by the proposed PSO-based method for image PEPPER.

P.-Y. Yin / Applied Mathematics and Computation 184 (2007) 503–513 511
Entropy ¼ �
XL

i¼1

pilog2ðpiÞ: ð15Þ
The particle entropy is smaller if the probability distributions are denser. As such, the variations of particle
entropy during the swarm evolution measure the convergence about the similarity among all particles. If the
particles are highly similar to one another, the values of the non-zero pi would be high, resulting in denser
probability distributions and less entropy value. This also means the swarm particles reach the consensus
about which gray levels should be selected as the MCET thresholds for the test image.



Fig. 6. The variations of the particle entropy as the number of iterations increases.
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Fig. 6 shows the variations of particle entropy as the number of iterations increases. It is observed that the
trend of the entropy value plunges down as the swarm evolves during the first 60 generations since the particles
exchange information by referring to the swarm’s best solution. After this period, the entropy value is rela-
tively fixed due to the good quality solutions found and the high similarity among the particles, meaning
the particles are resorting to the same MCET thresholds as the swarm converges.

5. Conclusions

In this paper, we have proposed a particle swarm optimization (PSO)-based method for selecting multiple
minimum cross entropy thresholds (MCET). The contributions of our paper include: (1) A recursive program-
ming technique is proposed for reducing the computation complexity of the MCET objective function by an
order of magnitude. (2) We extend the application of MCET to multilevel thresholding such that the real-time
complex image analysis is feasible. (3) The experimental result is promising and it encourages future research
for applying PSO to complex image processing and computer vision problems.
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