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Abstract

The small mass and significant zero point motion of solid 4He make it very different from its
conventional counterparts. In the seventies it was suggested that at very low temperatures
solid helium might flow like a superfluid while remaining a crystal. This hidden “supersolid”
phase was subsequently almost ruled out both by experiments and theoretical calculations.
However, in 2004 Kim and Chan reported that when rotated at temperatures below 230mK
a fraction of solid 4He does indeed refuse to be dragged around by its walls, a famous effect
hitherto only seen in its superfluid counterpart. In this paper, I will describe the experiment,
its consequences and possible theoretical explanation.
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Kim and Chan’s Experiment

I will start directly with the experiment. The authors used a torsional oscillator with an an-
nular channel which was filled with high-purity 4He and solidified by increasing the pressure.
A driving motor and lock-in amplifier were used to make the rod oscillate and measure its
resonant frequency. As the temperature was lowered below 230mK it was found that the res-
onance period decreased steadily before saturating at about 40mK. Since the period is given

by 2π
√

I
G

this implies a decrease in the moment of inertia I. The authors concluded that

part of the solid helium was decoupling from the oscillations of the cavity. In other words,
in the rest frame of the rod a small fraction of helium was was flowing without friction.

The superfluid fraction fs = ρs/ρ was found by taking the measured moment of inertia
and using the relation,

I(T ) = Iclassical(1− fs(t))

It depends both on the temperature and the maximum velocity of the oscillator. For all
pressures from 26 bars (close to the melting point) to 65 bars fs increased as the temperature
is decreased reaching a maximum that ranges from .75% to 1.7% depending on the pressure.
The authors speculate that the variation in fs was caused by crystalline imperfections and
grain boundaries in the sample. The dependence of fs on the maximum velocity of the walls
is shown in the attached figure. It suggests that there is a (pressure dependent) critical
velocity ωc and the supersolid can only decouple during the part of the cycle where the
velocity is less than ωc.

As a control, a similar setup was run with a Magnesium barrier in the annulus. If
superflow was indeed occurring around the axis of rotation previously, the barrier would
now prevent it, and there would be no decrease in the resonance period. Actually a small
decrease (upto 2% of that in the unblocked channel) in the resonance period was observed
as the temperature was lowered. The authors attribute this to the decoupling caused by
irrotational flow of solid 4He. When liquid 4He was used in the blocked channel, the fractional
decoupling observed was comparable to the solid case, supporting this explanation.

Technicalities

Previously the same researchers had reported superflow in solid helium confined in porous
Vycor glass, but there were concerns that the effect there could be purely due to the “liquid”
behaviour of Helium adsorbed on the surface of the pores. The present paper is the first
observation on of superflow in bulk solid helium. A similar experiment by Bishop et. al. [9]
found no such effect. It should be noted that the purity of the 4He is very important since
only 441 ppm of 3He was enough to quench the supersolid phase in the Vycor experiment.
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Figure 1: Experimental Setup - from [1]

This could be one reason for the failure of previous efforts (a comprehensive list is given by
Meisel [9]) to detect a supersolid phase.

Theory

This section rests on much shakier ground since by the pigeonhole principle, one or more of
the authors mentioned below must be wrong. I have tried to summarise as much of each
approach that I could understand. The last two papers cited are unpublished and I am
certainly not qualified to review them. Caveat emptor.

Leggett’s Argument

In 1970 Leggett [4] suggested that a solid could have the property of non-classical rotational
inertia just like superfluid helium. He proposed an experiment very similar to the one
described above and gave an argument leading to an upper bound on the supersolid fraction
ρs/ρ. I will briefly sketch his argument here, due to its historical importance.

Consider the n-particle ground state wavefunction of a crystalline bosonic solid confined
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Figure 2: The superfluid fraction at 41 bars - from [3]. The lines are labelled by the maximum
velocity of the rotating chamber

4



to a thin annulus of radius R in a cylinder at T = 0. Our Hamiltonian is the standard,

Ĥ = − ~2

2m

n∑
j=1

∇2
j +

1

2

n∑
j,k=1

U(~rj − ~rk) +
N∑

j=1

V (~rj)

In cylindrical coordinates Ψ is periodic, satisfying the condition,

Ψ(r1, z1, θ1; · · · rj, zj, θj + 2π; · · · rn, zn, θn) = Ψ(r1, z1, θ1; · · · rj, zj, θj; · · · rn, zn, θn)

for each i. Now if we rotate the enclosing surface by an angular velocity ω the Hamiltonian
becomes time dependent but we can simplify things by putting,

θj = θ′
j + ωt (1)

Ψ(θj, t) = Ψ′(θ′
j, t)e

imωR2
∑

i θ′(t)/~ (2)

with a new boundary condition,

Ψ(r1, z1, θ1; · · · rj, zj, θj + 2π; · · · rn, zn, θn) = (3)

e−2πimR2ω/~Ψ(r1, z1, θ1; · · · rj, zj, θj; · · · rn, zn, θn) (4)

This unitary transformation works if we ignore the width d of the annulus compared to
its radius. The Hamiltonian is time independent in the new coordinates and we could
variationally find the minimum expectation value E(ω). If we assume that as in a superfluid,

∆E = Eo − E(ω) =
1

2
(ρs/ρ)Ioω

2

where Io is the classical moment of inertial, then we could calculate ρs/ρ. If the system is
to avoid superfluidity E(ω) should be independent of ω; in other words we should be able
to vary the ground state wave-function to satisfy obey the boundary condition (3) without
changing the expection value of the energy 1. One way to achieve this to modify the phase of
Ψ in regions where it almost vanishes and leaving it untouched elsewhere. This will work if
the wavefunction is sufficiently “disconnnected”, i. e. any path from θi to θi+2π goes through
a region where Ψ essentially vanishes. This “localisation” of Ψ prevents superfluidity in a
conventional solid.

Leggett then suggests a variational scheme of the form,

Ψ = exp

{
n∑

i=1

φ(~ri; ω)

}
Ψo(~r1 · · · ~rn) (5)

1or at least have |E(ω)− Eo| < ~2/mR2 as expected from ordinary superfluidity
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where Ψo and φ are real and φ satisfies the required boundary condition

φ(θ + 2π) = φ(θ)− 2πmR2ω/~

We get

∆E = ~2/2m

∫
(∇φ)2ρ(~r)d~r

where ρ(~r) is the single particle probability density. Further computation depends on the
exact form of ρ.

Estimates and Calculations A numerical calculation was performed by Saslow, [6] who
took a crystal lattice with ρ(~r) the sum of gaussians centered at each lattice point,

ρ(~r) =
∑
sites

ρsite, ρsite(r) = (πb)3/2 exp(−r2/b2)

If a is the distance between the lattice sites then intuitively ρs/ρ should increase with b/a
i. e. more overlap between neighbouring sites. That is indeed what was obtained (graph
attached).

Guyer [5] interpreted Leggett’s mechanism to be the cooperative tunneling of pairs of
particles resulting in motion of the single-particle density function. From NMR and X-ray
scattering data, he estimated that ρs/ρ ≈ 10−6 and a minimum temperature below 0.1mK
putting it almost outside the reach of experiment. This analysis was generally regarded as
definitive before Kim and Chan’s results.

Chester and others

Chester suggested that a system of strongly interacting bosons could exhibit Bose-Einstein
condensation and crystalline ordering at the same time. He based his conjecture on a theorem
of Onsager and Penrose which says that provided the multiparticle wavefunction is a Jastrow
state, BEC results in the thermodynamic limit. A Jastrow state is given by,

Ψ = exp(−1

2

∑
i6=j

u(rij))

where the conditions on u(r) state roughly speaking that it has a hard core, is bounded
below, and falls off sufficiently quickly. The theorem holds even after we add to u a term for
the zero-point energy of long-wavelength density waves,

χ(r) =
1

N

∑
0<k<kc

ei~k·~r 2mc

~k
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Figure 3: Calculated superfluid fraction by Leggett’s method - from [7]

Next an effective temperature is introduced by,

u(r) + χ(r) → u(r) + χ(r)

Teff

The resulting probability distribution is identical to the Gibbs distribution for N particles
interacting via a two-body potential. Chester now reasons that the Gibbs distribution is
applicable to a very wide range of systems over all phases. So it is possible that a sufficiently
low temperature the appropriate u for 4He will give rise to crystalline ordering. This is ruled
by another theorem of Onsager and Penrose but the result doesn’t hold if there is macroscopic
concentration of vacancies in the lattice sites at T = 0. Then BEC and crystalline ordering
could occur simultaneously. This is similar to the speculation of Andreev and Lifshitz[15]
that frozen vacancies and defects at zero temperature could condense and lead to a supersolid
phase.

Estimates From observations of vacancy-waves in 4He, Guyer [5] deduces that that number
of vacancies at T = 0 for N particles is less than 10−14N . Meisel’s review [9] states that all
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experimental evidence argues for only thermally activated vacancies whose concentration in
negligible below 0. 2K. Finally Ceperley [11] notes that that according to simulations Jastro
wavefunctions don’t crystallize easily and their transition density is far removed from the
experimental value, so it is unwise to base predictions on them

Naysayers

In 1987, Pollock and Ceperley [13] had worked out a detailed model for calculating the
superfluid densities and momentum distribution using path integrals. When applied to 4He,
their model gives agrees well with experiment and has the advantage of not requiring a
trial wave function or ad hoc approximations. After Kim and Chan’s results, Ceperly [11]
revisited the problem and concluded numerically that exchange processes in solid helium are
very localised and cannot possibly lead to superflow.

Prokof’ev and Svistunov [10] also used the above approach to reach a similar conclusion.
They speculate that the Kim and Chan’s results arise from a heterogenous sample that has
solid microcrystallites with superfluid interfaces. According to them, this would explain the
broad distribution of transition temperatures in the data and also the vanishing of of ρs at
Tc with zero derivative intead of the (Tc−T

Tc
)0.671 expected from bulk superfluidity.

Conclusion

It seems that the question of the supersolid phase will only be settled one way or the other
experimentally. Future experiments will probably improve on the homogeneity of the sample
and verify whether the phenomenon is actually an equilibrium effect (in the present case the
the chamber was oscillating as the temperature was lowered). Observation of the quantisation
of circulation, if possible, could be decisive. Perhaps a future ESM student will report on
the answer.
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