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Abstract

Deep learning based feature extraction combined with visual attention mechanism is

shown to provide good results in content-based image retrieval (CBIR). Ideally, CBIR

should rely on regions which contain objects of interest that appear in the query image.

However, most existing attention models just predict the most likely region of interest

based on the knowledge learned from the training dataset regardless of the content in the

query image. As a result, they may look towards contexts outside the object of interest,

especially when there are multiple potential objects of interest in a given image. In this

paper, we propose a conditional attention model which is sensitive to the input query

image content and can generate more accurate attention maps. A key-point detection and

description based method is proposed for training data generation. Consequently, our

model does not require any additional attention label for training. The proposed attention

model enables the spatial pooling feature extraction method (generalized mean pooling)

improves image feature representation and leads to better image retrieval performance.

The proposed framework is tested on a series of databases where it is shown to perform

well in challenging situations.

1 Introduction

Content based image retrieval (CBIR) aims to find the most similar images to a given query

image. Due to the variation in the image content, a simple comparison of the pixel repre-

sentations could not provide an appropriate result. The main challenge in CBIR systems

is the ambiguity in the high-level (semantic) concepts extracted from the low-level (pixels)

features of the image. In earlier conventional CBIR systems, image features are normally

described by a hand-crafted feature extractor, which is based on sets of low-level features,

such as colour [29], texture [15], shape [3] or gradient [14], or by modelling the visual atten-

tion on top of the features’ representation, [20]. However, by using low-level feature based

methods we are not able to fill the gap between the low-level representations and the high-

level semantic meaning [35]. To solve this problem, a series of convolution neural network

(CNN) based methods are proposed to extract compact semantic-aware image representation

for the CBIR task. The Neural Code model [2] fine-tunes a pre-trained AlexNet [11] on the

relevant dataset and directly uses the fully connected layers’ outputs as the feature vector for

image retrieval. Other approaches include the hash codes [13], bag of visual words [16] and

spatial pooling [25, 26, 30, 34].

c© 2020. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.
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All CNN-based methods used so far for CBIR rely on uniformly transforming the final

convolution layer’s output into a feature vector, lacking the ability to localize and focus on

the region of interest (ROI). Such approaches are likely to be misled by irrelevant infor-

mation, while missing the relevant information during the image retrieval. Hence, methods

considering weighting mechanisms or visual attention are proposed to address these draw-

backs. Bags of local convolutional features (BLCF) [17] combines saliency weighting over

local CNN features by using element-wise multiplications for instance search. This design

improves model’s performance but suffers from the inconsistency between defining the the

human attention and the actual matching regions between two images. The DEep Local

Features (DELF) [19] employs an attentive local feature descriptor for image retrieval with

a tightly coupled attention mechanism which can score and select most relevant local fea-

tures for image matching. The weighted generalized mean pooling (wGeM) [33] applies a

trainable spatial weighting mechanism over the activation of the last convolution layer to de-

scribe how important each activation’s location is for image retrieval. However, the attention

module in wGeM model actually does not attempt finding the image region with the highest

probability of relevance to the query image but just predicts the most likely region of inter-

est based on the knowledge learned from the training dataset. In some cases, the attention

module would fail, looking for regions which are outside the objects of interest [33].

Overall, the main contributions of this paper are listed as follows:

• We propose a new conditional attention model for localizing the region of interest

(ROI) from the candidate image that matches the content of the query image. The pro-

posed attention model is sensitive to the input query content and it can be combined

with existing feature extraction method to boosts original method’s retrieval perfor-

mance.

• We consider that repeating scene details in various images, represent important clues

for that scene. We then use the pre-trained key-point detector SuperPoint [4] to find

correspondences of matching image pairs which is used for generating training data

for the proposed CBIR conditional attention model.

We show that our attention model can generate accurate attention maps for candidate images

based on the content in the query image, even when there are actually multiple potential ob-

jects of interest in a given image. When combined with the generalized-mean (GeM) pooling

from [25], our attention model can always improve the original feature extraction method’s

performance and lead to the state of art results in some evaluation datasets. The related

work is outlined in Section 2 The proposed Conditional Attention Network and training data

generation is described in Section 3 and how this is embedded into the CBIR pipeline is

explained in Section 4. Experimental results are provided in Section 5 and the conclusions

are drawn in Section 6.

2 Related work

Spatial pooling. Early CNN based image feature extraction for CBIR, like the Neural Code

model [2], implements fully connected (FC) layers transforming the 3D feature tensor out-

put of the last layer to a fixed length feature vector. Razavian et al., [26] perform spatial

pooling to get a compact feature vector from the 3D convolution feature tensor of a CNN.

Later, different types of global pooling are proposed for the CBIR such as sum pooling [34],

max pooling [30] and the generalized mean (GeM) pooling [25]. Compared with the FC

layer based method, spatial pooling is not sensitive to the input image size. It can process

images of any size, without any cropping or change in the aspect ratio. These global pooling
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methods are then combined with a Region Proposal Network (RPN) selection mechanism

[5] or employs an end-to-end trainable weights mechanism [33]. However, these attention

mechanisms are not sensitive to query content and may look outside of target object.

Co-attention. There are already some query sensitive attention models proposed for differ-

ent image recognition tasks. The query-guided end-to-end person search network (QEEPS)

[18] implements a Query-guided Region Proposal Network (QRPN), leveraging query-ROI-

Pooled features to emphasize discriminant patterns in the target image to produce relevant

solutions. The co-attention and co-excitation (CoAE) framework [8] implements the non-

local operation [32] to fuse the features from the target and query images, generating query

relevant region proposal for one-shot object detection tasks. The SiamMask [31] uses depth-

wise cross-correlation to fuse features from the query and search images. Then the response

map is fed into convolution layers to generate pixel-wise binary masks for visual object

tracking. These co-attention architectures involve different feature fusion methods and re-

quire extra bounding box annotation for a region proposal network training. Meanwhile, our

conditional attention network uses layers of convolutions for feature fusion and it is trained

using automatically generated data.

3 Conditional Attention Network and training data

In the following we describe the characteristics of the Conditional Attention network archi-

tecture and the generation of the training data using the attention maps.

3.1 Network architecture

We develop a conditional attention model which defines the region of interest (ROI) in can-

didate images under the condition of the content in the query image. The architecture of our

Conditional Attention Network is shown in Fig. 1. The conditional attention map generation

pipeline consists of three processing stages: visual encoding, feature fusion and the attention

map generation.

Visual feature encoding. The proposed attention model takes a candidate image and a

query region of interest (ROI) image as input. We consider a VGG16 network [28], without

the fully connected layers and the last max-pooling layer, as the backbone network to extract

the visual feature information from input images, as shown in the upper-left side of Fig. 1.

Given the candidate image Ic of size Hc ×Wc, the output of the VGG16 network is a 3D

tensor Xc ∈ R
512×Hc

16 ×
Wc
16 , where 512 is the number of feature channels. The query ROI

image Iq of size Hq ×Wq, is also fed into the same backbone network and outputs a 3D

tensor Xq ∈ R
512×

Hq
16 ×

Wq
16 . In order to obtain the global feature vector of the query ROI, we

implement the channel-wise global average pooling (GAP) to construct a compact feature

vector Vq from the 3D feature tensor Xq. Let Xn
q be the n-th channel of Xq where n ∈

{1,2, . . . ,512}, the GAP is given by:

Vq = [vq
1
. . .vq

n
. . .vq

512], vq
n =

1
∣

∣Xn
q

∣

∣

∑
x∈Xn

q

x (1)

Feature fusion. To fuse a one-row query ROI feature vector with a 3D feature tensor of

the candidate image, we firstly consider the ROI feature vector to compare with the infor-

mation at each location of the 3D feature tensor from the candidate image. The ROI feature

vector and the 3D feature tensor are separately location-wise L2-normalised before being

concatenated. Then, the concatenated feature tensor is fed into the fusion module. Within
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Conditional Attention Network

VGG16

VGG16

shared 

Global Average 

Pooling

Duplicate

Image feature Concatenated feature

ROI feature 
vector

Fusion 

Module

Sigmoid

Concatenated 
feature

1024
w

h

1024
w

h

Multi-Scale Block

512
w

h

512
w

h

512
w

h

512
w

h

1
w

h

Conv
(3x3)

w

h

Conv
(3x3)

1
w

h

Conv
(3x3)

Fusion Module

w

h

Conv 
(1x1)

C/4
w

h

C/4
w

h

Conv 
(3x3)

C/4
w

h

C/4
w

h

Conv 
(5x5)

C/4
w

h

C/4
w

h

Conv 
(7x7)

C/4
w

h

C/4
w

h

Conv 
(1x1)

C/4
w

h

Conv 
(3x3)

C/4
w

h

Conv 
(5x5)

C/4
w

h

Conv 
(7x7)

C/4
w

h

Concatenate

C
w

h

C
w

h

w

h

Conv 
(1x1)

C/4
w

h

Conv 
(3x3)

C/4
w

h

Conv 
(5x5)

C/4
w

h

Conv 
(7x7)

C/4
w

h

Concatenate

C
w

h

Multi-Scale Block

w

h

Conv 
(1x1)

C/4
w

h

Conv 
(3x3)

C/4
w

h

Conv 
(5x5)

C/4
w

h

Conv 
(7x7)

C/4
w

h

Concatenate

C
w

h

Multi-Scale Block

256
w

h

Conv
(3x3)

256
w

h

Conv
(3x3)

Ground-Truth

Attention map

Mean 

Square 

Loss

w

h

cI

qI

Figure 1: Architecture of the proposed Conditional Attention Network.

the fusion module, the concatenated feature tensor is first processed sequentially through

three multi-scale convolution blocks, shown in orange at the bottom left part of Fig. 1. Each

multi-scale convolution block consists of 4 convolution layers with different kernel sizes and

with all outputs of the convolution layers concatenated as the block’s final output, as illus-

trated in the bottom right part of Fig. 1. The output channel count of the first multi-scale

block is 1024 while that of the other two is 512. After that, we use two 3× 3 convolution

layers for dimension reduction, shown in violet at the bottom of Fig. 1, and finally obtain a

one-channel feature map.

Attention maps. After the fusion step, we use a sigmoid activation function to normalize

each location value on the one-channel feature map to the range of (0,1) and generate the final

attention map for the candidate image Ic under the condition of the query image content from

Iq. The attention map models the likelihood that each location from Ic that matches with the

Iq with the precision of
(

Hc
16
,

Wc
16

)

.

We train the network using a large number of image pairs, where each pair represents the

context of the same scene with annotated matching ROIs and corresponding ground-truth

attention maps, as explained in Section 3.2. Let us consider A be the generated attention

map of the candidate image Ic conditioned by the information from the query’s ROI Iq,

while Â is the ground-truth attention map. We then consider the mean square error (MSE)

between the corresponding image regions as the loss function:

MSE(A, Â) =
1

|K| ∑
k∈K

(Ak − Âk)
2
, (2)

where K represents all locations from the attention map and Ak is the attention map value at

location k ∈ K.

3.2 Training data generation

In the following we assume that we have pairs or sequences of corresponding images, rep-

resenting sections of the same scene, but which have been acquired at different times, under



HU, BORS: CONDITIONAL ATTENTION FOR CONTENT-BASED IMAGE RETRIEVAL 5

different conditions and characterized by different image acquisition parameters. A good ex-

ample of such data is the image tuple dataset from [23, 25] which contains a sizeable number

of annotated matching image pairs. The image pairs, displaying parts of the same scene, can

be used to find the corresponding regions. By finding the correspondences between the im-

age pairs, we generate query ROIs and corresponding ground-truth attention maps, which

serve as the training data for the Conditional Attention network.

In order to find the correspondences between identical regions from the given paired

images we use an intermediate feature descriptor. The SuperPoint [4] network is able to

extract local image descriptors and find key-point correspondences among matching images.

To obtain robust key-points, for each matching image pair, both query and positive images

are separately resized keeping the original image aspect ratio. Then we perform key-point

matching at the resolution for each of the images. In our implementation, we consider 4

different resolutions with {128,256,362,512} for the long side, so we obtain 4×4 maps of

key-point matches for each image pair. Matching key-points of the query and positive images

at different scales are separately projected to the key-point map MQ of size HMQ ×WMQ and

MP of size HMP ×WMP while keeping the original aspect ratio. Choosing the right size for

the key-point map is important. If the key-point map size is too small, the precision of

the generated ROI will be very low, while if the key-point map size is too large, then the

key-points will be too sparse to localize and represent the appropriate ROIs in the images.

During the training stage, we resize all positive image and query ROI to a maximum size of

362×362 while keeping the original image ratio. After processing by the fully convolutional

VGG16 architecture and being down-sampled 4 times by 4 max-pooling layer, where each

max-pooling layer will reduce the size of its input to half, the output generated attention map

of our Conditional Attention Network has a maximum size of 22×22 ( 362
16

≈ 22). The size

of the ground-truth attention map is supposed to be equal to that of the generated attention

map for the mean square error calculation. By taking all these aspects into consideration we

set the long side of both key-point maps MQ and MP to be 22 while keeping the original

image’s aspect ratio. According to the empirical results, this setting can generate accurate

ROIs and attention maps which would also meet the calculation requirements for the mean

square error from equation (2).

SuperPoint

Matching key-
points projection 
and aggregation

Matched points 
are marked by 
the same color

Find connected 
regions in MQ and 

corresponding 
regions in MP

Only keep 
region larger 

than 3x3

Project bounding 
box back to 

original image

ROI AttnetionROI Attnetion

ROI AttnetionROI Attnetion

key-point map MQ

key-point map MP

QI

PI

Figure 2: The pipeline for training data generation. The selected matching regions are pro-

jected back into the original images in order to define the ROI. The long side of all key-point

maps and the final generated ground-truth attention map is 22 while preserving the original

image ratio.
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By using the matching key-points we consider two criteria for defining the regions of

interest: 1. the region is defined within the top-left and bottom-right key-points; 2. the region

is defined by connected key-point regions from the key-point map which is larger than 3×3

pixels. Then we label all locations within ROIs by 1 and with 0 otherwise in order to create

the final binary ground-truth attention map. The pipeline for calculating the matching regions

and defining ROIs, is shown in Fig. 2. Depending on the SuperPoint model output, each

image pair can generate several matching pairs for the ROI and the corresponding ground-

truth attention map. In other words, one positive image pair can derive several sets of (Iq, Ic,

Â) for training the Conditional Attention network.

4 Embedding the conditional attention model into the

CBIR pipeline

The proposed Conditional Attention model, described in the previous section represents a

completely independent module which can be integrated into a deep learning CBIR model.

Recently, spatial pooling was successfully used for feature extraction from images while the

Generalized Mean pooling (GeM) [25], provides the state of the art performance on common

image retrieval evaluation datasets. In the following we explain how to embed the proposed

conditional attention map model into the original GeM feature extraction pipeline.

GeM feature extraction model contains two parts: a convolutional neural network (CNN)

for the 3D feature map extraction and a generalized mean pooling layer to transform the 3D

feature map into a compact feature vector. The dimension of the resulting vector represents

the channel count of the 3D feature map. Assume that the 3D feature map of the candidate

image Ic extracted by the GeM backbone network is F of size C×HF ×WF and the attention

map of Ic under the condition of query ROI Iq generated by our attention network is A, which

is resized to 1×HF ×WF . We use the following equation from [12] to mask F with A:

F′ = F⊙ [(1−θ)A⊕θ ] (3)

where ⊙ and ⊕ denote element-wise multiplication and addition, respectively, while θ = 0.5.

Test stage attention map generation and refinement 

Conditional 

Attention 

Network

W1 W2 W3 W4W1 W2 W3 W4
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Max Pool
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Figure 3: Attention map generation and refinement with the multi-scale scheme during the

testing stage.

During the testing stage, in order to obtain more accurate attention maps, we refine the

initially generated attention map before combining it with GeM features [25]. In Fig. 3, we

show that the query ROI image Iq is fed into the Conditional Attention Network, together
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with the candidate image Ic represented at 4 different scales {362,512,1024,2048} for the

long side, while preserving the initial aspect ratio. All attention maps generated at different

scales are resized to the same resolution and then weighted and their values added together.

The weights are evaluated by implementing max pooling and the Softmax activation function

on the attention maps. After that, we preserve the connected highlighted region that contains

the highest score, as shown in Fig. 3, and normalize the attention map using the following

min-max normalization equation:

X′ =
X−Xmin

Xmax −Xmin

, (4)

where X represents the original tensor, Xmin and Xmax are the minimum and maximum value

in X, respectively.

In addition, as query expansion has been widely used for image retrieval (e.g [6, 9, 30,

34]), we use the α-weighted query expansion (αQE) [25] for retrieval result reranking. αQE

acts on feature vectors of top-ranked nQE images from the initial retrieval result by applying

weighting averaging and renormalization. The weight of the i-th ranked image descriptor

is defined by (Vq
TVi)

α where Vq and Vi are the feature vectors corresponding to the query

image and the i-th ranked image. The aggregated feature vector serves as a query descriptor

for the second-round retrieval and produces the final retrieval result.

5 Experiments

In this section we discuss the implementation details of training, evaluation setting and com-

pare the results obtained by the proposed Conditional Attention model to other CBIR ap-

proaches.

5.1 Training setup and implementation details

Our conditional attention model is trained with Adam [10], using an initial learning rate

l0 = 10−3, an exponential decay exp(−0.1i) over epoch i, momentum = 0.9 and weight

decay = 5× 10−4. The experiments are performed on an NVIDIA Titan XP GPU. In order

to find the correspondences between images representing the same scene, we consider the

image tuple dataset from [23, 25], which contains 91,642 images divided into 551 clusters,

while 181,697 matching image pairs are annotated. During the training, at each training

step we input a tuple of images. Each training image tuple consists of 1 query image, 1

positive image and 5 negative images. In other words, 1 training tuple contains 6 image

pairs. Within each tuple, given the positive image pair, we can generate several pairs of query

ROI and corresponding ground-truth attention maps Iq and Â, respectively, as described in

Section 3.2. These query ROIs and ground-truth attention maps are then used for training.

When considering each negative image pair, we enforce that Iq, defined through positive

matches, would not match any region within the negative image. In this case Â = 0. The

training is performed for 100 epochs. For each epoch, 1200 image tuples are randomly

selected from the image tuple dataset with a batch size of 5 training tuples.

For the GeM feature extraction model, we directly use the pre-trained GeM network pro-

vided in [25], which has been fine-tuned on the image tuple dataset. The GeM network with

VGG16 [28], and Resnet101 [7], are tested as backbone architectures in our experiments.
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5.2 Evaluation datasets

For the evaluation experiments, we consider 6 benchmark databases for image retrieval per-

formance evaluation: Oxford5k [21], Paris6k [22], Oxford105k [21], Paris106k [22], ROx-

ford5k [24] and RParis6k [24]. Oxford5k contains 5062 images which are collected from

Flickr with 17 tags of buildings from Oxford. All images are manually annotated and this

gives 55 images in all as queries for the image retrieval evaluation. Paris6k, consisting of

6412 images, is also collected from Flickr by searching for 12 Paris landmark tags and it

also gives 55 query images. Oxford105k and Paris106k are expanded versions of the Ox-

ford5k and Paris6k by adding additional 100K distractor images from Flickr. ROxford5k

and RParis6k are revisited versions of Oxford5k and Paris6k, with each containing 15 ex-

tra new challenging queries while the potential positive images of each query are arranged

into 3 groups with different difficulty levels of Easy, Medium, Hard. All these 6 evaluation

datasets provide bounding boxes with the ROI for each query image. Following the standard

evaluation protocol, we crop each query image with its bounding box and the cropped query

image is fed into the GeM [25] network to get the feature vector for each query image. For

each candidate image, when comparing its similarity with each query image, its attention

maps conditioned by each cropped query image are separately generated and combined with

its convolution feature, as described in Section 4. As the output feature vector of the GeM

network is L2-normalized, the inner product is used for calculating the similarity measure.

During the evaluation, all input images are limited to a maximum size of 1024× 1024. We

also implement the learned whitening and the multi-scale representation schemes, proposed

in [25], for better image retrieval performance. The mean average precision (mAP) [21] is

used as a performance measure for the results on all datasets.

5.3 Content Based Image Retrieval (CBIR) results

Candidate 
Image

Query
ROI

Generated 
Attention

Heatmap

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9

Figure 4: Attention map results for the proposed conditional attention model. Candidate

images and the query ROIs are displayed in the first and second rows, respectively. Third

and fourth rows represent the generated attention maps and corresponding heatmaps, after

refining, min-max normalization and up-sampling to the original image size.

In Fig. 4 we show some examples of generated attention maps when considering various

candidate image and query ROI pairs. Scene examples 1-4 show that our attention model can

accurately locate the target object under a variety of challenging situations, such as when the
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images are characterised by different acquisition parameters, changes in the light condition

or when the object of interest is small and far away. In the examples 5 and 6 we can see the

generated attention map for the same candidate image but considering different query ROIs.

Unlike the wGeM failure example, shown in [33], our model can correctly highlight the

target query object based on the input query ROI, even when there are two potential objects

of interest in the same image. The example 7 shows how the proposed conditional attention

model works with unseen image content in the training procedure. Although the network

was trained with architecture images, it can be also used to retrieve human faces. Example 8

shows an example where our model fails. Because we use global average pooling to extract

the features from query ROI, if the query ROI contains too much distraction content, the

retrieval could fail. As shown in example 9, if we manually crop the target pyramid and then

set its background to zero, the generated attention map improves.

Net Method Attention map refined Oxford5k Paris6k

VGG16

GeM [34] - 87.9 87.7

*GeM+CA No 88.5 88.8

*GeM+CA Yes 88.7 88.9

Table 1: Image retrieval performance (mAP) comparison when considering the attention

map refinement and without.

For the retrieval performance evaluation, we first evaluate the effect of attention map

refinement as shown in Fig. 3. Image retrieval performance (mAP) results are provided in

Table 1, and we can observe that the attention map refinement improves mAP by 0.2 on

Oxford5k and 0.1 on Paris6k.

Net Method Fine-tuned Oxford5k Oxford105k Paris6k Paris106k

VGG16

SPoC [34] No 68.1 61.1 78.2 68.4

CroW [9] No 70.8 65.3 79.7 72.2

BoW-CNN [16] No 73.9 59.3 82.0 64.8

NetVLAD [1] Yes 71.6 – 79.7 –

R-MAC [6] Yes 83.1 78.6 87.1 79.7

GeM [25] Yes 87.9 83.3 87.7 81.3

*GeM+CA Yes 88.7 84.5 88.9 84.1

Res50 DELF [19] Yes 83.8 82.6 85.0 81.7

Res101

R-MAC [6] Yes 86.1 82.8 94.5 90.6

GeM [25] Yes 87.8 84.6 92.7 86.9

WGeM [33] Yes 88.8 85.6 92.5 –

*GeM+CA Yes 89.4 86.2 93.0 87.1

Re-Ranking (R) and Query Expansion (QE)

VGG16

CroW+QE [9] No 74.9 70.6 84.8 79.4

BoW-CNN+R+QE [16] No 78.8 65.1 84.8 64.1

R-MAC+QE [6] Yes 89.1 87.3 91.2 86.8

GeM+αQE [25] Yes 91.9 89.6 91.9 87.6

*GeM+CA+αQE Yes 93.1 90.1 92.9 88.9

Res50 DELF+QE [19] Yes 90.0 88.5 95.7 92.8

Res101

R-MAC+QE [6] Yes 90.6 89.4 96.0 93.2

GeM+αQE [25] Yes 91.0 89.5 95.5 91.9

WGeM+QE [33] Yes 91.7 89.7 96.0 –

*GeM+CA+αQE Yes 91.9 90.2 96.4 93.3

Table 2: Image retrieval performance (mAP) comparison on Oxford5k, Oxford105k, Paris6k

and Paris106k dataset. Fine-tuned indicate whether the model is only off-the-shelf, trained

on ImageNet [27], or fine-tuned on other training datasets. * marks our method and it is

always implemented with learned whitening, multi-scale representation scheme [25] and the

attention map refinement from Fig. 3. The highest mAP score is highlighted in bold.
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The retrieval results on Oxford5k, Paris6k, Oxford105k and Paris106k are shown in

Table 2. The combination of our Conditional Attention Network (CA) with GeM feature

extraction (GeM+CA) can always improve over the original GeM method’s performance.

When VGG16 [28] is used as the backbone network of GeM, our method outperforms other

methods shown in the table. When Resnet101 [7] is implemented as the backbone network

of GeM and combined with αQE [25], our method GeM+CA+αQE provides the best results

on these four datasets. For the query expansion we set nQE = 10 for Oxford, nQE = 50 for

Paris and α = 3. In Table 3 we provide the results on ROxford5k and RParis6k datasets.

Our attention model can still boost the original GeM method’s performance and was only

outperformed by DELF [19] model. However, DELF is a local descriptor based feature rep-

resentation method which is trained on Google landmark dataset [19], which is a much larger

dataset than the image tuple dataset used for training our attention model and GeM.

Net Method Fine-Tuned

Roxford5k Rparis6k

Medium Hard Medium Hard

mAP mAP@10 mAP mAP@10 mAP mAP@10 mAP mAP@10

VGG16

SPoC No 38.0 54.6 11.4 20.9 59.8 93.0 32.4 69.7

CroW No 41.4 58.8 13.9 25.7 62.9 94.4 36.9 77.9

NetVLAD Yes 37.1 56.5 13.8 23.3 59.8 94.0 35.0 73.7

MAC Yes 58.4 81.1 30.5 48.0 66.8 97.7 42.0 82.9

GeM Yes 61.9 82.7 33.7 51.0 69.3 97.9 44.3 83.7

*GeM+CA Yes 62.9 84.1 35.5 54.0 70.8 98.3 46.0 85.0

Res101

SPoC No 39.8 61.0 12.4 23.8 69.2 96.7 44.7 78.0

CroW No 42.4 61.9 13.3 27.7 70.4 97.1 47.2 83.6

R-MAC Yes 60.9 78.1 32.4 50.0 78.9 96.9 59.4 86.1

GeM Yes 64.7 84.7 38.5 53.0 77.2 98.1 56.3 89.1

*GeM+CA Yes 67.3 87.1 42.6 59.1 77.5 98.6 56.5 88.6

Res50 DELF–ASMK+SP Yes 67.8 87.9 43.1 62.4 76.9 99.3 55.4 93.4

Query Expansion (QE)

VGG16
GeM+αQE Yes 66.6 85.7 38.9 57.3 74.0 98.4 51.0 88.4

*GeM+CA+αQE Yes 68.0 83.5 40.6 55.2 76.7 98.7 54.7 90.4

Res101

R-MAC+αQE Yes 64.8 78.5 36.8 53.3 82.7 97.3 65.7 90.1

GeM+αQE Yes 67.2 86.0 40.8 54.9 80.7 98.9 61.8 90.6

*GeM+CA+αQE Yes 68.8 84.9 43.9 59.7 83.6 99.0 66.1 91.6

Res50 DELF-HQE+SP Yes 73.4 88.2 50.3 67.2 84.0 98.3 69.3 93.7

Table 3: Image retrieval performance (mAP) comparison on Roxford5k and Rparis6k

datasets. All compared other works’ mAP in (b) are from [24].

We randomly select 50 image pairs and evaluate the time required for the feature ex-

traction by the proposed GeM+CA with attention map refinement, and that for the original

GeM [25]. In average our method took 700ms longer than the original GeM. The extra time

cost is due to the calculation of the attention map refinement step from Fig. 3. Without the

refinement step, our method took 260ms longer than original GeM.

6 Conclusion

In this research study, we propose an independent conditional attention model which does

not require any manual annotation. Instead, the model is trained on automatically generated

training data by finding correspondences from existing matching image pairs. As shown in

the experiments, our attention model can accurately highlight the region, matching the con-

tent of the query image, on the candidate image. It performs well even in various challenging

situations such as when significantly changing the illumination conditions or the image ac-

quisition parameters. When combined with the GeM feature extraction method, it achieves

the state of the art image retrieval results on Oxford5k and Oxford105k datasets.
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