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Abstract—Physiological models of respiratory mechanics can be 
used to optimise mechanical ventilator settings to improve 
critically ill patient outcomes. Models are generally generated via 
either physical measurements or analogous behaviours that can 
model experimental outcomes. However, models derived solely 
from physical measurements are infrequently applied to clinical 
data. 

This investigation assesses the efficacy of a physically derived 
airway branching model (ABM) to capture clinical data. The 
ABM is derived via classical pressure-flow equations and 
branching based on known anatomy. It is compared to two well 
accepted lumped parameter models of the respiratory system: the 
linear lung model (LLM) and the Dynostatic Model (DSM). 

The ABM significantly underestimates the total pressure drop 
from the trachea to the alveoli. While the LLM and DSM both 
recorded peak pressure drops of 17.8 cmH2O and 10.2 cmH2O, 
respectively, the maximum ABM modelled pressure drop was 
0.66 cmH2O. This result indicates that the anatomically accurate 
ABM model does not incorporate all of the airway resistances 
that are clinically observed in critically ill patients. In particular, 
it is hypothesised that the primary discrepancy is in the 
endotracheal tube. In contrast to the lumped parameter models, 
the ABM was capable of defining the pressure drop in the deep 
bronchial paths and thus may allow further investigation of 
alveoli recruitment and gas exchange at that level given realistic 
initial pressures at the upper airways. 
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I.  INTRODUCTION 
Modelling respiratory mechanics in conjunction with 

clinical data enables patient-specific understanding of lung 
mechanics. Respiratory system modelling has been carried out 
extensively, ranging from simple lumped parameter models to 
highly complex finite element models [1-5]. However, to date, 
very few models have been designed to achieve a specific 
therapeutic goal or outcome [6, 7]. 

Mechanically ventilated (MV) intensive care unit (ICU) 
patients have impaired respiratory function and are exposed to 
the risk of further lung injury if MV settings are not optimal 
[8, 9]. In particular, high pressure at the end of airway 
branches may benefit alveoli recruitment, but may also cause 
further damage by over-distension of the alveoli [10]. 
Development and application of respiratory system models has 

the potential to reduce negative outcomes from poorly 
conditioned respirator settings by using models to estimate 
and monitor these pressures, along with alveolar recruitment 
[11]. 

Airway branching models (ABM) [12, 13] with the airway 
dimensions and pathways of the airway system have been used 
to predict respiratory pressure-flow responses [14]. In ABMs, 
the airway resistance at each branching generation can be 
identified using Poiseulle flow and branching head-loss 
equations [5, 15]. These resistance values can then be used to 
define pressure drop as a function of flow rate measured at the 
airway. The bronchial tree model has been applied in 
estimating the shear stress of the airway walls of mechanically 
ventilated patients [16]. However, while anatomically accurate, 
these models are complicated and require a-priori knowledge 
of the lung dimensions, which can limit application in real-
time clinical settings. 

In contrast, lumped parameter models, such as the single 
compartment linear lung model (LLM), are less 
computationally intense. These simpler models have shown 
clinical potential in monitoring patients respiratory mechanics 
in real-time to guide clinical therapy [17, 18]. The trade-off 
being that these simple models are not capable of providing 
high resolution information compared to more complex 
models. 

This work presents several model-based methods to 
monitor airway pressure drop due to airway resistance in 
mechanically ventilated patients. More specifically, the 
performance of an airway branching model (ABM)  [12, 13], 
single compartment linear lung model (LLM) [19] and 
dynostatic model (DSM) [20] are compared in MV patients. 
Model-based estimation of airway pressure drop in real-time 
clinical setting, provides information on end alveoli pressure, 
which, in turn, could potentially define optimal MV settings to 
reduce lung injury improve treatment and thus reduce 
treatment cost [21]. 

II. METHODS 
In this study, 3 airway models are used in estimating the 

pressure drop due to airway resistance in 6 MV patients 
diagnosed with acute respiratory distress syndrome (ARDS) in 
two different cohort [11, 22]. Each patient was ventilated at 



positive end-expiratory pressure (PEEP) of 5 cmH2O. In 
particular, 3 patients (B1-3) have constant square wave input 
flow profiles [11] and the other 3 patients (S1-3) are ventilated 
using a decreasing input flow profile [22]. 

A. Airway Branching Model (ABM) 
The analysis was performed using the airway branching 

model (ABM) based on measured airway dimensions [14]. In 
this model, the respiratory airways are branched into 
generations, with the trachea at generation 0, through 23 

generations of bronchioles to the alveoli. Each airway branch 
has specific length, diameter and cross sectional area 
measured by Pedley et al. [14]. Fig. 1 shows the airway 
branching model structure schematically and Table 1 defines 
the physical dimensions at every branch generation.  

 
Figure 1. The airway tree structure in which airways are specified by 

generation number, beginning with trachea [23]. 

TABLE I.  PHYSICAL MEASUREMENTS OF BRONCHIAL PATHS ABLE [14]  

Branch 
Generations Diameter (cm) Length (cm) 

0 (Tracheal) 1.80 12.0 

1 1.22 4.80 

2 0.83 1.90 

3 0.56 0.80 

4 0.45 1.30 

5 -16 0.35 - 0.06 1.07 - 0.17 

17 - 22 0.05 0.10 

23 0.04 0.05 

 

At each airway generation, the resistance (Rn) can be 
estimated using Poiseulle flow: 

𝑅𝑛 =  
1

2𝑛
(
128𝜇𝐿
𝜋𝑑4

) 
(1) 

where μ, is the dynamic viscosity of air (1.9x10-5 Pa·s /1.9x 
10-7 cmH2O·s), n represents the airway branch generation, L is 

the length of airway branch [m], and d is the diameter of 
airway branch [m]. 

Equation 1 is then extended to estimate the pressure drop (∆𝑃𝑛) 
due to the resistive component of the airway branch: 

∆𝑃𝑛 =  𝑅𝑛 𝑄𝑛 (2) 

where 𝑄𝑛 is the flow rate of that airway branch. In this study, 
the flow in each new branch generation is assumed as:  

𝑄𝑛+1 =
1
2
𝑄𝑛  

                                   
(3) 

The total resistance of the airway branch can be calculated 
as: 

𝑅𝑇 =  �
1

2𝑛
𝑅𝑛

23

𝑛=0

 
(4) 

 

Thus, the total pressure drop of the ABM model (ΔPR_ABM) 
can be modelled: 

∆𝑃𝑅_𝐴𝐵𝑀 = �𝑅𝑛𝑄𝑛

23

𝑛=0

 (5) 

It is important to note that the ABM does not include any 
pressure drop due to the endotracheal tube (ETT). These are 
added to the modelled value using Poiseulle flow assumptions. 

 
B. Single Compartment Linear Lung Model (LLM)  

The single compartment lung model is a lumped parameter 
model that uses airway pressure, Paw, volume, V, flow, Qaw, 
and offset pressure, P0, to estimate respiratory Elastance, Ers, 
and respiratory resistance, Rrs. The model is defined: 

𝑃𝑎𝑤 = 𝐸𝑟𝑠𝑉 +  𝑅𝑟𝑠𝑄𝑎𝑤 +  𝑃0 (6) 

With ErsV is the alveoli pressure and RrsQaw is the resistive 
pressure. Using integral-based methods [19, 24], the 
respiratory Elastance (Ers) and resistance (Rrs) can be 
estimated. In turn, the resistive pressure (∆PR_LLM = RrsQaw) 
can be estimated.  

C. The Dynostatic Model (DSM) 

The dynostatic algorithm proposed by Karason et al [20] 
estimates dynostatic pressure, Pdyn. The algorithm assumes 
that the airway resistance during inspiration, Rinsp, is the same 
as the expiration resistance, Rexp, during iso-lung volume. 
Thus: 

𝑅𝑖𝑛𝑠𝑝 =  
𝑃𝑖𝑛𝑠𝑝 −  𝑃𝑑𝑦𝑛

𝑉̇𝑖𝑛𝑠𝑝
 

    
(7) 

𝑅𝑒𝑥𝑝 =
𝑃𝑒𝑥𝑝 − 𝑃𝑑𝑦𝑛 

𝑉̇𝑒𝑥𝑝
 

    
(8) 

And at isovolume, it is assumed that: 

𝑅𝑖𝑛𝑠𝑝 =  𝑅𝑒𝑥𝑝 (9) 

Combining Equations (7) and (8), the dynostatic pressure 
can be defined: 



𝑃𝑑𝑦𝑛 =
𝑃𝑖𝑛𝑠𝑝 × 𝑉̇𝑒𝑥𝑝 −  𝑃𝑒𝑥𝑝 × 𝑉̇𝑖𝑛𝑠𝑝  

𝑉̇𝑒𝑥𝑝 − 𝑉̇𝑖𝑛𝑠𝑝
 

                       
(10) 

 

where,  𝑉̇𝑒𝑥𝑝  is the expiration flow, 𝑉̇𝑖𝑛𝑠𝑝  is the inspiration 
flow, 𝑃𝑖𝑛𝑠𝑝 is the pressure during inspiration process, and  𝑃𝑒𝑥𝑝 
is the pressure during the expiration process.  

Equation (6) is then rearranged to estimate the resistive 
pressure during inspiration, defined as: 

∆𝑃𝑅_𝐷𝑦𝑛  =  𝑉̇𝑖𝑛𝑠𝑝𝑅𝑖𝑛𝑠𝑝  =  𝑃𝑖𝑛𝑠𝑝 −  𝑃𝑑𝑦𝑛 (11) 

 

D. Analyses 
The resistive pressure or pressure drop from the airway to 

alveoli is determined for each patient using all 3 models. 
Values are compared to assess the conformity of these (well 
accepted) models. Each model is simulated using measured 
Paw and Qaw and flow rate at the airway. ABM results are 
presented with and without the added ETT pressure drop to 
delineate the drop due to the ETT and that due to physical 
anatomy.  

III. RESULTS AND DISCUSSION  
The estimated resistance and pressure drop in the ABM for 

each branch generation is presented in Fig. 2. Fig. 3 shows the 
comparative pressure drop for a given flow rate for each of the 
models tested.  Note that the pressure scale of the ABM is 
significantly smaller than the other models indicating a much 
smaller pressure drops through the bronchial path in general 
for this model. Table 2 shows the median [Interquartile range, 
IQR] and maximum (Max) resistive pressure for Patients 1-6. 
Fig. 4 shows the airway pressure drop for Patient S1 in 
different flow profile for each of models tested. 

In the ABM, it can be observed in Fig. 2 that at the 5th 
generation branch, the airway resistance is higher compared to 
other generations, which are around 0.8 cmH2O·s/l. Initially, 
the resistance starts to drop from generation 0, which is the 
trachea up to generation 4. The resistance starts to rise at 
generation 5 as the length of the bronchial tube is higher at 
this generation compared to the previous branches [14]. The 

resistance is the lowest at the 23rd generation, which is at the 
end of the bronchial path and contains the alveoli. Fig. 2 also 

   

  
Figure 2. Airway resistance and pressure drop for each branch/generation    

of the ABM model. 

shows that the pressure drop is highest for the ABM at the 0th 
generation, the trachea, at approximately 0.23 cmH2O. The 
total resistance for the ABM model is 5.13 cmH2O·s /l and the 
total pressure drop is 0.443 cmH2O.  However, this model 
does not define the pressure drop in the endotracheal tube 
(ETT), which has been estimated to have a significant 
resistance [15]. With the ETT, these values are 30.4 
cmH2O·s/l and 3.14 cmH2O respectively. Including this value 
to the clinical data will result in increase of the total pressure 
drop to 3-4 cmH2O as show in Table 2 and Fig. 3 and 4.  

 
 

 
Figure 3. Patient B2 airway pressure drop. From left: Airway flow, Qin. ABM estimated pressure drop. ABM estimated pressure drop including the effect of ETT. 
LLM estimated pressure drop. DSM estimated pressure drop. 



  
Figure 4. Patient S1 airway pressure drop. From left: Airway flow, Qin. ABM estimated pressure drop. ABM estimated pressure drop including the effect of ETT. 
LLM estimated pressure drop. DSM estimated pressure drop. 

TABLE II.  MEDIAN [IQR] AND MAXIMUM AIRWAY RESISTIVE PRESSURE, ∆PR (cmH2O)  

Patient ABM ABM with ETT LLM DSM 
 Median [IQR] Max Median [IQR] Max Median [IQR] Max Median [IQR] Max 

B1a 0.49 
[0.47 -0.49] 

0.51 2.1 
[2.2 – 2.2] 

2.3 8.7 
[5.4 - 9.3] 

9.6 4.7 
[2.0 - 5.8] 

6.3 

B2a 0.40 
[0.39 –0.40] 

0.43 
 

2.7 
[2.8 – 2.9] 

3.0 
 

6.5 
[4.8 - 7.6] 

8.2 5.4 
[3.0 - 7.9] 

8.8 

B3a 0.49 
[0.47 – 0.50] 

0.51 2.1 
[2.2 – 2.2] 

2.3 9.1 
[7.7 - 9.4] 

9.7 3.2 
[2.3- 3.6] 

4.1 

S1b 0.34 
[0.20 -0.46] 

0.51 
 

2.4 
[1.4 – 3.3] 

3.6 9.0 
[5.3 – 12.6] 

13.8 6.2 
[4.5 – 8.9] 

10.2 

S2b 0.41 
[0.27 – 0.53] 

0.66 
 

2.4 
[1.9 – 3.0] 

3.5 
 

11.3 
[7.3 – 14.2] 

17.8 3.1 
[1.7 – 4.4] 

6.8 

S3b 0.34 
[0.27 – 0.43] 

0.50 2.1 
[2.2 – 2.2] 

2.3 9.3 
[7.4 – 11.9] 

13.6 2.9 
[1.0- 3.5] 

5.4 

a. Patients ventilated using square-wave flow profile [22]. 
b. Patients ventilated using decreasing flow profile [11]. 

 

In Fig. 3, it is observed that the pressure drop in LLM and 
DSM are significantly different from the ABM. The maximum 
total pressure drop for LLM and DSM models ranges from 8.2 
to 8.8 cmH2O. In contrast, the maximum pressure drop is 0.43 
cmH2O in ABM (without ETT). Comparing Fig. 3 and 4, it was 
observed that the trend of pressure drop is flow dependant. 
Patient S1 from different cohort is ventilated at much higher 
flow rate (0.6 l/s) and different flow profile, resulting in higher 
pressure drop due to airway resistance.  

The pressure drop due to airway resistance, ∆𝑃𝑅 ,  
identified from clinical data in the LLM and DSM models 
were significantly higher than the ABM model with or without 
ETT, as expected. The median [IQR] of resistive pressure in 
LLM model is 9.1 [5.3 – 12.6] and 4.0 [1.7 – 7.9] in DSM 
model. These resistive pressures are within physiological 
ranges [25], indicating that the models were capable of 
estimating the resistance component.  

The ABM model allows pressure drops at every branch 
generation to be estimated, which provides valuable 
physiological information, as alveoli begin to appear at branch 
17. In contrast, the LLM and DSM are only capable of 
defining a lumped bronchial resistance parameter, which 
means a specific alveolar pressure cannot be explicitly 
estimated except for an overall average value. However, the 
pressure drop in higher generations is very small and would be 
very difficult to identify from clinical data. Thus, the present 
study allows insight into the pressure flow mechanics of 

alveoli recruitment that is not possible with lumped parameter 
models. Further investigation is required to ascertain whether 
the ABM outcomes can be scaled using lumped parameter 
models for ETT to provide patient-specific indications of high 
bronchial branch fluid dynamics and recruitment 
characteristics. 

In this study, aside from differences in pressure drop 
magnitude, there is also a trend difference between the models. 
In particular, the ABM and LLM have similar trends, where 
the maximum pressure drop occurs at the end of inspiration. 
However, the maximum pressure drop was observed in an 
earlier stage of the dynostatic model pressure drop estimation. 
This difference may be due to the expiration cycle flow profile. 
Moller et al [26, 27] found that airway resistance between 
inspiration and expiration cycle were different and flow 
dependant. Thus, the assumption used in the dynostatic model, 
where resistance during inspiration and expiration are assumed 
equal, warrants further investigation.  

IV. LIMITATIONS  
The main limitation of this study is the use of a population 

constant for the airway dimension in airway branching model. 
A population constant only allows a general overview of 
pressure drop in each branch generation. However, it was also 
found in this comparison that the major pressure drop occurs 
from the endotracheal tube and only relatively minimal 
pressure drops occur after branch generation 5 which is less 
than 10% compared to the pressure drop in ETT tube. 



Furthermore, airway dimensions may vary in both inter- and 
intra- patient sense, which will also result in different pressure 
values. 

V. CONCLUSIONS  
This work presents several models of pressure drop 

estimation in the respiratory system. Having the pressure drop 
due to the resistive component is important as it is a pathway 
to estimate the end alveoli pressure that could be used in 
clinical guidance to avoid ventilator induced lung injury for 
MV patients. 
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