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Abstract 

Human Visual Perception of Haze in White Wine 

and Relationships with Instrumental Turbidity 

and Imaging Models 

by 

Joseph Falconer 

 

White wines are liable to develop haze during storage and transport due to residual protein in the 

finished wine. Since haze in white wines is considered unacceptable, winemakers attempt to reduce 

the protein content prior to bottling through the use of fining agents such as bentonite. The use of 

bentonite is not without economic cost with the estimated annual impact to the New Zealand wine 

industry in the region of NZD 35 million. The optimum quantity of bentonite to be used is normally 

determined using a heat test in conjunction with empirical fining trials. During these tests the 

winemaker is required to conduct various haze comparisons. Since these assessments are difficult to 

perform visually, researchers recommend the use of suitable nephelometric instrumentation to 

ensure consistency and precision. Despite these recommendations, most winemakers have not 

purchased the necessary equipment; it is thought that cost is the primary deterrent.  

The overall goal of this project was to explore the relationships between nephelometry, digital 

imaging and human perception of haze in terms of thresholds and intensity. In addition, the 

feasibility of using digital imaging devices to make nephelometric measurements was to be 

investigated. 

A range of achromatic and yellow turbid suspensions were prepared by suspending synthetic 

polymer microspheres of diameter 0.25 µm in aqueous solutions. Base wine stocks exhibiting high 

turbidity were prepared by heating commercial grade Chardonnay wine at 90˚ for two hours. A range 

of wine samples of varying turbidities were then prepared by dilution with untreated wine. Polymer 

microsphere suspensions and wine samples of varying visual haze were used in a series of sensory 

and instrumentation experiments. The sensory experiments examined haze detection thresholds and 

intensity scaling in human subjects. All evaluations took place in purpose designed sensory booths 

utilising overhead light emitting diode (LED) illumination. The booth backgrounds and sides were 
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modified to present dark or light surrounds by hanging black or white linen on the walls. Samples 

were presented to human subjects in standard ISO tasting glasses and the subjects were permitted to 

manipulate the glass freely whilst they evaluated the samples. Turbidity measurements were made 

with a Hach 2100P nephelometric device. Image data was captured using a modified Canon A2300 

digital still camera using 90˚ viewing geometries. 

Haze threshold determinations were made for achromatic and yellow microsphere suspensions using 

the Ascending Method of Limits (AML) and 3-Alternate Forced Choice (3AFC) methods. The lowest 

thresholds were found when achromatic suspensions were presented in a dark surround where 

individual thresholds ranged from 0.21 Nephelometric Turbidity Units (NTU) to 1.07 NTU. The highest 

thresholds were found when yellow suspensions were presented in a light surround where individual 

thresholds ranged from 1.89 NTU to 25.16 NTU. Heat treated Chardonnay wine samples were also 

evaluated in a dark surround where individual thresholds ranged from 0.52 NTU to 1.39 NTU. 

Visual haze intensities in achromatic and yellow microsphere suspensions were assessed by human 

subjects in dark and light surrounds using modulus Magnitude Estimation (ME). Sample luminance 

was determined by digitally photographing the samples under the same conditions employed for the 

ME evaluations. The perceived haze intensity with respect to luminance was found to follow 

generalised power or logarithmic functions similar to psycho-physical models commonly proposed 

for the response of the human visual system to brightness and lightness. The data exhibited a bi-

segment nature indicative of surround and/or planar contrast induction. Similar responses were 

found for heat treated Chardonnay wine samples using turbidity as the independent variable. 

Turbidity values were measured for a range achromatic and yellow microsphere suspension samples. 

Luminance values were derived from digital images taken of ISO tasting glasses containing the same 

microsphere suspensions. The turbidity and luminance values were found to be linearly related 

below 50 NTU (dark surround, R2=0. 9978; light surround, R2=0. 9813). A subsequent experiment 

examined turbidity values and luminance data in achromatic and yellow microsphere suspension 

samples over a low range (< 6 NTU) by imaging the sample surface directly rather than through the 

glass receptacle. Turbidity vales and luminance data were again found to be linearly related 

(R2=0.9628). Measurements from the Hach 2100P device and a luminance based measurement 

model were found to be mean and median equivalent for the low range experimental data. 

Keywords: Protein stabilisation; Heat test; Nephelometer; Haze perception; Haze thresholds; 

Turbidimeter; Brightness model; Lightness model; Simultaneous lightness contrast;  Digital imaging 
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Chapter 1 

Introduction 

1.1 Research background 

It is generally known that white wines may develop a protein haze during transport and storage; this 

is referred to as protein instability. Since haze in white wines is considered unacceptable by 

consumers, winemakers adopt various methods to mitigate the possibility of their wines becoming 

hazy prior to consumption. A heat test is commonly used to determine if the wine is susceptible to 

haze formation by examining protein stability. If the test classifies the wine as protein unstable, the 

winemaker is advised to adjust the levels of protein through the use of fining agents such as 

bentonite. An important step in heat test protocols involves the optimisation of bentonite dosage 

rates through the comparison of respective haze outcomes. While winemakers are advised to use a 

nephelometer to make the assessments1, uptake of instrumentation is somewhat limited2. Instead, 

industry turns to the less costly visual assessment which is subjective and can be can be difficult to 

perform. 

Research into the efficacy of fining practices suggests that the most commonly used heat tests can 

lead to excessive fining if the protocol recommendations for dosage rates are followed2. Winemakers 

are aware of the deficiencies in these tests and anecdotal evidence suggests that dosage reductions 

are commonly applied to test-derived fining rates as a means of mitigating product losses. The 

limited uptake of instrumentation as a means of assessing haze would suggest that outcomes are 

somewhat arbitrary in nature. 

A further problem faced by the winemaker in gauging the relevance of haze levels is the absence of 

benchmark data relating instrumental measurements to human perception under realistic viewing 

conditions. Although some researchers have explored the relationship between human perception of 

haze and instrumental turbidity measurements3–6, no such studies involving wine have been 

undertaken and haze perception thresholds in wines are yet to be reported. 

The scale of economic loss due to fining depends on various factors but the best available estimate is 

around 3.5% by dollar value if rotary drum vacuum filtration is utilised for wine recovery7. Based on 

2012 export statistics8, the current white wine export value for New Zealand is around NZD 988 

million; this would suggest a theoretical loss to the New Zealand wine industry in the order of NZD 35 

million if the recommended protocols were being followed. Since winemakers are thought to self-

regulate their fining levels, the true cost is likely to be somewhat less. However, every arbitrary 
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reduction in recommended dosage levels increases the probability of haze developing in the bottle. 

The true economic impact is therefore a combination of actual product loss due to fining combined 

with some level of commercial risk associated with the possibility of consumer dissatisfaction should 

haze develop. 

1.2 Research goal and objectives 

The overall goal of this project was to explore the relationship between nephelometry, digital 

imaging and human perception of haze in terms of thresholds and intensity. In addition, the 

feasibility of using the Android operating system as a platform for image based, nephelometric 

measurements was to be investigated. 

Specific experimental objectives were: 

• To assess the human visual response to haze intensity in polymer microsphere solutions and 

wine under various viewing conditions. 

• To establish thresholds for haze detection in polymer microsphere solutions and wine under 

various viewing conditions. 

• To investigate the relationship between nephelometric measurements and digital image data 

where the data is derived from images of polymer microsphere solutions and wine. 

These experimental objectives were underpinned by a general wish to maintain relevance to real-

world conditions; experiments were to be conducted using industry standard ISO glasses and 

commonly used illuminants. 

1.3 Human ethics approval 

All experimentation involving human subjects was conducted in accordance with Lincoln University 

Human Ethics Committee case approval: HEC 2013-47.  

1.4 Thesis structure 

This thesis comprises eight chapters including this general introduction. Chapter 2 reviews the 

literature related to wine protein stabilisation, turbidity measurements, scaling of haze perception, 

brightness and lightness psycho-physical models and haze detection thresholds. Chapter 3 provides 

details of common methodologies used throughout the experimental work. Chapters 4, 5, 6 and 7 

are experimental sections encompassing haze detection, haze intensity perception and image based 

nephelometry in polymer microsphere suspensions and wine samples. Chapter 8 is a general 

summary including some comments on future work.  
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Chapter 2 

Literature Review 

2.1 Wine proteins and their stabilisation 

2.1.1 Wine proteins 

Protein stabilisation is a critical issue for white wines with many studies exploring their protein 

composition9–13. Most of this work has confirmed the presence of a small number of protein types 

including thaumatin-like proteins, osmotins, chitinases, invertases and β-glucanses ranging in 

molecular weight from 15 kDa to 66 kDa14. Some of the factors that appear to influence protein 

composition include cultivar, disease, harvest methods, harvest timing, water stress and grape 

variety10,14.  

The development of haze is normally attributed to unsuitable storage or transportation conditions 

(especially elevated temperatures) or extended storage times. Other factors that have been shown 

to affect haze development include the presence of compounds such as polyphenols, metal ions, 

sulphates and polysaccharides15,16. Adding to the overall complexity is the varying temperature 

sensitivity of the various protein fractions to heat-induced unfolding and precipitation17. In general, 

the mechanisms and kinetics of protein aggregation remain poorly understood18 thus precluding the 

development of a predictive shelf life model. 

2.1.2 Protein stability tests 

Since the protein shelf life of a wine cannot be reliably forecast, winemakers who wish to ensure 

protein stability will work to reduce protein concentrations prior to bottling. In the absence of 

effective, predictive models the amount of fining agent required to make a wine stable is normally 

established through stability tests and fining trials. Over the years many empirically derived tests 

have been proposed2; all attempt to detect instability by artificially inducing precipitation either 

chemically and/or through heating. In a typical heat test a previously clarified wine sample is heated 

to an elevated temperature for a relatively short period of time (e.g. 80°C for 30 minutes19); the 

sample is then examined for turbidity after cooling. The outcome is a binary result: stable or unstable 

based upon a turbidity comparison of the heated sample versus the original. If the wine is deemed 

unstable, a range of fining agent additions are trialled and heat tested to determine the most 

appropriate dosage levels.  
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2.1.3 Wine industry methods of haze quantification 

Whether the winemaker is conducting fining trials or long term storage tests, at some point they are 

faced with the need to assess the extent of haze in a sample. Although haze can be detected visually 

by passing a strong light across a wine sample, low level haze in the reference sample or colour 

development due to the stability test can make assessment difficult. Inconsistent results in visual 

assessments led Pocock and Rankine2 to recommend the use of a nephelometer for haze 

comparisons. This advice aligns with current industry protocols recommending the use of a turbidity 

meter to objectively measure haze1.  

A further problem that arises from visual assessment of haze relates to the need to determine 

differential measurements. Most industry test methods cite a differential turbidity value that acts as 

a stability threshold when comparing samples (e.g. 2 Nephelometric Turbidity Units1,13). If the 

winemaker cannot arrive at an objective measure of turbidity, the method cannot be followed. Even 

if the winemaker is relying on past experience to judge acceptable haze levels, the lack of 

instrumental data prevents reliable use of historic norms.  

2.2 Turbidity measurement in wine 

2.2.1 Light scatter in hazy wine 

As a beam of light passes through a liquid containing suspended particles, the light will be subject to 

both absorption and scatter. The scatter is caused by oscillatory interactions between the incident 

light and the particles resulting in secondary radiation leading to complex interference effects20. 

Critically, the intensity pattern of scattered radiation has an angular variation; this considerably 

complicates any attempt to characterise the scattering properties of a particular sample. 

The general theory of light scattering for particles is known as the Mie model21; key variables include 

particle size, light wavelength, particle refractive index and scattering angle. This is a complex 

mathematical model with a number of limitations including an assumption that all particles are 

spherical. For particles much smaller than the wavelength of the incident light, Mie theory collapses 

to the simpler Rayleigh theory where the angular distribution of scatter is almost uniform. The total 

intensity of scattered light is generally categorised by the size of the particles in relation to the 

wavelength of the incident light22; summarised in Table 2.1. For particles in the order of the incident 

light wavelength (and smaller), a relatively small change in the particle size will have a 

correspondingly large impact on the amount of scattered light.  
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Table 2.1 Total scattered light in proportion to particle size and wavelength of incident light for 
some constant number of particles. 

Model Boundary conditions Total scattered light (Is) 
Rayleigh 𝑅𝑅 ≪  𝜆𝜆 𝐼𝐼𝑠𝑠 ∝  𝑅𝑅

6
𝜆𝜆4�  

Mie 𝑅𝑅 ~ 𝜆𝜆 𝐼𝐼𝑠𝑠 ∝  𝑅𝑅
4
𝜆𝜆2�  

Geometric optics 𝑅𝑅 ≫  𝜆𝜆 𝐼𝐼𝑠𝑠 ∝  𝑅𝑅2 
R is particle radius, λ is wavelength of incident light. 
 
The physical nature (size, shape and refractive index) of haze inducing particles in wine is not well 

understood. In a study of heat effects in white wines Dufrechou et al.15 found that exposing a sample 

of Sauvignon Blanc to 40˚C led to particle aggregation with an average hydrodynamic diameter of 

approximately 1.35 µm after a period of 2 hours. Any specific sample of wine undergoing protein 

unfolding and aggregation will contain an unknown distribution of particles with an associated 

(unknown) angular scatter characteristic. Figure 2.1 illustrates the relative scatter responses of a 

small selection of particle sizes (0.1 µm to 10.0 µm) based on Mie theory; note the large increases in 

light scatter for small increases in particle size along with the dynamic nature of the angular 

response. In a real-world sample of wine held within a standard drinking glass, the amount of 

scattered light (i.e. actual visual impact) will additionally depend on the absolute intensity of the 

incident light, optical characteristics of the glass and the volumetric dimensions of the wine23. 

2.2.2 Turbidity instrumentation 

A turbidimeter operates by illuminating a test sample with an appropriate source of light and 

measuring the resulting scattered light. A conventional device will consist of a light source, sample 

holder and an optical detector set at some pre-determined location and angle. The simplest form of 

device is the single beam nephelometer which directs a light at the sample and seeks to detect the 

scattered light at a nominal angle of 90° generating measurements in Nephelometric Turbidity Units 

(NTU)24. 

There are a wide range of designs and test methods that vary by angle of detection, detector number 

and location, frequency and bandwidth of radiation source along with various other factors. The 

intention of these alternate design configurations is to minimize bias factors in a specific application 

setting25. Each of these instruments is measuring light at some specific angle(s) using light sources 

and detectors of a specific spectrum output and spectral response. This means the physical design of 

the instrument has a direct bearing on the final measurements; the devices are not independent of 

the attribute to be measured.  

In an effort to derive standardised turbidity measurements, formazin (hydrazine sulphate and 

hexamethylenetetramine) is commonly used as calibration standard. Unfortunately design 
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differences in devices along with their discrete measurement angles means that measurements from 

different devices cannot be considered comparable despite the use of common calibration 

methods26–28. If true turbidity is taken to mean the total cumulative scatter associated with a 

particular sample taken over the full angular range, the complexity of the angular response in a 

material such as wine means that measurement at a specific angle cannot be used to infer overall 

turbidity22; formazin calibration does not resolve this issue29. Turbidity measurements of arbitrary 

materials are not traceable to a relevant physical standard; they are some device dependent 

measurement of appearance. Such measurements can only be considered relative and comparable 

to other measurements made on the same device type30. 

2.2.3 Relevance of turbidity measurements to wine stability thresholds 

The traditional, non-instrumental approach to haze assessment is one based upon visual 

discrimination performed by the winemaker; this is a human perception task performed under ill-

defined conditions. The use of turbidity instrumentation to replace the visual test is motivated by a 

desire to replace a subjective and variable approach with an objective and reliable measurement 

method. Methods that cite specific turbidity threshold values to declare a wine “protein stable”1,31 

assume that turbidity measurements are somehow absolute, comparable and relevant to perceptual 

levels of haze. Although the amount of haze perceived in a sample will generally increase with 

turbidity measurements, equivalent NTU values derived from different devices do not guarantee 

equivalent levels of visual haze32.  

2.3 Scaling of haze perception 

Wine is a material that both transmits and scatters light such that its appearance is perceived to fall 

somewhere between the extremes of opacity and clarity33,34. As light transits a wine sample it is 

absorbed and scattered to varying degrees depending on the spectral nature of the light and the 

composition of the wine. As the concentration of haze causing material in wine changes, the 

proportion of scattered light to absorbed light adjusts accordingly. The perception of a hazy wine 

sample is a complex interplay of the physical attributes of the wine matrix, ambient lighting and the 

human visual system. Unfortunately little is known of the mechanisms employed by humans in the 

perception of such materials35,36; this presents a significant challenge in any attempt to scale the 

perception of haze. 

2.3.1 Psycho-physical models of transparency and translucency 

Hunter37 has proposed a material appearance classification system based upon light transmission 

attributes whereby transparent materials are those that transmit light in a specular manner and 

translucent materials are those that transmit light in a diffuse manner. This is a simplification 
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designed for theoretical convenience and does not easily fit with the appearance of real-world 

materials such as hazy wine samples that may be both transparent and translucent. 

The perception of transparency relates to the visibility of overlapping surfaces whereby the observer 

senses the stacked surfaces simultaneously. Since light reaching the eye does not contain discrete 

information pertaining to the different layers, the perception of transparency is the result of poorly 

understood neural processes38. Although there is a body of literature addressing the psycho-physical 

modelling of transparency39–50, the dominant theoretical models are relatively simplistic in that they 

ignore many of the physical effects experienced under real viewing conditions. Important aspects not 

addressed include variable illumination, reflections between the observed material and other scene 

elements and gloss effects on the surface of the object.   

In their investigations of translucency Fleming and Bülthoff35 showed that many of the factors 

thought important to transparency were not required for translucency perception and that cues such 

as blur, shadow sharpness and colour saturation were more important. In a similar study 

Motoyoshi51 showed that specular highlights and non-specular shading patterns can act as cues for 

the characteristic “glow” of translucent materials. In a recent study by Nagai et al.52 the local mean 

luminance of specific image regions correlated well with perceptual translucency but the image 

regions contributing to the perception differed greatly between observers. Since all of these studies 

employed computer generated graphics as their basis for visual stimuli, their relevance to real-world 

objects and scenes is unclear. 

There are currently no psycho-physical models that adequately describe the perception of real-world 

materials that simultaneously transmit and scatter light. 

2.3.2 Empirical models of haze perception  

Only a small number of empirical studies have sought to relate human perception of hazy liquids to 

instrumental measures. In one such study Malcolmson et al.53 used Magnitude Estimation techniques 

to evaluate perceptual clarity for apple juice dosed with kaolin. The results were used to derive a log 

linear model between nephelometric measurements and perceived clarity. The resulting power 

function had a power exponent of -0.54 and a reasonably high R2 value of 0.94 (Figure 2.2). The 

similarity of the exponent value to that found in studies of perceptual brightness was noted. 

Malcolmson et al. further claimed that a log transformed model could accurately predict the 

perception of clarity in apple juice over the examined range but a reconstruction of their data on 

non-log scales shows that the model fits poorly for the low turbidity range (Figure 2.3). This 

systematic deviance may have been due to induction effects (see Section 2.4) but the viewing 

conditions were not recorded preventing any further analysis. 
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Carrasco and Siebert3 also used Magnitude Estimation to investigate the relationships between 

particle concentration, particle size, instrumental turbidity and visual haze intensity. In that study 

aqueous suspensions containing synthetic microspheres of various sizes and different pigment types 

(turbidity ranging up to 5000 NTU) were presented to human subjects under brightly lit conditions 

and dark backgrounds. The relationship between perceived haze intensity and microsphere 

concentration was found to be compressive whereas the relationship between instrumental turbidity 

and microsphere concentration was expansive. A 4th order polynomial relationship was derived using 

stepwise regression relating instrumental turbidity and perceived haze intensity across the entire 

dataset including all sizes and concentrations (R2=0.87). A series of additional models were derived 

with 4th order polynomial combinations of particle size and instrumental turbidity offering the best fit 

for the data (R2=0.978). Examination of a more detailed description of the base data54 suggests that a 

power function model may have been fitted to the data if the concentration range had been 

truncated; a linear fit may be approximated on the log-log response up to around 300 NTU (see 

Figure 2.4). The experimental conditions employed in this study were tightly controlled involving the 

examination of samples inside a small viewing box with a dark background. The volume of the 

sample and the receptacle shape were not reported.  

2.3.3 Haze as a sensory variable 

An important factor in sensory studies is the definition of the perceptual variable; in this project’s 

case haze. Carrasco and Siebert3 performed sensory descriptive analysis to describe the visual 

perception “haze” in a model system. Applying Principal Component Analysis (PCA) to the data the 

authors found that two factors accounted for 99% of the variance. Factor 1 was aligned to a 

superimposed redundant cluster: “turbid” / ”glowing” / ”opaque” in one direction and “dark” in the 

other. Factor 2 was composed of two attributes: “particulate” and “homogenous”. The 

particulate/homogenous axis only appeared active for the larger particle sizes (10.3 µm) in their 

study. These results suggest that it may be possible to use a scale of perceptual brightness as a 

surrogate for perceptual haze (at least where the particle sizes are small enough that the particulate 

dimension is not significant). Section 2.4 reviews brightness and lightness in terms of perceptual 

phenomena and Section 2.5 deals with the relevant scaling models. 

2.4 Brightness and lightness phenomena 

2.4.1 Overview 

Any review of perceptual “brightness” and “lightness” cannot easily proceed without some 

elaboration of the terms. The most commonly used definition of brightness is stated as the attribute 

of a visual sensation according to which a given visual stimulus appears to be more or less intense, or 

according to which the area in which a visual stimulus is presented appears to emit more or less 
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light55. The corresponding definition of lightness is the attribute of a visual sensation according to 

which the area occupied by the visual stimulus appears to emit more or less light in proportion to 

that emitted by a similarly illuminated area perceived as a “white” stimulus55. It should be noted that 

these terms are entirely perceptual in nature and distinct from their physical counterparts of 

photometric luminance and surface reflectivity; measurements of photopic weighted light energy 

arriving at the eye or material reflectance do not correspond to perceived brightness or lightness. 

Although lightness and brightness are thought to be inter-related, little work has been published 

where they have been jointly considered in a real-world scene56. 

Although the definitions above appear to offer a sound basis for the study of lightness and 

brightness, individual experimental conditions and the exact nature of instructions given to 

participants has led to much confusion57. A recent review has shown that lightness judgments, 

brightness judgments and contrast evaluation are easily compounded or exchanged depending on 

the specifics of the study58. The authors cite a number of important studies that appear to be 

undermined by this issue. Finally, the psychological (and hence perceptual) relevance of the terms 

lightness and brightness has been questioned47 despite their use in a vast number of studies.  

Another set of terms that has relevance for this project is unrelated/related colours. In essence, 

unrelated colours are those of stimuli observed in isolation such as traffic lights on a dark night. 

Related colours are stimuli that are observed in the context of other stimuli59,60. Although it is not 

always a simple distinction to make, a visual stimulus in a sensory booth with a dark surround may be 

considered unrelated colour conditions. However, the inclusion of a second sample (e.g. a modulus 

reference) would likely convert the scene to related conditions. A sensory booth with a light 

surround would induce lightness effects and would be consistent with related colour conditions. 

2.4.2 Lightness induction 

The influence of surround conditions (taken to encompass both background and surround) on the 

perception of a target stimulus has been widely reported61–65 with an extensive focus on 

simultaneous lightness contrast (i.e. lightness induction). The specific luminance of the surround is 

thought to be an important threshold that forms a boundary between two distinct perceptual 

responses known as increments and decrements whereby increment refers to conditions in which the 

luminance of the target exceeds that of the surround66,67. A second surround effect is related to 

enhanced brightness/lightness discrimination as the target luminance transits the luminance of the 

surround; this is known as the Crispening Effect68–71. Other attributes of scenes have also been shown 

to influence lightness appearance including relative areas72,73 and planar grouping74. 
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2.4.3 Chromatic effects 

The level of colourfulness (saturation) in any stimulus will influence perceived brightness and this is 

known as the Helmholtz–Kohlrausch (H-K) Effect. Generally, this means that more saturated colours 

will appear brighter than those of low saturation even when they have the same measured 

luminance75. Yellow hues are generally thought to be less influenced by the H-K Effect but a study of 

unrelated colours failed to find statistical evidence to support this view59. 

Although much of this project was focused on the relationship between achromatic 

brightness/lightness and aggregate luminance (see Section 3.3.2), it is acknowledged that chromatic 

effects such as such as the H-K Effect and chromatic induction76 will have some impact on the 

perceptual response. 

2.5 Brightness and lightness scaling models 

2.5.1 Overview 

Many theoretical models have been proposed to explain the achromatic response of the human 

visual system. These theories tend to align with distinct philosophies and include edge integration, 

Gestalt anchoring, spatial filtering and layer decomposition models. A general theory that unifies the 

current theoretical fragmentation and predict the human response has yet to be formulated77.   

In the context of this project, the area of interest is best described by the everyday terms 

“brightness” or “glow” as perceived in real-world (albeit relatively simple) scenes. Whilst the debate 

over the distinction between brightness and lightness continues47,  it is not a simple matter to 

disentangle lightness from brightness in much of the literature. For example, the term brightness 

may be used to describe the perceptual response to a light source and at other times it may refer to 

an ill-defined, subjective correlate of luminance78. This confusion presents something of challenge in 

the selection of models that may have relevance and possible utility in the perception of haze. Based 

on an assumption of lightness constancy, Brill and Carter79 suggest there are only two plausible 

mathematical models for lightness perception; in general forms: 

𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏 log𝑥𝑥 or 𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏𝑥𝑥𝑘𝑘 

For this reason, the models reviewed below are limited to those that employ relatively simple 

logarithmic or power functions. When reviewing the models, the terms brightness and lightness are 

used in a manner consistent with the studies being described. 
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2.5.2 Historical context 

Attempts to construct a mathematical relationship between physical measures and the human 

perception of brightness have a long history. Kuehni80 cites work by Aguilonius in 1613, Bouger81 and 

Fechner82.  Working from the basis of Weber’s Law83, Fechner proposed the perceived magnitude of 

a stimulus to be proportional to the logarithm of the physical intensity; a compressive, non-linear 

relationship84. Fechner’s logarithmic relationship assumes that perceptual “just-noticeable 

difference” increments increase in proportion to the absolute intensity of the stimulus. Plateau85 

countered that ratios rather than differences were the basis for perception and that a power 

function best described the human response65. The log versus power function debate has continued 

unabated to the present day with little prospect of early resolution79,80,86. 

2.5.3 Power function models 

In a series of studies by S.S. Stevens and co-workers, the basis for human sensory perception was 

systematically explored using the technique of Magnitude Estimation including the response to short 

duration achromatic flashes87–90. Stevens strongly advocated a power response for all the senses and 

proposed the relationship below65; this has become known as the Stevens Power Law84. 

 𝜑𝜑 = 𝑘𝑘(∅ −  ∅0)𝑛𝑛 

 

2.1 

In Equation 2.1 the dependent variable 𝜑𝜑 represents the perceptual response, ∅ the physical 

stimulus, ∅0 a threshold adjustment parameter associated with the physical stimulus, 𝑘𝑘 relates to the 

choice of units and 𝑛𝑛 is the exponent of the power response.  

Stevens expounded the universality of this relationship in the human response and placed much 

emphasis on the exponent (𝑛𝑛) publishing more than twenty values for various stimulus conditions65. 

Perceptual brightness was declared to have a compressive exponent of 0.33 in reference to a set of 

“standard conditions” (1 second duration flashes, dark adaptation, dark surround, 5˚ field of view). 

Although the influence of surround induction on the exponent was acknowledged (effects up to an 

order of magnitude), 𝑘𝑘 and ∅0 were often referred to as constants alongside the prominent 0.33 

exponent. In a later paper91 the effect of adaptation was studied (still in dark surrounds) and 

increased levels of adaptive luminance were found to affect all three parameters. It was also found 

that once a subject’s vision had fully adapted to the target luminance, the response appeared 

logarithmic over most of the range. These significant observations appear to limit the potential of 

Equation 2.1 to predict general brightness response in any real-world context. 
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2.5.4 Opponent induction models 

In a study of chromatic contrast by Jameson and Hurvich66, the experimental data showed that the 

brightness response (plotted in log-log coordinates) consisted of two distinct linear sections with an 

intersection where the surround and target luminance values were approximately equal. Jameson 

and Hurvich92 subsequently proposed a joint chromatic and brightness model built on the premise 

that simultaneous contrast effects are due to brighter surround areas inducing an opposite, 

physiological, blackness response primarily associated with the target area.  Horeman93 reviewed a 

number of studies and also showed that the brightness response in the presence of surround 

induction appeared to form dual segments when plotted on a log-log scales; Figure 2.5 shows a 

typical brightness response for varying levels of induction.  

Combining lateral inhibition with a number of other physiological effects, Haubner et al.94 developed 

a model that extended the work by Jameson and Hurvich to include field of view parameters; its 

general form is shown below: 

 𝐵𝐵 =  𝐶𝐶𝑇𝑇(𝜑𝜑)𝐿𝐿𝑇𝑇𝑛𝑛 −  𝐵𝐵0(𝐿𝐿𝑢𝑢,𝜑𝜑) 2.2 

 

 where        𝐵𝐵0 =  𝐶𝐶𝑇𝑇(𝜑𝜑)[𝑆𝑆0(𝜑𝜑) + 𝑆𝑆1(𝜑𝜑) 𝐿𝐿𝑢𝑢𝑛𝑛  ] 2.3 

 

For a target area LT subtended by a field of view of 𝜑𝜑 with a surround luminance of Lu the brightness 

is given by B. The exponent n is fixed at 0.31. CT, S0, and S1 are all constants dependent on the angle 

of view; these are given in a table of constants by Haubner et al. Bodmann95 claimed that the various 

logarithmic and power laws derived by other workers are simply sectional approximations of this 

model. A key difference from the Stevens Power Law is the explicit handling of the surround 

luminance whilst maintaining a constant exponent value for both target and surround terms. The 

model does not appear to accommodate the Crispening Effect and the effect is not readily visible in 

Haubner et al.’s experimental data (see Figure 2.6).  

2.5.5 Log W 

In the tradition of Fechner and Weber, Whittle70 had subjects set an equal interval scale using 25 

circular shapes on a computer display to represent the full greyscale range from black to white in a 

mid-grey surround. Whittle’s data (Figure 2.7) captures two key aspects of simultaneous contrast in 

simple patch scenes: (1) a distinct composite nature (2) a steepening response at the intersection 

(the Crispening Effect). This is shown in Figure 2.7 which also illustrates the poor fit of Stevens Power 

Law to the data. Whittle proposed a logarithmic function (Log W) to predict brightness contrast 
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response under both incremental and decremental conditions. Working in the context of display 

technology Carter96 elaborated on Whittle’s original work to propose two specific grey-scale 

functions; one for increments and one for decrements. Although Carter provides detailed 

justification for the various parameters involved, many are approximations that depend on the 

specific viewing conditions. 

 𝐵𝐵+ = 8.22 𝑙𝑙𝑙𝑙𝑙𝑙10 �1 +
∆𝐿𝐿�1 − 𝑘𝑘𝑝𝑝�

0.15�𝐿𝐿𝑏𝑏 + 𝐿𝐿𝑑𝑑𝑑𝑑 +  𝑘𝑘𝑝𝑝∆𝐿𝐿�
� 

2.4 

 

 𝐵𝐵− = −7.07 𝑙𝑙𝑙𝑙𝑙𝑙10 �1 +
∆𝐿𝐿(1 − 𝑘𝑘𝑛𝑛)

0.15(𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑑𝑑𝑑𝑑 +  𝑘𝑘𝑛𝑛∆𝐿𝐿)� 2.5 

 

B+, B- represent brightness contrast in incremental and decremental conditions respectively, ∆𝐿𝐿 the 

absolute difference of target to surround luminances, Lb luminance of the surround, La luminance of 

the target, kp and kn ocular scatter adjustments and Ldk an estimate of dark light levels in the eye. 

Note the model is constructed to predict relative brightness contrast; as ∆𝐿𝐿 tends to zero, the 

function predicts zero brightness contrast. Carter96 lists a number of limitations and cautions the 

model may not apply to three dimensional objects. Despite these deficiencies the model is 

comparatively simple, predicts the Crispening Effect and accommodates scenes containing both dark 

and a bright surrounds. 

2.5.6 Colorimetric brightness/lightness models 

The science of colorimetry deals with the practical measurement of colour and as such has a long 

history of trying to accommodate brightness and lightness effects in its models. This has led to the 

widespread use of cubic power functions in colour coordinate systems and colour spaces such as CIE 

XYZ and CIELAB84 that make no allowance for surround induction effects. Bartleson and Breneman97 

studied the effects of surrounds on printed images and proposed  power exponents of 0.33 for dark 

surrounds, 0.41 for dim and 0.50 for light surrounds98. Modern colour appearance models such as 

CIECAM02 use a modified cube root function with parametric values for broadly defined conditions 

of average, dark and dim surrounds99. The underlying model of CIECAM02 has been shown to poorly 

predict the effect of surround contrast100. Wu and Wardman101 have proposed modifications to 

CIECAM02 to improve its performance (CIECAM-m2) but they caution that their optimized 

parametric values only apply to the experimental viewing conditions they employed. All of the CIE 

lightness models are dependent on the Y coordinate of the XYZ tristimulus values and these require a 

properly characterised colorimetric instrument for measurement. The difficulty of capturing XYZ 

tristimulus values prevented the use of CIECAM02 in this project. 

 13 



2.5.7 Real-world ambiguities 

Even in relatively simple scenes the influence of induction can be substantial and surround conditions 

may radically shift the perception of target areas if the surround is of a higher luminance. Marsden102 

provides a useful illustration of the likely relationship between luminance of a target and perceived 

brightness in a complex scene (Figure 2.8). In an isolated dark surround the line QP would represent 

the response with a slope of around 0.3 (modified slightly by differences in chromatic content). The 

introduction of surround (or adjacent) elements will instigate both induction and lightness effects. 

Induction will cause the brightness of the target to drop and the simple line of PQ is transformed to a 

curvilinear triangular area of PRS. Lightness effects under general illumination will modify the 

response further by increasing high luminance elements and lowering the low luminance elements 

producing a final locus of TPVR. According to Marsden the actual response in a real scene is located 

in the TPVR envelope in some disordered manner.  

2.6 Haze detection thresholds 

A number of studies have sought to establish haze detection thresholds in polymer microsphere 

solutions using different surrounds and levels of illumination. Carrasco and Siebert3 employed clear, 

yellow and red suspensions in a dark surround and brightly illuminated viewing box; thresholds were 

found to range from 0.38 to 0.81 NTU. Fleet and Siebert5 extended this study by varying the levels of 

illumination and found that an intermediate lighting level (592 Lux) resulted in the lowest thresholds 

for clear, tan and brown suspensions; 0.176 to 0.829 NTU. Higher and lower levels of illumination 

(1192 Lux, 18 Lux) led to an increase the observed thresholds. Fleet and Siebert6 used the same 

viewing box in conjunction with bright illumination (1192 Lux) to explore the effect of varying the 

surround conditions. Black velvet surrounds resulted thresholds ranging from 0.21 to 2.2 NTU 

whereas white cotton surrounds led to a much higher range: 2.0 to 41.0 NTU. The sample dimensions 

were not reported. 

Horne et al.4 attempted to derive haze detection thresholds for model solutions viewed under 

conditions that approached point of sale conditions. In this study the models suspensions were 

created by mixing water, formazin and red/yellow coloured pigments so as to emulate apple juice. 

The subjects were permitted to handle the test samples (presented in cuvets, 95mm x 25mm 

diameter) in a viewing room illuminated by both fluorescent and incandescent bulbs. Mean threshold 

levels were found to be much larger than those found using a tightly controlled viewing box: 3.6 NTU. 

Although the study was intended to emulate “store like” conditions, the levels of illumination and 

surround conditions were not specified thus limiting the usefulness and relevance of the threshold 

values found. 
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Horne et al.4 compared the use of Ascending Method of Limits (AML)103  with a transformed staircase 

method for the determination of haze thresholds; they found equivalent results for the two methods 

and recommended AML due to its comparative simplicity. All of the other studies employed the AML 

method to determine best estimate group thresholds. 

2.7 Literature summary 

Current industry protocols for the stabilisation of proteins in wine depend on the assessment of 

visual haze outcomes as a means of setting dosage levels for fining agents. The use of formazin 

calibrated nephelometry has been proposed as surrogate instrumental method for visual haze 

assessment. Nephelometers offer a device specific assessment of a light interaction with a liquid 

sample. The mechanisms used by the human visual system in the perception of translucent liquids 

such as wine are not well understood but it appears that many factors relating to the visual scene will 

influence the outcome. There is currently no scaling model available that can be used to estimate 

haze perception intensities based upon nephelometric measurements. 
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Figure 2.1 Relative scatter light intensities versus angle for particles of varying sizes (0.1µm to 
10µm, unpolarised, λ=570nm). Derived using MiePlot version 4305104. 

 

 

 

Figure 2.2 Relationship between apple juice clarity and instrumental turbidity. Adapted from Fig 
1 in Malcolmson et al.53. 

 

Figure removed due to copyright restrictions. 
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Figure 2.3 Relationship between apple juice clarity and instrumental turbidity. Approximated 
from Fig 1 in Malcolmson et al.53. Reconstructed data shown with a best fit power 
function of exponent value of -0.52. 

 

 

Figure 2.4 Haze intensity as perceived by sensory panellists versus turbidimeter for clear, yellow 
and red samples. Data for 0.769µm microspheres on left, 2.6µm on right. Below 300 
NTU both sets of data are approximately linear. Illustrations sourced and adapted 
from Fig 3.7 and Fig 3.8 in Carrasco54. 
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Figure 2.5 An example of dual segment brightness responses versus target luminance under 
varying levels of induction. The upper line represents the response in the absence of 
induction. The various steeper segments are observed at the levels of induction 
marked on the segments. Adapted from Fig. 4 in Horeman93. 

 

 

Figure 2.6 Achromatic brightness scaling data adapted from Fig. 6 in Bodmann95. The upper linear 
segment data corresponds to a dark surround, the lower curve data corresponds to a 
surround luminance of 300 cd.m-2. Solid lines represent Haubner’s model (see 
Equation 2.2 in this document). 

 

Figure removed due to copyright restrictions. 
 

Figure removed due to copyright restrictions. 
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Figure 2.7 An equal interval brightness scale for 25 grey circles on a grey background, plotted 
against luminance and log luminance. The ordinate axis is the ordinal number of the 
circles with the origin shifted to set brightness to zero at the position where the 
background luminance (Lb) intersects the curves. The dashed line is the best fitting 
Stevens power law with an exponent of 0.46. Adapted from Fig. 3 in Whittle70. 

 

 

Figure 2.8 Estimated locus of brightness (B) versus luminance (L) for varying conditions. TPVR 
represents an approximation to a real-world scene. Adapted from Fig. 11 in 
Marsden102. Refer to text for description (Section 2.5.7). 

 

Figure removed due to copyright restrictions. 
 

Figure removed due to copyright restrictions. 
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Chapter 3 

General Methodology 

3.1 Overview 

This thesis is composed of a number of inter-related studies that utilise many common methods and 

materials; this section details generic elements of the work. Additional information regarding 

methods and materials may be found in the relevant experimental sections. 

3.2 Sensory environment 

3.2.1 Sensory booths 

In the experiments involving human participants, the perceptual response to haze was investigated 

in a sensory room composed of individual booth accommodation. The dimensions of the booths 

were 2.7 m high, 0.8 m wide and 1.1 m deep with a built-in table top at a height of 0.72 m. Each 

booth had its own illumination provided from a triple bulb enclosure at a height of 2.0 m centrally 

located over the table top. 

The sensory room contained eight sensory booths of which four were modified to match two 

surround configurations. This resulted in two dark surround booths and two light surround booths 

(sufficient to support the anticipated maximum number of experimental configurations). This was 

achieved by hanging dark or light linen material from a height of 1.7 m; the linen covered the rear 

and side walls. In addition, a flat base covered with appropriately coloured material was placed on 

top of the built-in table top. The modifications were such that the subjects’ field of view was 

completely enclosed by the dark or light material when seated in the booths. One of the sensory 

booths equipped with a dark surround is shown in Figure 3.1. 

3.2.2 Booth illumination 

The standard illumination was modified in the booths by replacing the existing bulbs with two LED 

bulbs (model: LED-MR16-SP-CW; Marexim Ltd., Mt Maunganu, New Zealand) in each of the four 

experimental booths. The bulbs were installed in the two outer positions in a triple bulb housing in 

an attempt to achieve a symmetrical illumination across the viewing area in the booth. The bulb 

housing did not have a diffuser installed meaning that the illumination pattern peaked in the central 

area with an increasing drop off towards the side of the booths. The bulbs had a claimed luminous 

flux output of 400 lumens, colour appearance of 6400 Kelvin and a colour rendering index of 80. The 
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spectral power distribution curve for the LED-MR16-SP-CW bulb exhibits a narrow maximum peak at 

450 nm and a broader secondary peak at 550 nm. 

The resulting illumination in the booths ranged from  around 2000 Lux at 1.2 m above floor level 

(subject eye level) to around 700 Lux at 0.72 m above floor level (table top). These illumination 

values conform reasonably well to the range of 750 to 1200 Lux recommended for sensory room 

conditions by the American Society for Testing and Materials (ASTM)105 ensuring that photopic 

conditions prevailed106. 

3.2.3 Sample receptacles and sample volume 

All samples were evaluated by subjects using elongated egg shaped ISO glasses107 typically used for 

wine evaluations.  The glasses were manufactured by Arcoroc International (Arques, France) with all 

glasses originating from the same manufacturing batch. The physical dimensions of the glasses were: 

opening diameter of 4.2 cm; cup diameter (maximum diameter of bowl) of 6.0 cm and a cup height 

of 9.0 cm. The optical transmission characteristics of the glass material were unknown. 

All human subject evaluations were conducted with sample volumes of 90 mL. 

3.2.4 General viewing conditions 

Although viewing conditions were generally dictated by the booth environments, the subjects were 

encouraged to examine the samples in a natural manner with a requirement to commence 

evaluation by first viewing the sample at eye level. Prior to each evaluation session the subjects’ 

chairs were adjusted so that eye level approximately aligned to 510 mm above the booth table top. 

Assuming an eye-to-glass distance of 35 cm, this equates to a combined stimulus/proximal field of 

approximately 10°. The background and surround conditions were dictated by the homogenous linen 

material hung in the booths combined with the spatial characteristics of the illumination. 

Subjects were specifically requested to hold the glasses by the stem so as to avoid contamination of 

the viewing surface. 

The choice of achromatic material for the booths was intended to minimise any potential chromatic 

induction effects. This was largely achieved with the dark surrounds but the response of the light 

surround had a bias towards green. Figure 3.2 shows device RGB values for each surround type in 

conjunction with the booth illumination (see Section 3.3.2 for measurement methodology). 
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3.3 Instrumentation 

3.3.1 Nephelometric measurement 

Turbidity measurements were conducted using an industry standard nephelometer (model: 2100P, 

Hach Pacific, New Zealand) conforming to USEPA Method 108.1108.  This instrument functions by 

calculating turbidity from the ratio of scattered light at 90˚ to transmitted light using a tungsten 

filament light source. Measurements are displayed in Nephelometric Turbidity Units (NTU) 

referenced against a formazin (hydrazine sulphate and hexamethylenetetramine) calibration. 

Measurements were made by filling a sample cell provided with the instrument with a 15 mL volume 

of the sample with the averaging and auto-ranging functions of the instrument active. Where 

randomisation did not dictate otherwise, sequential measurements were made in increasing order of 

expected NTU values. Prior to each measurement the sample cell was rinsed with the liquid under 

test. 

Calibration was performed against the StablCal stabilized formazin standards provided by the 

manufacturer prior to experimental work commencing. Calibration checks were made against 

secondary Gelex standards as recommended by the manufacturer. 

3.3.2 Image based aggregate luminance measurements 

Image based aggregate luminance measurements were conducted using a modified Canon A2300 

digital still camera in conjunction with a number of supporting software components. An overview of 

the image processing pipeline is illustrated in Figure 3.3. Specific details of the camera setup along 

with software parameters may be found in Appendix A. 

The sensor values retrieved from the camera can be significantly affected by the choice of image 

areas used for analysis. Pilot work was conducted to identify the most appropriate the region of the 

ISO glass to use as the Region of Interest (ROI) for sample analysis. It was found that many areas of 

the glass were affected by reflections from surrounding elements such as booth walls along with 

various specular glare effects. These interferences were minimised when the ROI was set to an upper 

central region in the glass for an orthogonal image capture geometry. This ROI and geometry was 

used in all studies (see Figure 3.4) except where the sample surface was imaged directly from above 

(see Chapter 7). 

Note that aggregate luminance is used in this thesis as a term representing a weighted average 

measure of the combined Bayer colour filter array response from the camera as presented at the 

output of the processing pipeline; it is not intended to represent an absolute radiometric or CIE 

photometric luminance measure109. The weighting scheme used to average the RGB channel values: 
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 Aggregate luminance = 0.2126 𝑅𝑅 + 0.7152 𝐺𝐺 + 0.0722 𝐵𝐵 3.1 

 

R, G and B represent the raw channel, device dependent responses received at the output of the 

image processing pipeline shown in Figure 3.3. The weights chosen are arbitrary since the spectral 

response of the device was unknown but they do conform to ITU-R BT.709 luminance for linear 

primaries110. Aggregate luminance data is reported in relative form typically normalised against the 

highest luminance sample in the dataset. 

3.3.3 Illuminance measurements 

Illuminance measurements were conducted with a photography and lighting quality illuminance 

meter (Model: Digitech QM1587; Jaycar Electronics, Auckland, New Zealand). This instrument 

displays measurements in Lux corresponding to the CIE V(𝜆𝜆) photopic luminous efficiency curve111. 

3.4 Reagents and sample preparation 

3.4.1 Reagents and materials 

Polystyrene, non-functionalised microspheres of mean diameter 0.25 µm were sourced from Bangs 

Laboratories Inc. (Fishers, IN, USA); product code: PS02N/7307. The microspheres had a dry density 

of 1.05 g/cm3, an unspecified standard deviation and were supplied in an aqueous solution 

composed of de-ionised water, 0.1% sodium dodecyl sulphate (SDS) and 0.05% sodium azide (NaN3). 

The number of microspheres per mL was calculated by the manufacturer to be 1.228x1013. The 

microspheres were received in small plastic bottles with an approximate volume of 5 mL. 

Yellow food colouring concentrate distributed by Hansells Food Group (Auckland, New Zealand) was 

sourced locally. The colouring concentrate contained water, tatrazine, carmoisine, citric acid, 

potassium sorbate and sodium benzoate (2.3% total dyestuff).  

Sodium dodecyl sulphate, specially pure1 grade (VWR International Ltd., Poole, UK) was purchased 

locally and used as a surfactant in the model microsphere solutions. 

Visking dialysis tubing of molecular cut-off weight of 12-14000 Da (sizes 18/32 and 36/32) was 

supplied by Medicell International Ltd, London, UK. 

Chardonnay wine samples were vinified by Villa Maria Estate (Marlborough, New Zealand) from 

grapes grown in the 2012 season. The wine was stored at 4˚C prior to and during the experimental 

period. 
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3.4.2 Preparation of model microsphere suspensions 

Microsphere solutions were prepared at various concentrations through the dilution of microsphere 

concentrates using HPLC grade deionised water containing SDS. Preparation of samples involved a 

two stage dilution process whereby base concentrates were first prepared for use in a second stage 

dilution used to create a range of final sample concentrations. Dialysis to remove sodium azide was 

conducted before the second stage dilution (see Section 3.4.4). Prior to commencing each stage of 

the dilution process the relevant microsphere concentrate was rotated overnight in a Stuart 

incubator (model: SI30H, Bibby Scientific Ltd., Stone, UK) to ensure the microspheres were well 

dispersed. During pilot work it was established that maintaining an SDS surfactant concentration of 

0.1% in the final samples would induce foaming effects that were likely to interfere with turbidity 

measurements and visual assessments. The final stage dilution therefore involved the reduction of 

the SDS concentration to 0.005% (a level previously used by the manufacturer).  

The density of the microspheres means they approximate neutral buoyancy in water and should 

therefore create stable aqueous suspensions. Pilot work showed that suspensions remained stable 

for at least a week after preparation rendering density modification of diluents unnecessary. 

Pilot experimentation using visual matching in one of the experimental dark surrounds indicated that 

0.025 mL of yellow concentrate in 1000 mL of aqueous solution (SDS, 0.005%) would result in a 

solution with visual characteristics close to that of a locally available commercial Riesling wine 

(Hardys Riesling, 2103). All coloured microsphere suspensions were prepared to this pigment 

concentration by adding yellow concentrate to the diluent at the second stage dilution. 

The volumes and dilutions used were specific to the relevant experiment; details can be found in the 

experimental sections below. 

Microsphere concentrates and sample solutions were stored at 4˚C once prepared. Samples were 

removed from refrigeration and allowed to reach room temperature prior to experimental use. 

3.4.3 Preparation of haze induced wine samples and stability assurance 

Haze induced wine samples were prepared by heating commercial grade wine stocks at a high 

temperature and then using this material as a concentrate for dilution with unheated wine; the 

specific heating protocol and dilutions can be found in the relevant experimental sections. 

Various studies had reported difficulties in working with natural haze material due to its tendency to 

be somewhat water soluble leading to general instability in experimental samples5,112. This is further 

compounded by heat and time related protein unfolding and aggregation processes that are inherent 

to the wine matrix17. Pilot work showed that haze induced wine samples prepared by “heat and 
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dilute” processes were reasonably stable over the course of a day if the turbidity was sufficiently low 

(Standard Deviation < 0.15 over the course of eight hours below 10 NTU).   

To avoid excessive error due to sample evolution, all experimental studies involving haze induced 

wine samples were conducted over the course of a single day. Where samples in excess of 10 NTU 

were used, multiple turbidity measurements were taken at regular intervals in order to better 

estimate mean turbidity values and associated error. 

3.4.4 Dialysis of microsphere concentrate 

Prior to use with human participants, the sodium azide component of the microsphere concentrate 

was removed by dialysis. Suitable lengths of Visking’s dialysis tubing were prepared by soaking in 

running water for 30 minutes followed by rinsing both the exterior and interior with lab grade 

reverse osmosis water. An aqueous solution of 0.1% SDS was prepared using HPLC grade water for 

use as the dialysis buffer. Dialysis was conducted as a three stage process using a fresh 2.5 L volume 

of buffer for each stage (the volume of concentrate to be dialysed varied by experiment). 

3.5 Statistical and analytical methods 

3.5.1 Inter-subject variance analysis 

Inter-subject variance in sensory experimental data was assessed by calculating a coefficient of 

variation (CV) value for each subject and comparing it with the geometric mean for all subjects in the 

manner of Withouck59: 
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𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 represents the haze perceived  by the subject for the test sample i, 𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑖𝑖 the geometric 

mean of the 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 for all the subjects, 𝑄𝑄�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 the arithmetic mean of 𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑖𝑖 for all test samples, n 

the number of test samples, and 𝑓𝑓 the factor adjusting the 𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑖𝑖 and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖to the same scale. 
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3.5.2 Curve fitting and regression analysis of haze estimation data 

Curve fitting and non-linear regression analysis was conducted using CurveExpert Professional 

software113 which uses the Levenberg-Marquardt method; six custom models were defined for this 

project (see below). The same software was used for linear fitting. 

In a study by Marks and Stevens114 a number of brightness scaling power law variants intended to 

accommodate surround induction effects or deal with observed deviances close to the perceptual 

threshold were reviewed. These models were elaborated into general forms for use as custom 

models for non-linear regression: 

 

 𝑦𝑦 = 𝑘𝑘(𝑥𝑥 − 𝑏𝑏)𝑛𝑛 3.3 

 

 𝑦𝑦 = 𝑘𝑘(𝑥𝑥𝑛𝑛 − 𝑏𝑏𝑛𝑛) 3.4 

 

 𝑦𝑦 = 𝑘𝑘[(𝑥𝑥 + 𝑏𝑏)𝑛𝑛 − 𝑏𝑏𝑛𝑛] 3.5 

 

In addition, the following logarithmic formulae were also used as base models for non-linear 

regression. Equations 3.7 and 3.8 are generalisations of the Log W model outlined in Section 2.5.5. 

 

 𝑦𝑦 =  k ln(𝑥𝑥) 3.6 

 

 𝑦𝑦 = 𝑘𝑘 log(1 +  𝑑𝑑(𝑥𝑥 − 𝑏𝑏)/𝑏𝑏) 3.7 

   

 𝑦𝑦 =  𝑘𝑘 log(1 +  𝑑𝑑(𝑏𝑏 − 𝑥𝑥)/𝑥𝑥) 3.8 

 

The independent variable 𝑥𝑥 represents a physical measure (normally device dependent aggregate 

luminance or nephelometric turbidity). It may also represent alternative physical measures such as 

instrumental turbidity or microsphere concentrations. The dependent variable 𝑦𝑦 represents the haze 

sensory response corresponding to the experimental evaluations obtained through sensory studies. 
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The exponent 𝑛𝑛 is the power function value that influences the form of the power response. The 

parameter 𝑏𝑏 is an offset that may or may not relate to some physical measurement such as surround 

luminance or perceptual thresholds. The parameter 𝑘𝑘 is a scaling factor that allows the independent 

variable data to align to the arbitrary sensory scale. The multiplicative parameter 𝑑𝑑 is required in 

Equations 3.7 and 3.8 in order to conform to the general structure of the empirical Log W model. 

The approach adopted for curve fitting was to sequentially attempt to fit the data for each general 

model and then examine the residual runs and associated p-values. The various parameters were 

examined for plausibility and a final visual check of the resulting curves were made for systematic 

deviances. The optimum logarithmic model and optimum power model were then selected for 

summary presentation in the relevant results. 
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Figure 3.1 Sensory booth in a dark surround configuration. 

 

 

Figure 3.2 Relative compositions or red, green and blue (RGB) channels in light and dark 
surrounds (based on device RGB proportions). 
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Figure 3.3 Image processing pipeline (see Appendix A for detailed explanation). 

 

 

Figure 3.4 Upper central region of interest (ROI) areas used in image capture. Various areas of 
reflections and specular highlights visible outside the ROI’s. 
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Chapter 4 

Haze Detection Thresholds in Polymer Microsphere Solutions and 

Haze Induced Chardonnay Wine Samples 

4.1 Overview and objectives 

Of the small number of studies that have examined haze detection thresholds, the majority have 

chosen to use microsphere suspensions of varying sizes and colours3,5,6. These studies have employed 

highly controlled conditions using a small viewing box to hold the samples static during evaluation. 

However, wine is consumed under very different conditions whereby the liquid is poured into a glass 

which the consumer is free to manipulate prior to and during consumption. The visual appearance of 

a wine in a glass is not homogenous and varies as the glass is moved relative to lighting and 

surrounding conditions. Therefore viewing arrangements that prevent subjects from handling test 

samples may result in detection thresholds that lack relevance to realistic conditions of consumption. 

The overall goal of these experiments was to investigate haze detection thresholds in samples 

viewed under conditions resembling those encountered when wine is being consumed. Test 

materials were to consist of polymer microsphere solutions along with commercial grade 

Chardonnay wine samples.  

The primary objective was to determine if different surround conditions (dark or light) or different 

coloured samples (achromatic or yellow) result in different haze detection thresholds. A secondary 

objective was to determine if haze detection thresholds in wine differed from those in equivalent 

yellow polymer microsphere samples under dark surround conditions. 

4.2 Materials and methods 

The experiment was executed in two stages: (1) threshold determinations using a range of surround 

conditions and suspension colours using polymer microspheres of 0.25 µm diameter (2) threshold 

determination using haze induced Chardonnay wine samples in a dark surround. The first stage was 

conducted over an elapsed period of eight days (six experimental days), the second stage was 

conducted over a single day. The experimental stages were separated by an elapsed period of around 

two months. 

The information given below should be read in conjunction with the general methodology Section 

found in Chapter 3. 
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4.2.1 Preparation of microsphere suspensions 

Achromatic microsphere suspensions 

A primary microsphere suspension was created by mixing the 0.25 µm polymer microsphere 

concentrate (as supplied by the manufacturer) with HPLC grade deionised water. Two secondary 

base concentrates were then prepared in a similar fashion; these were further diluted to prepare a 

final set of 10 achromatic suspensions arranged in two-fold concentration steps. Turbidity details of 

the achromatic test samples are shown in Table 4.1. 

Table 4.1 Details of achromatic microsphere suspensions. Average turbidity values derived from 
repeated measurements taken over experimental period. 

Achromatic samples Average turbidity (NTU) 

Diluent/Blank 0.18 
1 0.24 
2 0.32 
3 0.47 
4 0.80 
5 1.44 
6 2.71 
7 5.09 
8 9.83 
9 18.62 
10 35.28 

 

Yellow microsphere suspensions 

Yellow microsphere suspensions were prepared in a similar fashion to the achromatic suspensions 

with the addition of yellow food colouring in the final stage diluent. Turbidity details of the yellow 

test samples are shown in in Table 4.2.  
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Table 4.2 Details of yellow microsphere suspensions. Average turbidity values derived from 
repeated measurements taken over experimental period. 

Yellow samples Average turbidity (NTU) 

Diluent/Blank 0.18 
1 0.24 
2 0.32 
3 0.49 
4 0.77 
5 1.39 
6 2.58 
7 4.99 
8 9.68 
9 18.38 
10 34.44 

 

4.2.2 Preparation of haze induced Chardonnay wine samples 

The first part of this study had resulted in a haze detection threshold for yellow microsphere 

suspensions in a dark surround of 1.15 NTU (see Section 4.3.3). In an attempt to optimise the 

resolution of the wine threshold results, the range of wine sample turbidities (0.5 to 4.0 NTU) was 

designed to be much narrower than those used for the microsphere suspensions. 

Wine stock exhibiting a high degree of visual haze was prepared by immersing 1 litre volumes of 

Chardonnay wine in a temperature controlled heat bath at 90˚C for a period of two hours; this 

formed a concentrate base for dilutions. Haze induced wine samples were prepared by diluting high 

haze wine stock with untreated wine using a 1.4 dilution factor; the sample turbidity outcomes are 

shown in Table 4.3. 
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Table 4.3 Details of Chardonnay haze induced samples. Average turbidity values derived from 
measurements taken over experimental period 

Chardonnay samples Average turbidity (NTU) 

Untreated/Blank 0.4 
1 0.60 
2 0.79 
3 0.89 
4 1.10 
5 1.25 
6 1.54 
7 2.06 
8 2.39 
9 2.98 
10 3.57 

 

4.2.3 Sensory booth configuration 

In the first part of the study using microsphere suspensions the sensory booths were equipped and 

illuminated as previously described with two dark surround booths and two light surround booths 

being used.  

For evaluation of the Chardonnay wine suspensions a single booth with a dark surround was used. 

4.2.4  Microsphere suspension handling and presentation 

For each booth a sample set consisting of 30 ISO glasses was prepared. This included 10 glasses each 

containing one of the 10 hazy samples and another 20 ISO glasses containing blank material; each 

glass contained 90 mL of liquid and was labelled with a unique random three digit code. The glasses 

were filled on the morning of the first day and refreshed with fresh samples on the mornings of the 

3rd and 6th experimental days. Where stocks were not to be refreshed the next day, the glasses were 

stored overnight at room temperature with their tops covered to minimise evaporation. 

Prior to each day’s evaluations the exterior of the glasses were wiped clean using a lint free cloth.  

4.2.5 Chardonnay wine sample handling, presentation and stability 

The Chardonnay wine sample sets were prepared and presented in the same manner as the polymer 

microsphere suspensions except that all evaluations were completed in a single day thus avoiding the 

need to replenish samples. 
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Since the nominal sample range was well below 10 NTU, the possibility of excessive sample instability 

during subject evaluations was not anticipated (see Section 3.4.3); repeated turbidity measurements 

showed the samples to be stable over the experimental period. 

4.2.6 Sensory evaluations of haze thresholds 

Overview 

Sensory evaluations of haze thresholds were conducted using the Ascending Method of Limits (AML) 

procedure103 for both the microsphere suspensions and the wine samples. The 3-Alternate Forced 

Choice (3AFC) test105 was used to regulate evaluation of each sample triplet. 

Subjects 

Subjects for the first part of the study consisted of 14 volunteers; 8 males and 6 females. For the 

second stage the subject pool consisted of 8 volunteers; 3 males and 5 females. All subjects involved 

in the second stage had participated in the first stage. 

All subjects were staff, faculty members or post graduate students from Lincoln University, New 

Zealand who self-reported normal or corrected vision and were over the age of 18. None of the 

subjects had experience of the AML/3AFC procedure prior to the study. The subjects were not given 

any monetary or other incentive to participate in the study.  

The subjects did not meet as a group; all evaluations were conducted individually. 

Experimental design 

In the first stage of the study there were four experimental booth configurations; see Table 4.4. 

There was one experimental configuration for the second stage involving wine samples: all wine 

evaluations were conducted in a single dark surround. 

The presentation order of sample sets for each experimental configuration followed an ascending 

order of turbidity in accordance with the AML procedure. The order of the three glasses for each 

individual 3AFC evaluation was randomised with each possible order configuration used before re-

use. In the case of the microsphere experiment, the order in which subjects were directed to 

individual booths followed a repeated 4x4 Latin Square.  

Table 4.4 Experimental configurations used for threshold determination in microsphere 
suspensions. 

Configuration Surround Suspension colour 
1 Dark Achromatic 
2 Dark Yellow 
3 Light Achromatic 
4 Light Yellow 
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Evaluation procedure 

Prior to commencing evaluations each subject was given a formal pre-evaluation briefing that lasted 

approximately 5 minutes. The briefing explained the AML/3AFC procedure and was read from pre-

written scripts (Appendix C.1 and C.2). The subject was told that they would be repeatedly presented 

with sets of three glasses and for each set they were to determine which glass held the haziest 

sample. The subject was told they were to evaluate the samples by first viewing each of the three 

possible, two-glass combinations at eye level after which they were to be allowed to manipulate the 

glasses freely (i.e. tipping the glass was permitted). Towards the end of the briefing the subject was 

requested to identify a mid-range hazy sample from a set of three glasses that contained two blanks; 

all subjects successfully identified the hazy sample. The subject was then directed to the appropriate 

sensory booth to start the evaluation process. 

Sets of three glasses were presented to the subjects for each 3AFC evaluation; one contained a test 

sample whilst the others contained blank material. Ten sets of three glasses were presented in each 

experimental configuration (i.e. ten 3AFC tests per configuration). The subjects were given 30 

seconds to make their evaluations at which point the 3AFC triplet was retrieved and replaced by the 

next triplet. Once all ten 3AFC evaluations had been completed for a particular experimental 

configuration, the subjects were directed to the next booth. The process continued until all samples 

in every booth had been evaluated once. In the case of the wine samples, one set of 10 evaluations 

in the single dark booth completed the evaluation session for the subjects. 

Each experimental booth contained its own combined instruction/score sheet that remained visible 

during the evaluations in that booth. 

4.3 Results and discussion 

4.3.1 Threshold quantification 

Individual best estimate thresholds (BET’s) were calculated as the geometric mean of turbidities 

between an incorrect response and a correct response that was only followed by correct responses. 

The group threshold BET for a particular experimental configuration was calculated as an overall 

turbidity value by taking the geometric mean of all the individual BET’s for that configuration. 

4.3.2 Raw data assessment 

The individual BET data for the microsphere evaluations was found not to be normal with each 

configuration showing a mix of positive skew and bi-modal attributes. The distribution for yellow 

microsphere suspensions in the dark surround is shown in Figure 4.1; this is representative of the 
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data for the other three microsphere configurations. The BET data for the haze induced Chardonnay 

wine samples was found to take on a more normal form when plotted with the same bin steps used 

in the microsphere histogram; this is shown in Figure 4.2. Narrowing the bin steps in the wine 

histogram leads to a similar bi-modal form as seen for the microsphere distribution. There are 

insufficient BET scores to be confident of the nature of the distributions.  

In the single previous study where data distributions were reported54 a mix of bi-modal and positively 

skewed data was also found. In general, previous studies3,5,6 have log transformed the data prior to 

applying statistical analysis without disclosing the resulting distributions. An attempt to normalise 

the microsphere data in this study through log transformation was not successful. 

4.3.3 Observed thresholds 

The dark surround and achromatic suspension configuration resulted in the lowest group threshold: 

0.44 NTU. The effect of changing to a light surround appeared sizeable with the group threshold 

increasing to 3.24 NTU. The yellow suspensions followed a similar pattern with thresholds increasing 

from 1.15 to 6.93 NTU as the surround was changed from dark to light. A group threshold of 0.86 

NTU was found for the Chardonnay wine samples; this is somewhat smaller than the equivalent 

yellow microsphere threshold of 1.15 NTU. The group BET’s and individual subject range for each of 

the experimental configurations are detailed in Table 4.5. 

Table 4.5 Group Best Estimate Threshold (BET) and individual subject range for each 
experimental configuration. 

Sample material Surround Sample colour Group BET 
(NTU) 

Individual ranges 
(NTU) 

Polymer microspheres Dark Achromatic 0.44 0.21 to 1.07 
Polymer microspheres Dark Yellow 1.15 0.4 to 3.59 
Polymer microspheres Light Achromatic 3.24 1.07 to 13.53 
Polymer microspheres Light Yellow 6.93 1.89 to 25.16 
Chardonnay wine Dark Yellow (natural) 0.86 0.52 to 1.39 

 

It can be seen that the absolute ranges in the subject responses expand substantially as the group 

BET rises. However, the individual ranges were consistently spread over six concentration levels for 

each of the five experimental configurations. The Chardonnay wine samples were prepared using a 

smaller dilution factor than the polymer microsphere samples (1.4 versus 2) meaning that the 

relative extent of the individual range in the wine samples was somewhat narrower than that 

observed in the equivalent microsphere samples.  

Figure 4.3 shows the results of this study for achromatic samples in comparison to those found by 

Fleet and Siebert6 who used a brightly illuminated viewing box with similar particle sizes. Although 
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differential significance cannot be objectively judged, the more realistic viewing conditions of this 

study appear to lead to lower thresholds in the light surround. Superficially the reverse appears to be 

the case for the dark surrounds but the differences are less pronounced. However, caution is 

required when comparing absolute NTU values as inconsistencies in inter-device nephelometric 

measurements may be misleading (see Section 2.2.2). Figure 4.4 shows the most comparable results 

available for coloured suspensions (Fleet and Siebert6) where a similar pattern emerges to that seen 

for the achromatic suspensions.  

4.3.4 Non parametric statistics 

A series of Wilcoxon Signed Rank tests115 were used to determine whether there were significant 

differences in medians between the data for the two types of surround and the two types of 

suspension (Table 4.6). It can be seen that changing the suspension colour in the black surround did 

not result in a significant change in median. In contrast, the same suspension change in the light 

surround was found to be highly significant. The substantial impact of the surround is evidenced by 

the significance of the difference between the dark and light surrounds for both suspension types. 

It may be of some interest that the only test where surround induction was not expected to have a 

had a substantial influence in at least one of the configurations was the one that shows no significant 

difference in the median. In other words the lack of significance between the two configurations in 

Test 1 may be related to the fact that the surround luminance was less than all test sample 

luminances in both configurations (see Section 2.4.2 for more on induction effects). 

Table 4.6 Results of Wilcoxon Signed Rank test for median changes in surrounds and suspension 
types. 

Test Experimental configuration A Experimental configuration B Significant difference 
in median (α=0.01)1 

1 Dark surround, achromatic 
suspension 

Dark surround, yellow 
suspension 

No 

2 Light surround, achromatic 
suspension 

Light surround, yellow 
suspension 

Yes 

3 Dark surround, achromatic 
suspension 

Light surround, achromatic 
suspension 

Yes 

4 Dark surround, yellow 
suspension 

Light surround, yellow 
suspension 

Yes 

1None of the relevant datasets included more than 25% ties.  
 

A Wilcoxon Signed Rank test was also used to explore the possible differences between the 

Chardonnay wine samples and yellow polymer microsphere suspensions viewed in the dark 

surround. It was possible to conduct this test because all eight subjects involved in the wine 

evaluations also took part in the yellow polymer microsphere evaluations under equivalent 
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experimental conditions. It is acknowledged, however, that the experiments were conducted some 

two months apart and this may have undermined the pairing of subjects’ results. An equal number of 

positive and negative differences were found across the eight subjects; no significant difference was 

found. 

4.3.5 Summary and conclusions 

It appears that both pigment content and surround viewing conditions influence haze detection 

thresholds. These results generally support those of Fleet and Siebert6 whose data showed that 

thresholds substantially increase as the surround becomes lighter. The impact of suspension colour 

in other studies has not been consistent but these results suggest yellow pigments will tend to cause 

an increase in haze detection thresholds in lighter surrounds. 

In terms of absolute threshold levels under real-world conditions, Horne et al.4 reported a threshold 

of around 3.55 NTU for red/yellow formazin suspensions. Unfortunately, there is no information 

regarding the surround viewing conditions employed making any comparison with this study’s results 

difficult. The best that may be said is that the results found in this study for light and dark surrounds 

are perhaps consistent with viewing extremes and that Horne et al. may have employed some 

intermediate conditions. 

The lower BET for the Chardonnay wine samples along with the narrower subject range compared to 

the equivalent yellow microsphere samples suggests that more effective threshold cues may be 

present in the wine samples used. The apparent difference in the results may be associated with 

chromatic differences or visual artefacts caused by the different compositions. However, the 

Wilcoxon Signed Rank test did not detect any significant difference between the results and more 

work is required to investigate this further.  

In general, a dark surround should be considered as one in which haze detection thresholds are likely 

to be the lowest for any given yellow sample; a threshold of around 1.0 NTU would seem a 

reasonable assumption under such conditions. This conclusion is specific to the lighting, samples and 

receptacles used in this study. Generalisation of these results to other viewing conditions and sample 

compositions cannot be made without further work. 

  

 38 



 

 

Figure 4.1 Histogram of individual haze detection BET thresholds for yellow microsphere 
suspensions evaluated in a dark surround (n=14). 

 

 

Figure 4.2 Histogram for individual haze detection BET thresholds in haze induced Chardonnay 
wine samples evaluated in a dark surround (n=8). 
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Chapter 5 

Relationships between Haze Intensity Perception, Nephelometry 

and Aggregate Luminance in Polymer Microsphere Solutions 

5.1 Overview and objectives 

The overall goal of this study was to investigate the human response to haze intensity and to 

examine the relationship between perceptual and instrumental data for samples containing polymer 

microspheres of a single nominal diameter (0.25 µm). The underlying hypothesis was that human 

perception of haze correlates with the common use terms of brightness and darkness and that one of 

the many models proposed for scaling perceptual brightness or lightness may offer a means of 

quantifying perceptual haze intensity (see Section 2.3.3).  

The primary objective was to determine the haze intensity response of achromatic and yellow 

samples containing polymer microspheres using a panel of human subjects and to compare that 

response to those predicted by the scaling models outlined previously (Sections 2.5 and 3.5.2). In 

contrast to most related work, the viewing conditions were to be designed to match those of real-

world scenes as far as possible whilst controlling key variables. 

A secondary objective was to investigate the relationship between microsphere concentrations, 

instrumental turbidity and image luminance. Of particular interest was the possibility that digital 

image data might offer a means of tracking instrumental turbidity. 

It was decided to use polymer microspheres rather than wine samples since this provided better 

control over experimental conditions and sample. This study can be viewed as a necessary step prior 

to engaging in similar work using bona fide wine samples (see Chapter 6). 

5.2 Materials and methods 

The information given below should be read in conjunction with the general methodology section 

found in Chapter 3. 

5.2.1 Sample preparation 

The results of the threshold detection experiment (Chapter 4) had shown that thresholds for the 

yellow suspensions were higher than those for achromatic suspensions. Further pilot work was 

conducted and separate two-fold dilution schemes were designed for the yellow and achromatic 

suspensions with the lowest step in the range just above the previously observed thresholds. 
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Achromatic microsphere suspensions 

A primary microsphere suspension was created by mixing 2.0 mL of the polymer microsphere 

solution (as supplied by the manufacturer) with 50 mL of HPLC grade deionised water and sodium 

dodecyl sulphate (SDS) at 0.1%. The resulting suspension was then placed on a rocker mechanism 

and gently rocked for 3 hours to ensure microsphere dispersal and to aid surfactant efficacy. The 

primary microsphere solution was then dialysed (see Section 3.4.4) resulting in an achromatic 

microsphere suspension with a dry mass microsphere concentration of 0.04 g/mL and an SDS 

concentration of 0.1%. Subsequently two further secondary base suspensions were then prepared at 

concentrations of 1.69x10-3 g/mL and 5.27x10-5 g/mL with an SDS concentration of 0.005%. The two 

secondary base suspensions were then used to prepare a final set of 10 achromatic suspensions 

arranged in two-fold concentration steps with an SDS concentration of 0.005%; details in Table 5.1 

Table 5.1 Details of achromatic sample suspensions. Average turbidity values derived from 
measurements taken over experimental period. 

Achromatic 
sample 

Microsphere density 
(number per mL) 

Dry mass 
concentration (g/mL) 

Average turbidity (NTU) 

1 1.54x107   1.32x10-7 1.1 
2 3.07x107  2.64x10-7 2.1 
3 6.14x107 5.27x10-7 4.1 
4 1.23x108  1.05x10-6 7.8 
5 2.46x108 2.11x10-6 15.0 
6 4.91x108 4.22x10-6 28.1 
7 9.82x108 8.44x10-6 52.7 
8 1.96x109 1.69x10-5 92.9 
9 3.93x109 3.38x10-5 158.5 
10 7.86x109 6.75x10-5 251.3 

 

Yellow microsphere suspensions 

The yellow microsphere suspensions were prepared in a similar fashion to the achromatic 

suspensions with the addition of yellow food colouring (0.25%) in the diluents. The outcome was a 

final set of 10 suspensions arranged in two-fold concentration steps with an SDS concentration of 

0.005%.  
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Table 5.2 Details of yellow sample suspensions. Average turbidity values derived from 
measurements taken over experimental period. 

Yellow 
sample 

Microsphere density 
(number per mL) 

Dry mass concentration 
(g/mL) 

Average NTU 

1 2.40x107 2.06x10-7 1.6 
2 4.80x107 4.12x10-7 3.1 
3 9.59x107 8.24x10-7 6.0 
4 1.92x108 1.65x10-6 11.6 
5 3.84x108 3.30x10-6 22.2 
6 7.68x108 6.59x10-6 42.3 
7 1.54x109 1.32x10-5 76.0 
8 3.07x109 2.64x10-5 131.5 
9 6.14x109 5.27x10-5 213.0 
10 1.23x1010 1.05x10-4 330.0 

 

5.2.2 Sensory booth configuration 

Sensory booths were equipped and illuminated as previously described with two dark surround 

booths and two light surround booths being employed in this study. 

5.2.3 Allocation of sample ranges and suspension types to booths 

A prior study (Chapter 4) had shown that threshold detection levels for yellow suspensions were 

higher than those for achromatic suspensions and that thresholds were also higher in light surrounds 

compared to those in dark surrounds. The allocation of concentration ranges to experimental 

configurations was designed to commence at a level just around the best estimate group thresholds 

previously determined and to extend in two-fold geometric steps. The relevant range and modulus 

concentration values are shown in Table 5.3. 

Table 5.3 Allocation of stocks to experimental booth configurations. Modulus refers to the 
reference sample used in Magnitude Estimation. 

Booth 
Surround 

Suspension 
Colour 

Lowest 
Concentration 
(spheres/mL) 

Highest 
Concentration 
(spheres/mL) 

Modulus 
Concentration 
(spheres/mL) 

Dark Achromatic 1.54 x107 1.96 x109 2.46 x108 
Dark Yellow 2.40 x107 3.07 x109 3.84 x108 
Light Achromatic 6.14 x107 7.86 x109 9.82 x108 
Light Yellow 9.59 x107 1.23 x1010 1.54 x109 
 

5.2.4 Sample handling and presentation 

A sample set consisting of eight ISO glasses each containing 90 mL of microsphere suspension was 

prepared for use in each booth along with a mid-range reference modulus containing the same 
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volume; each glass was labelled with a unique random three digit code. These were prepared on the 

morning of the first day and were refreshed with fresh stock on the morning of the 3rd day. The 

glasses were stored overnight at room temperature with their tops covered to minimise evaporation. 

Prior to each day’s evaluations the exterior of the glasses were wiped clean using a lint free cloth.  

5.2.5 Sensory evaluations of haze intensity 

Overview 

Sensory evaluations of haze intensity were conducted using the technique of Magnitude 

Estimation105,116 using a continually present reference modulus. The evaluation sessions were 

scheduled for a duration of one hour and were spread over an elapsed period of four days. 

Subjects 

Subjects for this study consisted of 15 volunteers (staff, faculty members or post graduate students) 

from Lincoln University, New Zealand. All subjects self-reported normal or corrected vision. The 

subject pool included 5 males and 10 females all over the age of 18. None of the subjects had 

experience of the Magnitude Estimation technique prior to the study. The subjects were not given 

any monetary or other incentive to participate in the study.  

Experimental design 

The presentation order of samples followed a repeated 8x8 Latin Square structure so that each of the 

eight samples appeared in each initial position and in every other position an equal number of times 

before re-using the presentation order. The repeated, 8x8 Latin Square design was re-used across the 

four booths by rolling the order so that the subjects encountered a different order in each booth. The 

order in which subjects were directed to individual booths followed a repeated 4x4 Latin Square. The 

hand with which the modulus was held during evaluations was alternated by subject. Each subject 

evaluated every sample in every booth configuration once. 

Evaluation sessions 

Prior to commencing sample evaluations each subject was trained individually in the Magnitude 

Estimation technique using shapes and areas in the manner recommended by Moskowitz116.  The 

subject was then told that the attribute to be evaluated was the “level of haze” in a liquid test 

sample. The subject was given the opportunity to perform trial evaluations on samples similar to 

those to be encountered in the formal evaluations. All subjects successfully demonstrated an 

understanding of the task by suitably rating trial samples against a modulus reference. 

Once the training session was complete, the subject was then directed to the sensory booth area and 

shown a combined instruction/score sheet along with a formal pre-evaluation briefing that lasted 

approximately five minutes. The briefing was read from a pre-written script (Appendix C.3) and 
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served to reinforce the training and to also allow the subject’s vision to adapt to the sensory booth 

lighting. During the briefing the subject was shown a sample and told it was to act as a reference with 

an intensity value of 100 against which all test samples were to be judged (samples with one tenth 

the haze of the reference were to be assigned the value of 10, samples with twice the haze of the 

reference were to be assigned the value of 200). Zero evaluations were allowed and no upper limit 

was imposed. Each sample was then presented to the subject in the order and manner previously 

described and the subject recorded evaluations on a score sheet common to all samples in that 

booth. The subjects were given 30 seconds to make their evaluations at which point the sample was 

retrieved and replaced by the next sample. The modulus remained present in the booth at all times. 

Once all eight samples for a particular booth had been evaluated, the subject was directed to the 

next booth. The process continued until all samples in every booth had been evaluated once. 

Perceptual quantification and zero handling 

The intensity of haze perception was quantified by taking the geometric mean of the magnitude 

estimates given by the subjects for each concentration/booth surround/suspension colour 

combination resulting in eight geometric mean values for each of the four surround/colour 

combinations. Concentration levels were excluded from the final results where the number of zero 

values assigned exceeded 50% of the number of subject evaluations for that level. Concentration 

levels with less than or equal to 50% zero evaluations had the zeroes replaced with half the lowest, 

non-zero value for that level to allow the geometric mean to be calculated. 

5.2.6 Nephelometric measurements 

Nephelometric measurements were conducted on the sample stocks in the manner previously 

described. Measurements were made on each day of the study providing five turbidity values for 

each the 20 stocks over the experimental period. 

5.2.7 Image capture 

On the final day of the study digital images were captured using a modified Canon A2300 camera and 

processed in the manner previously described. 

Scene arrangement 

Two of the booths used for sensory evaluations (one with a dark surround and one with a light 

surround) were modified to allow images to be captured of samples in a scene that closely 

resembled that encountered by the human subjects. This involved the installation of a dark linen 

covered platform (28 cm x 13 cm) at a height approximating the subjects’ eye level (510 mm). Each 

image scene consisted of 2 ISO glasses placed centrally upon the dark linen platform separated by a 
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distance of 60 mm. Pin guides were placed on the platform to ensure consistency of glass placement 

between images. Booth surrounds and illumination were otherwise left unchanged. 

Imaging sequence 

In each image scene the contents of the glasses consisted of a suitable modulus reference and a 

sample to be assessed. The modulus was included to emulate inter-glass illumination that may have 

been present during the sensory evaluations. Each of the 10 sample suspensions for each colour (10 

achromatic, 10 yellow) were imaged twice in each booth surround (modulus and sample positions 

being swapped for each sample concentration). The image sequence was randomised for each 

suspension colour and booth type. This resulted in 80 images (4 randomised sets of 20 images for 

each colour/surround combination). 

Image capture and processing 

The camera was positioned orthogonally at 490 mm from the centre line of the glasses and a zoom 

setting established that ensured that the samples were positioned within the central 50% of the 

image view to minimise vignetting effects. An exposure time of 31 mS was used for all images; all 

other camera parameters were as described in A.3 . Processing of the images to arrive at aggregate 

luminance assessments sample were conducted in the manner previously described with a Region of 

Interest (ROI) consisting of 400x400 pixels located in an upper central position on the glass. The final 

aggregate luminance value for each sample was derived by arithmetically averaging the two values 

captured for the left and right positions.  

5.2.8 Data analysis and curve fitting 

Non-linear regression techniques were used to fit the experimental data to various generalised 

brightness/lightness models as previously described (Section 3.5.2). Aggregate luminance was used 

as the independent variable and the geometric means of subject evaluations as the dependent 

variable. Each surround/suspension type combination was analysed individually in this manner. 

5.3 Results and discussion - perceptual haze intensity and aggregate 
luminance 

5.3.1 Review of subjects’ evaluation data 

Zero evaluations and impact on datasets 

The decision to extend the concentration levels close to the known detection thresholds was 

expected to present some difficulties for the subjects and this was reflected in the number of zero 

evaluations assigned; the distribution of zero evaluations across the booth configurations is shown 

Figure 5.1. 
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The dark surround / achromatic suspension booth was the only configuration where the lowest 

sample concentration was higher than the highest individual subject threshold previously observed. 

It might reasonably have been expected that the zero count in dark/achromatic booth would have 

been the lowest of the configurations since 73% of the subjects in this study had taken part in the 

previous threshold study. The fact that the black surround/achromatic suspension experienced the 

highest zero count may indicate that the threshold detection mechanisms at work in the lowest 

absolute ranges are not of a nature that supports perceptual scaling. Visual cues such as small 

surface highlights may provide information regarding the presence of haze without offering an 

adequate visual area to allow scaling. 

The zero evaluations were processed as previously described and this resulted in a reduction in the 

number of useable concentration levels in the overall dataset (details are provided in Table 5.4). 

Table 5.4 Impact of zero evaluations on useable concentration levels. 

Booth 
Surround 

Suspension 
Colour 

Nominal number of levels Useable number of levels 

Dark Achromatic 8 6 
Dark Yellow 8 7 
Light Achromatic 8 7 
Light Yellow 8 7 

 

Discrimination errors 

In Magnitude Estimation studies the steps between stimuli should be chosen such that each step is 

easily discernable by the subjects. However, it is possible that part of a range may be more easily 

distinguishable than another and examination of discrimination errors can be used to identify 

problematic areas in the evaluation data. A discrimination error is observed when a subject gives a 

rating to higher concentration that is less than or equal to a rating assigned for a lower 

concentration. Discrimination errors for this study are detailed in Table 5.5. 

Table 5.5 Mean discrimination errors for each experimental configuration. 

Booth Surround Suspension Colour Mean discrimination errors (%) 
Dark Achromatic 1.1 
Dark Yellow 4.8 
Light Achromatic 2.9 
Light Yellow 3.8 

 

Error rates for comparable vision studies have not been found but the rates in this study are 

substantially lower than those reported for taste studies117,118 where error levels of 7% are not 

uncommon. Individual errors were examined for evidence of clustering at particular concentration 
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levels. No clustering was apparent with no more than two errors at any one level. However, the 

majority of these errors occurred at the higher concentration levels suggesting a possible saturation 

of response at those levels. 

Inter-subject variation 

The inter-subject variation was calculated using the Coefficient of Variance (CV) method previously 

described using the geometric mean as the base reference. These calculations generated a CV value 

for each subject for each booth configuration. The overall arithmetic mean of the subjects’ CV values 

are listed in Table 5.6. Although the CV differences between the configurations are small, it appears 

that yellow pigment in the samples may result in elevated error rates. 

Table 5.6 Inter-subject variation by booth configuration 

Booth Surround Suspension Colour CV Mean (%) 
Dark Achromatic 15.4 
Dark Yellow 22.4 
Light Achromatic 18.6 
Light Yellow 21.7 

 

Other studies involving unrelated colours report a range of CV mean values for brightness evaluation 

by Magnitude Estimation as ranging from 11% 59 to 48%106. A study of related colours by Martin et al. 

found the mean of CV values at 17% for lightness34.  Differences in experimental conditions prevent 

direct comparisons but the study by Martin et al. is the closest comparable study for the light booth 

surrounds and Luo and Hunt119 state that a CV value of 13% for lightness and 10% for brightness are 

typical in related colour studies. The reason for the slightly elevated CV values is unclear but may be 

related to chromatic effects since CV values increase with chromatic content (light surrounds exhibit 

a bias in the green channel, yellow suspensions reduce blue channel values).  

In order to investigate variances for bias or unusual ratings, it is useful to examine CV values at an 

individual subject level. These are best viewed graphically and can be seen in Figure 5.2. It is clear 

that Subject 3 is the source of some unusual variance with extreme CV values for the light booth 

configurations. Comparisons between Subject 3 evaluations, Subject 11 evaluations (the subject with 

least variance) and the geometric mean are shown in Figure 5.3. In the lower part of the ranges 

Subject 3’s evaluations are broadly in accordance with other subjects. In the upper part of the ranges 

it appears that Subject 3’s basis for evaluation deviates from that employed by the other subjects. It 

is possible that Subject 3 could not construct appropriate ratio evaluations at the higher ranges and 

that the ratings given are just markers of extremes120. For the purposes of analysis it was assumed 

that Subject 3’s data was an example of non-ratio scoring in the higher ranges. Subject 3’s data has 

therefore been excluded in the analysis below.  
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5.3.2 Dark surround and achromatic suspensions 

The relationship between perceived haze and aggregate luminance for the dark surround and 

achromatic suspensions was found to exhibit a response consistent with a smooth compressive 

function. Non-linear regression was applied to the data and a good fit was found using a power 

function; a marginally lesser fit was provided by a log function. Regression results are summarised in 

Table 5.7; data and best fit curves shown in Figure 5.4. The value of the exponent (0.45) for the 

power function is generally consistent with adaptation to illuminated conditions 93,121. It is also 

consistent with the data from Carrasco54 linking haze perception to instrumental turbidity for 

comparable turbidity ranges (see Section 2.3.2). Although the subject variation for the data was low 

at a CV of 15.4, the validity of the 0.45 power exponent is somewhat undermined by the absence of 

data for the lowest levels that were thought to be above threshold detection.  

Table 5.7 Results for non-linear regression of haze perception versus aggregate luminance data 
for dark surround and achromatic suspensions (aggregate luminance values in 
normalised form). Log and power models with highest R2 values shown. 

Model Form k b d n R2 
Eqn 3.3 𝑦𝑦 = 𝑘𝑘(𝑥𝑥 − 𝑏𝑏)𝑛𝑛  35.9 19.5 NA 0.45 0.9991 
Eqn 3.7 𝑦𝑦 = 𝑘𝑘 log(1 +  𝑑𝑑(𝑥𝑥 − 𝑏𝑏)/𝑏𝑏) 200.4 18.6 3.54 NA 0.9977 

 

The dark surround was not expected to cause any gross induction effects since its luminance level 

was below that of the lowest luminance sample but previous work has shown that the 

increment/decrement border is not exactly aligned to the luminance of the surround93. To 

investigate whether surround induction had been active, the data was transformed to a log-log basis 

(as is common in these types of studies) where a power function with a constant exponent should be 

linear. It can be seen in Figure 5.5 that there is sharp increase in the slope commencing somewhere 

below the level of the modulus. Although the log transformation works to amplify any small deviance 

from the power response, this may be evidence that the presence of the modulus whilst subjects 

were evaluating samples had an inductive effect on the results. Alternatively, it may simply reflect 

the fact that the true response is not a simple power function close to the threshold. 

5.3.3 Dark surround and yellow suspensions 

The relationship between perceived haze and aggregate luminance values for the dark surround and 

yellow suspension was found to exhibit a broadly similar response to the achromatic suspensions in 

the dark surround. Non-linear regression results are summarised in Table 5.8; data and best fit curves 

shown in Figure 5.6. Although the R2 value for Equation 3.3 appears relatively high, the fit deviates 

systematically from the data; the log function of Equation 3.7 is the superior model. Again the log-log 
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plot of perceived haze versus aggregate luminance shows a possible bi-segment response with the 

modulus luminance located at the shift in slope (Figure 5.7). 

Table 5.8 Results for non-linear regression of haze estimation versus aggregate luminance data 
for dark surround and yellow suspensions (aggregate luminance values in normalised 
form). Log and power models with highest R2 values shown. 

Model Form k b d n R2 
Eqn 3.7 𝑦𝑦 = 𝑘𝑘 log(1 +  𝑑𝑑(𝑥𝑥 − 𝑏𝑏)/𝑏𝑏) 248.5 13.8 1.74 NA 0.9988 
Eqn 3.3 𝑦𝑦 = 𝑘𝑘(𝑥𝑥 − 𝑏𝑏)𝑛𝑛  26.6 14.0 NA 0.53 0.9919 

 

5.3.4 Light surround and achromatic suspensions 

The relationship between perceived haze and aggregate luminance for the light surround and 

achromatic suspensions was found to exhibit a broadly similar response to that found in the 

equivalent dark surround. It is possible that an expansive lower segment is followed by a mildly 

compressive upper segment with a transition occurring somewhere in the region of the luminance of 

the modulus (Figure 5.8). 

Non-linear regression was applied to the entire data range and the results are summarised in Table 

5.9; data and best fit curves shown in Figure 5.9. Although both power and log models display a high 

R2 value, neither model appears to reflect the true structure of the data. Figure 5.10 shows the data 

in log-log form; the upper segment is close to linear and appears to conform to a power function 

(with an exponent of approximately 1.2) but the lower segment does not. 

Table 5.9 Results for non-linear regression of haze estimation versus aggregate luminance data 
for light surround and achromatic suspensions (aggregate luminance values in 
normalised form). Log and power models with highest R2 values shown. 

Model Form k b d n R2 
Eqn 3.7 𝑦𝑦 = 𝑘𝑘 log(1 +  𝑑𝑑(𝑥𝑥 − 𝑏𝑏)/𝑏𝑏) 320.3 34.8 3.0 NA 0.9972 
Eqn 3.3 𝑦𝑦 = 𝑘𝑘(𝑥𝑥 − 𝑏𝑏)𝑛𝑛  21.3 34.9 NA 0.61 0.9930 

  

5.3.5 Light surround and yellow suspensions 

The relationship between perceived haze and aggregate luminance for the light surround and yellow 

suspensions is shown in Figure 5.11. In contrast to the achromatic suspensions in the same surround, 

both the lower and upper segments appear somewhat expansive. The segment transition remains 

around the level of the modulus.  

Non-linear regression was applied to the entire data range and the results are summarised in Table 

5.10; data and best fit curves in Figure 5.12. Although high R2 value fits can be achieved using both 
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log and power functions, they do not appear to fit the structure of the data. Figure 5.13 shows the 

data in log-log form. The upper segment is strongly linear and appears to conform to a power 

function (with an exponent of approximately 1.3). Again the lower segment is not linear and does not 

correspond to a power function. 

The presence of the yellow pigment appears to accelerate the response in both the lower and upper 

segments; this would be consistent with the Helmholtz–Kohlrausch effect75 whereby more colourful 

stimuli are perceived as lighter for the equivalent level of sample luminance. 

Table 5.10 Results for non-linear regression of haze estimation versus aggregate luminance data 
for light surround and yellow suspensions (aggregate luminance values in normalised 
form). Log and power models with highest R2 values shown. 

Model Form k b d n R2 
Eqn 3.3 𝑦𝑦 = 𝑘𝑘(𝑥𝑥 − 𝑏𝑏)𝑛𝑛  10.9 31.0 NA 0.76 0.9944 
Eqn 3.7 𝑦𝑦 = 𝑘𝑘 log(1 +  𝑑𝑑(𝑥𝑥 − 𝑏𝑏)/𝑏𝑏) 830.1 29.8 0.49 NA 0.9926 

 

5.3.6 Summary and conclusions 

In the absence of a generally accepted scaling model for perceptual brightness/lightness in real-

world conditions, it has been necessary to adopt non-linear regression and curve fitting as an 

investigative method. Although model variants have been found that appear to fit the data well, 

generalisation of the models to useful forms requires a means of deriving the various parameters 

involved. In the case of Stevens Power Law it is common practice to cite the power function 

exponent as some form of single, critical value for brightness perception whilst ignoring the other 

parameters. Stevens and Marks122 emphasise the dependence of the response on all the parameters 

as determined by the specific viewing conditions and adaptive state of the visual system. Practical 

application of a power function model to estimate perceptual haze would require knowledge of the 

exponent, intercept and threshold. There is no simple way to estimate these parameters for complex 

real-world scenes. Similar comments may be made for the various logarithmic models such as Log W 

since the generalised log fits did not exhibit constant parametric values over the different 

experimental configurations.  

The general hypothesis that haze perception might be quantified through the use of a simple power 

or logarithmic function seems not to be acceptable even if the relevant model parameters were 

knowable. This is because any real scene will be composed of multiple elements any of which may 

influence the perception of the target sample74,123. In each of the experimental configurations used in 

this study it is probable that such an effect has biased the observed data when the sample luminance 

has been less than that of the modulus luminance. The consistent deviance of the response at or 

around the level of the modulus suggests that self-illuminating elements positioned in the same 
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plane as the target sample may have a powerful inductive effect on adjacent elements. It is difficult 

to distinguish the relative inductive effects of the surround from that of the modulus, but it is 

possible that the light surround has caused a steepening of the data around the luminance of the 

modulus in Figure 5.9 and Figure 5.12. This may be evidence of the Crispening Effect reported by 

other authors68,70. 

An additional issue relates to the compound nature of haze perception. At high levels of haze some 

correspondence with achromatic brightness perception may be expected but at low levels this 

assumption seems less plausible. As the haze in any real sample approaches threshold levels, it is 

likely that transparency and particulate detection will become increasingly important and these will 

likely scale separately from perceptual brightness or lightness. It is also unclear how chromatic 

effects will be construed with respect to haze but the manner in which subject variance appeared to 

increase with colour content suggests that it will have some material impact. 

The general models used in this study were elaborated from relatively simple empirical models of 

brightness and lightness developed under achromatic conditions. It is clear they are not sufficiently 

sophisticated to cope with the complexity of coloured samples being viewed in real-world scenes 

composed of multiple elements. Progress in this area is likely to require the use of a full colorimetric 

appearance model specifically designed to accommodate inductive effects; CIECAM-m2101 is one such 

candidate. 

Any future work should be designed carefully such that experimental interferences are minimised. 

Specifically, modulus reference materials should not be present during test sample evaluation unless 

those materials are intended to be experimental variables. Care should also be given to the 

glassware that subjects may use to correct their vision; tinted or activated lenses should be avoided 

since they are likely to add to experimental variance. 

5.4 Results and discussion - microsphere concentrations, turbidity and 
aggregate luminance 

5.4.1 Microsphere concentration and turbidity 

The relationship between microsphere concentration and instrumental turbidity was found to follow 

a smooth, largely compressive function for both suspension types (Figure 5.14). The achromatic and 

yellow data are closely aligned suggesting the yellow pigments had little impact over their common 

range (up to around 250 NTU). Although non-linear overall, the lower ranges of the data appear to be 

linear. Applying linear regression to a truncated range of the combined dataset (achromatic and 

yellow data, capped at approximately 50 NTU) results in an R2 value of 0.9987 (Figure 5.15). 
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5.4.2 Microsphere concentration and aggregate luminance 

The relationship between aggregate luminance and microsphere concentrations was found to follow 

a broadly similar response to that of instrumental turbidity measurements. Since the camera 

parameters and nominal illuminants are constant across the entire dataset, a comparative 

assessment of the surrounds and suspension types can be made (Figure 5.16). The booth surround is 

seen to have a substantial effect on the luminance of the samples with the light surround values 

approximately double those of the dark surround. This is likely caused by the higher reflectivity of the 

light walls causing more light to enter the sample at all angles enclosed by the walls. At higher levels 

the compression effects in the yellow suspension appear larger than that for the achromatic 

suspension (higher range data only available for the light surround). This is likely due to cumulative 

scatter effects associated with the yellow pigments. In a similar fashion to the treatment of the 

turbidity data, linear regression was applied to a truncated range of the combined achromatic and 

yellow data for each of the booth surround types (Figure 5.17). Again the data was strongly linear 

over the shortened range (dark surround, R2=0.9977; light surround, R2=0.9823). 

5.4.3 Relationship between aggregate luminance and instrumental turbidity 

The results outlined above would suggest a strong linear relationship between aggregate luminance 

and turbidity in the lower ranges; this was confirmed by linear regression (Figure 5.18 and Table 5.11 

for details). The increased illumination of the light surround results in a larger intercept value for 

suspensions in the light surround compared to the dark surround. In contrast, the light surround 

appears to depress the slope compared to the dark surround. The dark surround results generated 

the highest R2 value; this would be expected since the dominant overhead illumination in the dark 

surround better emulates the optics of the nephelometer. 

Table 5.11 Linear regression results for aggregate luminance versus instrumental turbidity for 
combined achromatic and yellow suspension data. Range truncated to around 50 NTU. 

Surround Slope Intercept R2 
Dark 0.28 5.2 0.9978 
Light 0.21 29.4 0.9813 

 

5.4.4 Channel sensitivity to yellow pigments 

The aggregate luminance values previously discussed are weighted sums of the output from 

individual RGB channels and these channel values are heavily influenced by the spectral response of 

the corresponding filter in the camera. In an effort to determine which channel might offer the 

optimum linearity with respect to a mixed sample set (i.e. samples containing achromatic and yellow 

microspheres), the individual RGB channel responses were subjected to linear regression. Figure 5.19 
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shows the results for the dark surround where the yellow and achromatic suspension data has been 

combined and shown over the previously used truncated range (to around 50 NTU). It can be seen 

that the blue channel response suffers from substantial oscillations due to its sensitivity to the yellow 

pigments and the mix of yellow and achromatic data points. The green and red channels are 

relatively less affected with the red channel offering the most robust response to mixed yellow and 

achromatic samples.  

5.4.5 Summary and conclusions 

The relationship between turbidity and microsphere concentration was found to be a non-linear, 

compressive function over the range tested. A different positive exponential response was reported 

by Carrasco and Siebert using microsphere diameters of 0.769 µm over a similar turbidity range3. 

However, an examination of a more complete set of data from the underlying study shows that both 

compressive and expansive responses were found depending on the configuration of the 

nephelometer54. It is likely that a combination of different particle diameters along with 

inconsistencies in turbidity measurements associated with differing nephelometer designs has 

contributed to the difference in the results. A non-linear response was also found for the relationship 

between image based luminance data and microsphere concentration.  

When the data range was truncated to around 50 NTU, both turbidity and aggregate luminance 

showed a strong linear relationship with microsphere concentration. Although the relationship 

between instrumental turbidity and aggregate luminance was linear below 50 NTU, the slopes and 

intercepts varied between surround types. The linearity of the aggregate luminance to turbidity 

values for combined achromatic and yellow datasets was improved by removing the blue channel 

data from aggregate luminance. These are novel results and no other relevant published data is 

available for comparison. 

The linearity of the turbidity/luminance response suggests that digital photography in combination 

with appropriate overhead lighting may offer a means of emulating the function of traditional 

nephelometric instruments. Practical use of this method would need a means of establishing a 

calibration between the device dependent RGB colour channel values that underpin the luminance 

measures and the nephelometric scale based on formazin. 

The potential of image based turbidity measurement is investigated further in Chapter 7. 
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Figure 5.1 Distribution of zero evaluations across each of the experimental configurations. 

 

 

Figure 5.2 Coefficient of variance (CV) values by subject by experimental configuration. 

 

 

Figure 5.3 Subject 3 and Subject 11 evaluation plotted with overall geometric mean (light booth / 
yellow suspension). Cubic spline fit to illustrate trend. 
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Figure 5.4 Perceived haze versus aggregate luminance for dark surround and achromatic 
suspensions. Best fit log and power functions shown; power function provides 
optimum fit with an R2 value of 0.9991. 

 

 

Figure 5.5 Log perceived haze versus log aggregate luminance for dark surround and achromatic 
suspensions. Cubic spline fit to illustrate trend. 
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Figure 5.6 Perceived haze versus aggregate luminance for dark surround and yellow suspensions. 
Best fit log and power functions shown; log function provides optimum fit with an R2 
value of 0.9988. 

 

 

Figure 5.7 Log perceived haze versus log aggregate luminance for dark surround and yellow 
suspensions. Cubic spline fit to illustrate trend. 
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Figure 5.8 Perceived haze versus aggregate luminance for light surround and achromatic 
suspensions. Cubic spline fit to illustrate trend. 

 

 

Figure 5.9 Perceived haze versus aggregate luminance for light surround and achromatic 
suspensions. Best fit log and power functions shown; log function has highest R2 value 
of 0.9972 but neither function fits the structure of the data. 

 

Surround luminance

Modulus luminance

0

50

100

150

200

250

300

30 40 50 60 70 80 90 100 110

Pe
rc

ei
ve

d 
ha

ze
 (y

)

Normalised aggregate luminance (x)

Data Cubic spline

Surround luminance

Modulus luminance

0

50

100

150

200

250

300

30 40 50 60 70 80 90 100 110

Pe
rc

ei
ve

d 
ha

ze
 (y

)

Normalised aggregate luminance (x)

y = k(x-b)^n y = kLog(1+(d(x-b)/b) Data

 58 



 

Figure 5.10 Log perceived haze versus log aggregate luminance for light surround and achromatic 
suspensions. 

 

Figure 5.11 Perceived haze versus aggregate luminance for light surround and yellow suspensions. 
Cubic spline fit to illustrate trend. 
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Figure 5.12 Perceived haze versus aggregate luminance for light surround and yellow suspensions. 
Best fit log and power functions shown; log function has highest R2 value of 0.9944 but 
neither functions fit the structure of the data. 

 

 

Figure 5.13 Log perceived haze versus log aggregate luminance for light surround and yellow 
suspensions. 
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Figure 5.14 Instrumental turbidity versus microsphere concentrations for achromatic and yellow 
suspensions (cubic spline fit for trend illustration). 

 

 

Figure 5.15 Instrumental turbidity versus microsphere concentrations for achromatic and yellow 
suspensions. Range truncated to the equivalent of approximately 50 NTU. Linear 
regression applied to combined achromatic and yellow dataset. 

 

0

50

100

150

200

250

300

350

0.00E+00 5.00E+09 1.00E+10 1.50E+10

Tu
rb

id
ity

 (N
TU

)

Microsphere conc (spheres/ml)

Achromatic suspensions Yellow suspensions

R² = 0.9987

0

10

20

30

40

50

60

0.00E+00 2.00E+08 4.00E+08 6.00E+08 8.00E+08 1.00E+09 1.20E+09

Tu
rb

id
ity

 (N
TU

)

Microsphere conc (spheres/ml)

Achromatic suspensions Yellow suspensions Linear (Combined)

 61 



 

Figure 5.16 Aggregate luminance versus microsphere concentration for all surrounds and 
suspension types (luminance values normalised to highest luminance sample in light 
surround). Cubic spline fit for trend illustration. 

 

 

Figure 5.17 Aggregate luminance versus microsphere concentrations for dark and light surrounds. 
Range truncated to the equivalent of approximately 50 NTU. Linear regression applied 
to combined achromatic and yellow datasets for each surround type. 
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Figure 5.18 Aggregate luminance versus instrumental turbidity for dark and light surrounds. Range 
truncated to the equivalent of approximately 50 NTU. Linear regression applied to 
combined achromatic and yellow datasets for each surround type. 

 

 

Figure 5.19 Linear regression results for individual RGB channel luminance versus turbidity in dark 
surround. Achromatic and yellow suspension data combined to highlight channel 
sensitivity. Cubic spline fit added to data to illustrate trend. 
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Chapter 6 

Relationships between Haze Intensity Perception and 

Nephelometric Measurements in Low Haze Chardonnay Wine 

Samples 

6.1 Overview and objectives 

The relationship between human haze perception and instrumental measures in yellow polymer 

microsphere solutions had been explored over a wide range of turbidities; 1.6 Nephelometric 

Turbidity Units (NTU) to 330 NTU (see Chapter 5). Haze intensity perception was found to be best 

described by a logarithmic function of the general form of Equation 3.7. Although the experimental 

data was well described by the log function, the data was truncated at 3.1 NTU due to zero 

evaluations by the subjects for the lowest concentration levels. The overall goal of this study was to 

extend the previous work to commercial wine samples at a lower turbidity range and an increased 

data resolution. Turbidity was to be used as the independent variable as opposed to image 

luminance. Subject evaluations were to be conducted under conditions closely resembling those 

encountered when wine is being consumed in the presence of a dark surround. Test materials were 

to consist of haze induced commercial grade Chardonnay wine samples. The specific objective was to 

determine if any of the generalised models defined in Section 3.5.2 would fit the human response to 

low turbidity wine samples viewed in a dark surround. 

6.2 Materials and methods 

The information given below should be read in conjunction with the general methodology Section 

found in Chapter 3. 

6.2.1 Sample preparation, ranges and stability monitoring 

The results of a related threshold detection experiment (see Section 4.3.3) had shown that the group 

threshold for Chardonnay wine samples in a dark surround was around 1.2 NTU. The sample 

preparation plan was designed to create a range of 10 samples from just above group threshold up 

to around 25 NTU in concentration steps of 1.4. The modulus was to be created using a 50%/50% mix 

of samples 5 and 6 to provide an intermediate reference. 

Wine stock exhibiting a high degree of visual haze was prepared by immersing 1 L volumes of 

Chardonnay wine in a temperature controlled heat bath at 90˚C for a period of two hours; this 
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formed a concentrate base for dilutions. The haze induced wine samples were prepared by diluting 

the high haze wine stock with untreated wine (Table 6.1).  

Once the samples had been prepared, pilot work showed that the lowest three sample levels in were 

not easily discriminated and therefore could not be ranked and scaled under the intended viewing 

conditions. This supported previous work that suggested haze perception threshold levels may not 

be a good guide to the lowest levels at which haze could be scaled (see Section 5.3.1). It was decided 

to exclude the lowest two levels from the study resulting in an experimental sample range of 2.3 NTU 

to 25.5 NTU with a modulus of 4.2 NTU.  

Since the nominal sample range extended above 10 NTU, the possibility of excessive sample 

instability during subject evaluations was anticipated (see Section 3.4.3). To ensure that errors in the 

average turbidity values were minimised, a regime of regular turbidity measurements was employed 

over the course of the experiment (each sample was measured on 4 occasions over the course of the 

experimental period; an elapsed time of 9 hours). The resulting average turbidities and associated 

Standard Deviation values are shown in Table 6.1. It can be seen that relatively high instabilities are 

observed in samples above 9.3 NTU. 

Table 6.1 Details of Chardonnay haze induced sample suspensions. Average turbidity values and 
standard deviations derived from four individual measurements taken during the 
experimental day (9 hours). 

Chardonnay samples Average turbidity (NTU) Standard deviation 

Untreated/Blank1 0.4 NA 
11 1.4 NA 
21 1.7 NA 
3 2.3 0.03 
4 2.9 0.02 
5 3.6 0.08 
Modulus 4.2 0.09 
6 4.9 0.11 
7 6.4 0.05 
8 9.3 0.04 
9 14.7 0.30 
10 25.5 0.55 

1 Not used in sensory evaluations.  

6.2.2 Sensory booth configuration 

Sensory booths were equipped and illuminated as previously described. A single booth with a dark 

surround was used. 
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6.2.3 Sample handling and presentation 

A sample set consisting of eight ISO glasses (each containing a 90 m sample) were prepared along 

with a mid-range reference modulus containing the same volume. Each glass was labelled with a 

random three digit code.  

6.2.4 Sensory evaluations of haze intensity 

Overview 

The previous haze scaling study had employed two-fold dilution steps and this resulted in generally 

acceptable levels of discrimination errors in the sensory data (see Section 5.3.1). However, the yellow 

suspensions/dark surround combination had led to the highest error rate of 4.8%. Since this 

configuration corresponded most to this study and the concentration steps were much compressed 

(a factor of 1.4 versus 2.0), increased error rates were anticipated if the same scaling method was 

used (i.e. Magnitude Estimation).  

In an attempt to improve discrimination error rates in scaling studies Kim and O’Mahony118 proposed 

a modification to the traditional Magnitude Estimation technique whereby subjects are required to 

sequentially place samples on a physical scale so that the samples are simultaneously ranked and 

scaled. A key aspect of the technique (known as Rank-Rating) is that subjects can re-evaluate and re-

position any test sample as they progress through the sample set. The intention is to minimise errors 

due to subjects forgetting the values assigned to previously rated samples. Although other studies 

that have used Rank-Rating appear limited to taste experiments118,124, it was thought that a suitably 

modified version of Rank-Rating might be used in this study as a means of limiting errors caused by 

the compressed sample range. Physical constraints in the sensory booths meant that it was not 

possible to employ a physical scale exactly in the manner of Kim and O’Mahony118. The procedure 

was modified so that subjects conducted a ranking task that then informed a second stage 

Magnitude Estimation scaling task. The “scale as a group” principle was retained whereby subjects 

were allowed to rescale/reposition samples freely. 

The eight individual evaluation sessions were scheduled for a duration of one hour and were 

conducted over an elapsed nine hour period.  

Subjects 

Subjects for this study consisted of eight volunteers (staff, faculty members or post graduate 

students) from Lincoln University, New Zealand. All subjects self-reported normal or corrected vision. 

The subject pool included three males and five females all over the age of 18. All of the subjects had 

been involved in a previous study that used Magnitude Estimation to evaluate haze in polymer 
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microsphere suspensions. The subjects were not given any monetary or other incentive to participate 

in the study.  

Evaluation procedure 

On arrival the subject was directed to the sensory booth area and given a briefing that was read from 

a pre-written script (Appendix C.4). It was explained that a modified version of the previously 

employed Magnitude Estimation technique was to be used to evaluate the intensity of haze in wine 

samples. In particular, the process of evaluating the samples as a group was explained in some detail. 

This pre-evaluation briefing took approximately five minutes; a reasonable time to allow the 

subject’s vision to adapt to the sensory room. 

In advance of the subject arriving, all eight samples had been arranged in a “clock like” circle in the 

sensory booth. The order of the samples in the circle was changed for each subject in accordance 

with an 8x8 Latin Square structure so that each of the eight samples appeared in each initial position 

and in every other position an equal number of times before re-using the presentation order.  

Once seated in the booth, the subject was asked to rank the samples in a row (order was alternated 

by subject: ascending haze or descending haze). On completion of the ranking task, the subject was 

then shown the modulus and told it had a haze value of 100 against which all test samples were to be 

judged (no zero evaluations were allowed, no upper limit to the evaluations). The subject was then 

asked to work from left to right verbally assigning an intensity value to sample. The hand with which 

the modulus was held was alternated by subject and the scaling evaluation was performed centrally 

in the booth at eye-level. The experimenter recorded the evaluations on individual scoring sheets. 

Once the subject had rated the intensity of all samples, the scores were placed in front of the 

samples and the subject was given the opportunity to freely review and re-evaluate samples as they 

wished. 

The experimenter remained present at the sensory booth throughout the evaluation process. No 

time limits were set for any aspect of the evaluation. 

6.2.5 Data analysis and curve fitting 

The intensity of haze perception was quantified by taking the geometric mean of the final magnitude 

estimates given by the subjects resulting in a single geometric mean value for each of the samples.  

Non-linear regression techniques were used to fit the experimental data to various general 

brightness/lightness models as previously described (Section 3.5.2). Instrumental turbidity (NTU) was 

used as the independent variable and the geometric means of subjects’ evaluations as the 

dependent variable. 
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6.3 Results and discussion 

6.3.1 Review of subjects’ evaluation data 

Discrimination errors 

In Magnitude Estimation studies the steps between stimuli are generally chosen such that each step 

is easily discernable by the subjects105. However, this study purposely compressed the inter-stimuli 

steps in order to capture a relatively short, high resolution range and this raised the risk of increased 

discrimination errors. A discrimination error is observed when a subject gives a rating to higher 

concentration that is less than or equal to a rating assigned for a lower concentration. 

A substantially increased error rate of 18.8% was observed in comparison to a rate of 4.8% for yellow 

polymer microsphere suspensions in the same surround (see Section 5.3.1). Careful examination of 

the data found clustering of errors either side of the modulus with 75.0% of the total errors located 

in this area. All but one of the subjects made discrimination errors around the modulus. It is worth 

noting that fixing the modulus mid-way between two samples compressed the range around the 

modulus in excess of the design dilution factor of 1.4. It is likely that the subjects could not easily 

discern Samples 5 and 6 from the modulus due to the small step size at these levels.   

Inter-subject variation 

Inter-subject variation was calculated using the Coefficient of Variance (CV) method previously 

described using the geometric mean as the base reference; the overall arithmetic mean of the 

subjects’ CV values was found to be 23.0%. This is almost equivalent to the CV value found for yellow 

polymer microsphere suspensions in the same surround (22.4%). However, as noted previously, the 

most comparable previous study was performed by Martin et al. and a mean value CV of 17% was 

found for lightness34; the CV values found for this study are therefore somewhat high.  

Individual CV values were examined for bias or unusual ratings; no unusual outliers were observed 

(see Figure 6.1). 

Ranking and rating inconsistencies 

Three of the eight subjects encountered conflicts between their chosen ranking order and the 

intensity score they gave to the samples. The subjects re-examined the samples concerned and, in 

each case, chose to retain the score assigned. The conflicts were likely caused by the asymmetric 

nature of the lighting resulting in a bias in the ranked samples when arranged in a row. Since the 

subjects gave priority to their scores rather than the nominal rank, the resulting impact on the data is 

not thought to be significant. 
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6.3.2 Data fitting and optimum model 

The relationship between perceived haze and turbidity values was found to exhibit something of a bi-

segment response. However, the discrimination errors associated with the sample levels adjoining 

the modulus make any determination of the response uncertain. Non-linear regression results are 

summarised in Table 6.2; data and best fit curves for the entire dataset are shown in Figure 6.2. 

Although the R2 value for log function of Equation 3.7 is superior, neither fit is perfect. 

Whilst recognising the uncertainty in the region of the modulus, it does appear that a two segment 

response is visible in the log-log plot with the modulus acting as the boundary (Figure 6.3). The lower 

segment is likely linear and appears to conform to a power function with an exponent of 

approximately 1.4. The upper segment is not linear and does not appear to correspond to a power 

function. 

Table 6.2 Results for non-linear regression of perceived haze versus turbidity (NTU) for haze 
induced Chardonnay wine samples. Log and power models with highest R2 values 
shown. 

Model Form k b d n R2 
Eqn 3.7 𝑦𝑦 = 𝑘𝑘 log(1 +  𝑑𝑑(𝑥𝑥 − 𝑏𝑏)/𝑏𝑏) 1092.8 0.31 1.78E-02 NA 0.9961 
Eqn 3.3 𝑦𝑦 = 𝑘𝑘(𝑥𝑥 − 𝑏𝑏)𝑛𝑛  44.3 1.11 NA 0.71 0.9949 

 

6.3.3 Summary and conclusions 

The intention of this study was to explore a lower range at a higher resolution than that which had 

been examined in the study of yellow microsphere suspensions. Although data was successfully 

collected, the small step size around the modulus and associated uncertainty in the data undermined 

the results somewhat. The clustering of discrimination errors around the modulus level was 

unfortunate since the microsphere studies had suggested that this is the region in which 

discontinuities caused by induction effects were most likely to be observed when the modulus is 

present during evaluation. The discrimination errors around the value of the modulus served to 

obscure this area of interest. Additionally, the inability of subjects to discern differences at the lower 

end of the proposed range forced the removal of the two lowest samples from the study. This further 

undermined the aim of studying the lowest part of the range. 

The apparent inability of the subjects to discern differences between samples lower in the turbidity 

range despite strong evidence from the threshold studies that they could detect haze at those levels, 

presents a serious challenge in studying the haze intensity response at low turbidity values. A similar 

problem was found in the equivalent microsphere scaling study where the subjects had a tendency 

to assign zero values at low supra-threshold levels (see Section 5.3.1). This is unfortunate since small 
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value turbidity differentials close to the threshold are of most interest to the winemaker in protein 

stabilisation tests where stability differentials of 2 NTU are commonly cited1. 

The results of this study indicate that the response of haze induced Chardonnay wine samples are 

broadly similar to that observed for the yellow microsphere suspensions and the detailed conclusions 

in Section 5.3.6 are generally supported. Should it be necessary to predict the human response to a 

Chardonnay wine sample exhibiting haze based on turbidity measurements, a power function would 

appear most appropriate using 0.7 for the exponent value (assuming viewing conditions and turbidity 

range similar to those used in this study). 

Any future work should ensure that the physical value/concentration of the modulus does not 

conflict with the overall concentration scheme for the test samples; doing so risks unacceptably high 

discrimination errors at levels adjoining the modulus. As previously noted, the modulus appears to 

have a strong inductive effect and measures should be taken to ensure that it is not present whilst 

evaluations are being made (unless the effect of paired comparisons are to be studied). 

It is not possible to comment fully on the ability of the modified Rank-Rating technique to reduce 

discrimination errors due to the difficulties caused by the small step size around the modulus. 

However, if the errors around the modulus are excluded, the error rate drops to 2.7% and this is low 

in comparison to the equivalent rate of 4.8% found in the microsphere study despite the severely 

compressed range. An additional area of concern is the use of a row layout since this can lead to 

scoring inconsistencies if the illumination levels along the row are not constant (e.g. samples may 

appear brighter simply due to their position in the row if the lighting is not adequately diffuse). Any 

future visual study that employs a Rank-Rating technique based on a row layout should ensure that 

the area is uniformly illuminated. 
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Figure 6.1 Coefficient of variance (CV) values by subject for haze induced Chardonnay samples 
using modified Rank-Rating technique. 

 

 

Figure 6.2 Perceived haze versus instrumental turbidity for haze induced Chardonnay wine 
samples. Best fit log and power functions shown; power function offers optimum 
structural fit with an R2 value of 0.9949. 
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Figure 6.3 Log perceived haze versus log turbidity for haze induced Chardonnay wine samples. 
Straight line, linear best fits shown for upper and lower segments. 
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Chapter 7 

Comparison of Traditional Nephelometric Instrumental 

Measurement and Image Based Measurement of Polymer 

Microsphere Solutions 

7.1 Overview and objectives 

The overall goal of this study was to investigate the relationship between instrumental turbidity 

measurements and imaging data for yellow coloured samples containing polymer microspheres of a 

single nominal diameter (0.25 µm). The primary objective was to test the equivalence of 

measurements from a traditional nephelometer (Hach 2100P) with those predicted by a calibrated 

imaging model over a low turbidity range (< 6 NTU).  

The imaging data was to be captured using of a modified Canon A2300 digital still camera along with 

a Samsung S2 smartphone device.  

7.2 Materials and methods 

The information given below should be read in conjunction with the general methodology Section 

found in Chapter 3. 

7.2.1 Imaging devices 

A critical feature of any camera device to be used to capture luminance data is access to unmodified 

linear sensor data. In preparation for this study the native features of a Samsung S2 smartphone 

were investigated and a number of limitations were found the most critical being that there was no 

facility to save images in a RAW sensor file format. The alternative options for the capture of sensor 

data were limited to JPEG file analysis or preview buffer extraction. Neither option provided access 

to unmodified linear sensor data. 

A number of approaches were attempted to recover linear sensor data from non-linear JPEG and 

preview data including the use of the transformation algorithm described by Debevec and Malik125. 

Use of this method was unsuccessful due to the lack of manual exposure settings on the Samsung S2. 

Other alternatives such as applying a standard sRGB transformation as recommended by Szeliski126 

also failed due to the dynamic nature of the device’s internal processing algorithms. Time limitations 

precluded further efforts forcing the exclusion of the Samsung S2 device from the study. 
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As previously described (Section 3.3.2) modifications were made to a Canon A2300 camera so that 

linear data could be extracted via raw image files. The Canon A2300 was the only camera device used 

in the study. 

7.2.2 Sample preparation 

A high turbidity yellow microsphere stock used in a previous experiment (Stock 10, 330 NTU, Table 

5.2) was employed as a concentrated base to derive a series of 21 low turbidity samples through 

dilution with HPLC grade deionised water containing SDS and yellow pigment (at rates previously 

described in Section 3.4.2). The concentrated stock had been prepared approximately 4 months prior 

to this study (stored at 4˚C). Before using the concentrated stock the container was gently rotated 10 

times to assist in microsphere dispersal. The range was designed to extend from the lowest turbidity 

possible up to around 6.0 NTU; within this range the concentration used for each sample was 

randomly selected (details in Table 7.1). 

Table 7.1 Details of yellow microsphere suspensions.  

Sample Microsphere 
density (number 
per mL) 

 Sample Microsphere 
density (number 
per mL) 

1 4.42x107  12 3.65x107 
2 2.25x107  13 1.54x107 
3 7.36x107  14 2.21x107 
4 3.50x106  15 6.74x107 
5 1.56x107  16 4.29x107 
6 4.99x106  17 9.14x106 
7 4.12x107  18 1.80x107 
8 1.43x107  19 6.40x107 
9 4.30x107  20 5.20x106 
10 6.61x107  21 8.19x107 
11 5.22x107    

 

7.2.3 Sample assessment 

Anticipated interferences 

In a range of pilot experiments using 90˚ overhead illumination it was found that the choice of glass 

receptacle had little impact on the linearity of imaging data when the turbidity of the sample was 

above 5.0 NTU. At lower turbidities it was found that reflections and liquid lensing became significant 

interfering factors. The observed effects included internal reflections, liquid surface reflections, 

external glass reflections and lensing of surround inhomogeneities. The imaging scene and receptacle 

were designed to minimise these effects but it is reasonable to expect some level of impact with 

lowest turbidity samples likely to be affected the most. 
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Imaging scene  

A small cylindrical jar made of consumer food grade glass of unknown optical characteristics 

(diameter: 3 cm; height: 12 cm) was used to hold the samples during image capture. The upper part 

of the cylinder (top 7.5 cm) was covered in opaque tape as a means on minimising reflections from 

the sample surface. The imaging cylinder containing the sample was located centrally in a cardboard 

imaging box (height: 14 cm, width: 22.5 cm, depth 14 cm). The imaging box had a rectangular port 

(18 cm x 10.5 cm) cut in the top surface to allow direct imaging of the sample. A second circular port 

(11 cm diameter) was cut in the front piece to allow placement of the sample. The imaging box was 

illuminated horizontally by two domestic grade 40 W tungsten filament bulbs. Each end of the image 

box had an open circular port (11 cm) to allow the bulbs to illuminate the sample; simple paper 

diffusers were located between the bulbs and the sample area. The base of the image box was 

covered with dark coloured paper overprinted with a template that allowed the imaging cylinder to 

be consistently positioned and aligned in a central location. The Canon A2300 camera was positioned 

vertically over the imaging cylinder (10 cm between the camera case and the top of the cylinder) 

with an unobscured view of the sample surface. The sample was not subject to any other 

illumination. The experimental setup is shown in Figure 7.1. 

Image capture and processing 

Pilot experimentation showed that an exposure time of 500 ms was short enough to prevent 

saturation in the RGB channel responses. This exposure time was used for all images. Optical zoom 

was set to its zero setting; all other camera parameters were as described in A.3.  

Processing of the images to arrive at RGB channel values were conducted in the manner previously 

described with a circular, central region of interest (ROI) used corresponding to a bounding rectangle 

of 250x250 pixels. The image data was split into its RGB channels and the green channel values were 

used as a basis for analysis. 

Measurement sequence 

A graduated cylinder was used to pour 50 mL of each sample into the imaging cylinder. The imaging 

cylinder was then positioned on the template and the image captured. The sample was then poured 

into the Hach 2100P nephelometer cell (15 mL) from the imaging cylinder and the average turbidity 

was then measured. All glassware was flushed with sample material prior to use. The order in which 

the samples were imaged and turbidity measured was randomised (see Table 7.2). Each sample was 

imaged/measured once. 
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7.2.4 Statistical analysis 

The parametric paired t-test was calculated using Microsoft Excel 2013’s Data Analysis tool. The non-

parametric Wilcoxon’s Signed Ranks Test was manually computed in Microsoft Excel 2013 using 

critical values from O’Mahony115. 

7.3 Results and discussion 

Green channel imaging values and turbidity measurements are listed in Table 7.2. As an initial check 

for method equivalence the turbidity values were plotted versus the corresponding green channel 

values; Figure 7.2. It can be seen that a reasonable linearity exists over the test range with an obvious 

group of three outlier points reducing the overall coefficient of determination (R2=0.9628). 

Table 7.2 Imaging and instrumental turbidity data (results in order of measurement). 

Sample Canon A2300 green 
channel value1 

Average turbidity measured by Hach 
2100P (NTU) 

21 2.36 5.76 
7 1.63 3.25 
2 1.44 1.30 
14 1.27 1.07 
11 1.76 3.83 
6 0.99 0.75 
20 0.97 0.73 
1 1.69 3.26 
12 1.50 2.68 
19 1.91 4.00 
17 1.00 0.83 
4 0.96 0.59 
15 2.06 4.71 
16 1.69 3.17 
8 1.32 1.33 
10 2.03 4.62 
9 1.64 3.23 
13 1.12 1.26 
18 1.18 1.46 
3 2.20 5.38 
5 1.20 1.37 

1 For calculation convenience the raw green channel values had been divided by a factor of 1000 prior to inclusion in this 
table. 

7.3.1 Outlier investigation 

The three images corresponding to the outlier samples were carefully examined and it was found 

that two of the images contained a large number of bright suspended particulates likely causing 

elevated green channel values. This effect can be seen in Figure 7.3 where Sample 2 and Sample 13 
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are compared. These samples have similar instrumental turbidity values but significantly different 

green channel values. The visual differences are clear with the image of Sample 2 containing a large 

number of bright spots in comparison to Sample 13. A similar level of bright spots were found in a 

second outlier image: Sample 8. Visual examination of the third outlier image (Sample 14) did not 

show unusually large numbers of particulates. It was decided to exclude all three the outliers prior to 

statistical analysis resulting in an increased R2 value of 0.9965.  

7.3.2 Equivalence analysis 

The analysis of equivalence is based on the premise that any practical implementation of an image 

based turbidity measurement system would probably use a pair of samples of known turbidity to 

derive a linear model for the prevailing scene. To test the viability of such an approach, it was first 

necessary to select two calibration points from the experimental data. Prior to conducting the 

experiment it had been decided that the upper calibration point should correspond to the highest 

turbidity sample as measured by the Hach 2100P nephelometer; this corresponded to Sample 21. 

The lower calibration point was to be chosen in the region of 1.5 NTU; this corresponded to Sample 

18. These choices were somewhat arbitrary but the lower calibration point was chosen to avoid the 

sub 1 NTU area known to exhibit high nephelometric measurement variance28,127. Using these 

calibration points a linear model was derived as shown in Equation 7.1. 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  3.64 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑢𝑢𝑒𝑒 − 2.82 7.1 

 

Equation 7.1 was then used to calculate a set of predicted turbidity values for each of the remaining 

16 data points; the results are shown in Table 7.3. It can be seen that the differences between 

measured and predicted values appear relatively small for the most part. 

 77 



Table 7.3 Turbidity values as measured by Hach 2100P nephelometer and predicted turbidity 
values derived from Equation 7.1 based on experimental green channel data. 

Sample Measured turbidity 
Hach 2100P (NTU) 

Predicted turbidity derived from 
green channel values (NTU) 

Differences (NTU) 

1 3.26 3.32 -0.06 
3 5.38 5.20 0.18 
4 0.59 0.68 -0.09 
5 1.37 1.53 -0.16 
6 0.75 0.77 -0.02 
7 3.25 3.12 0.13 
9 3.23 3.15 0.08 
10 4.62 4.58 0.04 
11 3.83 3.59 0.24 
12 2.68 2.63 0.05 
13 1.26 1.24 0.02 
15 4.71 4.66 0.05 
16 3.17 3.32 -0.15 
17 0.83 0.82 0.01 
19 4.00 4.12 -0.12 
20 0.73 0.70 0.03 

 

A visual assessment of equivalence can be made by examining the scatter plot of predicted turbidity 

versus measured turbidity; this is shown in Figure 7.4. It can be seen that the data points are closely 

aligned to the 45˚ line providing superficial support for equivalence. To test statistical equivalence of 

the model predictions and instrumental measurements, the following hypotheses were proposed:  

H0: mean of differences = 0 
 

Ha: mean of differences ≠ 0 
 
 
A parametric paired two sample test for means resulted in a p-value of 0.61 (pre-set level of 

significance: 0.05). The null hypothesis was therefore accepted providing support for equivalence. 

Since the sample size does not allow a clear determination of normality of the distribution of mean 

differences, a non-parametric Wilcoxon Signed Ranks Test was also performed using a median 

difference of zero as the null hypothesis. This also resulted in acceptance of the null hypothesis 

(W=59, lower critical value =29, upper critical value =107) providing further evidence that the 

imaging model is reasonably equivalent to the Hach 2100P measurements for the given experimental 

conditions. 
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7.4 Summary and conclusions 

The results from this study show that image based turbidity measurements may be a viable 

replacement for traditional instrumentation for homogenous, monodisperse samples over low NTU 

ranges. Where suspended particulates are present, image based measurements may deviate 

significantly from those provided by standard nephelometers. This effect is likely caused by the 

relatively large sample volumes and broad illumination patterns used for imaging leading to 

accumulation of bright spot artefacts. These are novel results and no other relevant published data is 

available for comparison. 

The importance of the calibration points to be used in any practical system should be noted. The use 

of a single measurement for establishing calibration value could have a significant impact on the 

derived linear model. For example, the anomalous outlier in this study that had no unusual 

particulate presence may have been used for calibration leading to a significantly different outcome 

in the equivalence testing. The design of an image based turbidity measurement system would need 

to carefully consider the choice of calibration material to ensure stability. In addition, the 

measurement process would require replication and averaging of calibrant image data prior to model 

derivation. 
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Figure 7.1 Experimental setup for image capture. 

 

 

Figure 7.2 Hach 2100P instrumental turbidity versus Canon A2300 green channel values. Best fit 
straight line regression shown (R2=0.9628). Outlier group circled. 
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Figure 7.3 Two samples with similar NTU values but substantial differences in green channel 
values. Elevation of green channel values likely caused by suspended particulates. 

 

 

 

Figure 7.4 Predicted turbidity values derived from green channel data using Equation 7.1 versus 
Hach 2100P turbidity measurements. 45˚ line of equivalence included to illustrate 
close agreement of predicted and measured values. 
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Chapter 8 

Summary and Future Work 

8.1 Haze detection thresholds in polymer microsphere suspensions and 
Chardonnay wine samples 

In their study of haze detection thresholds in monodisperse microsphere suspensions Fleet and 

Siebert6 found that human subjects could detect haze at turbidity levels of 0.2 NTU in achromatic 

suspensions and 0.43 NTU in tan coloured suspensions when evaluated in a brightly lit viewing box 

with a dark surround. They also found that changing from a dark to a light surround substantially 

increased the observed thresholds (12.8 NTU and 19.8 NTU respectively). This study has extended 

the work of Fleet and Siebert by employing conditions that more closely resemble those found when 

beverages are consumed in the real world. Haze detection thresholds in yellow microsphere 

suspensions presented in a standard tasting glass and viewed against a dark surround were found to 

be 1.15 NTU. On changing to a light surround the threshold was found to increase to 6.93 NTU. A 

Wilcoxon Signed Rank test indicated that the surround type was significant for both achromatic and 

yellow suspensions. Direct comparison of these results and those of Fleet and Siebert should be 

treated with caution due to possible inconsistencies in nephelometric measurements (see Section 

2.2.2). In general terms the results are in broad agreement with a possible tempering of the extremes 

by real-world conditions where higher thresholds were found for the dark surround and lower 

thresholds for the light surround. 

Wine has a complex composition and extrapolating haze detection levels in monodisperse 

microsphere suspensions to wine may not be appropriate. In this study thresholds in heat treated 

Chardonnay wine samples were found to be 0.86 NTU in a dark surround. Although this is somewhat 

lower than the equivalent 1.15 NTU found for the yellow microsphere suspensions, a Wilcoxon 

Signed Rank test did not detect a significant difference.  

8.2 Measuring visual haze 

If the visual estimation of haze in wine is to be replaced by an equivalent instrumental technique, it is 

first necessary to obtain a mathematical model that can transform luminance measurements into the 

perceptual domain. To this end Magnitude Estimation128 and a modified Rank-Rating118 method were 

used to scale the visual response of human subjects to monodisperse polymer microsphere 

suspensions and heat treated Chardonnay wine samples. As with the threshold study, the 

experimental conditions employed resembled those found when beverages are consumed in the 

real-world with both light and dark surrounds. A number of generalised mathematical functions 
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derived from empirical psycho-physical models of brightness/lightness perception were compared to 

the experimental data. Although reasonable fits were found for both logarithmic and power forms, 

individual parameter values were necessary for each suspension colour and surround. It is not clear 

how these parameter values might be practically derived to allow the human response to be 

estimated for some specific hazy wine sample located in a real-world scene composed of other 

inducting elements. 

A key observation from this work was the likely inductive interaction between the test sample and 

other scene elements (such as a modulus in Magnitude Estimation). This means that any model that 

only deals with gross surround induction without considering other scene element attributes (e.g. 

luminance, relative area and planar positioning) is likely to fail74,129. 

8.3 Nephelometry and digital imaging 

The relationship between nephelometric measurements and imaging data was investigated for 

monodisperse polymer microsphere suspensions presented in standard sampling glasses located in a 

booth used for sensory experimentation (90˚ lighting). It was found that data derived from digital 

photographs of the samples in a dark surround had a strong linear relationship with nephelometric 

measures below 50 NTU (R2=0.9978). However, at the lower turbidity ranges (< 5 NTU), a number of 

interfering effects such as internal reflections, liquid surface reflections, external glass reflections and 

lensing of surround inhomogeneities caused inconsistencies in the image data. 

Using a different photographic configuration where the surface of heat treated wine samples were 

imaged directly, it was possible to obtain consistent results over a low range (0.59 NTU to 5.76 NTU). 

Predicted turbidity values based on imaging data were compared with nephelometric measurements 

using a parametric and non-parametric tests; no significant differences between the results were 

found. Although this suggests that image based nephelometry may be a viable alternative to 

traditional nephelometric instruments, a small number of outliers were found in the data (excluded 

from the statistical tests). In some of the relevant images larger particulates were visible causing 

bright spots that biased the image data. Traditional nephelometers are restricted to narrow fields of 

view and a small number of discrete viewing angles. In contrast, a digital image of a sample can be 

used to derive information about the entire volumetric sample. These measurement system 

differences are likely to cause differences in observed data especially when the sample is non-

homogenous. 

8.3.1 Future work 

The derivation of a suitable model for transforming luminance measurements into perceptual haze 

intensities will require a more sophisticated approach than the simple logarithmic and power 
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functions explored in this study. Such a model will need to accommodate the interaction of all 

elements in the field of view not just the liquid sample. It will also need to recognise chromatic 

interactions such as the Helmholtz–Kohlrausch Effect. Progress in this area is likely to require the use 

of a full colorimetric appearance model specifically designed to accommodate inductive effects; 

CIECAM-m2101 is one such candidate. Development in tone mapping algorithms using Anchoring 

Theory may also provide some useful insights130,131. Successful assessment of low haze samples is also 

likely to require the use of a suitable model for real-world, three dimensional transparency. 

Although the potential for image based turbidity measurement has been demonstrated, the 

development of a useful system will require further design and testing. Imaging geometry, 

illumination, receptacle optics, sample volume, calibration material and stray light management will 

all need to be optimised through engineering prototype studies. In addition, the use of formal 

Measurement System Analysis techniques (such as Gauge Repeatability and Reproducibility 

studies)132 is recommended along with statistical method equivalence testing133,134. 

One of the limiting factors in the imaging aspects of this study has been the difficulty in extracting 

unmodified linear sensor data from smartphone devices. This issue is well recognised and work is 

currently underway to improve the computational camera functionality in mobile platforms through 

developments such as Android HAL3135. When these enhancements become available, the prospects 

for nephelometric measurement using a mobile device will improve significantly. 
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Appendix A 

Image Capture and Processing Pipeline 

A.1 Overview 

Image capture and associated data processing employed in this study is outlined in Figure 8.1. Key 

features and parameter values for each pipeline element are detailed below.  

A.2 Canon A2300 

The Canon A2300 is a standard consumer quality digital still camera with a charge coupled device 

(CCD) sensor consisting of 16 mega-pixels. The camera does not have a manual mode and can only 

save images in the compressed JPEG format. 

The A2300 was loaded with a non-Canon customised firmware known as the Canon Hack 

Development Kit (CHDK)136. CHDK is an open source software platform that provides an application 

programmatic interface allowing script based interaction with a range of standard and non-standard 

features in Canon cameras. Importantly, this includes the facility set exposure times and to save 

image files as Digital Negative Graphic (DNG)137 files. DNG is a lossless format that provides an open 

standard for exchange and storage of raw image files independent of proprietary raw file formats 

used by camera manufacturers. In the case of the A2300 camera, the DNG file output contains 

unmodified colour filter array data with a resolution of 12 bits per pixel. 

Pilot work to assess the response of the end to end system indicated that the image processing 

pipeline was capable of providing linear device RGB data if the exposure was set at a level that 

avoided channel saturation (see Appendix B). 

A.3 Image capture 

Image capture was controlled using customised Lua138 scripts executed via a USB interface utility: 

PTPCamGui139. This approach allowed programmatic control of the exposure as well as providing a 

means of automatically logging the details of each image exposure. 

The vast majority of the camera parameters were maintained as constants throughout the study with 

exposure time being varied to ensure that sensor saturation was avoided. For each experimental 

configuration this was achieved by taking trial images of the most luminous sample in the sample set 

and selecting an exposure time that would avoid saturated sensor responses. Once an appropriate 

exposure time was chosen it was fixed for each experimental scene (as was the camera zoom level). 
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It is known that the amount of light illuminating the sensor array in a camera varies; this effect 

increases with radial angle from the central optical axis140. To minimise these vignetting effects the 

scene setup was designed to maintain the target sample Region of Interest (ROI) within the central 

50% of the image area. 

Prior to experimental work commencing the camera was calibrated for bad pixels using the CHDK 

standard procedure. This ensured that defective pixels values were suitably interpolated prior to 

saving in the DNG format. 

A list of the key camera parameters and values set are shown in the table below; all other 

parameters were maintained as default values. 

Parameter Value 

DNG Version 1.3 

Neutral density filter “out” 

ISO 100 

Autofocus enabled 

 

A.4 DNG to PGM conversion 

The DNG files were converted to Portable Grey Map (PGM) format using the DCRAW conversion 

utility141. The command line argument string (“-4 –D”) was used to prevent alteration of the raw pixel 

values through Bayer demosaicing processes or through the application of a colour profile. 

A.5 Derivation of channel pixel values 

Final derivation of device RGB data (12 bits/pixel) for selected regions of interest (ROI) in image files 

was accomplished through the use of the public domain software IMAGEJ142. A plugin sourced from 

the University of Manitoba143 was used to “debayer” the image data into individual channels 

("order=G-R-G-R, demosaicing=Replication, radius=2, radius=2). The device RGB values in the region 

of interest were then used to calculate the aggregate luminance values using Equation 3.1. 
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Figure 8.1 Image capture and processing pipeline employed in this study. 
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Appendix B 

Image Capture and Processing Linearity Tests  

B.1 Overview and objectives 

The Canon A2300 digital still camera uses a charge coupled device (CCD) array to collect information 

from light delivered to it by its front end optics. It is generally known that the charge collected by a 

CCD is proportional to its irradiance125. Although the Canon Hack Development Kit (CHDK) 

modifications made to the camera should ensure that linear sensor data is present in the raw DNG 

file output from the device, it was thought prudent to test the linearity of the modified camera in 

conjunction with the overall image processing pipeline. 

B.2 Methods and materials 

B.2.1 Imaging setup 

A 1 cm square black outline printed on white photocopier quality paper was used as a target. 

Illumination was provided by a domestic grade angle-poise lamp containing a 40 W incandescent 

bulb. The lamp was fixed in place so that it could not move and switched on 30 minutes prior to 

taking the first image. The lamp illuminated the target at an angle approximating 45˚ at a distance of 

40 cm. The target was not illuminated by any other source.  

B.2.2 Image capture 

The camera was directly aligned (orthogonal) to the target at a distance of 10 cm. Focus was set to 

zero; all other camera parameters were as described in A.3. A total 96 images were captured using 

32 discrete exposure settings ranging from 1 ms to 1000 ms (each discrete exposure was used in 

three images). The order in which the exposures were applied was randomised. 

Processing of the images to arrive at RGB channel values were conducted in the manner previously 

described (see Section 3.3.2) using a rectangular region of interest (ROI) centred on and inside the 

rectangular target corresponding to 400x400 pixels. The image data was split into its RGB channels in 

preparation for analysis. 

B.3 Results 

The channel values for each of the exposed images are shown Figure B.1 up to an exposure of 250 

ms. It can be seen that the red and green channels have a similar sensitivity to the light reflected 

from the target with the blue channel somewhat less sensitive. Each channel shows a similar 
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characteristic: a linear segment followed by a flat segment representing saturation in the sensor (i.e. 

the maximum value available from the 12 bit channels: 4095). There is insufficient data points to be 

certain but linearity may be lost below channel values of 4000. 

Figure B.2 shows the data truncated at a maximum of 3500 from each of the channels. It can be seen 

that each channel is strongly linear (red R2=0.9999, green R2=0.999, blue R2=0.9997). 

B.4 Conclusions 

It was concluded that the modified Canon A2300 camera in conjunction with the processing pipeline 

defined in Appendix A would reliably deliver linear data. To minimise the risk of entering saturation 

exposure times in all experiments were to be designed to ensure that relevant channel values 

remained below 3000.  

 

 

Figure B.1 Channel values at the output of the processing pipeline based on a range of exposure 
times used to capture an image of a fixed target. Three images were taken at each of 
the 32 selected exposure times (most data points are closely superimposed). Image 
data for exposures above 250 ms are all in saturation and not shown. 
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Figure B.1 Channel values at the output of the processing pipeline. Results truncated at a 
maximum channel value of 3500. 
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Appendix C 

Pre-written Scripts Used For Briefing Subjects In Sensory 

Experiments  

C.1 Subject instruction script - haze detection threshold experiment using 
polymer microsphere suspensions 

In this experiment you will be evaluating liquid samples presented in standard wine glasses. The 

samples contain polymer beads and should not be consumed.  

The experiment will commence with the presentation of a set of three glasses and your job is to 

evaluate the samples and decide which is the haziest. The glasses will be labelled with a three digit 

label; you should record your decision on the results sheet by circling the appropriate code. You will be 

given 30 seconds to make your choice at which point you will hear an audible alarm. If you can’t 

decide which is the haziest just guess. When you hear the alarm the hatch will be opened and the 

glasses will be replaced. This will continue until you have evaluated ten sets of glasses. At this point I 

will return to the sensory room and direct you to the next sensory booth; you will evaluate ten sets of 

samples in four different booths. 

When you are presented with a set of glasses to be evaluated, you should compare each of the three 

possible pairs of glasses by raising them to eye level. When you are doing this please hold the glasses 

by the stem. Once this is completed you are free to manipulate and examine the glasses in any way 

you feel appropriate but you should avoid assessing a sample over the score sheet; try to keep the 

score sheet off to one side. 

I will remain silent when I’m presenting the samples. If you have any problems during the course of 

the evaluations just knock on the hatch. If there is a spill at any point, we will stop the evaluations, 

clean up before restarting. If you are presented with samples that do not match the sample set on 

your score sheet please knock on the hatch. 

C.2 Subject instruction script - haze detection threshold experiment using 
Chardonnay wine samples 

In this experiment you will be evaluating wine samples presented in standard wine glasses; the 

samples should not be consumed.  

The experiment will commence with the presentation of a set of three glasses and your job is to 

evaluate the samples and decide which is the haziest. The glasses will be labelled with a three digit 
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label; you should record your decision on the results sheet by circling the appropriate code. You will be 

given 30 seconds to make your choice at which point you will hear an audible alarm. If you can’t 

decide which is the haziest just guess. When you hear the alarm the hatch will be opened and the 

glasses will be replaced. This will continue until you have evaluated ten sets of glasses.  

When you are presented with a set of glasses to be evaluated, you should compare each of the three 

possible pairs of glasses by raising them to eye level. When you are doing this please hold the glasses 

by the stem. Once this is completed you are free to manipulate and examine the glasses in any way 

you feel appropriate but you should avoid assessing a sample over the score sheet; try to keep the 

score sheet off to one side. 

I will remain silent when I’m presenting the samples. If you have any problems during the course of 

the evaluations just knock on the hatch. If there is a spill at any point, we will stop the evaluations 

and clean up before restarting. If you are presented with samples that do not match the sample set 

on your score sheet please knock on the hatch. 

C.3 Subject instruction script - haze intensity scaling experiment using 
polymer microsphere suspensions 

In this experiment you will be evaluating the intensity of haze in a range of liquid samples presented 

in standard wine glasses. The samples contain polymer beads and should not be consumed.  

The experiment will commence with the presentation of a glass containing the first test sample. At 

this point you should compare the test sample to the reference sample marked with an “X”. You are 

to judge the comparative haziness just as you did in the training session by rating the test sample in 

proportion to the reference sample where the reference sample has an assigned value of 100. For 

example, if the test sample is twice as hazy as the reference, assign it a value of 200. If the test 

sample is one tenth as hazy as the reference, assign it a value of 10. You can use any positive numbers 

to assign values to the test sample. Where you can't detect any haze at all in the test sample, assign it 

the value of zero.  

The glasses will be labelled with a three digit label; you should record your decision on the results 

sheet alongside the relevant code. You will be given 30 seconds to make your evaluation at which 

point you will hear an audible alarm. When you hear the alarm the hatch will be opened and the test 

sample will be replaced. This will continue until you have evaluated eight test samples. At this point I 

will return to the sensory room and direct you to the next sensory booth; you will evaluate eight 

samples in four different booths. 
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When you are presented with a test sample to be evaluated, you should compare the test sample 

with reference by raising them both to eye level first. The reference glass should be held in your 

[left|right] hand and the test sample in your [left|right] hand. When you are doing this please hold 

the glasses by the stem. Once this is completed you are free to manipulate and examine the glasses in 

any way you feel appropriate but you should avoid assessing a sample over the score sheet; try to 

keep the score sheet off to one side. 

I will remain silent when I’m presenting the samples. If you have any problems during the course of 

the evaluations just knock on the hatch. If there is a spill at any point, we will stop the evaluations 

and clean up before restarting. If you are presented with a sample that do not match the sample code 

on your score sheet please knock on the hatch. 

C.4 Subject instruction script - haze intensity scaling experiment using 
Chardonnay wine samples 

In this experiment you will be evaluating the intensity of haze in a range of wine samples presented in 

standard wine glasses; they should not be consumed.  

This experiment is a modified version of the experiment we conducted when scaling the intensity of 

haze in polymer bead samples. In this experiment you will be assessing the samples as a group over 

two stages. In the first stage your job will be to re-arrange a group of samples into a row where the 

least hazy sample is at the far [left|right] and the haziest is at the far [left|right]. In other words you 

should arrange them in order of haze [left to right | right to left]. When you are re-arranging the 

samples please hold the glasses by the stem.  

Once you have arranged your samples in a row I will provide you with the reference sample marked 

with an “X” against which you should judge the test samples; you should hold the reference sample in 

your [left|right] hand. You are to judge the comparative haziness just as you did in the previous 

experiment by rating the test sample in proportion to the reference sample where the reference 

sample has an assigned value of 100. For example, if the test sample is twice as hazy as the reference, 

assign it a value of 200. If the test sample is one tenth as hazy as the reference, assign it a value of 10. 

You should start your evaluations at the left end of the row and continue rightwards until you have 

evaluated all samples. You can use any positive numbers to assign values to the test sample. Unlike 

the previous experiment you cannot evaluate a sample as zero; you must assign some non-zero value 

to each sample. 

When judging a test sample, you should compare the test sample with reference by raising them both 

to eye level first. Again, please hold the glasses by the stem. Once you have completed the eye level 
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examination you are free to manipulate and examine the glasses in any way you feel appropriate. As 

your make your evaluations I will record your assigned scores. 

At the end of the entire process you will be given the scores you have assigned and you will be free to 

re-evaluate any of the samples as you wish; you will be able to change any of the scores. 

There will be no time limit imposed on your evaluations; just proceed through each stage at a rate 

you are comfortable with. 

I will remain silent unless you have trouble with the process; you are free to ask for clarification at any 

point. 
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