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The Levenberg-Marquardt parameter identification method is often used in tandem with numerical 
Runge-Kutta model simulation to find optimal model parameter values to match measured data.  
However, these methods can potentially find erroneous parameter values.  The problem is exacerbated 
when discontinuous models are analyzed.  

A highly parameterized respiratory mechanics model defines a pressure-volume response to a low flow 
experiment in an acute respiratory distress syndrome patient. Levenberg-Marquardt parameter 
identification is used with various starting values and either a typical numerical integration model 
simulation or a novel error-stepping method. 

Model parameter values from the error-stepping method were consistently located close to the error 
minima (median deviation: 0.4%). In contrast, model values from numerical integration were erratic and 
distinct from the error minima (median deviation: 1.4%).  

The comparative failure of Runge-Kutta model simulation was due to the method’s poor handling of 
model discontinuities and the resultant lack of smoothness in the error surface.  As the Leven-berg-
Marquardt identification system is an error gradient decent method, it depends on accurate measurement 
of the model-to-measured data error surface. Hence, the method failed to converge accurately due to 
poorly defined error surfaces. 

When the error surface is imprecisely identified, the parameter identification process can produce sub-
optimal results. Particular care must be used when gradient decent methods are used in conjunction with 
numerical integration model simulation methods and discontinuous models. 

Parameter identification, Physiological modelling, Numerical integration, Hickling model, Alveolar 
recruitment. 

 

1. INTRODUCTION 

Model-based approaches can be used to characterize and 
quantify an individual’s response to certain stimulus. This 
information can be used to guide therapy or aid diagnosis 
(Sundaresan et al. 2009; Lozano et al. 2008; Chase et al. 
2011). However, fitting a model simulation to measured data 
often requires complex mathematical algorithms, and success 
is not guaranteed. 

The default approach used by most researchers to identify 
model parameters involves iterations of error gradient descent 
with model simulation via time-stepping numerical 
integration (Schranz et al. 2012).  IT is easily implemented in 
a range of existing software, but the final outcome can 
potentially be incorrect due to the effect of unsuitable model 
simulation techniques on the parameter identification 
algorithms perception of the error surface. 

This study will identify parameters of an enhanced 
discontinuous model of alveolar recruitment as partially 
described by Hickling et al. (Hickling 1998; Hickling 2002). 

The model includes terms that describe the recruitment and 
expansion of alveoli that are open at end expiration and those 
that are recruited during inspiration.   

II. METHODS 

2.1. Subject and clinical protocol 

One representative subject was selected from a study of 12 
Acute Respiratory Distress Syndrome (ARDS) patients. 
Patients were mechanically ventilated with low-flow (LF) 
manoeuvres performed using a Evita4Lab-System (Stahl et 
al. 2006). During the LF-Manoeuvre, the lung is inflated by 
an extremely low constant gas flow of 35 mL/s over 55 s, 
yielding a quasi-static pressure/volume curve. Measurements 
consist of flow rate and airway pressure sampled at 125 Hz.  

The study was approved by local ethics committees of all 
participating university hospitals. Informed consent was 
signed by patients or their legally authorized representative. 
Details of the experimental process are in Stahl et al. (Stahl et 
al. 2006).  
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2.2. Model description 

The Hickling model used in this analysis assumes that 
recruitable alveoli open at discrete pressures, with common 
compliance and distensibility (Schranz et al. 2012).  The lung 
is modelled as thirty discrete layers of alveoli that open at 0.5 
mbar increments from TOP + 0.5 to TOP + 15 mbar. The 
model assumes distensibility with respect to impacting 
pressure of open alveoli is equal to that of the recruitable 
alveoli. The model is fully defined in (Schranz et al. 2012) 
and is presented: 
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Equation nomenclature is defined in Table 1, and a typical 
model response is shown in Figure 1. Note that the total 
volume response is made up of the open alveoli volume (V1) 
and the recruitable alveoli volume (VN). VN is made up of a 
series of ‘layers’, which are activated at discrete pressure 
intervals, and is the source of model discontinuity.  
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Figure 1.  Pressure-volume curve defined by the model (left) 
and the contribution of the layers to the volume of the 
recruitable alveoli (right).  

Table 1. Equation nomenclature 

Symbol Meaning units model role 
paw Airway pressure mbar measured 

V Lung volume mL V measured 
pa Alveolar pressure mbar simulated 
Hξ Heaviside function {0, 1} conditional 
R Flow resistance mbar·mL-1·s-1 identified 
C1 Open alveolar compliance mL·mbar-1 identified 
CN Recruitable alveolar compliance mL·mbar-1 identified 
k Distention mbar-1 identified 

TOP Threshold opening pressure mbar assumed 

2.3. Parameter identification and model simulation 

The values of the four ‘identified’ parameters in Table 1 were 
identified using the MATLABTM (Version R2011b 64-bit) 
proprietary Levenberg-Marquardt parameter identification 
method lsqnonlin.m (Levenberg 1944; Marquardt 1963). 
Model simulation was undertaken using two methods: 1) 
Time-stepping numerical integration using the MATLABTM 
Runge-Kutta function ode45.m with default settings 
(Dormand and Prince 1980); and 2) Iterative error-stepping 
method. The error-stepping method is novel and model 
dependent, and uses the algorithm defined in steps 1-5: 

1.  Initialize pa(t) = V(t)/C1  

2.  Derive the 30 Heaviside functions H1-30(t) using pa(t)  

3.   Calculate ( )ap t directly with H1-30(t), the measured ( ),V t  
and Equation 2.  

4. Calculate pa(t) using the trapezium method (cumtrapz.m 
in MATLABTM) to integrate  ( )ap t .  

5. Iterate across steps 2-4 updating H1-30(t) at each iteration. 
Ten iterations are used. 

A maximum pressure of pa=1500 mbar is used in the error-
stepping method to avoid simulation failure due to infinite 
pressure values, which can occur in early iterative steps, or 
by poorly estimated model parameter values yielding 
physiologically insufficient maximum lung volume. 

2.4. Analysis 

Initially, the participant’s least-square model parameter 
values were identified using the Levenberg-Marquardt 
method, and the error-stepping model simulation method. 
The function tolerance (‘tolfun’) convergence setting was set 
to 10-12 and the maximum allowable iterations was increased 
to 10000. Initial values of R = 0.2; C1 = 10; CN = 3; and k = 
0.01 were used. TOP was set to 10 mbar. These steps provide 
a set of highly accurate parameter values for the test 
participant (XT). 

Second, model error surfaces ±5% around these XT  
parameter values were obtained using both the numerical 
integration method and the error-stepping method. A series of 
two-dimensional error contour plots were defined for each 
possible 2-parameter combination. The natural logarithms of 
the error were recorded to allow comparable magnitudes of 
error across variations in model parameters with different 
model sensitivities. The contour plots had a 0.2% resolution 
and model error was calculated:  
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Finally, C1 and CN were re-identified in a Monte Carlo 
analysis. The values of k and R were set constant at the 
previously identified values (kT and RT). Parameter 
identification was undertaken with the MATLABTM function 
lsqnonlin.m with convergence declared at 500 function 



 
 

     

 

evaluations. C1 and CN were identified using both the 
numerical integration and error-stepping methods, with the 
resultant parameter values recorded. Initial values of C1 and 
CN were randomly distributed on the range ±10% of the 
accurate C1T and CNT values. A total of 500 Monte Carlo 
iterations were undertaken. Normalized proportional 
differences (δC1,CN) between the identified values and the 
minima value were measured with:  
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III. RESULTS  

The parameter identification method located an error minima 
with values of R = 0.121; C1 = 32.706; CN = 2.744; and k = 
0.040, which are expected values for this type of model 
(Schranz et al. 2012). Figure 2 shows the error surface 
defined by the numerical integration method. Note that the 
surfaces show apparent wide scale trends, but have very 
erratic local error surfaces. Figure 3 shows the error surface 
of the error-stepping method. The overall shape of the error 

 
Figure 2. 2-D error maps across a 10% range about the error 
minima derived via numerical integration. 

surface is similar to that of the numerical integration method. 
However, in contrast to the numerical integration method, the 
error-stepping method produced locally smooth contour 
surfaces.  

Figure 4 shows the distribution of the C1 and CN values 
obtained after 500 Levenberg-Marquardt parameter 
identification iterations in relation to the error minima. Note 
that the locations of the error minima found with the error-
stepping method were along the major axis of the error 
surface shown in Figure 3 (middle right). In contrast, the 
error minima located via the time-stepping method tended 
toward the major axis, but exhibited significant variation 
across the major axis.  

Figure 5 shows the distribution of relative normalized 
discrepancy between the parameter values identified with the 
two model simulation methods and the parameter values at 
the true error minima. The median normalized parameter 
discrepancy caused by the error-stepping method was 0.4% 
(IQR: 0.3% to 1%). The median normalized parameter 
discrepancy caused by the numerical integration method was 

 
Figure 3. 2-D error maps across a 10% range about the error 
minima derived via error-stepping model simulation.  



 
 

     

 

-5% 5%

5%

C1

C N

 

 
Numerical integration
Error-stepping

 

Figure 4. Distribution of parameter values identified via the 
Levenberg-Marquardt method with model simulation from 
the time-stepping and error-stepping methods  

1.4% (IQR: 0.8% to 2.3%). Both Wilcoxon rank-sum and 
Kolmogorov-Smirnov tests found significant differences in 
the discrepancies across the methods (p<0.00001). 

IV. DISCUSSION  

This analysis demonstrated the potential for sub-optimal 
parameter identification when the Levenberg-Marquardt 
gradient decent method uses imprecise methods for model 
simulation of a discontinuous model. There was a significant 
improvement in the discrepancy between the ideal model 
parameter values and the values found via the precise error-
stepping method over the values found with the more 
commonly used numerical integration method.   

The model used incorporated a series of discontinuities that 
the MATLABTM numerical integration method ODE45.m 
failed to accurately define. Thus, small variance in parameter 
values sometimes caused disproportionately large changes in 
model simulation. This behaviour resulted in erratic local 
surfaces in the error plane (Figure 2). Gradient decent 
methods, such as the Levenberg-Marquardt method rely on 
accurate measurement of the gradient of the error plane to 
converge to a true error minima. As such, local inaccuracy in 
the error surface can cause erratic parameter stepping and 
failed convergence of parameter identification.   

Figure 4 shows the distribution of minima located by the 
Levenberg-Marquardt identification method with model 
simulation from the error-stepping method and the time-
stepping methods. As the error surface defined with the error-
stepping method was locally smooth, parameter convergence 
was able to successfully descend the error plane. However, a 
number of outlying parameter values were distant from the 
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Figure 5. Distribution of the normalised parameter 
discrepancy from the two model simulation methods. 

true error minima identified in the initial stage of this 
investigation when the error-stepping method was used 
(Figure 3). Although this error is often referred to as 
‘identification of a local minima’, there was actually no local 
minima at the identified values. Instead, the Levenberg-
Marquardt identification method could not locate the proper 
direction of gradient decent. 

Figure 6 shows the reason for the occasional halted 
convergence when parameter values fall on the major axis of 
an error contour. Point A in Figure 6 is situated on the major 
axis and thus has a limited range of directions with a lower 
error state. Thus, there is reduced likelihood of continued 
convergence. In contrast, point B has a much greater range of 
directions with a lower error-state, and thus convergence is 
much more likely to continue. Hence, in cases where the 
major axis of the error contours is much greater than the 
minor axis, convergence can be prematurely declared due to 
difficultly in locating a lower error state. In certain 
investigations, this occurs in cases where the true error 
minima is known (though another means), a false assumption 
of local minima is generally made. 

Parameter values identified using the error-stepping method 
was generally closer to the error minima than values 
identified using numerical integration. The Levenberg-
Marquardt method could not accurately recognize or define 
the local error-surface. This deleterious effect was most 
profound where the error surface was flattest; along the major 
axis close to the error minima. In regions where the error 
surface gradient was greatest, the gradient-to-surface noise 
ratio was such that the identification method could more 
readily obtain an appropriate direction for convergence. This 
is despite the local error surface noise caused by the 
numerical integration Runge-Kutta model simulation. 
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Figure 6. A typical error surface showing the range of 
directions of in-creased model error from two model 
parameter sets (A, B) with the same model error magnitude. 
Note that it is significantly less likely for a randomly selected 
convergence direction from point A to locate a lower error 
state than a randomly selected direction from point B. 

The discrepancy measured by both methods was within 
tolerances that could be considered clinically acceptable. 
However, this investigation successfully demonstrates the 
potential for failed convergence, when erroneous model 
simulation techniques are used. The MATLABTM numerical 
integration function ode45.m was used with the default 
settings during this investigation. Altering the step-size of 
this algorithm is relatively simple and could significantly 
mitigate the errors encountered using the method. However, 
the reasons for this step are not immediately apparent, and 
may be overlooked. The primary focus of this investigation 
was to show the potentially deleterious effect of default use 
of a common model fitting strategy. 

V. CONCLUSIONS  

While numerical integration coupled with gradient based 
identification methods are frequently used successfully 
(Sundaresan et al. 2009; Schranz et al. 2011), it is important 
to know the limitations of such methods. In particular, this 
investigation has shown that numerical integration methods 
which handle discontinuities poorly, such as the proprietary 
MATLABTM methods, are likely to cause parameter 
identification failure when poorly applied. Thus, investigators 
using similar models must ensure that the model simulation 
methodology can define smooth error surfaces that do not 
hinder a gradient decent parameter identification method. 
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