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requirements for the Degree of Doctor of Philosophy. 

Abstract 

Biological control of Rhizoctonia diseases of potato 

 

by 

Damian Bienkowski 
 

Potato (Solanum tuberosum L.) is one of the most important crops in New Zealand and 

internationally. Potato plants are susceptible to a range of pathogenic diseases, including the 

Rhizoctonia diseases, which are globally ubiquitous. Since synthetic fungicide control of the 

causal pathogen, Rhizoctonia solani Kühn, is not always efficacious, combined with a current 

drive to reduce synthetic agrichemical inputs in New Zealand agriculture, alternatives should 

be sought. The present study examined the potential for biological control (biocontrol) of 

Rhizoctonia diseases of potato from a New Zealand agricultural perspective. The study 

included investigations into inundative biocontrol (introduction of single/multiple strains of 

soil microorganisms) and conservation biocontrol, including organic matter amendments and 

crop rotation practice.  

To investigate inundative biocontrol, isolations were conducted from New Zealand potato 

cropping soils for members of the genera Trichoderma, Pseudomonas and Bacillus, identified 

as strong potential biocontrol candidates from previous published studies. Comparisons 

between the bacterial isolates in dual culture with two R. solani strains suggested that one soil 

(from the Pukekohe region) harboured Pseudomonads with greater suppressive potential than 

those from three other soils. In greenhouse assays, selected isolates (89) were applied to plant 

growth medium as fungal spore or bacterial cell suspensions, to test for their capacity to 

suppress Rhizoctonia diseases of potato. Initially, 22 isolates demonstrated positive impacts 

on either Rhizoctonia canker symptoms and/or on plant parameters (e.g. tuber number or 

weight). However, no isolates gave strong and consistant suppression of Rhizoctonia diseases 

in repeated assays. The results indicated that inundative biocontrol was insufficient to achieve 

strong, consistent suppression of Rhizoctonia diseases of potato, when applied in this 

commercially realistic manner. 



 iii 

Investigations into conservation biocontrol included testing several organic matter (OM) 

amendments previously suggested as potential suppressors of Rhizoctonia diseases of potato. 

These OMs were based on pine bark compost, chitin or biochar. Very slight disease 

suppression was detected. Results from analysis of soil community substrate utilisation 

showed that increases in activity or diversity as a result of OM amendment, at commercially 

viable concentrations, were insufficient to suppress Rhizoctonia diseases. The soil population 

of R. solani AG 3 and AG 2-1, and fungal and bacterial soil community structure, as a result 

of four crop rotation treatments (including potato monoculture) from the Pukekohe region 

were assessed. No rotation treatment increased pathogen inoculum. Soil bacterial community 

was not affected by rotation treatment. Fungal community was affected by the most recent 

crop, but not crop sequence. The impact of the four rotation treatments on Rhizoctonia disease 

expression was also assessed. Soils from all four treatments gave similar disease expression. 

Culture dependent and independent techniques used to determine soil fungal and bacterial 

community richness, diversity or metabolic activity demonstrated that increases in these 

parameters did not correlate with decreases in Rhizoctonia disease measures. 

The study concluded that consistent biocontrol of Rhizoctonia diseases of potato probably 

requires the presence and stimulation of a specific, small group of suppressive organisms. For 

biocontrol of these diseases to be a reliable option for potato growers, biocontrol agents will 

probably require appropriate and economically feasible nutritional support when introduced 

into crop disease management strategies. 

 

Keywords: Rhizoctonia solani, biological control (biocontrol), potato (Solanum tuberosum), 

Trichoderma, Pseudomonas, Bacillus, organic matter amendment, crop rotation, soil 

community analysis. 
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     Chapter 1 
Introduction 

Potatoes are one of the most important food and commodity crops in New Zealand and 

internationally. Potato plants are susceptible to a wide variety of diseases, including 

Rhizoctonia diseases, which are globally ubiquitous. Synthetic pesticide control of the fungal 

pathogen Rhizoctonia solani (the causal agent of Rhizoctonia diseases) is not always 

efficacious, and there is a current trend to decrease the use of synthetic agrichemicals in crop 

production. If adequately understood, biological control of Rhizoctonia diseases of potato 

could become a significant component of an integrated pest management system for this 

valuable crop. 

The aim of this project was to identify strains of beneficial microorganisms with the capacity 

to suppress Rhizoctonia diseases of potato, and generate information regarding their physical 

limitations and mode(s) of action. Failing the identification of such organisms, a second aim 

was to investigate if soil management practices, specifically organic matter amendments and 

different crop rotations, can reduce the severity of these diseases. 

1.1 The host 

Potato (Solanum tuberosum L.) is one of the most important crops globally. A recent special 

report by the Food and Agriculture Organisation of the United Nations highlighted the potato 

crop as “…a vital part of the global food system, and will play an ever greater role in 

strengthening world food security and alleviating poverty” (FAO, 2009). Worldwide, potato is 

the most cultivated non-grain crop, producing more starch per hectare than any other crop. 

Potatoes also have high nutritional value and a greater proportion of edible plant material 

compared to cereals. Because the majority of potato crops are produced for domestic rather 

than international trade, prices are determined by local production costs and not subject to 

fluctuations in the global market. This explains why potato is such an important crop for local 

food security. 

Worldwide, potato crop loss due to pathogens ranges from 7 to 24%, with lower losses in 

regions with higher agrichemical inputs, such as New Zealand (Oerke, 2006). In 2011 in New 

Zealand, potatoes were grown on 10,600 ha of land, producing 522,000 tonnes with a 

combined domestic and export value of NZ$560.3 million (Aitken and Hewett, 2011). If 

properly understood and implemented, biological suppression of potato pathogens could 
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enable farmers in developed countries like New Zealand to reduce synthetic pesticide use 

without incurring loss of productivity or crop quality, and could offer farmers in developing 

countries a way of decreasing crop losses to pathogens without increasing synthetic pesticide 

use. 

1.2 Rhizoctonia diseases of potato 

1.2.1 The pathogen 

The causal agent of the black scurf and stem/stolon/root canker diseases of potato is the soil-

borne fungus Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris (Frank) Donk) 

(Banville et al., 1996). Rhizoctonia solani does not produce asexual spores, and exists as 

mycelium (hyphal growth form), sclerotia (dense asexual hyphal resting structures) or 

basidiospores (sexual spores) (Keijer, 1996). While basidiospores produced by some R. solani 

strains are inoculum for Rhizoctonia leaf diseases in other plant species, such as web blight on 

beans (Godoy-Lutz et al., 1996), they are rarely produced by strains pathgenic to potato, and 

are not considered to be of economic importance with regards to Rhizoctonia diseases of 

potato (Ogoshi, 1987). Traditionally, R. solani has been subdivided into subsets based on 

grouping by anastamosis reactions; briefly, new isolates are co-plated with tester isolates and 

if there is fusion between hyphae of the two isolates, including a “killing zone” surrounding 

the fusion, they are grouped into the same Anastomosis Group (AG) (Anderson, 1982). To 

date 14 AGs have been described, and there are also many subsets within AGs based on a 

range of characteristics including host range, virulence, molecular and biochemical 

characteristics and morphology (Carling et al., 2002). The introduction of Polymerase Chain 

Reaction and DNA sequencing combined with other molecular and biochemical tools has 

confirmed the AGs as genetically distinct groups (Sharon et al., 2006). 

Isolates from many R. solani AGs have been found associated with below-ground potato 

organs, but only strains of AGs 3, 5, 2-1 and possibly 8 are considered of economic 

significance on potato in temperate climates (Banville et al., 1996; Campion et al., 2003). AG 

3 is the most frequently isolated AG from potato exhibiting Rhizoctonia disease symptoms in 

most areas of the world (Anderson, 1982; Justesen et al., 2003; Lehtonen et al., 2008b) 

including New Zealand (Farrokhi-Nejad et al., 2007). However, within each AG pathogenic 

to potato, there exists a range of pathogenicity between isolates. Some consider AG 3 to be 

divisible into two sub-groups with non-overlapping host ranges, with AG 3 PT strains virulent 

to potato, and AG 3 TB virulent to tobacco (Ceresini et al., 2002). Members of R. solani 

pathogenic to potato are non-obligate, and are saprophytes able to utilise a wide range of 
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substrates, although they are not usually considered to be strong competitors. This is one 

mechanism, however, which allows them to persist in the absence of host plants (Frank, 

1981). 

1.2.2 Pathogen life cycle and disease symptoms 

Rhizoctonia diseases of potato separate into two phases: Rhizoctonia cankers, which are 

lesions on below-ground plant organs that can occur at any time during the growth of the 

plant; and the deposition of sclerotia (dense asexual fungal resting structures) on the surfaces 

of daughter tubers (Banville et al., 1996). The life cycle of potato-pathogenic R. solani strains 

are probably asexual, and begins with inoculum sources, either mycelia or sclerotia, present in 

the soil or decaying plant matter in the field, or on the surfaces of seed tubers. During 

mycelial growth, the pathogen can exist saprophytically, or can infect potato roots, stems, 

stolons (below ground stems that produce daughter tubers at their tips) and developing tubers, 

as detailed in Figure 1.1. Hymenia of T. cucumeris (producing basidiopspores) are sometimes 

observed in field-grown potatoes, but these are considered unimportant as inoculum sources 

in the epidemiology of Rhizoctonia diseases. 

 

Inoculum 
(germination 
if sclerotia)

Hyphae grow 
toward then 
over the host

Hyphae attach 
to host tissue

Infection 
structure 

forms

Host tissue 
penetrated and 

colonised

Sclerotia
formation 

later in season
 

Figure 1.1 R. solani disease cycle of economic importance to potato cultivation and 
infection process, adapted from Keijer (1996). 

 

Virulent R. solani forms infection cushions on the surfaces of host sprouts and roots, and 

penetration by the pathogen occurs only under these areas. Lesions develop under the 

infection cushions and reach the vascular bundles; these lesions develop into the ‘canker’ 

symptom. If lesions girdle and kill young sprouts, this is termed ‘sprout-nipping’ (Weinhold 

and Sinclair, 1996), which is often associated with poor plant emergence in affected crops 

(Figure 1.2). Above ground symptoms can include aerial tubers, upward leaf roll, chlorosis, 

purple leaf pigmentation, and stunting/rosetting of plant shoots and leaves (Frank, 1981). 
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However, there is often no effect of infection on the host haulms (Hartill, 1989). ‘Nipping’ of 

roots can lead to sparse root systems. Later in the growing season, this infection process can 

occur on newly forming stolons, killing them, or causing malformation and ‘cracking’ of 

tubers. 

At the end of the growing season, sclerotia form on the daughter tubers (black scurf, Figure 

1.2), but of the AGs most pathogenic to potato, only members of AG 3 are known to cause 

high incidences of black scurf on daughter tubers (Woodhall et al., 2008). If the pathogen 

develops into the sexual stage then a ‘white collar’ (hymenium) producing basidiospores 

forms on stems just above the soil line, but only AG 3s have been shown to undergo this stage 

on potato (Woodhall et al., 2008). 

 

Figure 1.2 Examples of (a) Rhizoctonia stem canker as well as ‘nipping’ of emerging 
potato plant shoots, and (b) R. solani sclerotia (black scurf) on the surface of 
a potato tuber. 

 

The yield impact of Rhizoctonia diseases of potato can vary depending on the R. solani strains 

present, potato cultivar and environmental conditions: In a four year study using ten potato 
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cultivars, Otrysko and Banville (1992) demonstrated that R. solani (AG 3) significantly 

decreased total and marketable crop yields and increased black scurf (not all cultivars were 

affected in all four years). Specific gravity of the tubers was significantly decreased in three 

of the four years, and colour of processed tubers (three months after harvest) was negatively 

affected in all four years. These authors highlighted the necessity of planting seed potatoes 

free of black scurf to avoid these symptoms. A study by Hide and Horrocks (1994) found that 

R. solani infection shifted tuber yield away from marketable size tubers to oversize, as well as 

darkening the colour of processed tubers. Stolon infection is responsible for shifts in 

marketable yield. For example, Hartill (1989) found that severe R. solani infection led to an 

increase in the number of tubers initiated, as well as tubers forming on leaf axils, suggesting 

that cankers on stolons block the transport of photosynthetic product (the production of which 

was unaffected by disease) to the usual sinks, forcing plants to create alternative sinks. A 

post-harvest Rhizoctonia disease symptom was recently described by Buskila et al. (2011). 

Infection of tubers by R. solani AG 3, before skin-set, was shown to be the cause of dark skin 

spots, likely due to an ‘oversuberization’ response of the tuber. This can reduce the value of 

potato varieties that are washed before sale. 

1.2.3 Epidemiology 

Soil-borne pathogens of potato plants, such as R. solani, are found in all potato producing 

regions of the world (Banville et al., 1996), most likely because these pathogens have been 

dispersed on seed tubers, as potatoes are vegetatively propagated. Plant infection by R. solani 

can come from either tuber-borne or soil-borne inoculum (Tsror and Peretz-Alon, 2005), 

although in conventional potato production, seed dressing treatments with pesticides largely 

control tuber-borne inoculum (Weinhold et al., 1982). In organic potato production, tuber-

borne inoculum remains an important infection source. Therefore, if little or no crop rotation 

is practiced, then soil-borne inoculum is likely to increase. Rhizoctonia solani populations 

reduce over time in the absence of host plants, so in general, the more years between potato 

crops the lower the inoculum levels (Peters et al., 2003). However, experiments by Carling et 

al. (1986) indicated that R. solani of AG 3 are able to form epiphytic relationships with crop 

species from a wide range of families (eggplant, tobacco, cauliflower, carrot, radish and oats), 

leading to extensive development of hyphae and sclerotia, making the selection of crops in 

rotation with potato important (see section 1.3.1). Disease is most prevalent under conditions 

which slow the growth of new shoots, particularly in cool, moist soils (Anderson, 1982). AG 

3s have been shown to cause more damage to potato plants at 10°C than at higher 

temperatures (Carling and Leiner, 1990), and temperatures above 25°C have been shown to 
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inhibit canker severity (Anderson, 1982). Infection of potato plants by other pathogens has the 

potential to influence the expression of Rhizoctonia diseases of potato. In vivo experiments 

demonstrated that R. solani (AG 3) grew faster on medium amended with root exudates from 

potato infected with the potato cyst nematode (Globodera rostochiensis), than on media 

amended with root exudates from un-infected potato plants (Back et al., 2010). The authors 

suggested this may explain a previously identified positive correlation between infections 

from these two pathogens in the field, with R. solani being stimulated to infect plants changes 

in root exudation. Organisms which compete with R. solani for root exudates may, therefore, 

have potential for reducing R. solani infections. Herbicide use may increase the incidence of 

Rhizoctonia diseases in potato fields, and various herbicides have been shown to stimulate 

Rhizoctonia spp. penetration of other crop species (Altman and Rovira, 1989). 

1.3 Control strategies 

1.3.1 Cultural control 

Cultural controls for soil-borne diseases are very important in potato production, as other 

methods alone offer insufficient disease control (Sweetingham, 1996). The planting of 

certified seed potatoes is one of the most common cultural control methods for minimising 

potential disease. In New Zealand, the maximum level of black scurf for certified seed tubers 

is 5% of the individual tuber surface affected, on 5% of inspected samples (NZ Seed Potato 

Certification Authority, 2011). As black scurf generally begins to form several weeks after 

haulm kill, harvesting of the seed potatoes in the 3 week period after haulm kill is widely 

practiced in the seed potato industry to minimise black scurf on seed potatoes (R. Genet, 

personal communication).  

Crop rotation can impact on soil inoculum levels, and is another widely practiced cultural 

control measure (Sweetingham, 1996). Long periods between potato crops generally favour 

decline in virulent R. solani inoculum levels. Certain crops also accelerate this decline in 

comparison with others. For instance, Garbeva et al. (2008) found lower percentages of AG 3 

isolates present in maize and commercial grass mix rhizospheres than in those of barley or 

oat. The method of tillage can impact on the incidence and severity of Rhizoctonia diseases of 

potato: Peters et al. (2004) demonstrated that chisel ploughing reduced both stem canker and 

black scurf symptoms compared with mouldboard ploughing, in a three year rotation under 

minimum tillage. When Larkin et al. (2011) compared the expression of soil-borne diseases of 

potato between four crop rotation regimes and continual potato cultivation, it was found that 

Rhizoctonia stem canker was reduced in all rotations compared with monoculture, and that 
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black scurf was less in all systems compared to monoculture except one (an irrigated rotation 

which included yearly compost amendments). The disease was especially lessened in 

rotations which included ‘disease-suppressive’ crops: mustard/rapeseed followed by 

sudangrass/rye then potato. Overall irrigation increased black scurf, as well as yields. These 

authors used fatty-acid methyl ester (FAME) analysis and substrate utilisation (BIOLOG 

GN2) plates to analyse the soil microbial community, and they found that continual potato 

cropping resulted in the smallest microbial populations and least diversity, with least substrate 

utilisation richness and diversity (Larkin et al., 2011). 

Organic matter (OM) amendments are sometimes combined with crop rotations to reduce 

soil-borne diseases: Larkin (2008) used FAME to analyse the soil microbial community of 

three different crop rotations receiving an OM treatment, beneficial microbe treatment, 

combination of the two or control, and found that while OM treatments affected communities 

within rotation types, community structure was most closely defined by rotation. Hence 

rotation changed community structure to a greater extent than the treatments. Methods to 

analyse soil microbial communities in relation to disease suppression are covered in more 

detail in section 1.3.4.4.3. 

Soil type has been shown to influence the development of Rhizoctonia diseases. For example, 

in the Netherlands, Jager and Velvis (1983) demonstrated that pleistocene, slightly acid sandy 

soil suppressed R. solani, compared with holocene marine soils; loamy sand, sandy loam, clay 

loam or clay. They attributed this suppression to an increase in R. solani sclerotia infected by 

fungal antagonists in the suppressive soil. As the likelihood of infection increases with 

decreased sprout emergence, cultural practices which accelerate sprout emergence, such as 

delaying planting until soil temperatures are warm, planting seed tubers only once correct 

physiological age is reached and planting in soils unlikely to become water-logged, can 

decrease the chances of sprout infection (Banville et al., 1996). 

1.3.2 Host resistance 

While there is variation between potato varieties in resistance to Rhizoctonia diseases (Bains 

et al., 2002), there are no varieties available which are completely resistant. Of the 86 potato 

varieties on The British Potato Varieties Database with data on resistance to black scurf, only 

four (Arrow, Blue Danube, Charlemont and Mayan Gold), have high resistance to R. solani 

(Potato Council, 2009). The majority of varieties, 43 of 86 listed, fall into the three (of nine) 

middle categories for resistance. Planting of resistant varieties can be a very cost-effective 

approach for controlling some plant diseases, as it reduces pesticide inputs. However, this 
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strategy often cannot be employed, because varieties more resistant to one pathogen may be 

less resistant to another which may have a greater impact on yield, or because resistant 

varieties have characteristics unacceptable for marketing or processing. 

Genetic manipulations of disease response signalling and biochemical pathways, and the 

introduction of antimicrobial genes from non-plant sources, have achieved some success in 

controlling Rhizoctonia diseases of potato. For example; expression of an endochitinase from 

Trichoderma harzianum (Lorito et al., 1998), as well as chitinases from a variety of plant 

sources (Punja, 2001) have been shown to suppress Rhizoctonia diseases. The use of 

transgenic crops remains a delicate topic, and their use is not an option available to all potato 

growers. 

1.3.3 Synthetic pesticides 

Synthetic chemicals for R. solani control can target either tuber-borne or soil-borne inoculum 

sources. Seed tuber dressings are effective and largely eliminate tuber-borne inoculum in 

conventional potato production. Effective fungicides are thiophanate-methyl, flutolanil, 

pencycuron and azoxystrobin (Campion et al., 2003; Errampalli et al., 2006; Wilson et al., 

2008b). Chemical disinfection of tubers has also been suggested. The choice of disinfectant is 

important, as some, like organic acids and reactive oxygen compounds, can damage sprouts, 

while others (e.g. ammonia) can both kill sclerotia and promote shoot growth (Zillger et al., 

2010). Variable control of soil-borne R. solani inoculum is achieved through fungicide 

applications, and these are less effective when initial inoculum levels are high (Brewer and 

Larkin, 2005; Tsror and Peretz-Alon, 2005). Fungicide control of R. solani is not available to 

growers of organic crops. Pencycuron, one of the common fungicides used for control of 

Rhizoctonia diseases of potato is very selective against the strains controlled, and while it was 

found to be effective at lower concentrations than another fungicide (PCNB), growth 

inhibition of a range of R. solani isolates in culture ranged from 0 to 100%. This selectivity 

was not related to anastomosis group (Roberts and Stephens, 1984). Azoxystrobin, a newer 

broad-range fungicide has been found to elicit stronger suppression of Rhizoctonia diseases of 

potato in the field then pencycuron (Djébali and Belhassen, 2010), although in a study by 

Brewer and Larkin (2005) it was not found to be efficacious in all experiments. A comparison 

between six fungicides found that captan, iprodione, mancozeb and fludioxonil were more 

effective in controlling Rhizocotnia stem canker and black scurf of potato than thiabendazole 

or thiophanate-methyl (Bains et al., 2002). As stated earlier, there is a drive to decrease the 

application of synthetic agrichemicals in food production, so even where fungicides are 

effective, their use may become more restricted, and alternatives will have to be sought. 
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1.3.4 Biological control 

In the case of diseases caused by soil-borne plant pathogens, biological control (biocontrol) 

refers to either the introduction of organisms that are antagonistic to the pathogen or reduce its 

effects, or to an increase in the density or activity of naturally occurring antagonistic 

organisms, resulting in a reduction of disease severity. Mechanisms of action which underpin 

biocontrol include either destruction of the pathogen directly (mechanisms include predation, 

mycoparasitism and/or production of antibiotic compounds), or excluding the pathogen 

through competition for resources, and the induction of host resistance (Bellows et al., 1999). 

In an effort to unify biocontrol terminology, Eilenberg et al. (2001) divided biological control 

into four strategies; classical, inoculation, inundation and conservation biological control. 

Classical biocontrol refers to the introduction of an agent into an environment hoping that it 

will permanently establish and give long-term control of the pest. This strategy is largely 

relevant to macroscopic pests and not to microbial pathogens. With inoculation biocontrol, 

agents are released into an environment with the expectation that control will be achieved 

once populations have increased sufficiently, often with the assistance of additional resources. 

Since this strategy has a lag period while the biocontrol agent multiplies to sufficient 

numbers, the timing of inoculations is critical. Inundation biocontrol is similar to 

inoculation biocontrol, only control is achieved by the introduced organisms themselves, 

rather than subsequent generations, and so the effect is more immediate. With the introduction 

of organisms to the soil for control of fungal crop pathogens it is difficult to separate if an 

organism is operating in an inoculative or inundative fashion until population studies are 

compared with disease severity over time, and so in section 1.3.4.2 they are considered 

together. Conservation biocontrol involves enhancing pre-existing natural enemies of the 

pest species, either in number or efficacy, by adopting specific management practices or 

modifying the environment. This strategy includes providing resources or habitat that natural 

enemies can exploit. In the case of soil-borne pathogens, examples of conservation biocontrol 

include growing crops in areas where soils are naturally suppressive to the pathogen, or 

encouraging development of suppressive-soils by controlling factors such as soil nutrient and 

organic matter content, or crop rotation practices. Understanding the mechanisms 

underpinning suppressive soils is essential to recreate their effect in different areas, and 

methods to achieve this are covered in section 1.3.4.4.  

Whether biocontrol is achieved in an inundative/inoculative manner or through a conservation 

biocontrol approach, the mechanisms by which disease suppression is achieved traditionally 

fall into four general categories; competition, antibiosis, parasitism and stimulation of plant 
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resistance pathways, with growth promotion as a possible fifth indirect mechanism of 

biocontrol (Handelsman and Stabb, 1996; Hoitink and Boehm, 1999). All of these 

mechanisms of action have been implicated in control of Rhizoctonia diseases, as detailed in 

the following sub-sections: 

1.3.4.1 Biocontrol mechanisms of action 
1.3.4.1.1 Competition 

Microorganisms in the soil or associated with plants constantly compete with each other for 

spatial and nutritional resources. Since R. solani is a saprophyte as well as a plant pathogen, 

organisms which suppress Rhizoctonia diseases may do so by preventing the pathogen from 

accessing nutrition in the soil or by blocking access to the plant infection courts (targets of 

infection). For example, a study by Weinhold et al. (1972) demonstrated that the virulence of 

R. solani to cotton seedlings was dependant on the nutritional status of the mycelium, with 

better nourished fungi being more pathogenic. In addition, Dijst (1988) found that R. solani 

AG 3 produced sclerotia with greater mass on nutrient rich media compared to nutrient poor 

media, and suggested that higher incidence of black scurf after haulm destruction may 

partially result from increased exudation of nutrients by host plants. Therefore it can be 

concluded that interactions which prevent the pathogen from accessing exogenous nutrition, 

from the soil or plant exudates, will decrease its pathogenic potential. 

1.3.4.1.2 Antibiosis 
Suppression of Rhizoctonia diseases by specific microorganisms is often attributed to the 

production of secondary metabolites which are directly toxic to the pathogen (El-Tarabily and 

Sivasithamparam, 2006; Homma, 1996; Whipps, 2001). Compounds implicated in biocontrol 

of R. solani are usually antibiotics or fungal cell-wall degrading enzymes. It has been 

demonstrated that the ability of many strains of rhizobacteria to suppress plant pathogens is 

dependent on their capacity to produce secondary metabolites which directly inhibit the 

pathogens, and these include antibiotics, siderophores, bacteriocins and cyanide (Homma, 

1996). Strains of Trichoderma are often investigated for biocontrol of Rhizoctonia diseases, 

and many produce inhibitory compounds, such as 6-pently-α-pyrone, which inhibits the 

growth of Rhizoctonia solani in vitro (Scarselletti and Faull, 1994), trichodermin, an 

antimycotic compound (Bertagnolli et al., 1998), and endochitinases and endoproteinases 

inhibitory to R. solani (Bertagnolli et al., 1996). Trichoderma and rhizobacteria are discussed 

in more depth in section 1.3.4.3. Actinomyces are also often found to inhibit R. solani with 

secreted antifungal metabolites (El-Tarabily and Sivasithamparam, 2006). In vitro screening 

of suppression of pathogen colonies is often used to identify antagonist strains, but this 
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approach must be treated with caution, as in vitro antagonism often correlates poorly with in 

vivo disease suppression, if at all (Deacon, 1991; Fravel, 1988; Weller, 1988). Potentially this 

discrepancy occurs because the antifungal compounds are not produced by the organisms at 

the required physical locations at concentrations sufficient to prevent infection. However, 

there are many examples of biocontrol strains which lose disease suppression capacity when 

the production of specific antimicrobial compounds is disrupted by genetic modification 

(Homma, 1996; Mendes et al., 2011). 

1.3.4.1.3 Parasitism 
As a strategy for biocontrol, mycoparasitism is appealing in principle, as it involves direct and 

targeted destruction of the pathogen by the biocontrol agent. There has been a large body of 

research exploring the potential of mycoparasites to control R. solani, and some of the more 

commonly investigated species include Trichoderma harzianum, T. hamatum, T. viride, T. 

virens, Laetiaria arvalis, Pythium nunn, Gliocladium roseum, Verticillium biguttatum and 

Stachybotrys elegans (Boogert, 1996). There are some pitfalls to mycoparasitism that limit the 

application of this mode of action, however: Verticillium biguttatum received a lot of attention 

as a potential biological control agent (BCA) of R. solani on potato, as it is dependent on R. 

solani for natural development (Boogert and Luttikholt, 2004; Boogert et al., 1990; Morris et 

al., 1995). However, the ecological range of V. biguattatum is more restricted than R. solani, 

so its host can escape infection. The biocontrol of Rhizoctonia damping-off of radish by a 

Trichoderma hamatum was reduced by the presence of thermophilic fungi in hardwood bark 

compost-amended container medium, potentially because the thermophyilic fungi provided an 

alternative target for parasitism (Chung and Hoitink, 1990). So if the environmental 

conditions are not conducive or if alternative hosts are present, mycoparasitism is unlikely to 

suppress the pathogen sufficiently. 

1.3.4.1.4 Stimulated resistance 
It has been demonstrated that potato plants respond to infection (nipping of emerging shoot 

tips) by virulent R. solani strains by systemic activation of an array of defence genes 

including chitin-hydrolysing enzymes, 1,3,-β-Glucanase, which are involved in hydrolysing 

fungal cell walls, and that this decreases the likelihood of infection of subsequent shoot tips 

(Lehtonen et al., 2008a). Other non-pathogenic organisms which activate the same pathways 

may decrease Rhizoctonia diseases of potato. Cardinale et al. (2006) demonstrated that 

Rhizoctonia damping-off of radish was decreasead by a hypovirulent R. solani strain, which 

induced plant systemic resistance and also competed with a virulent R. solani strain for space 
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and nutrients. This approach was also demonstrated for control of the Rhizoctonia diseases 

banded leaf and sheath blight of maize (Pascual et al., 2000). 

1.3.4.1.5 Growth promotion 
It is perhaps misleading to classify growth promotion as a mechanism of biocontrol activity, 

as a variety of factors may contribute. Some organisms promote growth by enhancing nutrient 

uptake (biofertilising) or abiotic/biotic stress tolerance, which may make host plants more 

able to cope with infection. Others synthesise phytohormones which directly stimulate plant 

growth (Diallo et al., 2011). Examples of growth-promoting organisms with evidence of 

Rhizoctonia disease suppression include; root colonising growth-promoting yeasts which 

were shown to reduce R. solani diseases of sugar beet (El-Tarabily, 2004); many strains of 

growth promoting rhizobacteria are also suppressive to Rhizoctonia diseases (covered in more 

detail in section 1.3.4.3.1); and  mycorrhizal fungi, which have been shown to promote plant 

growth, and reduce both stem canker and black scurf severity of potato in field trials (Larkin, 

2008). One research group used production of the plant growth hormone indole-3-acetic acid 

followed by growth promotion assays as part of the selection criteria for potential BCAs of 

Rhizoctonia diseases (Faltin et al., 2004). 

1.3.4.2 Inundative and inoculative biocontrol 
As this section will highlight, there has been a large amount of research into the inundative 

application of single (or combinations of) strains of microorganisms which can suppress 

Rhizoctonia diseases. However, conventional or organic agriculture have yet to integrate this 

approach into the cultivation of potatoes. This may be due to prohibitive cost, insufficient 

ecological range of the BCA or incompatibility with existing agrichemical practice (Tsror, 

2010). 

1.3.4.2.1 Organisms implicated in biocontrol of Rhizoctonia diseases 
A diverse range of organisms has been implicated as suppressive agents of various 

Rhizoctonia diseases of plants, including potato. This includes several bacterial taxa of the 

γ-Proteobacteria. For example, Lysobacter spp. and members of Xanthamonadaceae, were 

implicated in suppression of R. solani AG 2 from soils suppressive to Rhizoctonia disease of 

sugar beet (Postma et al., 2010b). Many members of Pseudomonadaceae, another 

γ-Proteobacteria family, have been highlighted as Rhizoctonia disease suppressors in several 

studies, including disease decline of Rhizoctonia disease of sugar beets (Mendes et al., 2011), 

and reduction of rice sheath blight - where a combination of two isolates gave control 

equivalent to that achieved with the fungicide benomyl (Kazempour, 2004). Another bacterial 

group frequently associated with suppression of Rhizoctonia diseases are the Actinomycetes. 
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Most often it has been strains of the genus Streptomyces or their secondary metabolites, that 

are reported to inhibit R. solani or Rhizoctonia diseases (Kulik, 1996). Members of the genus 

Bacillus have been shown to suppress Rhizoctonia damping-off in pine (Ozdamar and Basim, 

2002) and tomato (Szczech and Shoda, 2006), as well as stem canker of potato (Brewer and 

Larkin, 2005). 

Fungal suppressors of Rhizoctonia diseases are just as diverse as the bacteria. These include 

arbuscular mycorrhyzae, which reduced both stem canker and black scurf severity of potato in 

the field (Larkin, 2008). Hypovirulent (non-pathogenic) Rhizoctonia strains have also been 

used to suppress Rhizoctonia diseases of potato (Escande and Echandi, 1991), sheath blight in 

maize (Pascual et al., 2000) and radish seedling damping off (Sneh et al., 2004). Many fungal 

mycoparasites have demonstrated suppression of Rhizoctonia diseases, including 

Trichoderma harzianum, T. hamatum, T. viride, T. virens, Laetiaria arvalis, Pythium nunn, 

Gliocladium roseum, Verticillium biguttatum and Stachybotrys elegans (Boogert, 1996). 

Less commonly reported are mycophagous soil animals, such as Folsomia fimetaria 

(springtail) and Aphelenchus avenae (nematode). Lootsma and Scholte (1997) demonstrated 

reduced Rhizoctonia stem canker severity on potato by these organisms, over a range of soil 

moisture conditions with populations equivalent to those naturally occurring in the field. 

Studies often compare disease suppression by a variety of biocontrol organisms. In a 

greenhouse screening of 28 biocontrol organisms by Brewer and Larkin (2005), the best 

control of stem canker was achieved by Bacillus subtilis, Rhizoctonia zeae and Stilbella 

aciculosa, while the best control of black scurf was by Laetisaria arvalis and Rhizoctonia 

zeae. These authors also demonstrated that a combination of Bacillus subtilis and a 

Trichoderma virens provided better control than either strain individually. 

1.3.4.2.2 Biocontrol products with reports of suppression of Rhizoctonia diseases of potato 

Existing biocontrol or biofertiliser products have been tested for suppression of Rhizoctonia 

diseases of potato, and some have demonstrated strong suppression under the conditions 

examined. For example, field trials of three biocontrol products; Trianum-G® (Trichoderma 

harzianum, T-22), Mycostop® (Streptomyces griseoviridis) and Prestop® (Gliocladium 

cantenulatum) were tested in comparison with the fungicide flutolanil for control of 

Rhizoctonia diseases of potato by Wilson et al. (2008b), as well as T-22 + flutolanil as the 

BCA was resistant to the fungicide at field application rates. Streptomyces or Gliocladium did 

not consistently control Rhizoctonia diseases, and only treatments with flutolanil supressed 

early symptoms (sprout lesions), although the Trichoderma was required (alone or combined 



 14 

with flutolanil) to increase the proportion of marketable tubers and decrease black scurf (not 

achieved by flutolanil alone). Another T-22 product RootShield® was tested along with 

SoilGard® Trichoderma virens (GL-21), Kodiak® (Bacillus subtilis GB03) and other isolates 

in a series of greenhouse assays (Brewer and Larkin, 2005). Overall, GB03 was among the 

best at reducing potato stem canker severity (40-49%), but this did not translate to black scurf 

control. While all products, in some trials, gave some reduction in stem canker symptoms or 

black scurf incidence or severity, control was variable and sometimes absent, but this was also 

true of the fungicide (azoxystrobin) treatment. The product Root-Pro® which contains two 

Trichoderma harzianum strains was tested for black scurf control over two experiments as in-

furrow applications. Black scurf incidence was reduced by 68-97%, but black scurf severity 

(related to area of tuber surfaces covered in scurf) was only reduced in one of the two 

experiments (Tsror et al., 2001). 

Currently, none of these products (or different products with the same isolates as active 

ingredients) are registered for use in New Zealand, and their importation and use is heavily 

restricted. 

1.3.4.3 Targeted genera 
Identifying soil microbe taxa with a strong chance of yielding strains which possess the 

capacity to suppress Rhizoctonia diseases of potato when applied in an inundative manner 

allows targeted selection of organisms for screening. This should accelerate the screening 

process, allowing more resources to be committed to investigating the mechanism(s) of 

biocontrol activity. 

1.3.4.3.1 Plant growth promoting rhizobacteria 
Bacteria which live in close association with plant root systems and have net positive impacts 

on plant health are termed plant growth-promoting rhizobacteria (PGPR) (Compant et al., 

2005). These positive impacts have been attributed to production of microbial siderophores, 

antibiotics, surfactants (biofertilizing) and phytohormones, along with nutrient and spatial 

competition, induced systemic resistance and quorum quenching (Diallo et al., 2011). In 

addition to direct pathogen inhibition, rhizobacteria may suppress Rhizoctonia diseases by 

disrupting growth of the pathogen on plant tissues, suppressing the formation of infection 

structures and stimulating plant defences. A review by Diallo et al. (2011), of the potential of 

potato rhizosphere/geocaulosphere (soil under influence of roots and stolons respectively) 

microbial communities highlighted the following points. First, the genera Agrobacterium, 

Bacillus and Pseudomonas were consistently identified from these environments. Of these, 

Pseudomonas extensively colonised potato rhizosphere, especially P. fluorescens and P. 
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putida, and they are also highly represented in the endorhiza (root internal 

microenvironment). Pseudomonads that are able to stimulate growth and that are also 

antagonistic to potato pathogens (including R. solani) have also been isolated from spores of 

mycorrhizal fungi which colonise potato. Many strains of Pseudomonas spp. are known to be 

PGPR, contributing to plant health either indirectly by suppressing growth and/or activity of 

organisms deleterious to plant health or sequestering heavy metals, or by directly promoting 

growth either by nutrient solubilisation or producing plant growth regulating compounds (Van 

Loon and Glick, 2004). This combination of appropriate physical niche and biocontrol 

potential makes members of the Pseudomonas genus good candidates for control of 

Rhizoctonia diseases. 

There are many studies which observe strong biocontrol activity of Rhizoctonia diseases by 

Bacillus spp., most frequently B. subtilis (Brewer and Larkin, 2005; Kurzinger, 2007; Munoz 

Ruiz et al., 2001; Schmiedeknecht, 1993; Schmiedeknecht et al., 1997, 1998; Somani and 

Arora, 2010) but also B. thuringiensis (Abada and Abdel-Aziz, 2002), B. cereus (Somani and 

Arora, 2010) and B. polymyxa (Kurzawinska and Gajda, 2001). Strains from several Bacillus 

species have been shown to elicit induced systemic resistance in a range of plant species and 

offer protection against a variety of diseases as well as often promoting plant growth 

(Kloepper et al., 2003), confirming their role as important PGPR.  

For these reasons as well as previous reports of biocontrol strains in the literature (see section 

1.3.4.2.1), the PGPR genera Pseudomonas and Bacillus were considered promising target 

groups as potential candidate biocontrol agents of Rhizoctonia diseases of potato in this 

project. 

1.3.4.3.2 Trichoderma 
The genus Trichoderma is among the most common groups of free-living fungi isolated from 

temperate soils, and it has been the target of a large body of biocontrol research. This is due to 

the capacity of strains to; 1) induce resistance in plants; 2) parasitise fungal plant pathogens; 

3) produce a wide variety of extracellular compounds (including antibiotics and enzymes) 

which can suppress plant pathogens; 4) strongly compete with other soil organisms for 

resources and 5) improve plant growth (Harman et al., 2004). A large number of Trichoderma 

isolates have been reported to suppress a wide range of Rhizoctonia diseases, often achieving 

strong biocontrol, including some commercial products (see section 1.3.4.2.2). For example, 

Grosch et al. (2006) screened 390 fungal isolates in a series of in vitro and in vivo assays, and 

the top six candidates for control of Rhizoctonia symptoms on potato sprouts in a pot trial and 

black scurf in a field were strains of Trichoderma reesei or T. viride. Another T. viride isolate 
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was shown by Coley-Smith et al. (1991) to be the best performing of nine Trichoderma 

isolates for control of R. solani bottom rot of lettuce, achieving control equivalent to the 

fungicide tolchlofos-methyl. Beagle-Ristaino and Papavizas (1985) found that field 

applications of a Trichoderma viride and a Trichoderma (Gliocladium) virens (which became 

the active ingredient in SoilGard®, see section 1.3.4.2.2) reduced severity of potato stem 

canker and the viability of sclerotia on tubers and in soil. 

Strains of Trichoderma harzianum are frequently cited as suppressors of R. solani and 

Rhizoctonia diseases, including isolate T-22 (the active ingredient in several BCA products, 

see section 1.3.4.2.2). T-22 reduced early potato ‘Rhizoctonia stem lesion index’ in pot trials, 

although the antagonism diminished over time, and reduced black scurf on progeny tubers, as 

well as reducing the proportion of undersize, malformed or green tubers (Wilson et al., 

2008a). Other T. harzianum strains have reduced snap bean damping-off in the greenhouse 

(Marshall, 1982), and reduced black root rot of strawberry plants in nursery and field 

applications, resulting in increased yield (Elad et al., 1981). A T. harzianum isolate reduced 

the proportion of bean plants with Rhizoctonia disease in greenhouse and field experiments, 

but control decreased as soil temperature increased (Elad et al., 1980). Another T. harzianum 

strain reduced field damping-off of cotton seeds as effectively as the fungicide 

pentachloronitrobenzene, as did a strain of T. hamatum (Elad et al., 1982). Mihuta-Grimm 

and Rowe (1986) demonstrated that another T. hamatum  provided better field control of 

radish damping-off than pentachloronitrobenzene. 

Since strains of Trichoderma potentially offer the major mechanisms of biocontrol (section 

1.3.4.1), combined with the multiple reports of biocontrol of Rhizoctonia diseases (above) and 

their prevalence in commercial biocontrol products (section 1.3.4.2.2), they are excellent 

targets as candidate biocontrol isolates for Rhizoctonia diseases of potato. 

1.3.4.4 Conservation biocontrol 
In contrast to the inundative/inoculative approach for control of soil-borne plant pathogens 

outlined above (1.3.4.2), conservation biocontrol largely refers to the cultivation of crops in 

soils suppressive to pathogens, or the creation of suppressive conditions, often through the 

application of organic matter amendments to enhance the activity of natural antagonists 

(Bonanomi et al., 2010). The techniques commonly used to investigate how disease control is 

achieved (section 1.3.4.4.3) are applicable to both naturally occurring and induced 

suppressive soils. 
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1.3.4.4.1 Suppressive soils and disease decline 
As previously detailed, some soils are naturally suppressive to Rhizoctonia diseases (Jager 

and Velvis, 1983). The phenomenon of ‘disease decline’ has also been described, where 

continuous cultivation of the same crops leads to initial increase in pathogen and disease 

incidence, followed by decline in disease levels, usually attributed to the build-up of soil 

microbial communities antagonistic to the pathogen (Borneman and Becker, 2007; Garbeva et 

al., 2004; Hyakumachi, 1996; Weller et al., 2002). While there are many reports of disease 

decline relating to soil-borne plant pathogens in the field, the mechanisms are rarely fully 

investigated, as such studies may have to span many years to give definitive answers. 

Suppression is classically subdivided into ‘general suppression’ - where the total microbial 

biomass confers suppression and is non-transferrable between soils, and ‘specific 

suppression’ - due to individual or several groups of microorganisms and is transferrable 

(Weller et al., 2002). Transferrable suppression is of great interest for the 

inundative/inoculative biocontrol approach (section 1.3.4.2) as a source of antagonist isolates. 

General suppression is often linked to addition of organic matter amendments (covered in 

section 1.3.4.4.2), specific crop practices or increased soil fertility. One of the more studied 

examples of induction of disease suppressive soils is decline in take-all of wheat (“take-all 

decline”), where monoculture of wheat leads to spontaneous decline in disease severity 

caused by Gaeumannomyces graminis var. tritici. This phenomenon was shown to correlate 

with increases in populations of Pseudomonads antagonistic to the pathogen, demonstrated 

both in vitro and in vivo (Borneman and Becker, 2007). There are a few published reports of 

in field Rhizoctonia disease decline, and some studies have attempted to decipher the 

underlying mechanisms. For example, Rhizoctonia disease (root rot, AG2-2IV) decline has 

been reported due to monoculture of sugar beet in Japan, as reviewed by Hyakumachi (1996), 

and was reported to be linked to Bacillus species. Mendes et al. (2011) reported that decline 

of Rhizoctonia disease of sugar beet in the Netherlands was strongly linked to members of the 

Pseudomonadaceae. Decline of wheat root rot (AG 8) due to monoculture has also been 

reported in Australia (Roget, 1995). Suppression of pre- and post-emergence cauliflower 

damping-off (AG 2-1) in a 40-year monoculture field in the Netherlands was demonstrated to 

be as a result of the monoculture, and was linked to populations of Lysobacter, Streptomyces 

and Pseudomonas spp. (Postma et al., 2010a). Continual cropping (5 years of cultivation) of 

potato at two sites resulted in heterogeneous decline of black scurf and AG 3 populations, 

associated with an increase in population of AG 5 in one site but not the second (Jager and 

Velvis, 1995). In greenhouse studies of disease decline, many researchers have created 

Rhizoctonia disease decline through monoculture, where successive plantings are not limited 
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to one per year. However, it is advisable that conclusions should be drawn from field studies, 

as greenhouse conditions and mechanisms of decline may not reflect those of the field 

(Hyakumachi, 1996). 

Suppressive soils and disease decline offer valuable tools in the search for conditions and 

organisms which could be exploited in biocontrol of Rhizoctonia diseases. Understanding 

how suppression is achieved is challenging, and approaches regarding this are covered in 

section 1.3.4.4.3. 

1.3.4.4.2 Organic matter amendments 
There have been many studies of the potential of a wide variety of organic matter (OM) 

amendments for control of a range of soil-borne pathogens, with Rhizoctonia spp. being one 

of the most commonly investigated (Bonanomi et al., 2007). Meta-analyses by Bonanomi et 

al. (2007; 2010) found that there are contrasting trends regarding the suppression of 

Rhizoctonia diseases with organic amendments. For certain OMs, increases in overall soil 

microbial activity correlated with increased disease suppression (indicating general 

suppression), but the converse of this was true for other OM amendments. Overall, the factors 

which positively correlated with disease suppression most often were populations of 

fluorescent Pseudomonads (73% of cases), endospore forming bacteria (60% of cases) and 

Trichoderma spp. (56% of cases), while none of these measures ever negatively correlated 

with disease suppressiveness. There have been several reports that the addition of selected 

OM amendments to inundative biocontrol treatments enhanced the suppressive capacity of 

either component alone (Krause et al., 2001; Kwok et al., 1987; Pugliese et al., 2011; 

Scheuerell et al., 2005). This supports the hypothesis that Rhizoctonia diseases are controlled 

by a narrow spectrum of soil microorganisms (Hoitink and Boehm, 1999), and therefore OM 

amendments will only suppress these diseases if they can support populations of suppressive 

organisms already present in soil or strains which are introduced along with the amendment. 

Research by Larkin (2008) suggested that some crop rotations supported introduced 

microorganisms suppressive to Rhizoctonia (and other) diseases of potato better than others. 

For example, ‘aerobic compost tea’ alone or combined with a commercial mix of beneficial 

microorganisms plus organic nutrients (Complete Plus, Plant Health Care Inc., PA) reduced 

black scurf and stem canker of potato in a barley/rye rotation, but not in a barley/cover or 

continual potato rotation. The beneficial microbe mix alone reduced black scurf in the 

barley/rye rotation but not the other two rotations. 

Chapter 5 contains more detailed discussion of specific amendments which have been 

demonstrated to suppress Rhizoctonia diseases. 
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1.3.4.4.3 Techniques for investigating the biological nature of disease suppression in soil  
After the identification of a soil which suppresses disease caused by selected soil-borne 

pathogens (either naturally occurring or created through certain cropping/amendment 

practices), methods of determining whether suppression is biological in nature and which 

organisms are responsible have been summarised by Borenman and Becker (2007). First, to 

determine if suppression is biological, soil samples can be sterilised (steam treatment, 

gamma-irradiation, fumigation) and they should lose suppressive capacity if suppression is 

biotic. Soil treatments such as heating to a range of temperatures, selective antibiotics or 

fungicides and alteration of environmental parameters (e.g. pH, water potential, temperature) 

can also be used to indicate which component of the soil microflora is responsible for 

suppression. For example, if heating to 80°C does not destroy suppression but heating to 

100°C does, suppression is likely to be linked to organisms which can persist at high 

temperatures, such as endospore-forming bacteria. From this juncture, a ‘population-based’ 

approach can be employed, where involvement of populations of microbial taxa in disease 

suppression is inferred by correlation with soil suppressiveness, then this association is 

validated with selective quantitative PCR (qPCR) and then by testing if transfer of these 

groups to a disease-conducive soil induces suppressiveness. A range of soil suppression levels 

can be created by combining increasing proportions of suppressive soil with disease-

conducive soil, or in the case of amendment- linked suppression, creating soils with a range of 

amendment concentrations. There are many approaches to the analysis of soil microbial 

community structure for this population-based method. 

Many studies rely on culture-dependant techniques, such as enumeration on taxa-selective 

media. For example, in pot experiments, monoculture of radish and cucumber (successive 

weekly plantings) resulted in disease decline, correlating with increased populations of 

Trichoderma, with T. harzianum found as the most effective at inducing suppressiveness 

when inoculated into soil (Liu and Baker, 1980). Baker (1980) also reported that monoculture 

of radish induced Rhizoctonia suppressive soils, and this was correlated with high population 

densities of Trichoderma spp. Culture-dependant substrate utilisation techniques have also 

been employed to determine if differences in the nutrient sources used by the (culturable) soil 

microbial community have links to disease suppressiveness, often using commercial multi-

substrate plates like BIOLOG® EcoPlates™ or GN™ (Larkin et al., 2011; Mazzola, 2004; 

Pane et al., 2011; Stefanowicz, 2006). 

Since only a small proportion of soil microorganisms are amenable to culture in this manner, 

approx. 17% for known fungi (Bridge and Spooner, 2001) and 1% for known bacteria (Kirk et 



 20 

al., 2004), there exist many culture-independent techniques for analysis of soil microbial 

communities. Culture-independent techniques carry their own disadvantages. For example, 

with PCR-based methods, if some taxa have cells which are more resistant to lysis, then they 

will be under-represented in an analysis. Amplification of DNA or RNA may also occur with 

varying efficiency between different taxa, potentially biasing results. Specific methods for 

culture independent analysis of soil communities include fatty acid methyl esters analysis 

(FAME), DNA microarrays and hybridisation (including fluorescent in situ hybridisation, 

FISH), denaturing and temperature gradient gel electrophoresis (DGGE and TGGE), single 

strand conformation polymorphism (SSCP), amplified ribosomal DNA restriction analysis 

(ARDRA), restriction and terminal restriction fragment length polymorphism (RFLP and 

T-RFLP) and ribosomal (and automated ribosomal) intergenic spacer analysis (RISA and 

ARISA), each with its own advantages and disadvantages (Anderson and Cairney, 2004; 

Garbeva et al., 2004; Kirk et al., 2004; Saito et al., 2007). More recent next-generation 

sequencing (e.g. pyrosequencing) can allow much deeper analysis of soil community 

metagenomes, metatranscriptomes and metaproteomes and will probably become popular in 

studies of suppressive soil communities (Su et al., 2012). Specific enzymatic analysis of soils, 

such as gluconase, NAGase and chitobiosidase (Pane et al., 2011), have also been used to 

indicate whether differences in levels of particular enzymes can be linked to soil 

suppressiveness. 

Using a population-based approach, similar to that described above with culture-dependant 

techniques (agar plating and dual culture analysis with R. solani), Postma et al. (2010a) 

inferred the role of Lysobacter spp. along with Streptomyces and Pseudomonas spp. in disease 

suppressiveness of cauliflower monoculture to R. solani AG 2-1. These authors could not 

identify an exact mechanism of disease control, however. Mendes et al. (2011) conducted one 

of the most comprehensive investigations to date into the soil microbial populations 

underpinning suppressiveness in a soil suppressive to Rhizoctonia disease of sugar beet. 

Using a bacterial/archaeal 16S rDNA oligonucleotide microarray to identify rhizosphere 

community members associated with disease suppressive soils (different degrees of 

suppressiveness were created by combining suppressive and conducive soils as well as 

various heat treatments), they showed that Pseudomonadaceae, Burkholderiaceae, 

Xanthomonadales, Lactobacillaceae and Actinobacteria were the taxa most dynamically 

associated with disease suppression. Isolation of members of the Pseudomonadaceae 

confirmed that three haplotypes were more often suppressive to R. solani in vitro than the 

other seven, and they protected sugar beet seedlings from R. solani infection. Random 

transposon mutagenesis created strains which no longer protected the seedlings from 
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infection, and analysis revealed these strains lacked functionality because of disrupted 

production of a chlorinated lipopeptide (antifungal compound). 

Gaining a fuller understanding of the mechanisms underpinning suppression of Rhizoctonia 

diseases under natural conditions will help to inform the direction of applied biocontrol of 

these diseases. Thus, using the most appropriate techniques to elucidate these mechanisms is 

of considerable importance. 

1.4 Summary 

Potato is an important crop to New Zealand and internationally. Strains of the fungus 

R. solani pathogenic to potato are found in cropping soils around the world (including New 

Zealand) and Rhizoctonia diseases of potato can lead to economic yield losses. Pesticide 

control of these diseases is not always effective, and biological control has the potential to 

augment existing crop management practices for control of Rhizoctonia diseases. In spite of 

its importance as a crop, and the prevalence of R. solani as a pathogen, biocontrol of 

Rhizoctonia diseases is not practiced commercially. Many organisms have been implicated in 

biological suppression of Rhizoctonia diseases, and of these it is often members of the genera 

Trichoderma, Pseudomonas and Bacillus which have demonstrated most promise in terms of 

commercial application, but even the most promising isolates of these organisms are very 

variable in the degree of disease suppression they achieve. Identifying biocontrol isolates for 

suppression of Rhizoctonia diseases and generating detailed knowledge of their mechanisms 

of action and limitation of biocontrol is a key component for successfully incorporating 

biocontrol into existing commercial potato production. Crop rotations and soil amendments 

with organic matter are others. The influence of the soil microbial community on both 

R. solani and potential biocontrol isolates also needs to be understood so that cropping 

practices, such as the selection of crops to include in rotations and the most suitable type of 

organic matter amendments, can be modified to influence community structure to maximise 

biocontrol potential. 

1.5 Research aims and objectives 

1.5.1 Aims 

The aim of this research was to identify a microbial isolate (or isolates) with the capacity to 

provide strong in vivo suppression of Rhizoctonia diseases of potato when applied in an 

inundative manner, from targeted microbial genera. Following this, the study aimed to 

generate detailed information regarding the mechanisms underpinning the identified 
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biocontrol activity and the limitations to its disease control activity. In the event that no such 

isolate was identified, a secondary aim was to investigate the potential for suppression of 

Rhizoctonia diseases of potato with selected organic amendments and crop rotation practices, 

in relation to their effects on soil microbial communities. 

1.5.2 Objectives 

1.5.2.1 Inundative biocontrol 
In order to stand a reasonable chance of identifying a strong biocontrol candidate from in vivo 

(rather than in vitro) screens to take forward for further investigation, the objectives were to: 

 Isolate members of the targeted genera Trichoderma, Pseudomonas and Bacillus from 

soil and the below-ground organs of potatoes grown in agricultural soils from the main 

cropping regions of New Zealand. 

 Design an appropriate in vivo greenhouse Rhizoctonia disease assay to be used for 

screening of potential biocontrol candidate isolates. 

 Select isolates representing a range of isolation locations, and dual agar plate 

interaction types (with R. solani), and screen them from suppression of Rhizoctonia 

diseases of potato using the designed assay. 

 If an isolate was identified with strong biocontrol activity, carry out experiments to 

examine mechanisms underpinning biocontrol activity and its physical limitations (not 

conducted due to insufficient control from previous objective). 

1.5.2.2 Organic matter amendments 
To investigate suppression of Rhizoctonia diseases of potato using organic matter (OM) 

amendments, the objectives were to: 

 Identify from the literature OM amendments which previous researchers had 

highlighted for suppression of Rhizoctonia diseases, or which are of agricultural 

interest. 

 Use an in vivo greenhouse assay to test for suppression of Rhizoctonia diseases of 

potato at a variety of OM amendment rates, and select one which was likely to 

produce incremental suppression over several rates. 

 If effective disease suppression was identified, investigate the biological nature of 

OM-related disease suppression by comparing differences in soil microbial 
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communities between treatments of increasing OM amendment rate in a further assay 

(not conducted due to lack of disease suppression in amendment rate assay). 

1.5.2.3 Crop rotation practices 
In order to compare the impact of different crop rotations on the expression of Rhizoctonia 

diseases of potato, the objectives were to: 

 Sample soils from four different rotations at the long-term crop rotation experiment at 

Pukekohe, New Zealand, and characterise those soils in terms of their culture-

dependant (bacterial and fungal enumeration and substrate utilisation) and culture 

independent (bacterial and fungal ARISA, qPCR of R. solani AG 3 and 2-1) soil 

communities. 

 Examine the expression of Rhizoctonia diseases in the soils of the different crop 

rotations in a glasshouse assay (with or without added R. solani inoculum), and 

examine the effect of crop rotation on R. solani soil populations (qPCR). 

 Correlate soil community factors with levels of Rhizoctonia disease expression to 

indicate what might underpin differences in levels of disease. 

1.5.3 Thesis format 

This thesis consists of seven chapters. Five chapters outline experiments, and each of these 

chapters includes sections of an abstract, introduction, materials and methods, results, 

discussion and summary. Literature cited in the thesis is presented at the end. 

1.6 Research outputs (as at October 2012) 

Research from Chapter 3 was reported, in part, as a refereed, published paper and oral 

conference presentation.  

Bienkowski, D., Stewart, A., Falloon, R. E., Braithwaite, M., and  Loguercio, L. L. (2010). A 

disease assay for Rhizoctonia solani on potato (Solanum tuberosum). New Zealand Plant 

Protection, 63, 133-137. 

Research from Chapter 4 was reported, in part, as an oral conference presentation. 

Bienkowski, D., Hicks, E., Braithwaite, M., Falloon, R. E., McLean, K. L. and Stewart, A. 

(2012, August) Improved potato yields from in-furrow application of Trichoderma. The 12th 

International Trichoderma and Gliocladium Workshop, Lincoln University, NZ. Proceedings 

and Abstracts p.59. http://bioprotection.org.nz/tg2012 
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     Chapter 2 
Isolation, characterisation and selection of 

microorganisms for inundative biocontrol 

2.1 Abstract 

Members of the fungal genus Trichoderma, fluorescent Pseudomonads and endospore-

forming bacteria were selectively isolated from soil samples from the three main potato-

producing regions in New Zealand, as well as from below-ground tissues from potato plants 

grown in soil samples from the same regions. Categorisation of these isolates with regard to 

their in vitro interactions with two Rhizoctonia solani isolates known to be pathogenic to 

potato allowed selection of isolates which were strong physical competitors of the pathogen or 

produced compounds which inhibited its growth. Sixty-seven isolates possessing these traits 

and/or potential for plant growth promotion and potato plant endophytism were selected, 

along with 22 isolates from an existing culture collection, to progress to in vivo screening for 

suppression of Rhizoctonia diseases of potato. Statistical analysis of the bacterial in vitro 

interactions with R. solani allowed comparisons to be made between groups of isolates from 

the different soil locations, plant tissues and microbe groups. 

2.2 Introduction 

To investigate the potential of inundative biological control of Rhizoctonia diseases of potato, 

a collection of soil microorganisms was generated from which a sub-set was selected for in 

vivo screening. Since Rhizoctonia diseases can affect potato plants at any point in their life 

cycle (Banville et al., 1996), a successful biological control agent (BCA) will have to form a 

close relationship with the plant to provide protection of shoots and roots as they grow 

through the soil. Also, the BCA will have to be adapted to the common potato cropping soil 

types in New Zealand. As outlined in Chapter 1, this study focuses on members of the genera 

Trichoderma, Pseudomonas and Bacillus, as potential BCAs. To obtain suitable 

microorganisms with potential for disease control and adapted to New Zealand potato 

cropping soils, including strains with a close relationship with potato plants, the following 

methods were used: Field soils from the main potato cropping regions were collected and 

selective isolations for Trichoderma, Pseudomonas and Bacillus spp. were made from the 

soils, as well as from below-ground organs of potato plants grown in the collected soils. 
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Selection of isolates to progress to in vivo screening was based on the evidence of possession 

of the following characteristics: production of compounds inhibitory to R. solani, physical 

competition with R. solani, endophytic capability (able to internally colonise potato plant 

tissues) and/or plant growth promotion (which was determined in experiments which ran 

parallel to the present study). The rationale behind these selection criteria is explained: The 

production of compounds inhibitory to plant pathogens (e.g. antibiotics) and to a lesser extent 

competition for space and nutrients are often indicated as the mechanism(s) by which 

microbes achieve biological control (Handelsman and Stabb, 1996; Whipps, 2001). Physical 

competition can prevent the pathogen from accessing the infection court, or the nutrient 

resources required to support infection. Endophytism indicates close association with host 

plants and may offer a mechanism by which BCAs can escape damaging environmental 

conditions (Liu et al., 2009). Direct plant growth promotion, while possibly not directly 

suppressing the pathogen, can suppress disease symptoms by producing compensatory organs 

and would also be a favourable trait even in the absence of the pathogen. Screening isolates 

which possess one or several of these characteristics for in vivo disease suppression will 

provide indications as to which are the most useful predictors of potential suppression of 

Rhizoctonia diseases of potato. 

Isolates from the Bio-Protection Centre Culture Collection, Lincoln University, with 

previously identified capabilities for biocontrol of fungal pathogens or plant growth 

promotion, were also selected for in vivo screening. Suppression scores generated from 

bacterial in vitro interactions with two R. solani strains allowed quantitative comparison 

between isolates from the different cropping regions, selective procedures, sampling times 

and plant tissue types (both non-sterile and surface sterilised). 

2.3 Methods 

2.3.1 Sample collection 

Soils were collected in July 2009 from fields in the three main potato producing regions of 

New Zealand, two from Canterbury (research field, Lincoln and commercial field, 

Southbridge), one from Auckland (research field, Pukekohe) and one from Manawatu 

(research field). Details of the four soils collected are presented in Table 2.1. Soil was stored 

at 8°C in plastic bins prior to experiments. Tubers were also collected from the Lincoln and 

Southbridge sites, as well as potato plants from a Christchurch home garden, for isolations. 

Soil pH (Table 2.1) was determined by suspending 10 g of air-dried soil in 25 mL of 
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Nanopure® water (10 min on an orbital shaker at 225 rpm, room temperature) then left to 

stand overnight before pH was measured (pH Benchtop Meter 2210, Hanna® Instruments). 

Table 2.1 Details of soil sample collected for isolation of microorganisms 

Soil 
location pH Local classification Soil taxonomy+ Field cultivation 

history 
Lincoln 6.15 Whakanui silt loam Aquic Haplustepts 3×Potato>Oat 
Southbridge 5.25 Waimakariri sandy loam Typic Ustorthents Pumpkin>Potato 
Pukekohe 6.28 Patumahoe mottled clay loam Typic Haplohumuls 6×Potato 
Manawatu 5.70 Kairanga silt loam Humic Endoaquepts 2×Potato>Pasture 
+Classified according to the USDA Soil Survey Staff (2010). 

2.3.2 Selective Isolations of candidate microorganisms 

Selected microbes were obtained from soil samples and plant tissues as detailed in the 

following sections.  

2.3.2.1 Soil dilutions 
Soil samples were mixed thoroughly, then 10 g sub-samples were each combined with 90 mL 

sterile water agar (0.01% agar) and shaken for 5 min on an arm shaker (500 osc/min) to create 

a 0.1 g mL-1 soil suspension. To recover endospore-forming bacteria (of which Bacillus spp. 

are members), 5 mL aliquots of soil suspensions were transferred to sterile 18 mL capacity 

universal bottles and placed in an 80°C water bath for 20 min (Priest, 1989). Aliquots (50 µL) 

of heat-treated samples were spread onto nutrient agar (Appendix A.1.2) and incubated (25°C, 

darkness) until discrete colonies formed. Colonies were purified by repeated sub-culturing. 

Suspended soil samples were also each serially diluted to 1×10-5 g/mL in water agar. Aliquots 

(200 µL) of 1×10-4 and 1×10-5 dilutions were spread onto Kings Medium ‘B’ (Appendix 

A.1.3) and Trichoderma selective medium (TSM, Appendix A.1.4) in Petri plates, and 

incubated at 25°C in darkness until discrete colonies formed. Colonies on Kings Medium ‘B’ 

fluorescing under UV light (366 nm) were sub-cultured to purify fluorescent Pseudomonads 

(Braun-Kiewnick and Sands, 2001). Fungal colonies on TSM with Trichoderma spp. 

morphology (Barnett and Hunter, 1998, p. 92) were sub-cultured onto Petri plates containing 

potato dextrose agar (PDA, Appendix A.1.1). These plates were sealed with plastic film 

(GLAD®) and left on a benchtop at ambient temperature and light conditions to sporulate. 

Isolates were purified by plating diluted spore suspensions (from sporulating colonies, 

suspended and diluted in sterile tap water) onto PDA and sub-culturing single-spore colonies. 

2.3.2.2 Potato plant tissues 
Isolations were carried out from potato tubers and plants collected from field sites (Lincoln, 

Southbridge and a Christchurch home garden) and from the microbe ‘baiting trial’ (section 
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2.3.2.3). Roots, below-ground stems, stolons and tubers were first washed free of excess soil 

in tap water. A portion of each tissue was transferred to an 18 mL capacity universal bottle 

with 10 mL of sterile tap water, and placed in an 80°C water bath for 20 min. Both heat-

treated and non-treated tissues were divided into two, with one half receiving surface 

sterilisation (1 min in 2% sodium hypochlorite solution then rinsed twice in sterile water). All 

tissue samples were each separately macerated in a few drops of sterile water and portions of 

non-heat treated macerated tissue were transferred to TSM for selection of Trichoderma spp. 

(as in 2.3.2.1). A sterile loop was used to spread macerated tissue fluid from each heat-treated 

sample onto nutrient agar, and from each non-heat treated sample onto Kings Medium ‘B’, 

with endospore-forming bacteria and fluorescent Pseudomonads selected and purified as 

detailed in section 2.3.2.1. 

2.3.2.3 ‘Baiting’ isolates from soil 
An experiment was established to ‘bait’ organisms from collected soils. Soils were mixed 1:1 

(v/v) with quartz sand and 4 L planter bags filled with this plant growth medium. Certified 

seed potato tubers (cv. ‘Ilam Hardy’) were planted one per bag, and bags arranged in a 

greenhouse in a randomised block experimental design and watered as required. At 

experiment set-up, selective isolations as detailed above were made from each collected soil 

(detailed in Table 2.1). Three harvests were conducted on the resulting potato plants, at 29, 39 

and 58 days after planting. At each harvest, one plant was taken per soil type and excess soil 

shaken free from roots, which were then rinsed with tap water. Isolations (as detailed above) 

were made from roots, stems and stolons/tuber initials of each plant, both untreated and 

surface sterilised. Up to four isolates for each tissue sample were sub-cultured and purified 

from each selective medium. 

2.3.2.4 Long-term storage of isolates 
Bacterial stock cultures were created by culturing isolates in Luria Bertani Broth (LB, 

Appendix A.1.6, 5 mL in 18 mL capacity universal bottles, each loop-inoculated from a pure 

agar culture, incubated overnight at 25°C in an orbital shaker at 180 rpm), and then 

combining 500 µL of culture with the same volume of a sterile 50% glycerol solution in a 

cryotube. Trichoderma sp. isolates were maintained on minimal agar (Appendix A.1.7) slopes 

at 4°C, each inoculated with a plug of mycelium from the growing edge of a pure colony on 

agar, and incubated at 25°C for 2 days prior to refrigeration. Trichoderma sp. isolates were 

also stored as conidia in 25% glycerol by harvesting spores in sterile water from pure colonies 

grown on PDA for 10 days, and combining 500 µL of the spore suspension with 500 µL of 

sterile 50% glycerol solution in a cryotube. All cultures in cryotubes were stored at -80°C. 
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2.3.2.5 Additional Trichoderma sp. isolates 
The total number of Trichoderma sp. isolates recovered from samples was low (Table 2.2), so 

their numbers were supplemented with 104 previously isolated Trichoderma spp. isolates 

from the Pukekohe field soil sample site (Bio-Protection Culture Collection, Lincoln 

University). These Trichoderma spp. were isolated from potato plant rhizosophere soil 

dilutions, from a mixed crop rotation (potato-onion-oats-brassica-potato) of five growing 

seasons. 

2.3.3 Dual plate assays 

Each isolate from the soil dilutions and bait trial was tested in vitro for interactions with two 

R. solani isolates pathogenic to potato, R73-13b (Anastimosis Group (AG) 3, Bio-Protection 

Culture Collection, Lincoln (Sneh et al., 2004)) and Rs043-2 (AG 2-1, received from Dr 

Farhat Shah, Plant and Food Research Ltd., Lincoln). The AGs were determined by ITS 

sequence analysis performed by Plant and Food Research Ltd., Lincoln. Rhizoctonia solani 

isolates were maintained as refrigerated cultures on minimal agar, as detailed in section 

2.3.2.4. Bacterial isolates were each inoculated from -80°C stock cultures onto nutrient agar 

and incubated for 2 days (25°C, darkness), then point inoculated four times around the margin 

of a Petri plate containing ¼ strength PDA (Appendix A.1.5). Plates were incubated for 24 h 

(25°C, darkness). Full strength PDA plates were inoculated with agar plugs from refrigerated 

R. solani or Trichoderma sp. cultures and incubated (25°C, darkness) for 5 days prior to dual 

plate assay initiation. For bacterial assays, agar plugs (7 mm diam.) from R. solani hyphal 

colony margins were placed (mycelia side to agar) at the plate centre, as in Figure 2.1. Agar 

plugs (7 mm diam.) of fungal test isolates from the growing margins of a mycelial colonies 

were placed (mycelia side to agar) 70 mm from an R. solani mycelia plug as detailed in 

Figure 2.1. Duplicate plates were inoculated for each interaction, and plates were sealed with 

plastic film (GLAD®) and incubated (25°C, darkness). Dual plate interactions were scored 

between 3 to 7 days after inoculation, once colony interactions were observed. The 

interactions between R. solani and test isolate colonies were characterised using the method 

described by Ghaffar (1969), into four categories; A, the microbe colonies intermingle but 

remain clearly distinguishable (due to morphological differences); B, the growing margins of 

the colonies meet, and R. solani is inhibited and becomes overgrown by the test microbe; C, 

the colony margins of both organisms come close and then both stop growing; D, the growth 

of one of the organisms is inhibited at a distance, leaving a clear inhibition zone. Where 

inhibition zones are observed, the distance between organisms was recorded. Examples of the 

four dual agar plate interaction types are shown in Figure 2.2. 
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Since in vitro production of antibiotics and other inhibitory compounds by bacteria correlates 

(within limits) with in vivo suppression of plant pathogenic Rhizoconia spp. (Homma, 1996), 

an in vitro suppression scale was created so that the bacterial dual plate interaction data could 

be statistically analysed for the soil dilution and bait trial isolation samples (for which far 

more fluorescent Pseudomonads and endospore-forming bacteria were isolated than 

Trichoderma spp. (Table 2.2)). The 0 to 5 in vitro suppression scale was based on the 

assigned interaction categories: Interactions of type A = score 0, B = score 2, C = score 1, D 

with inhibition zone < 1 mm = score 3, D with inhibition zone > 1 but < 3 mm = score 4 and 

D with inhibition zone > 3 mm = score 5. An average dual plate score was generated for each 

R. solani isolate/test bacterium interaction, and these data were subjected to unbalanced 

analysis of variance, with soil location, harvest time, plant tissue type, surface sterilisation, 

selective procedure and R. solani isolate as factors. 

2.3.4 Identification of bacteria 

DNA was extracted from each bacterial isolate cultured on nutrient agar and amplified using 

the REDExtract-N-AmpTM Plant PCR kit (Sigma-Aldrich®) as per manufacturer’s 

instructions. Primers targeted the variable portion of the 16S rRNA gene (F27  5' 

AGAGTTTGATCCTGGCTCAG 3', R1494  5' CTACGGTTACCTTGTTACGAC 3'). PCR 

parameters were: 94°C for 3 min followed by 30 cycles of; 94°C for 1 min; 57°C for 1 min; 

72°C for 2 min then 10 min at 72°C. PCR was performed using an Icycler (Bio-Rad 

Laboratories, Inc.) and products were visualised by agarose gel (1%, 1 x TAE) 

electrophoresis. Sequencing was performed using Big Dye Terminator v3.1 (Applied 

Biosystems™) and PCR cleanup with CleanSEQ® (Agencourt Bioscience Co.). An ABI Prism 

3130xl Genetic Analyzer (Applied Biosystems™) was used to generate sequences. Sequences 

were analysed using Sequencher 4.9 (Gene Codes Co.) software and identifications made 

using EzTaxon2.1 (Chun et al., 2007). 

 

2.4 Results 

2.4.1 Isolations 

A total of 345 microbe isolates were obtained from selective isolations conducted on soil 

samples or potato plant tissues. A summary of the isolates recovered is presented in Table 2.2. 
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Table 2.2 Total numbers of isolates obtained from three selective procedures; 
fluorescent on Kings medium ‘B’ (KB), heat treatment (80°C) and 
Trichoderma selective media (TSM), from soil dilutions, non-sterile (N.S.) and 
surface-sterilised (S.S.) potato plant tissues. 

  Potato plant tissue 

Soil Total 
Soil 

location 
Selective 
procedure 

Root Stem Stolon/Tuber 
N.S. S.S. N.S. S.S. N.S. S.S. 

Lincoln 
KB 10 4 10 0 8 1 8 41 
80°C 18 5 8 3 16 2 9 61 
TSM 0 1 0 0 4 0 0 5 

Southbridge 
KB 9 0 6 1 4 1 2 23 
80°C 9 11 8 3 4 2 10 47 
TSM 2 0 0 0 4 0 0 6 

Pukekohe 
KB 10 0 3 0 10 3 2 28 
80°C 9 0 6 0 5 0 11 31 
TSM 0 0 0 0 1 0 0 1 

Manawatu 
KB 10 0 2 2 4 0 2 20 
80°C 10 1 6 2 7 0 9 35 
TSM 0 2 0 0 4 0 0 6 

Christchurch 
Garden 

KB 1 4 2 4 6 2 - 19 
80°C 1 5 1 1 7 0 - 15 
TSM 3 1 2 0 1 0 - 7 

Total 92 34 54 16 85 11 53 345 
 

2.4.2 Selection of isolates for in vivo assays 

Isolates for in vivo screening for suppression of Rhizoctonia diseases of potato were selected 

on (potential) possession of four traits: Production of antibiotics or other compounds 

inhibitory to R. solani, strong competition with R. solani, colonisation of internal plant tissues 

(endophytic habit) or growth promotion. A parallel study into growth promotion of potato 

with bio-inoculants screened many of the isolates from this study, and those results 

determined the selection of potential growth promoters. The dual plate assay categories 

allowed selection of antibiotic producers, of interaction type D, and strong competitors of R. 

solani, of interaction type B (or C if colonies grew quickly), while those isolates from surface 

sterilised tissues were regarded as potential endophytes. The selection results are presented in 

Table 2.3. Isolates from the Bio-Protection Research Centre Culture Collection, Lincoln, were 

also selected for in vivo screening based on evidence of previous plant growth promotion (five 

isolates) or biocontrol of fungal plant pathogens (17 isolates), all selection rationales are 

presented in Appendix B, Table 7.1. 
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Table 2.3 Microbial isolates from potato plant tissues and soils selected for in vivo 
screening against Rhizoctonia solani 

Selection 
details+ 

Isolated 
from Identityǂ Location Project 

Identifier 

A, E 

Root 

Bacillus soli 
Lincoln 

RSP2027 

Flavobacterium sp. 
RSP2026 
RSP2193 

Southbridge RSP2094 
Shoot Pseudomonas mohnii Manawatu RSP2089 

Stolon/tuber Pseudomonas jessenii Southbridge RSP2042 
Pseudomonas sp. RSP2057 

B 

Rhizosphere Trichoderma sp. Mixed crop rotation 

RSPT003 
RSPT007 
RSPT018 
RSPT028 
RSPT029 
RSPT031 
RSPT036 
RSPT060 
RSPT079 
RSPT093 
RSPT105 
RSPT106 
RSPT107 
RSPT110 
RSPT113 
RSPT116 

Root 

Trichoderma sp. 

Southbridge RSPT124 
Shoot Christchurch garden RSPT5080 

Stolon/tuber 
RSPT5030 

Lincoln RSPT5163 
Pukekohe RSPT125 

B, E Root Trichoderma sp. Manawatu RSPT122 

B, GP Rhizosphere Trichoderma sp. Mixed crop rotation 

RSPT001 
RSPT005 
RSPT084 
RSPT085 
RSPT097 

B, GP, E Root Trichoderma sp. Christchurch garden RSPT5075 

C 

Root Bacillus mycoides Southbridge RSP2072 

Shoot Southbridge RSP2013 
Flavobacterium sp. Lincoln RSP2053 

Stolon/tuber 
Bacillus mycoides Lincoln RSP0170 

Pseudomonas brassicacearum Lincoln RSP2083 
Pseudomonas sp. Lincoln RSP2086 

C, E Root Bacillus thuringiensis Southbridge RSP2016 
Endospore bacterium Manawatu RSP2090 

C, GP Shoot Bacillus mycoides Southbridge RSP2009 

C, GP, E Root Bacillus mycoides Southbridge RSP2002 
Flavobacterium sp. Southbridge RSP2004 
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Selection 
details+ 

Isolated 
from Identityǂ Location Project 

Identifier 

D 

Cauliflower Gliocladium sp. Southbridge RSPT5182 

Root 
Bacillus sp. Manawatu RSP2067 

Pseudomonas reinekei Pukekohe RSP2183 
Pseudomonas sp. Southbridge RSP2110 

Shoot 
Bacillus methylotrophicus Pukekohe RSP2071 

Bacillus thuringiensis 

Christchurch garden RSP0017 
Manawatu RSP2158 

Soil 
Manawatu RSP0268 
Southbridge RSP0144 

Paenibacillus sp. Lincoln RSP0362 

Stolon/tuber 
Brevibacillus laterosporus Southbridge RSP2024 

Pseudomonas koreensis Manawatu RSP2125 
Paenibacillus peoriae Pukekohe RSP2139 

D, E 

Root Bacillus thuringiensis Christchurch garden RSP0002 
Shoot Pseudomonas jessenii Manawatu RSP2023 

Stolon/tuber Pseudomonas lurida Pukekohe RSP2116 
Pukekohe RSP2120 

D, GP 
Rhizosphere Trichoderma sp. Mixed crop rotation RSPT037 

Root Pseudomonas koreensis Manawatu RSP2014 
Shoot Bacillus sp. Lincoln RSP2015 

D, GP, E Root Flavobacterium sp. Lincoln RSP2020 
+First letter is dual agar plate interaction type as detailed previously, GP is potential growth 
promoter and E is potential endophyte. 
ǂThe identity of the bacterial isolates was based on the closest sequence match using the 
BLASTN and megaBLAST programmes to search the EzTaxon database. While genus 
identification will be accurate, the species identification may not be. 

2.4.3 In vitro suppression of Rhizoctonia solani by bacteria 

When the data set for dual plate suppression scores (excluding Trichoderma isolates as 

detailed previously) was analysed with R. solani isolate, soil location and selective procedure 

as factors (2×4×2 factorial), R. solani isolate, R. solani isolate × selective procedure and soil 

location × selective procedure were each statistically significant (Table 2.4). 

Table 2.4 Unbalanced factorial ANOVA of dual plate suppression data P values 

Factor/interaction P value 
R. solani isolate 0.001 
Soil location 0.728 
Selective procedure 0.198 
R. solani isolate × soil location 0.744 
R. solani isolate × selective procedure 0.001 
Soil location × selective procedure 0.002 
R. solani isolate × soil location × selective procedure 0.780 
 

Overall, R. solani isolate Rs043-2 was more strongly suppressed in vitro by the test isolates 

than isolate R73-13b, with mean suppression values of 0.877 and 0.572, respectively. 
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Mean suppression scores for isolates from both selective procedures against each R. solani 

isolate (Figure 2.3 a) showed that fluorescent Pseudomonads were, overall, less suppressive to 

R. solani isolate R73-13b than the endospore-forming bacteria. There were no significant 

differences in mean suppression scores of fluorescent Pseudomonads and endospore-forming 

bacteria for isolate Rs043-2, although both of these means were greater than the mean 

suppression score of the fluorescent Pseudomonads for R73-13b. 

Analysis of soil locations with the selective isolation procedure (Figure 2.3 b) showed that for 

test isolates from Pukekohe, fluorescent Pseudomonads gave greater mean suppression scores 

in vitro to the R. solani isolates than the endospore-forming bacteria, but there were no 

significant differences between fluorescent Pseudomonads and endospore-forming bacteria 

for the other locations. The fluorescent Pseudomonads from Pukekohe, overall, gave greater 

mean suppression scores than those from the other three locations, but there were no 

differences between mean suppression scores of endospore-forming bacteria groups across the 

four locations. 

To analyse the effects of harvest time, plant tissue identity and surface sterilisation on test 

isolate suppression scores, the data for isolates from soil dilutions was omitted and the data 

was re-analysed. Plant tissue, harvest time, soil location, selective procedure and surface 

sterilisation were analysed as factors in various combinations. The significance of the 

analyses is presented in Table 2.5. For those analyses which were significant (P < 0.05), the 

data are presented graphically (Figures 2.4, 2.5 and 2.6). 

 

Table 2.5 Unbalanced factorial ANOVA of dual plate suppression data P values 
(omitting soil dilution isolates) 

Factor/interaction P value 
Harvest time 0.768 
Plant tissue type 0.234 
Selective procedure 0.511 
Plant tissue type x harvest time < 0.001 
Harvest time x selective procedure < 0.001 
Plant tissue type x selective procedure 0.582 
Harvest time x plant tissue type x selective procedure 0.850 
Surface sterilisation 0.106 
Plant tissue type x surface sterilisation 0.010 
Surface sterilisation x selective procedure 0.004 
Plant tissue type x surface sterilisation x selective procedure 0.144 
Soil location x harvest time 0.010 
Soil location x plant tissue type 0.098 
Soil location x surface sterilisation < 0.001 
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Figure 2.3 Mean dual plate suppression scores of test isolates from two selective 
procedures for (a) each Rhizoctonia solani isolate and (b) each soil location. 
SEM bars are shown on group means and floating bars are average LSDs 
(5%) from unbalanced ANOVAs. 
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The analysis of mean suppression scores of isolates from the three plant tissue types over the 

three harvest times (Figure 2.4 a) demonstrated no difference between isolates from roots, 

stems or stolons at harvests 1 or 3. At harvest 2 test isolates from stolons gave greater mean 

suppression scores than those from roots or stems (with no difference between roots and 

stems). 

The analysis of mean suppression scores of isolates from the two analysed selective 

procedures over the three harvest times (Figure 2.4 b) indicated that at harvest 1, endospore-

forming bacteria from plant tissues were more suppressive than the fluorescent 

Pseudomonads, but there were no significant differences between mean suppression scores at 

harvests 2 and 3. 

The analysis of mean suppression scores of isolates from the two analysed selective 

procedures over the three potato plant tissues types (Figure 2.5 a) demonstrated that the 

isolates from surface-sterilised stolons had a greater mean suppression score than those from 

non-sterile stolons. There were no significant differences between suppression score means of 

isolates from non-sterile and surface-sterilised roots or stems. 

The analysis of selective procedure with surface sterilisation of tissue (Figure 2.5 b) showed 

that for the fluorescent Pseudomonads, mean suppression score for isolates from surface 

sterilised tissues was greater than from non-sterile tissues, and greater than both group means 

of the endospore-forming bacteria. There was no significant difference between mean 

suppression scores of the endospore-forming bacteria between surface sterilised and non-

sterile tissue. 

The analysis of isolates mean suppression scores from the four soil locations over the three 

harvest times (Figure 2.6 a) showed that for isolates from Southbridge soil, mean suppression 

score harvest 2 was less than at harvest 1, with no significant difference between harvests 2 

and 3 or between harvests 1 and 3. For isolates from Lincoln and Manawatu soils there were 

no differences in mean suppression scores over the three harvest times. For isolates from 

Pukekohe soils, mean suppression scores of isolates from harvests 2 and 3 were both greater 

than from harvest 1, with no significant difference between harvests 2 and 3. 

In the analysis of isolates from non-sterile and surface sterilised tissues across the four soil 

locations, the only difference was that mean suppression score of isolates from sterilised 

potato plant tissues grown in Pukekohe soil were greater than all other isolate groups, with no 

significant differences between the means of the other groups (Figure 2.6 b). 
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Figure 2.4 Mean dual plate suppression scores of test isolates from three harvests from 
(a) three different plant tissues and (b) two selection procedures. SEM bars 
are shown on group means and floating bars are average LSDs (5%) from 
unbalanced ANOVAs. 
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Figure 2.5 Mean dual plate suppression scores of test isolates from non-sterile or 
surfaced sterlised potato tissues averaged over (a) three plant tissue types 
and (b) two selection procedures. SEM bars are shown on group means and 
floating bars are average LSDs (5%) from unbalanced ANOVAs. 
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Figure 2.6 Mean dual plate suppression scores of test isolates from (a) each soil location 
for each harvest time and (b) from non-sterile or surfaced sterlised potato 
tissues from each soil location. SEM bars are shown on group means and 
floating bars are average LSDs (5%) from unbalanced ANOVAs. 
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2.5 Discussion 

In vitro screening of microbes as candidates for biological control of plant pathogenic 

Rhizoctonia spp. is commonly performed in a hierarchical manner. For example Faltin et al. 

(2004), subjected 434 test isolates to dual plate assays with Rhizoctonia spp. and selected 20 

isolates with the greatest antifungal activity to then be screened for seedling growth 

promotion. Only 17 isolates progressed to in vitro suppression of Rhizoctonia diseases, and 

because each isolate possessed both growth promotion and anti-fungal characteristics, it was 

difficult to determine which mechanism was the more important for biological control. The 

present selection of isolates for in vivo screening based on potential plant growth promotion, 

antibiotic/inhibitory compound production, physical competition with Rhizoctonia spp. or 

endophytism, with some overlap between these categories, allows for future analysis of which 

of these factors, or combination of factors, is the most reliable indicator of an isolate’s 

capacity to reduce the severity of Rhizoctonia diseases of potato. 

In the present study, the dual plate suppression score results for the bacterial isolates showed 

that the two R. solani isolates were suppressed to different degrees by the same isolates, with 

Rs043-2 more strongly suppressed than R73-13b. It would therefore be prudent to test any 

potential biocontrol isolate against a variety of potato pathogenic R. solani isolates in vivo to 

ensure that their range of control is broad enough to make commercial development 

economically worthwhile. The fact that fluorescent Pseudomonas isolates were, overall, less 

suppressive to R73-13b than were the endospore forming bacteria, while there was no 

difference between the two groups on Rs043-2 (Figure 2.3 a), suggests that some taxonomic 

groups may suppress a range of R. solani isolates more consistently than others. 

There were no significant differences between the mean suppression scores for endospore 

forming bacteria across the four soil locations (Figure 2.3 b). This suggests that soil physical 

parameters, cropping history or geographical location have little effect on the overall 

suppressive capacity of these populations. The fluorescent Pseudomonads isolated from the 

Pukekohe soil were more suppressive to the R. solani isolates than those from the other three 

soil locations or the endospore forming bacteria from Pukekohe. This suggests that there is 

something about the Pukekohe soil which supports a fluorescent Pseudomonad community 

with higher suppressive activity towards R. solani, potentially related to the physical nature of 

the soil. However, Jager and Velvis (1983) found clay loam soil to be no more suppressive to 

R. solani than loamy sand, sandy loam or clay soils, and less suppressive than slightly acid 

sandy soil, so physical soil characteristics may be less important than biological ones. Also 

the pH was probably not a dominant factor influencing the proportion of suppressive 
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fluorescent Pseudomonads from the Pukekohe soil, as the pH of that soil was similar to the 

Lincoln soil. The Pukekohe soil sampled had a cropping history atypical in agriculture, six 

consecutive potato crops. The higher proportion of suppressive fluorescent Pseudomonads 

from this site could be related to the continuous potato cropping sequence. This difference 

may result from a more complex interplay between crop history and soil type. A review by 

Garbeva et al. (2004) noted that such complex interactions may influence plant-pathogen 

antagonist populations. Rhizoctonia disease decline as a result of monoculture (and 

subsequent build-up of pathogen antagonists) has been reported previously for sugarbeet, and 

the mechanism was ultimately linked to increases in the relative abundance of 

Pseudomonadaceae antagonistic to R. solani, as well as other bacterial taxa, including 

Burkholderiaceae, Xanthomonadales and Actinobacteria (Mendes et al., 2011). A similar 

process could be happening at the Pukekohe research site, although comparisons between the 

Pseudomonads and other bacterial populations between continual potato and non-potato fields 

of the same soil type would need to be conducted to determine if this is the case. 

There were fluctuations in the (in vitro) mean suppressive capacity of selected microbial 

populations associated with below-ground plant tissues over time. Overall, populations of 

fluorescent Pseudomonads tended to be more suppressive to the R. solani isolates tested over 

time, while populations of endospore forming bacteria showed the reverse trend (Figure 

2.4 b). Also there were differences in the suppressive capacity of populations isolated from 

different plant tissues at some time points, and for populations of isolates from the same plant 

tissues over time (Figure 2.4 a). These results suggest a dynamic relationship between potato 

plants and potentially protective soil microbial populations that could complicate biological 

control strategies, for to be successful this may have to incorporate multiple antagonists which 

complement plant age. The pattern of these fluctuations of suppression score with time were 

also different between some of the four soil locations (Figure 2.6 a). Plants grown in the 

Pukekohe soil developed and maintained a more suppressive population than plants grown in 

the other three soils, although whether this is related to soil type, soil history or a combination 

of both would, as previously mentioned, require further elucidation. What is clear from Figure 

2.6 b is that it was the isolates from surface-sterilised tissues, which presumably have a close 

interaction with host plants, that made populations from the Pukekohe soils more suppressive 

on average than those from the other soil locations. 

The data presented in Figure 2.5 a indicate that organisms recovered from surface-sterilised 

stolons (which are presumably endophytic or at least live in very close association with the 

stolons) were more suppressive than those from non-sterilised stolons, but for roots and stems 
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there was no difference between the two groups. This is of interest, as stolons are the target of 

the canker phase of Rhizoctonia disease of potato (Frank, 1981). Furthermore, the fact that 

isolates living in close association with stolons demonstrate greater suppression of R. solani 

indicates that potato plants may recruit microbial partners antagonistic to pathogens of the 

specific organs at risk of infection. To support this hypothesis correlation between the in vitro 

suppressive capacity of the isolates and in vivo disease suppression would have to be 

demonstrated. 

Overall, the fluorescent Pseudomonad isolates from surface-sterilised tissues were more 

suppressive than those from non-sterile tissues and both endospore forming bacterial isolate 

groups (Figure 2.5 b). If potato plants do form close partnerships with microorganisms to 

enhance protection against R. solani infection, these results indicate that the partnerships they 

form with fluorescent Pseudomonads offer greater potential of suppression of R. solani than 

endospore forming bacteria. 

Caution is advisable when considering the implications of the suppression score results with 

regards to biological control, for two reasons. First, the categorical scale used to create the 

suppression scores may not reflect the true in vivo suppression of R. solani, as the in vitro 

suppressive capacity of an isolate may not be expressed at the same level in a more complex 

soil-plant environment. Second, the actual range of levels of Rhizoctonia disease expression 

on plants grown in the soil samples from the four locations was not investigated, and so the 

mean suppression scores for the soils cannot be linked to actual disease levels, leaving the 

conclusions regarding comparisons between isolate groups as speculative. However, even 

with these caveats, the differences between mean suppression scores of isolate groups are still 

useful in forming hypotheses regarding how the origin of each test isolate may inform as to its 

biological control potential. 

2.6 Conclusions 

Isolation and categorisation of members of Bacillus, Pseudomonas and Trichoderma genera 

from soil samples and below ground tissues from plants, from the three main cropping regions 

of New Zealand, has enabled selection of a range of isolates to progress on to in vivo screens 

for suppression of Rhizoctonia diseases of potato, as well as comparisons between in vitro 

suppression of R. solani of groups of isolates from different isolation locations. This study has 

indicated that differences exist between the in vitro antagonism towards R. solani by 

endospore forming bacteria and fluorescent Pseudomonads from some soil types and potato 
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plant tissues, but not all, along with some differences in the in vitro antagonism of bacteria 

isolated from different plant growing stages and surface sterilisation procedures. 
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     Chapter 3 
Optimisation of a greenhouse bioassay for Rhizoctonia 

diseases of potato 

3.1 Abstract 

A greenhouse bioassay was developed to enable screening of potential biological control 

agents of Rhizoctonia diseases of potato. Different experimental conditions for the bioassay 

were optimised, including plant propagule types, pathogen isolates, inoculum culture media 

and rates of inoculation. Two isolates of R. solani pathogenic to potato were cultured on two 

types of media. The disease expression of each pathogen/inoculum combination was analysed 

at five potting mix inoculation rates, on plants grown either from minitubers or tissue-cultured 

plantlets. Differences between pathogen isolates over most disease and plant physical 

parameters were found. The inoculum medium type often made a difference to disease 

parameters in plants grown from minitubers, but rarely affected disease expression in plants 

from tissue culture. Polynomial trends with inoculation rate were significant for many 

parameters and allowed comparison of patterns of disease expression between pathogen 

isolates and plant propagule types. Based on the results, a set of experimental conditions 

which satisfied the requirements for a routine greenhouse screening bioassay were selected. 

Pathogen isolate Rs043-2 (Anastamosis Group 2-1) cultured on barley + V8® juice medium 

and an inoculation rate of 0.1 or 0.3% (w/w) was selected as the most practically appropriate 

inoculum option for future disease suppression studies, based on severity of disease and 

impact on plant physical parameters. Other conditions for the assay included 0.9 L plant pots 

with a peat:pumice based plant growth medium, and a growth period of 7 weeks to allow 

sufficient time for expression of canker symptoms on stolons as well as early tuber formation 

to allow assessment of impact on yield-related parameters. 

3.2 Introduction 

3.2.1 Requirement of bioassay 

For a disease bioassay to be of practical use for reasonably high-throughput screening, the 

assay needs to satisfy some general requirements. The assay must make efficient use of space 

where this is limited, allowing high numbers of treatments with appropriate experimental 

replication to be tested, while still providing plants with adequate growth conditions. Plant 

growing time must allow sufficient expression of the disease for analysis, balanced with the 
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need to run multiple assays in short time periods. To allow comparisons to be made between 

assays, environmental conditions must be within specified parameters, with little deviation. 

The purpose of experiments described in this chapter was to select experimental conditions 

which produced disease levels most appropriate to a high-throughput bioassay system which 

could be applied to evaluate potential biocontrol agents for control of Rhizoctonia diseases of 

potato. The experiments also aimed to verify that details of the experimental set-up, including 

pot size, plant growing medium, experimental run time, greenhouse conditions and disease 

assessment method, were suitable for the requirements of a bioassay. 

3.2.2 Greenhouse bioassays for Rhizoctonia diseases of potato in the 
literature 

Several greenhouse bioassay methods for assessing the severity of Rhizoctonia diseases of 

potato have been previously described (Table 3.1). These have differed considerably in the 

methods of inoculum production, rates of inoculation, plant growing substrates, container 

sizes, experiment durations and disease assessment methods. The scale on which these 

bioassays have been conducted is much smaller than that which is required for screening, so 

most used much longer experimental run-times and more labour intensive scoring methods 

(for example, assessing the percent lesion coverage of every stolon and assigning them into 

severity categories) than are practical for screening. Assessment of these methods indicates 

that, in general, R. solani isolates pathogenic to potato can produce levels of disease suitable 

for comparisons under a wide range of experimental conditions, and at varied initial inoculum 

rates. Because the majority of the studies used one R. solani isolate, and there are likely to be 

differences between isolates in their requirements for expression of pathogenicity, it is not 

possible to determine if the experimental conditions used in those studies would be suitable 

for other isolates, such as those available for the present study, without testing them first. An 

appropriate existing experimental set-up cannot, therefore, be directly duplicated from the 

literature, and it was necessary to test a range of experimental conditions, with the isolates 

available, to determine which are the most suitable for the purposes of a greenhouse screening 

bioassay. 
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Table 3.1 Details of greenhouse bioassays from the published literature, used to assess Rhizoctonia diseases of potato 

R. solani culture 
medium and 
conditions 

Plant growing 
substrate 

Container 
size 

Pathogen 
inoculum rate 

Plant 
propagule type 

Harvest 
time(s) 
after 

planting 

Disease scoring 
method(s) Publication 

Wheat grain + water, 
8 days at 21-25°C, 
dried 

Soil:sand (3:1, 
w/w) 

Pot holding 
1.2 kg mix 0.4% w/w Seed pieces, 

three per pot 
3 to 4 
weeks 

Stem canker (0-5 scale), 
black scurf on seed 
pieces (0-5 scale) 

Brewer and 
Larkin 
(2005) 

Quinoa seed + sand + 
water, 3 weeks at 
22°C, mixed 1:1 with 
sand 

Sand 2.5 L pot 1.4 to 17.8 g 
per pot 

Minituber, one 
per pot 

Multiple 
time points 

Stem canker severity 
assigned to 6 classes 

Wilson et 
al. (2008a) 

Barley + water, 21 
days at ambient 

Sterile potting 
mix 1 L pot 10 mL layer at 

bottom of pot 

Cultured stem 
cutting, one per 
pot 

11 weeks 
Presence/absence of 
lesions, malformations 
and sclerotia on tubers 

Campion et 
al. (2003) 

Potato dextrose broth, 
10 days at 25°C Soil Pot holding 

12 kg 

50 mL of a 10-
fold diluted 
PDB culture 

Seed potato, one 
per pot 110 days Yield and number of 

sclerotia on tuber 
Tariq et al. 
(2010) 

Malt-peptone agar, 4 
weeks Soil 15 L 

buckets 

3 sclerotia, 
placed near 
potato bud 

Seed potato, one 
per bucket 

4 weeks 
after haulm 
destruction 

Tubers rated for 
sclerotial density 

Boogert 
and Jager 
(1984) 

Malt extract peptone 
drenched perlite, 4 
weeks at 21°C 

Soil + 1% (w/w) 
potato stem/stolon 
pieces 

1.24 L pots 
with 250 g 
dry soil 
equivalent 

125 sclerotia 
per pot 

Minituber, one 
per pot - Sclerotial formation on 

minituber assessed 

Boogert 
and 
Luttikholt 
(2004) 

Wheat grain + water, 
8 days at 21-25°C, 
dried 

Soil:sand (3:1, 
w/w) 1.6 L trays 1.2% w/w Four seed pieces 

per tray 4 weeks Root and stem canker (0-
5 scale) and shoot height 

Larkin and 
Griffin 
(2007) 
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R. solani culture 
medium and 
conditions 

Plant growing 
substrate 

Container 
size 

Pathogen 
inoculum rate 

Plant 
propagule type 

Harvest 
time(s) 
after 

planting 

Disease scoring 
method(s) Publication 

PDA, 5 day old Heat treated 
sand:soil 2:1 

235 mL 
tubes 

Five mycelial 
agar plus per 
tube 

One cut potato 
seed piece per 
tube 

23 days Lesion damage on shoots 
and roots (0-4 scale) 

Carling and 
Leiner 
(1990) 

Oats+water, 3 weeks 
at ambient, dried 

Soil:peat-based 
grow mix:ceramic 
soil conditioner 
(3:1:1, v/v/v) 

18 cm diam. 
pots 

Five oat grains 
per plant 

Plant from tissue 
culture 

Multiple 
time points 

Crown/shoot rot (0-5 
scale), tuber, root and 
shoot fresh weights 

Yao et al. 
(2002) 

Barley kernels, 3 
weeks at 20°C 

Sand:soil (1:1, 
v/v) 2.88 L pot Six kernels per 

pot Seed potato 3 weeks Stem canker severity (1-
5 scale) 

Grosh et al. 
(2005) and 
(2006) 

Quinoa seed + sand + 
water, 14 days at 
ambient 

Washed sand 10 L pot 10 g in layer 1 
cm above tuber 

Minituber, one 
per pot 

48 and 120 
days 

Lesion coverage on 
organs (6 categories). 
Black scurf severity (0-4 
scale) 

Lehtonen et 
al. (2009) 

Barley:wheat 2:1 + 
water, 18 days at 
25°C 

Sterilised 
clay:sand:farm-
yard manure 1:1:1 

2.88 L pot 
10/15/12 g 
mixed into top 
5 cm per pot 

Seed potato, one 
per pot 

30 and 90 
days 

Eye germination and 
sprout killing. Black 
scurf severity (0-5 scale) 
and yield 

Farah et al. 
(2008) 

Wheat grain + water, 
10-14 days at 27°C, 
dried 

Fumigated 
peat:vermiculite: 
perlite 5:3:2 

600 L 
containers 275 grains/m2 

Minitubers or 
seed potatoes 
with slight 
sclerotial load, 
15 per container 

Maturity 

Black scurf (4 
categories), disease 
incidence and severity 
(0-5 scale) on 
stem/stolons, sclerotial 
density on roots (0-3 
scale) 

Tsror and 
Peretz-Alon 
(2005) 

Rye, 30 days 
Sterilised 
commercial 
potting mix 

Pot size not 
detailed 5% w/w Seed potato, one 

per pot 

10 weeks 
and 3 
months 

Stem lesion (1-5 scale), 
yield 

Lahlali and 
Hijri (2010) 
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3.2.3 Experimental conditions 

A pot size (0.9 L) was selected to balance maximising replicate numbers in a greenhouse cell 

with providing adequate plant growth over the time-course of the experiment. A seed raising 

mix (Appendix A.3.1), rather than a soil-based plant growth medium, was selected as the 

plant growth medium to avoid interference from naturally occurring Rhizoctonia populations. 

Furthermore a peat-based plant growth medium was selected over others based on different 

organic components as peat usually has either no effect, or is conducive to Rhizoctonia 

diseases (Bonanomi et al., 2007). 

For the initial experimental conditions examined, the inoculum culture media represent 

greater (barley + V8® juice) and lower (bran + water) sources of nutrients. The two R. solani 

isolates used represented different Anastomisis Groups (AGs) and both isolates were known 

to be pathogenic to potato. The five inoculation rates covered a 100-fold difference in 

inoculum concentration. Of the potato host propagule types commonly used for screens, 

tissue-cultured plantlets and minitubers were selected, as their production ensures that they 

are disease-free (Pruski, 2007; Struik, 2007), and their small size compared with seed potatoes 

makes them more appropriate for an assay where space is limited.  

Both host propagule types have benefits and drawbacks: Plants grown from tissue-cultured 

plants do not have the ‘emerging shoot’ stage (that is susceptible to Rhizoctonia disease) 

while minitubers do, potentially altering the other symptoms of disease expression. However, 

tissue-cultured plantlets are available from commercial producers throughout the year, while 

minitubers are produced annually in advance of spring planting in the field. The choice of 

cultivars for both propagule types was restricted at the time of experiment initiation, so the 

tissue-cultured plantlets were cv. ‘Gladiator’, and the minitubers were cv. ‘Desiree’ (Alex 

McDonald Merchants, Lincoln). While the cultivars were different, which may impact 

comparisons drawn between them, both are susceptible to Rhizoctonia diseases (‘Gladiator’ 

known to be susceptible from pilot studies, and ‘Desiree’ from the literature, e.g. Farah et al., 

(2008)). 

The method for disease assessment needed to be suitable for processing samples in large 

numbers, as a requirement for the assay was that all plants had to be harvested and scored 

within a short timeframe. For this reason, disease incidence and presence or absence of 

lesions on shoots/stolons, rather than severity (e.g. percent total area covered in lesions) was 

used to assess disease levels. Plant parameters were also determined at harvest (tuber fresh 

weight and number, stolon number, plant dry weights) as adjuncts to disease impact 

assessments. 
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3.3 Methods 

3.3.1 Pathogen isolates and production of inoculum 

The R. solani isolates selected for this experiment were Rs043-2 and R73-13b, which at the 

time of the experiments were thought to belong to AG 3. Genetic analysis not conducted as 

part of this study demonstrated that Rs043-2, obtained from a surface-sterilised tuber-borne 

black scurf sclerotium, is an AG 2-1 isolate (provided by Dr Farhat Shah, Plant and Food 

Research Ltd), and R73-13b, isolated from New Zealand field soils, is an AG 3 (held in the 

Bio-Protection Research Centre Culture Collection, Lincoln University (Sneh et al., 2004)). 

Both isolates were maintained on barley grain stored at 4°C. 

Isolates were cultured on potato dextrose agar (Difco, Sparks, USA, Appendix A.1.1) for 5 to 

7 days at 25°C in darkness. Erlenmeyer flasks containing either barley grain + V8 juice® 

(Campbell’s Soups Australia, Australia) (1:1 w/v, Appendix A.2.1) or wheat bran + RO water 

(1:2 w/v, Appendix A.2.2) were each inoculated with five 7 mm diameter agar plugs from the 

growing edge of a R. solani colony. The flasks were then plugged with cotton wool, capped 

with tinfoil and incubated at 25°C in darkness for 13 days. Uninoculated media were 

incubated in the same way, for use as experimental controls. 

3.3.2 Experimental Design 

Two experiments investigated effects of different inoculum rates, inoculum media and R. 

solani isolates on disease incidence on potato, the first using tissue-cultured plantlets 

(‘Gladiator’) and the second using minitubers (‘Desiree’). Inoculum was added to the potting 

mix (Appendix A.3.1) at the following five rates (treatments); 0.03, 0.1, 0.3, 1 and 3% w/w, 

for both isolates and inoculum media. Three experimental controls were used in each 

experiment: no inoculum, uninoculated bran + water or uninoculated barley + V8®, both at 

3% w/w. The required potting mix and inoculum were weighed and thoroughly mixed by 

hand then divided between ten 0.9 L capacity plastic pots with saucer. This procedure was 

used for all treatments, except 0.03% barley + V8®. For this, the required weight of inoculum 

was distributed evenly amongst the pots, with barley kernels placed at mid-depth in each pot.  

Tissue-cultured plantlets (Figure 3.1 a) were planted singly into pots. Minitubers (Figure 3.1 

b) were pre-sprouted (25:15°C, 16:8 h light:dark, lighting: two 30W/860 Lumilux® Daylight 

lamps - Osram, Germany) for 3 days then planted one per pot. Each experiment was laid out 

in a randomised block design with ten replicates, with two pots of each of the three 

experimental controls per replicate. The experiments were conducted in a greenhouse unit 

(Figure 3.1 c), with temperature control, and supplementary lighting (16:8 h light:dark, 7 h 
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total supplement from ten SON-T AGRO 400 lamps - Philips, Belgium). Temperature and 

relative humidity were recorded with a HOBO® Pro v2 logger enclosed in a solar radiation 

shield (both: Onset Computer Corporation, MA, USA) suspended at pot height.  

 

Figure 3.1 Photographs of (a) a tissue-cultured plantlet, (b) minitubers and (c) 
greenhouse assays used to optimise pathogen inoculum medium and initial 
concentration. 

 

Figure 3.2 Black arrows indicate examples of Rhizoctonia cankers ‘nipping’ (a) a stolon 
(below-ground stem) and (b) emerging shoots of potato plants. 
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Figure 3.3 Examples of below-ground portion of potato plants, grown from (a) tissue-
cultured plantlet or (b) minituber and harvested after 7 weeks, from assay 
used to optimise pathogen inoculum medium and initial concentration.  

 

3.3.3 Disease assessments and plant parameters 

After 7 weeks, all plants were washed free of plant growth medium (Figure 3.3) and the total 

number of stolons and the number of stolons with visible lesions were recorded for each plant 
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(Figure 3.2 a). For the minituber experiment, the number of emerged shoots and number and 

proportion of non-emerged shoots with rotted or dead apices (‘nipped’, Figure 3.2 b) were 

also determined for each plant. The number and fresh weight of tubers, and root and shoot dry 

weights, were also recorded for each plant. 

3.3.4 Statistical analyses 

All data were subjected to analysis of variance for randomised block designs with treatment 

structures of 2 × 2 × 5 factorial + three controls. The factors were isolates, inoculum media 

and log10-transformed initial inoculum concentrations, for which linear and quadratic 

polynomial components were included in the analyses. The statistica l significance of these 

polynomial components was used to provide an appropriate order of approximating 

polynomial to fit to each data set for graphing trends. Only effects and polynomial 

components significant at P ≤ 0.05 are presented. 

3.4 Results 

3.4.1 Temperature and relative humidity 

During both experiments, the mean temperature was 17.6°C (maximum 23.2°C, minimum 

15.4°C) and the mean relative humidity was 70.5% (maximum 93.9%, minimum 41.7%). 

3.4.2 Proportion of diseased stolons 

In the tissue-cultured plantlet experiment, the mean proportions of diseased stolons per plant 

(Figure 3.4 a) were affected by isolate and inoculum rate but not inoculum medium. For 

isolate Rs043-2, both linear and quadratic components were significant. Isolate R73-13b 

produced no significant trend across the inoculum rates. 

In the minituber experiment, the mean proportions of diseased stolons (Figure 3.4 b) were 

affected by isolate, inoculum rate, and inoculum medium. Isolate Rs043-2 cultured on bran + 

water produced a significant linear trend with inoculum rate, but no significant trend occurred 

from barley + V8® inoculum. No significant trends with inoculum rate were produced by 

isolate R73-13b cultured on either media.  

For isolate R73-13b, the proportion of diseased stolons was unaffected by different inoculum 

rates, while isolate Rs043-2 at higher rates produced proportionally fewer diseased stolons. 

This pattern was reasonably consistent between the two host propagule types, although for 

minitubers the Rs043-2, barley + V8®, 0.10% inoculum rate data point ran contrary to this 

pattern. 
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Figure 3.4 Mean percentage of diseased stolons on potato plants grown from (a) tissue-
cultured plantlets (averaged over two inoculum media) and (b) minitubers. 
Plants inoculated with two different Rhizoctonia solani isolates cultured on 
two different media at five rates of inoculation. Bars are LSDs (P = 0.05) for 
comparisons betwen “non-control” points. 
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3.4.3 Number of symptomless stolons 

In both experiments, the data of number of stolons without cankers (symptomless) per plant 

were square root transformed to satisfy the ANOVA requirement of normal distribution. 

In the tissue-cultured plant experiment the (transformed) mean number of symptomless 

stolons per plant (Figure 3.5 a) was affected by isolate but not by inoculum rate or type. The 

interaction between pathogen isolate and inoculum rate was significant, which justified 

separate analyses of pathogen isolates with inoculum rate. There was a significant linear trend 

across inoculum rates for isolate Rs043-2, but no significant trend for isolate R73-13b. 

In the minituber experiment the (transformed) mean number of symptomless stolons (Figure 

3.5 b) was affected by inoculum rate but not inoculum type or isolate. The interaction between 

pathogen isolate and inoculum rate was significant, which justified separate analyses of 

pathogen isolates with inoculum rate. Isolate Rs043-2 produced significant linear and 

quadratic trends with inoculum rate, while the linear trend of isolate R73-13b across inoculum 

rates was significant. 

For the plants from the tissue-cultured plantlets, the pattern of disease expression was 

consistent between the data of proportion of diseased stolons and number of symptomless 

stolons. For the minituber experiment, the pattern of disease expression for number of 

symptomless stolons was slightly altered compared with the proportion of diseased stolons, 

with isolate R73-13b producing a significant but slight trend to fewer symptomless stolons at 

higher inoculum rates, and isolate Rs043-2 again producing more symptomless stolons at the 

highest inoculum rate, but without significant differences between means at the lower rates. 
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Figure 3.5 Mean number of symptomless stolons on potato plants grown from (a) tissue-
cultured plantlets and (b) minitubers, both averaged over two inoculum 
media. Plants inoculated with two different Rhizoctonia solani isolates 
cultured on two different media at five rates of inoculation. Bars are LSDs 
(P = 0.05) for comparisons betwen “non-control” points. 
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3.4.4 Proportion of ‘nipped’ shoots and number of tubers 

In both experiments, the data of numbers of progeny tubers was square root transformed to 

satisfy the ANOVA requirement of normal distribution. 

In the tissue-cultured plant experiment, the mean number of tubers was affected by pathogen 

isolate but not by inoculum type or rate. No polynomial components of the interactions with 

rate were significant. The mean number of progeny tubers for isolate Rs043-2 was 1.99, and 

for isolate R73-13b was 1.32. The mean number of tubers for the uninoculated control was 

3.02, for control bran + water was 3.01 and for control barley + V8® was 2.03, with no 

significant difference between these means. 

In the minituber experiment, the mean number of tubers (Figure 3.6 b) was affected by 

pathogen and inoculum rate but not by inoculum type. For isolate Rs043-2, the quadratic 

trend across inoculum rates was significant, but the linear trend was not, while the converse 

was true for isolate R73-13b. 

The proportion of shoots ‘nipped’ applies only to the minituber experiment. The mean 

percentage of shoots nipped (Figure 3.6 a) was affected by pathogen isolate, inoculum type 

and rate. The linear trend across inoculum rates was significant for isolate Rs043-2 cultured 

on both media, and the quadratic trend was also significant for barley + V8®. The only 

significant polynomial trend produced by isolate R73-13b was the quadratic trend for bran + 

water inoculum.  

The pattern of disease expression for the mean number of nipped shoots is consistent with 

those seen in the proportion of diseased stolons (Figure 3.4). As with the percent diseased 

stolons, there was no significant trend connecting increasing concentrations of the isolate 

R73-13b barley + V8® inoculum and the mean percent nipped shoots, and although these data 

showed a significant n-shaped trend for bran + water inoculum, this did not reflect a large 

spread of treatment means. Mean percent nipped shoots from the isolate Rs043-2 treatments 

also followed the general pattern found in the percent diseased stolon data, with trends that 

linked greatest levels of inoculum to less disease expression. The main difference between the 

results for proportion of diseased stolons and nipped shoots was that isolate R73-13b 

generally caused consistently greater stolon disease than isolate Rs043-2, whereas the 

converse was true for shoot nipping. 
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Figure 3.6 Mean (a) percentage of ‘nipped’ shoots and (b) number of daughter tubers 
(square root transformed and averaged over two inoculum media), on potato 
plants grown from minitubers. Plants inoculated with two different 
Rhizoctonia solani isolates cultured on two different media at five rates of 
inoculation. Bars are LSDs (P = 0.05) for comparisons betwen “non-control” 
points. 
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3.4.5 Number of stolons 

In both experiments, the data of number of stolons per plant were square root transformed to 

satisfy the ANOVA requirement of normal distribution.  

In the tissue-cultured plant experiment, the (transformed) mean number of stolons per plant 

(Figure 3.7 a) was affected by isolate and inoculum rate but not inoculum medium. Isolate 

Rs043-2 produced a significant quadratic but not linear trend across the inoculum rates, while 

isolate R73-13b produced a significant linear trend. 

In the minituber experiment, the (transformed) mean number of stolons per plant (Figure 3.7 

b) was affected by isolate, inoculum type and inoculum rate. Isolate Rs043-2 produced a 

significant linear trend across the inoculum rates from bran + water inoculum, but a 

significant quadratic trend (but not a significant linear trend) from barley + V8® inoculum. 

From bran + water inoculum, isolate R73-13b produced a significant quadratic, but not linear, 

trend across the inoculum rates. While from barley + V8® inoculum, only the linear trend 

across inoculum rates was significant. 

On plants from tissue culture, the mean number of stolons from isolate Rs043-2 treatments 

was, with the exception of the lowest inoculum rate, considerably greater than from isolate 

R73-13b (Figure 3.7). However, for the same measure on plants from minitubers, Rs043-2 

gave fewer stolons than R73-13b, with this difference reducing at the higher inoculum rates. 
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Figure 3.7 Mean number of stolons on potato plants grown from (a) tissue-cultured 
plantlets (averaged over two inoculum media) and (b) minitubers. Plants 
inoculated with two different Rhizoctonia solani isolates cultured on two 
different media at five rates of inoculation. Bars are LSDs (P = 0.05) for 
comparisons betwen “non-control” points. 
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3.4.6 Weight of daughter tubers 

In the tissue-cultured plant experiment the tuber weight data were log10 transformed to satisfy 

the ANOVA requirement of normal distribution. This was not required for the minituber 

experiment data. 

In the tissue-cultured plant experiment, there was no significant effect of pathogen isolate, 

inoculum type or inoculum rate on the (transformed) mean weight of daughter tubers per plant 

(Figure 3.8 a). The linear component of the interaction between isolate and inoculum rate was 

significant, however, which justified separate analyses of pathogen isolates with inoculum 

rates. Isolate Rs043-2 gave a significant linear trend across inoculum rates, while linear and 

quadratic trends were both significant for isolate R73-13b. 

In the minituber experiment the mean weight of daughter tubers per plant (Figure 3.8 b) was 

affected by isolate, inoculum type and rate. There was no significant trend between isolate 

Rs043-2 from bran + water inoculum and inoculum rate, while the quadratic trend (but not 

linear) was significant from barley + V8® inoculum. For isolate R73-13b from bran + water 

inoculum, the linear trend across inoculum rates was significant, but there was no significant 

trend from barley + V8® inoculum.  

For the mean weight of daughter tubers from plants from tissue culture, the trend for 

increasing isolate Rs043-2 inoculum rate was an increase in tuber weight, but with no 

significant difference between isolates Rs043-2 and R73-13b treatment means (except at the 

0.03% inoculum rate). Again, as noted for the mean numbers of stolons (Figure 3.7), on plants 

from minitubers isolate Rs043-2 gave smaller daughter tuber weights than those from 

R73-13b treatments. This pattern was also evident in mean numbers of tubers in the tissue-

cultured plantlet experiment, with plants from Rs043-2 treatments producing significantly 

more tubers than those from R73-13b treatments, but the converse was true for the minituber 

experiment (Figure 3.6).  
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Figure 3.8 Mean total weight (g) of daughter tubers on potato plants grown from (a) 
tissue-cultured plantlets, weights log10 transformed (averaged over two 
inoculum media) and (b) minitubers. Plants inoculated with two different 
Rhizoctonia solani isolates cultured on two different media at five rates of 
inoculation. Bars are LSDs (P = 0.05) for comparisons betwen “non-control” 
points. 
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3.4.7 Plant dry weights 

In the tissue-cultured plant experiment, the mean shoot dry weight per plant (Figure 3.9 a) 

was affected by pathogen isolate, inoculum type and rate. Isolate Rs043-2 from bran + water 

inoculum produced no significant trend across inoculum rates, but the linear trend from barley 

+ V8® inoculum was significant. Isolate R73-13b from bran + water inoculum produced no 

significant trend, but the linear trend was significant from barley + V8® inoculum of this 

isolate. 

In the minituber experiment, mean shoot dry weight (Figure 3.9 b) was affected by pathogen 

isolate, inoculum type and rate. Isolate Rs043-2 from bran + water inoculum produced a 

significant quadratic trend across the inoculum rates, but no significant linear trend, whereas 

both linear and quadratic trends were significant for Rs043-2 from barley + V8® inoculum. 

For isolate R73-13b from bran + water inoculum the quadratic trend across inoculum rates 

was significant, but the linear trend was not, while the converse was true for R73-13b from 

barley + V8® inoculum.  

In the tissue-cultured plant experiment, the mean root dry weight per plant (Figure 3.10 a) was 

affected by pathogen isolate and inoculum type but not rate. However, the linear component 

of the interaction between inoculum type and rate was significant, justifying separate analyses 

of each pathogen/inoculum type combination with inoculum rates. Only the linear trend 

between isolate Rs043-2 from barley + V8® inoculum and inoculum rate was significant. 

In the minituber experiment, the mean root dry weight per plant (Figure 3.10 b) was affected 

by pathogen isolate and inoculum rate but not by inoculum type. For both isolates Rs043-2 

and R73-13b, the quadratic trend across inoculum rates was statistically significant, but the 

linear trend was not.  

Shoot and root dry weight of plants from tissue culture were the only parameters for which 

the inoculum type made a significant difference, with consistency between the patterns of 

expression between the two isolates. For shoot dry weight, both isolates from bran + water 

inoculum gave no significant trends with increasing inoculum rate, while from barley + V8® 

inoculum the trend for both isolates was a decrease in dry weight with increasing initial 

inoculum concentration (Figure 3.9 a). For isolate Rs043-2, these trends in shoot dry weight 

held true for root dry weight, but neither trend was significant for isolate R73-13b although 

the barley + V8® trend was still negative (Figure 3.10 a). For the plants from tissue culture, 

Rs043-2 gave mean root dry weights which were often greater than those from R73-13b 
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treatments, especially from bran + water inoculum, but this pattern was reversed in the 

minituber experiment. 

 

Figure 3.9 Mean dry weight (g) of potato plant shoots grown from (a) tissue-cultured 
plantlets and (b) minitubers. Plants inoculated with two different Rhizoctonia 
solani isolates cultured on two different media at five rates of inoculation. 
Bars are LSDs (P = 0.05) for comparisons betwen “non-control” points. 
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Figure 3.10 Mean dry weight (g) of potato plant roots grown from (a) tissue-cultured 
plantlets and (b) minitubers (averaged over two inoculum media). Plants 
inoculated with two different Rhizoctonia solani isolates cultured on two 
different media at five rates of inoculation. Bars are LSDs (P = 0.05) for 
comparisons betwen “non-control” points. 
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3.5 Discussion 

3.5.1 Optimal bioassay parameters 

The direct measures of the canker phase of Rhizoctonia disease of potato, including the 

proportion of diseased stolons (Figure 3.4) and the number of symptomless stolons (Figure 

3.5), different methods of analysing the same data, and the proportions of ‘nipped’ shoots 

(Figure 3.6), demonstrated consistent patterns of disease expression for each isolate between 

the two host plant propagule types: For isolate R73-13b disease levels were largely constant 

across all inoculums rates, while there were reduced levels of disease for isolate Rs043-2 at 

high inoculums rates. This suggests that the disease was expressed similarly on both host 

propagule types, making either suitable for use in a bioassay. For the proportion of diseased 

stolons in the minituber experiment the Rs043-2, barley + V8®, 0.10% inoculum rate datum 

runs contrary to this pattern. This could be an artefact due to the low number of total stolons 

present from that treatment (Figure 3.7). As an alternative method for measuring the canker 

disease on stolons, the number of symptomless stolons offers a measure less likely to generate 

misleading data when few stolons are produced. 

For the plants from tissue culture, the total number of stolons was affected less by isolate 

Rs043-2 than R73-13b at most inoculum rates, making analysis of proportion of diseased 

stolons less likely to give misleading results from low total numbers of stolons for Rs043-2. 

This indicates that Rs043-2 would be a more suitable isolate for bioassay than isolate 

R73-13b for plants from tissue culture. For the plants from minitubers, isolate Rs043-2 

demonstrated greater capacity for shoot nipping than R73-13b, providing an additional 

measure of disease severity which is potentially economically important. Shoot nipping 

caused yield reductions through reducing number and weight of daughter tubers, and recovery 

of these yield parameters could, for isolate Rs043-2, provide supporting evidence of disease 

suppression in a bioassay. A drawback of using Rs043-2 in a bioassay with plants from 

minitubers is the greater reduction in the numbers of stolons compared with isolate R73-13b, 

which could, as previously mentioned, result in misleading results when considering 

proportion of diseased stolons. However, the measure ‘number of symptomless stolons’ could 

provide a more reliable measure of disease pressure in experiments where few stolons are 

produced, and this parameter should be measured in assessment of pathogen effects. 

Accepting that isolate Rs043-2 is the preferred isolate for future bioassays, an appropriate 

inoculum culture medium and initial inoculum concentration must be selected. For the 
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majority of treatments, the culture medium for Rs043-2 did not affect disease expression, so 

either medium would be appropriate for future use. However, grain-based culture media have 

been more commonly used in published bioassays (Table 3.1), so for consistency with 

previous research, grain-based medium is favoured. 

The consistent trends for lower disease incidence at greater inoculum rates for isolate Rs043-2 

is of interest, as this indicates that disease suppression was occurring at high inoculum rates. 

These greater rates should be avoided in future bioassays, as providing initial conditions 

which already favour disease suppression could potentially mask biocontrol activity of a 

treatment. Furthermore, if the effects of biocontrol and high inoculum act synergistically, 

treatments could appear to be more effective than they would otherwise be. As the lowest 

inoculum rate of isolate Rs043-2 from barley + V8® inoculum was sometimes the most severe 

in terms of disease incidence, and was a time-consuming inoculation method when ensuring 

even inoculum distribution between replicates, the mid-range inoculum concentrations (0.10 

and 0.30%, w/w) are the most practically appropriate, and either would be suitable for future 

use. 

3.5.2 Rhizoctonia disease expression 

Direct comparisons between the levels of disease presented here and from greenhouse assays 

reported in published literature is problematic. The majority of previous studies assessed the 

canker symptoms using severity scales, while disease incidence was determined in the present 

study. Further, if tuber yield parameters are measured, these manifest when plants are much 

more than 7 weeks old (Table 3.1). What is clear is that Rhizoctonia disease potato bioassays 

reported in the literature have used a large range of inoculation rates to achieve moderate 

disease severity, from as few as three sclerotia per plant (Boogert and Jager, 1984) up to 10% 

(v/v) infested barley grain (Campion et al., 2003). Most studies use R. solani isolates of AG 3, 

and for the AG 3 isolate used in this research (isolate R73-13b) the measures of canker 

symptoms remained constant over the 100-fold range of inoculation rates (Figures 3.4, 3.5 

and 3.6). This would suggest that for many isolates of this anastomosis group, expression of 

disease symptoms is independent of the total hyphal mass present in the system. Relationships 

between hyphal mass and disease levels could exist at inoculum rates below those tested here, 

but further experiments with reduced inoculum rates would be required to confirm this. 

For the AG 2-1 isolate (Rs043-2), the greatest inoculation rates often presented less disease 

than the lower rates. This result fits with meta-analysis by Bonanomi et al. (2010), which 

found that suppression of R. solani diseases by organic amendments rarely correlated with 

pathogen population decline, and often the inverse relationship held true. Suggestions for the 
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mechanisms underpinning this relationship include induced resistance of host plants and/or 

fungistasis, but these suggestions have rarely been investigated further. Either of these 

hypotheses could explain the trend for isolate Rs043-2 of decreasing disease incidence with 

increasing inoculum concentration. Fungistasis could potentially be induced through the 

action of other organisms responding to the increased nutrient availability, assuming that the 

pathogen has not used all the resources of the inoculum medium prior to the bioassay 

inoculation. Alternatively, the increased presence of specific carbon sources could be directly 

regulating the pathogenicity of isolate Rs043-2. Weinhold and Bowman (1974) demonstrated 

that, for R. solani pathogenic to cotton seedlings, applying glucose inhibited disease 

development, potentially by suppressing pectinase production, while 3-O-methyl glucose 

suppressed infection cushion formation. The disease decline could also be due to an isolate-

specific population density effect regulating pathogenicity, perhaps quorum sensing or intra-

population competition. However, quorum sensing has so far only been reported for fungi 

with yeast-like phases in their lifecycles (Hogan, 2006), and this is therefore a less likely 

explanation for disease suppression than other explanations outlined above. 

A final note on the AG of Rs043-2 is pertinent: AG 3 is the most frequently isolated AG from 

potato exhibiting Rhizoctonia disease symptoms in most countries, including New Zealand 

(Anderson, 1982; Farrokhi-Nejad et al., 2007; Justesen et al., 2003; Lehtonen et al., 2008b). 

This is likely to be because members of AG 3 produce the most tuber-borne sclerotia 

(Campion et al., 2003; Woodhall et al., 2008). However, a study from Finland (Lehtonen et 

al., 2009) found that while AG 3 isolates form far more black scurf on tubers than AG 2-1 or 

AG 5 isolates and have greater potential for dissemination of inoculum, AG 2-1s and AG 5s 

have broader host ranges than AG 3s. Broad host ranges would imply that the AG 2-1s and 

AG 5s may have increased capacity to persist in fields during the absence of a potato crops, 

potentially making them economically more important in situations where control of tuber-

borne inoculum is effective. 

3.6 Conclusions 

The results from this study have demonstrated consistency in disease susceptibility between 

plants grown from tissue-cultured plantlets and minitubers, which support the use of either 

type as host propagules for assays investigating disease suppression. The R. solani isolate 

Rs043-2, at an inoculum rate of 0.1 or 0.3% (w/w) was selected as the most practically 

appropriate inoculum option for future disease suppression studies, based on severity of 

disease and impact on plant physical parameters. The two pathogen inoculum media gave 

similar levels of disease, but the barley medium gives consistency with previous studies. Plant 
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pots of 0.9 L capacity, a peat:pumice based plant growth medium and a growth period of 7 

weeks were also confirmed as suitable for a greenhouse disease suppression assay. The use of 

a combination of direct measures of disease symptoms (proportion of stolons with cankers 

and proportion of emerging shoots ‘nipped’) and measures of plant physical parameters 

(especially tuber weight) was useful in assessing the total impact of the pathogens to the 

plants, and should be maintained in the future biological suppression bioassays. These results 

provide a sound basis for studies on biological suppression of Rhizoctonia diseases of potato. 
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     Chapter 4 
Screening potential biocontrol agents in a greenhouse 

disease assay 

4.1 Abstract 

This study tested 89 microbial isolates for suppression of Rhizoctonia diseases of potato in a 

greenhouse assay, as either spore (Trichoderma/Gliocladium isolates) or cell (Pseudomonads 

or endospore-forming bacteria) suspensions. While several isolates gave significant 

reductions in measures of canker symptoms, or improvement of other plant parameters, none 

were consistent enough between assays, or demonstrated strong enough disease suppression, 

to warrant further investigation of their biocontrol potential. Compared with similar 

greenhouse assays in the literature, disease pressure was high in the pathogen controls, which 

may have contributed to poor performance of potential biocontrol isolates. Alternatively, the 

results support the hypothesis that the single isolate inundative approach to biocontrol is 

insufficient for consistent suppression of Rhizoctonia diseases of potato. 

4.2 Introduction 

To determine if the selected isolates (Chapter 2) possessed biocontrol activity for Rhizoctonia 

canker diseases of potato, they were screened using a greenhouse bioassay (Chapter 3). To 

validate the results, selected isolates were re-tested in an assay more reflective of field 

conditions. The ultimate goal of this study was to select one to three isolates demonstrating 

the strongest levels of in vivo disease suppression for further studies on their physical 

limitations, optimium biocontrol potential and mode(s) of biocontrol action. 

Many recently published studies have aimed to identify microbial isolates with potential to be 

developed as inundative biocontrol treatments for Rhizoctonia diseases of plants. These have 

focused on extensive in vitro candidate selections, commonly on the basis of antibiosis, 

mycoparasitism or production of enzymes linked to this mode of action, antagonism in culture 

assays or decreased R. solani sclerotial viability. In these studies, only a few isolates progress 

to in vivo tests of disease suppression, usually in greenhouse pathogenicity assays. For 

example Grosch et al. (2006) screened 390 fungal isolates in vitro, and only six in vivo. 

Similarly, Faltin et al. (2004) screened 434 bacterial isolates in vitro, and highlighted six for 

further study. However, this process of hierarchical selection to narrow the collection 

screened to a few ‘best’ isolates requires strong relationships between in vitro selection 
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criteria and in vivo disease suppression. Otherwise a large proportion of isolates with good in 

vivo disease suppressing capacity that perform less well in in vitro assays will be overlooked. 

For example, in a study of rhizosphere Pseudomonads, Bautista et al. (2007) found no 

correlation between in vitro suppression of R. solani and in vivo suppression of Rhizoctonia 

diseases of Solanum phureja. In the present study, the decision to screen a relatively large 

number of isolates (89) was made, firstly to avoid limiting the modes of action to only those 

that previous studies have uncovered, and secondly, the limitations of in vitro screening was 

acknowledged and strong in vitro pathogen suppression was not completely relied upon for 

narrowing the choice of isolates to progress into further studies. Isolate selection based on the 

information generated in Chapter 2 (Table 2.3) provided isolates possessing one or a 

combination of traits (growth promotion, production of anti-fungal compounds, strong 

physical competition on agar, potential endophytic habit in potato plants, previous biocontrol 

of fungal phytopathogens), which would possibly inform as to which of these characteristics 

is the most important indicator of potential biocontrol activity against Rhizoctonia diseases of 

potato. To this end, a biocontrol score was created to allow analysis across the seven screens 

and three validation assays with regards to test isolate selection criteria and the level of 

disease suppression achieved. 

Five of the seven initial greenhouse screens (screens 3 to 7) described in Chapter 4 were 

conducted on plants from tissue-culture, which, because they already possess an above-

ground shoot at the time of assay initiation, are not susceptible to the emerging shoot 

‘nipping-off’ stage of Rhizoctonia disease of potato. Therefore, validation of the results for 

many of the isolates demonstrating some suppression of disease was performed using 

minitubers as the plant propagation material, over three assays (validation assays 1 to 3). 

Plants from minitubers exhibit the shoot ‘nipping-off’ symptom. Validations were also 

conducted both in the seed raising mix and a soil-based mix to compare the screen assay 

conditions with a system closer to a ‘real world’ soil environment. The third validation assay 

included a ten-fold greater rate of inoculation of three of the potential biocontrol isolates 

being tested, as well as a variation of the application procedure (direct to minitubers rather 

than pre-mixed through the soil). This provided a preliminary test of whether variation of 

application procedure might improve disease suppression, possibly indicating whether 

investigation into optimisation of biocontrol would be worthwhile in future experiments. The 

candidate isolates were also tested for in vitro suppression of sclerotial production by 

R. solani on agar. Furthermore, three isolates were tested for suppression of black scurf in a 

shadehouse experiment where plants were grown to maturity, and severity of sclerotium 

development on tubers was assessed. 
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Regression analyses over the seven disease suppression screens were conducted to determine 

if an isolate’s likelihood of achieving statistically significant disease suppression was related 

to the severity of disease in the assay. The results of the experiments were also compared with 

those of recent published studies which employed similar greenhouse assays, and conclusions 

were drawn as to whether further investigations would be worthwhile into the biocontrol 

potential of any of the test isolates applied in an inundative fashion. 

4.3 Methods 

4.3.1 Culture of microbial inoculum 

The bacterial and fungal isolates screened (as detailed in Chapter 2, Table 2.3) and pathogen 

isolate were cultured as described below. 

4.3.1.1 Bacterial inoculum 
For each bacterial isolate tested for suppression of disease, the relationship between Optical 

Density (OD) of broth culture and concentration of colony forming units (CFUs) was 

determined prior to greenhouse assay initiation. For each isolate, 18 mL capacity Universal 

bottles each containing 5 mL Luria Bertani broth (LB, Appendix A.1.6) were inoculated from 

bacterial colonies grown on NA (Appendix A.1.2 inoculated from -80°C stock culture), then 

capped and incubated (25°C, darkness, 180 rpm orbital shaking) for 24 h. From these cultures, 

2 mL aliquots were each dispensed into 98 mL of LB in 250 mL capacity conical flasks. 

Flasks were plugged with sterile cotton wool and capped with tinfoil prior to incubation at 

30°C in darkness at 180 rpm for 18 h. Broth culture (20 mL) was dispensed into a 50 mL 

screw-cap tube (Axygen® Scientific), and then subjected to 3220 rcf for 10 min at 18°C in a 

centrifuge (5810 R, Eppendorf). The supernatant was removed and the bacterial pellet was re-

suspended in 20 mL of physiological peptone solution (PPS, Appendix A.1.8) by vortex 

mixing. This re-suspension underwent 2-fold and 10-fold serial dilutions in PPS, with the OD 

at 600 nm recorded (Geneysis 10uv Scanning, Thermo Fisher Scientific) for each dilution 

step. The CFU concentration of the re-suspension was determined by plating aliquots of the 

serial dilutions onto NA, with subsequent colony counting once colonies formed, after 

incubation (25°C, darkness). The calculated CFU concentration for each dilution step was 

plotted against the recorded OD value, and linear regression was used to produce the formula 

describing the relationship between CFU concentration and OD. This was: 

x = (y+a)/b, 

where x = CFU/ mL,  y = OD and a and b are constants supplied by the regression. 
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Culture broths (100 mL) were prepared to be ready for the day of assay initiation. A 2 mL 

aliquot of each 100 mL of culture broth was centrifuged, the supernatant removed, and the 

bacterial pellet re-suspended in 2 mL of PPS and diluted 10-fold in PPS prior to OD reading. 

The pre-determined equation and OD value were then used to calculate CFU concentration of 

the broth culture, and the required volume dispensed, centrifuged, supernatant removed and 

pellet re-suspended in 50 mL of the selected application solution. For screen assays 1, 3 and 4 

(Table 4.1) the bacterial application solution was 1:1 (v/v) LB:PPS. For screen 5, 6 and 7, 

PPS was used. A 10-fold serial dilution of the bacterial application solution was also made in 

PPS and aliquots plated onto NA so that colony counting after incubation (25°C, darkness) 

could be used to determine actual CFU concentrations. 

4.3.1.2 Fungal inoculum 
Fungus isolates were first inoculated from refrigerated slopes onto PDA (Appendix A.1.1) 

plates and incubated (25°C, darkness) for 5 days. For screens 2 to 5, ten PDA plates per 

isolate were each inoculated with a 1 cm2 agar square of mycelia from a PDA culture, sealed 

with cling wrap (GLAD®) and incubated at room temperature in a blue-light box (12/12 h 

light/dark cycle with blue NARVA® LT 18W/018 lighting) for 2 weeks. For screen 6 onward 

the culture method was inoculation of bran:peat media flasks (Appendix A.2.3) with five 

mycelia PDA squares as detailed previously in this section, and incubated in a blue-light box 

as previously detailed. On the morning of assay initiation, spores were harvested with sterile 

tap water; agitated from PDA culture surfaces or mixed through bran:peat medium with a 

sterile glass rod in ca 50 mL, then filtered through Miracloth® (Calbiochem, Merck KGaA). 

An aliquot of spore suspension was diluted 100-fold in water and spore concentration 

determined by performing haemocytometer counts on 10 µL. The required volume of spore 

suspension was then dispensed and made up to 50 mL with sterile water and maintained on 

ice until required. For suppression of sclerotial formation agar assays, 7 mm diameter agar 

plugs from the growing R. solani colony margin on PDA were used to inoculate water agar 

(WA, Appendix A.1.9), which was incubated for 5 days (25°C, darkness) and 7 mm diameter 

agar plugs from WA growing colony margins were used to inoculate the assay plates. 

4.3.1.3 Pathogen inoculum 
The R. solani isolate used for the screening and validation assays was Rs043-2 (see Chapter 

3). For the agar plate sclerotial suppression assay isolates Rs043-2 and Rs018-2 (an AG 3 

provided by Subha Das, Plant and Food Research Ltd., Lincoln) were both used, and for the 

assay for the in vivo suppression of black scurf, isolate Rs018-2 was used. PDA plates were 

inoculated from refrigerated infested barley grains and incubated (25°C, darkness) for 5 days. 

For in vivo assays, conical flasks of barley grain + V8® juice (Appendix A.2.1) were each 
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inoculated with five 7 mm diameter PDA plugs from growing colony margins. Flasks were 

plugged with cotton wool, capped with tinfoil and incubated at 25°C in darkness for 14 days. 

For agar plate assays, 7 mm diameter mycelia plugs of PDA cultures were used to inoculate 

WA plates, and after 5 days incubation (25°C, darkness), 7 mm diameter WA plugs from the 

growing colony margins were used to inoculate the assay plates. 

4.3.1.4 Inoculum concentrations 
In screens 1 to 5, the target concentration of pathogen inoculum was 0.30% w/w. The mean 

weight of 0.9 L of peat mix was determined as 430 g, so for treatments of ten replicates (4.3 

kg), 12.9 g of infested barley grains was dispensed. The target inoculation rate for potential 

biocontrol agents (BCAs) for these assays was 1×106 CFUs/spores per g peat mix, equating to 

4.3×109 total CFUs or spores for a treatment of ten replicates. As screen 6 contained a mixture 

of peat mix and soil mix treatments (Table 4.1), the inoculation rate for screens 6 and 7, all 

three validations and the assay of suppression of black scurf, was changed to a w/v ratio. This 

was because of the difference in density between the two growing media, and so that each 

treatment would receive the same weight of inoculum or number of CFUs/spores: For these 

assays a pathogen inoculum concentration of 0.10% w/v was selected, as the total weight of 

inoculum per treatment was close to that of the first five screens (9.0 g), but was still one of 

the selected concentrations used as described in Chapter 3. The target inoculation rate of 

potential BCAs for these later screens was 1×106 CFUs/spores per mL plant growth medium 

(9.0 × 109 CFUs/spores per treatment), with a few exceptions (see Results, below). 

4.3.2 Fungicide treatment 

The fungicide pencycuron (Monceren® 250 FS, Bayer CropScience) was used as a treatment 

for comparison in some of the assays. The required volume of a 250 g pencycuron/L 

concentrate with recommended in-furrow application rate of 3 – 5 kg a.i./ha, was calculated 

on a per plant basis as follows: One square hectare of commercially planted potatoes consists 

of 133 rows of plants with 0.3 m spacing between plants, equalling 44,333 seed potatoes 

planted per hectare. The 5 kg a.i./ha rate of pencycuron would require 20 L of Monceren® 

product per hectare, which is the equivalent of 0.45 mL per plant. Therefore, for a treatment 

of ten replicate plants (pots), 4.5 mL of concentrate was dispensed and made up to 50 mL 

with tap water on the morning of assay initiation. 

4.3.3 Screening and validation assay conditions and procedures 

The seven disease suppression screens and three validation assays (Table 4.1) were set up as 

follows: Each treatment consisted of ten 0.9 L capacity pot replicates, so 9 L of plant growth 
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medium was dispensed onto clean plastic sheeting per treatment, either seed raising mix (peat 

mix, Appendix A.3.1) or John Innes shrub mix (soil mix, Appendix A.3.2). For treatments 

requiring pathogen inoculation (all except no-pathogen controls), the pre-weighed infested 

barley + V8® media was mixed thoroughly through the plant growth medium by hand (with 

latex gloves). Next, for potential BCA or chemical treatments the prepared application 

suspensions were gently shaken then evenly distributed over the plant growth medium and 

thoroughly mixed through by hand (gloves were changed between treatments to avoid cross-

contamination). The inoculated plant growth medium was then divided between ten 0.9 L 

capacity (120 mm diameter) plastic plant pots with individual saucers. In the final validation 

there were three treatments where potential BCA application was not performed by this 

method, but by pipetting 1/10 of the suspension (5 mL) direct to each minituber when planted, 

before the minituber was covered with potting mix. Pots were then arranged in a randomised 

block design (ten blocks, one replicate of each treatment per block) on mesh tables in a 

temperature-controlled greenhouse unit set to 16.5°C with supplementary lighting (16:8 h 

light:dark, 7 h total supplement from ten SON-T AGRO 400 lamps - Philips, Belgium). One 

potato propagule was planted per pot: for screens 1 and 2 and the three validation assays, 

minitubers undersized for field planting (cv. ‘Desiree’, Alex McDonald Merchants, Lincoln) 

were pre-sprouted (2 weeks at 18°C, 12:12 h light:dark, lighting: two 30W/860 Lumilux® 

Daylight lamps - Osram, Germany), then planted at 30 mm depth. For screens 3 to 7, tissue-

cultured plantlets (cv. ‘Russet Burbank’, Aspara Pacific Ltd, Canterbury) were rinsed free of 

agar in tap water before planting. Pots were watered as required when mix appeared dry. For 

soil mix treatments, once plants had reached 200 mm in height they received 30 mL of a 

0.01% solution of High NK™ liquid fertiliser (8:6:13.5 N:P:K, Agrichem, Australia) twice a 

week to prevent nutrient deficiency. 

4.3.4 Screening and validation assays harvest procedures 

After 7 weeks growth, all plants were washed free of plant growth medium and total number 

of stolons and number of stolons with visible lesions were recorded for each plant. For assays 

using minitubers, the number of emerged shoots and number and proportion of non-emerged 

shoots with rotted or dead apices (‘nipped’) were also determined for each plant. The number 

and fresh weight of tubers, and root and shoot dry weights, were also recorded for each plant. 

All data were subjected to analysis of variance for randomised block designs, employing 

Fisher’s unrestricted LSD at P = 0.05 for multiple comparisons. 
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4.3.5 Sclerotial suppression assay 

All potential BCAs included in the in vivo disease suppression screen were also tested for in 

vitro suppression of R. solani sclerotial formation. For Trichoderma (and one Gliocladium) 

test isolates, 7 mm diameter WA plugs from growing colony margins (section 4.3.1.2) were 

co-inoculated onto PDA in Petri plates along with R. solani from WA (section 4.3.1.3) in the 

same manner as outlined for dual plate assays in Chapter 2. Bacterial isolates were loop 

inoculated from NA cultures (4.3.1.1) onto four points on PDA:NA 1:1 (v/v, Appendix 

A.1.10) plates as described for dual plate assays in Chapter 2, with one plug of R. solani in the 

centre of each plate. Each test isolate was co-inoculated onto two plates with R. solani isolate 

Rs043-2 and two plates with Rs018-2. Plates were sealed with plastic film (GLAD®) and 

incubated (25°C, darkness) for 4 weeks, then the coverage of the agar plates with R. solani 

sclerotia was assessed on a 0 to 3 scale: 0 = no sclerotia, 1 = light coverage, 2 = medium 

coverage, 3 = heavy coverage (similar to experimental controls). 

4.3.6 Black scurf suppression and harvest procedures 

Each treatment in this experiment consisted of ten replicate planter bags (PB 8; 4.5 L 

capacity, Egmont commercial), each containing 4 L of plant growth medium and one potato 

plant. For each treatment, 40 L of soil:pumice mix (Appendix A.3.3) was dispensed onto 

clean plastic sheeting, then for treatments requiring pathogen inoculation (all except non-

pathogen control), 40 g of infested barley + V8® media (isolate Rs018-2, cultured as detailed 

4.3.1.3) was mixed thoroughly into the plant growth medium by trowel. Treatments receiving 

fungal (4×1010 spores in 300 mL sterile tap water) or bacterial inoculum (4×1010 CFUs in 300 

mL PPS), or pencycuron (90 mg made to 300 mL with tap water), had application solutions 

dispensed evenly over the plant growth medium, which was then mixed thoroughly by trowel. 

Treatment plant growth medium was then divided equally between ten PB 8 planter bags and 

one small seed potato (cv. ‘Russet Burbank’, mean weight 16.7 g) free of sclerotia and surface 

sterilised (2 min in 2% sodium hypochlorite solution then rinsed twice in tap water), was 

planted per bag at 50 mm depth. Bags were arranged in a randomised block design, ten blocks 

each with one treatment replicate per block, in a shade house and watered as required. Plants 

were grown for 18 weeks, after which time they were cut at soil level. After a further 3 weeks, 

daughter tubers were removed from each bag, washed free of soil and the number and total 

weight recorded, as well as marketable tuber yield (excluding malformed tubers and tubers 

<45 mm or >85 mm in length (NIAB, 2009)). The severity of black scurf on each tuber was 

assessed using the standard severity diagrams described by James (1973). All data were 
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subjected to analysis of variance for randomised block designs, employing Fisher’s 

unrestricted LSD at P = 0.05 for multiple comparisons. 

 

Table 4.1 Screen and validation assay details, including plant propagule type, plant 
growth medium and project identifier codes of isolates tested 

Assay Plant Propagule 
Plant 
growth 
medium 

Isolates tested (RSP/RSPT code unless 
otherwise stated) 

Screen 1 Minituber ‘Desiree’ Peat mix RSP0002, 0017, 0144, 0170, 0268, 0362, 2004, 
2020, 2042, 2086, 2139 & 2183 

Screen 2 Minituber ‘Desiree’ Peat  mix RSPT028, 037, 085, 105, 106, 113, 116, 119, 122, 
124, 125 & LU806 

Screen 3 Tissue-culture plantlet 
‘Russet Burbank’ Peat mix RSP0268+, 0362+, 2002, 2009, 2014, 2015, 2110, 

RSPT018, 037+, 084, 5030, 5080 & LU140 

Screen 4 Tissue-culture plantlet 
‘Russet Burbank’ Peat  mix 

RSP2002, 2009, 2013, 2016, 2023, 2024, 2026, 
2027, 2053, 2057, 2067, 2071, 2089, 2116, 
RSPT001, 005, 007, 029, 097 & 110. 

Screen 5 Tissue-culture plantlet 
‘Russet Burbank’ Peat  mix 

RSP2072, 2090, 2094, 2110+, 2120, 2158, 2013, 
RSPT003, 031, 036, 060, 079, 093, 5182, LU144, 
LU1187, SS573, SS1635, SS1708 & SS1902 

Screen 6 Tissue-culture plantlet 
‘Russet Burbank’ 

Peat mix 
and soil mix 

RSP2083, 2090+, 2125, 2193, RSPT106+, 124+, 
LU540, LU713, LU740, SS1708+ & pencycuron 

Screen 7 Tissue-culture plantlet 
‘Russet Burbank’ Soil mix 

RSPT037+, 084+, 085+, 106+, 119+, 122+, 5075, 
5163, 5182, LU 132, LU144+, LU151, LU297, 
LU298, LU540+, LU547, LU549, LU569, LU593, 
LU753, LU806+, LU1370 & pencycuron 

Validation 
1 Minituber ‘Desiree’ Peat mix 

and soil mix 
RSP2002, 2193, RSPT113, 119, 125, LU806 & 
pencycuron 

Validation 
2 Minituber ‘Desiree’ Peat mix 

and soil mix 
RSP2009, 2139, RSPT 106, 122, 125, SS1708 & 
pencycuron 

Validation 
3 Minituber ‘Desiree’ Peat mix 

and soil mix RSP2139, RSPT106, LU144 & LU549 
+Isolate repeated from previous screen 
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4.3.7 Analysis of trends across screens 

In order to determine if a relationship existed between the degree of canker in a disease 

suppression assay and the proportion of isolates in a screen which significantly reduced 

disease, linear regression analyses were performed on the data from the seven screens. The 

mean percent diseased stolons, and mean percent reduction in number of symptomless stolons 

in pathogen controls were paired with the percent of isolates that significantly reduced those 

measures of disease. 

A general biocontrol points system was created so that the results across the seven screens and 

three validation assays could be analysed together with regards to the original criteria for 

which the test organisms were selected. For each assay, comparisons were made of test 

isolates means relative to the pathogen control mean, but only if there was a significant 

difference between the pathogen and no pathogen control means. If a test isolate improved 

(P ≤ 0.05) one of the measures of canker disease (percent diseased stolons, number of 

symptomless stolons or percent emerging shoots nipped) it was given +1 score, and the same 

for improvement of a physical parameter (shoot or root dry weight, number or total weight of 

tubers, total number of stolons), giving a maximum possible score of 2. If a test isolate 

increased one of the measures of canker disease, it was given -1 score, and the same for any 

physical parameter, giving a possible minimum score of -2. If an isolate made no significant 

difference to any measure of canker disease it was given score 0, and the same for any 

physical parameter. The -2 to +2 scale was then subjected to unbalanced ANOVA, with 

possession of the five selection criteria (growth promotion, antibiotic production, physical 

competition, endophytism and evidence of previous biocontrol) as factors. 
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4.4 Results 

4.4.1 Canker suppression screens and validation assays 

Tables 4.2 to 4.8 present the results for experimental controls and any treatment which 

statistically (P ≤ 0.05) improved any parameter negatively impacted in the pathogen controls, 

for the seven disease suppression screens. These tables also include isolates which were 

repeated between screens (for assessment of consistency of results) irrespective of whether 

they positively improved disease parameters. Tables 4.9, 4.10 and 4.11 present results from 

all the treatments included in the three validation assays. If data sets did not meet the 

parametric requirement of normal distribution, data were transformed (square root 

transformation for count data, log10 transformation for weights) before ANOVA. The group 

means presented are from the pre-transformed data. For each parameter, group means which 

share a designated letter are not statistically different at P ≤ 0.05. Data sets without designated 

lettering could not be analysed in this manner. 

4.4.1.1 Canker suppression screens 
Of the twelve potential biocontol isolates tested in disease suppression screen 1, only three 

positively impacted on one or more measure of canker symptoms (Table 4.2). Two isolates 

decreased percent emerging shoots nipped (RSP0268 and 2004) and one decreased percent 

diseased stolons (RSP2139). No isolate increased total number of symptomless stolons and 

isolate RSP2004 gave no symptomless stolons on any plant. Only RSP0268 improved any of 

the plant parameters, increasing both total number of tubers and stolons. Five isolates 

increased the percent diseased stolons, including RSP2004, and every isolate except for one 

gave total tuber weight significantly less than the pathogen control. Full results for screen 1 

are presented in Appendix B, Table 7.2. 

In the second disease suppression screen, five of the twelve tested isolates reduced the mean 

percent diseased stolons (Table 4.3), but of these only one (RSPT122) also increased the total 

number of symptomless stolons. Four isolates also increased one or more of the plant 

parameters, although none increased total tuber weight. Three isolates increased the percent 

diseased stolons. Full results for screen 2 are presented in Appendix B, Table 7.3.
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Table 4.2 Screen 1, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from minitubers in peat mix, 
inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell suspensions as treatements, with target 1 × 106 CFU/g plant 
growth medium (only positive results plus any isolate repeated between screens are presented) 

Treatment 
Applied 
concn 
(CFU/g) 

Emerging 
shoots 
nipped (%) 

Diseased 
stolons (%) 

Total no. 
of stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

No. of 
tubers 

Total tuber 
weight (g) 

No pathogen control  0.0 a 00.0 a 9.4 a 9.4 a 1.99 d 0.21 c 4.7 a 4.61 b 
Pathogen control  48.2 e 82.7 cd 3.9 d 0.75 bcd 1.14 ab 0.11 a 1.4 c 3.09 ab 
Appln solution (LB:PPS)  36.9 cde 47.1 b 4.0 cd 1.5 bc 0.85 a 0.08 a 1.7 bc 0.86 cde 
RSP0268 B. thuringiensis 8.53×105 13.6 abc 88.0 cdef 7.3 abc 1.8 bc 1.83 bcd 0.15 abc 2.8 ab 0.82 cd 
RSP2004 Flavobacterium sp. 1.85×106 19.9 abcd 99.3 f 6.2 abcd 0.0 d 1.37 abcd 0.14 abc 1.6 bc 0.56 def 
RSP2139 Paenibacillus peoriae 8.45×105 48.6 de 33.5 b 4.3 cd 1.8 bc 0.79 a 0.08 a 0.9 c 0.24 g 

 

Table 4.3 Screen 2, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from minitubers in peat mix, 
inoculated with Rhizoctonia solani isolate Rs043-2 and selected spore suspensions as treatements, with target 1 × 106 spores/g plant 
growth medium (only positive results plus any isolate repeated between screens are presented) 

Treatment 
Applied 
concn 
(spores/g) 

Emerging 
shoots 
nipped (%) 

Diseased 
stolons (%) 

Total no. 
of stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

No. of 
tubers 

Total tuber 
weight (g) 

No pathogen control  0.0 a 00.48 a 7.9 a 7.8 a 1.86 a 0.22 a 4.4 a 4.18 a 
Pathogen control  65.1 bc 79.75 cd 0.9 de 0.2 cd 0.23 de 0.04 d 0.5 c 0.22 bc 
RSPT113 Trichoderma sp. 1.00×106 67.5 bc 42.51 b 1.8 bcde 0.9 bc 0.44 cde 0.04 cd 0.2 bc 0.03 bc 
RSPT119 Trichoderma sp. 1.00×106 63.9 bc 50.01 b 1.9 bcd 0.5 bcd 0.70 bcd 0.10 bcd 0.7 bc 0.14 bc 
RSPT028 Trichoderma sp. 1.00×106 55.9 bc 72.61 c 2.7 b 0.5 bcd 0.73 bcd 0.11 bc 0.3 bc 0.16 bc 
RSPT122 Trichoderma sp. 1.00×106 56.4 bc 43.38 b 2.2 bcd 1.0 b 0.76 bc 0.07 bcd 0.2 bc 0.16 bc 
LU806 T. atroviride 1.00×106 80.2 c 02.92 a 0.1 e 0.1 d 0.04 e 0.03 d 0.0 c 0.00 c 
RSPT106 Trichoderma sp. 9.77×105 45.2 b 90.03 de 2.6 b 0.3 bcd 1.19 b 0.14 b 0.7 b 0.70 b 
RSPT116 Trichoderma sp. 1.00×106 46.4 b 73.15 c 1.0 bc 0.7 bcd 0.94 bc 0.10 bc 0.5 bc 0.18 bc 
RSPT125 Trichoderma sp. 7.21×105 60.1 bc 04.21 a 0.8 bcde 0.2 bcd 0.43 cde 0.05 cd 0.1 bc 0.01 bc 
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In disease suppression screen 3 (Table 4.4), of the 14 isolates tested, only one isolate 

(RSP2009) reduced canker symptoms. It decreased mean percent diseased stolons and 

increased total number of symptomless stolons. Two isolates (RSP0268 and RSPT084) also 

increased one plant parameter each, number of stolons and number of tubers, respectively. 

Isolates RSP2002 and LU132 were tested in other screens, but neither positively or negatively 

affected any measure of canker or plant parameter relative to pathogen controls in screen 3. 

Full results for screen 3 are presented in Appendix B, Table 7.4. 

In disease suppression screen 4 there were insufficient tubers at harvest for analysis (Table 

4.5). Of the 22 isolates tested, two (RSP2002 and 2013) reduced the percent diseased stolons, 

of which one (RSP2013) also increased the total number of symptomless stolons. No isolate 

improved any of the plant parameters, while one decreased total number of stolons and two 

increased the percent diseased stolons. Isolate RSP2009 was a repeat treatment from a 

previous screen but in this experiment did not improve any canker symptom or plant 

parameter. Full results for screen 4 in are presented in Appendix B, Table 7.5. 

Disease suppression screen 5 (Table 4.6) tested 20 isolates, of which two (RSP2072 and 

2090) decreased the mean percent diseased stolons, but no isolate increased the total number 

of symptomless stolons. Isolates RSP2072 and RSP2090 also improved one plant parameter 

each (number of stolons and total tuber weight, respectively), and one further isolate (SS1708) 

increased the number of tubers. Isolates RSP2110, 2013 and LU144 were also tested in other 

screens, but none improved any canker symptom or plant parameter in this experiment. Full 

results for screen 5 are presented in Appendix B, Table 7.6. 
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Table 4.4 Screen 3, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from tissue -cultured plantlets 
in peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as treatements, with target 1 × 106 
CFU or spores/g plant growth medium (only positive results plus any isolate repeated between screens are presented) 

Treatment 
Applied concn 
(spores or 
CFU /g) 

Diseased 
stolons (%) 

Total no. of 
stolons 

No. of 
symptom-less 
stolons 

Shoot dry 
weight (g)+ 

Root dry 
weight (g) 

No. of 
tubers 

Total tuber 
weight (g) 

No pathogen control  0.4 a 4.6 a 4.4 a 4.18 0.95 abc 4.0 a 9.01 a 
Pathogen control  91.0 de 2.7 cde 0.3 d 5.06 0.94 abc 0.3 cd 0.29 b 
Appln solution (LB:PPS)  72.3 bc 3.7 abc 1.2 b 3.60 0.62 ef 0.2 cd 0.04 b 
RSP0268 B. thuringiensis 1.01×106 94.7 de 4.0 ab 0.2 d 5.53 0.96 abc 0.3 cd 0.09 b 
RSP2002 B. mycoides 6.59×105 88.3 cde 2.7 cde 0.4 cd 4.70 0.88 bcd 0.7 bc 0.17 b 
RSP2009 B. mycoides 1.63×106 60.8 b 2.4 cde 1.2 bc 3.68 0.72 def 0.0 d 0.00 b 
RSP2110 Pseudomonas sp. 3.88×105 78.7 cd 2.8 abc 0.6 bcd 4.16 0.73 def 0.4 bcd 0.03 b 
RSPT084 Trichoderma sp. 1.00×106 98.2 e 2.9 abc 0.1 d 5.79 0.11 ab 0.9 b 0.46 b 
LU132 T. atroviride 1.00×106 85.9 cde 1.9 e 0.4 bcd 3.84 0.570 f 0.1 cd 0.17 b 

+No differences (P < 0.05) between any of the shoot dry weight treatment means 

Table 4.5 Screen 4, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from tissue-cultured plantlets 
in peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as treatements, with target 1 × 106 
CFU or spores/g plant growth medium (only positive results plus any isolate repeated between screens are presented) 

Treatment Applied concn 
(spores or CFU /g) 

Diseased 
stolons (%) 

Total no. of 
Stolons 

No. of 
symptom-less 
stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

No pathogen control  1.0 a 2.5 a 2.4 a 1.78 abcde 0.39 abcde 
Pathogen control  62.9 cdefg 1.6 ab 0.5 cdefg 1.86 bcde 0.35 de 
Appln solution (LB:PPS)  80.7 fghi 2.3 ab 0.5 cdefg 1.77 abcde 0.33 e 
RSP2002 B. mycoides 5.43×104 39.6 b 1.6 abc 0.8 bcde 1.89 abcde 0.37 bcde 
RSP2009 B. mycoides 1.55×106 55.3 bcdef 2.3 ab 0.9 bcdef 2.06 e 0.45 a 
RSP2013 B. mycoides 8.14×105 39.7 b 2.3 ab 1.4 b 1.62 abc 0.35 cde 
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Table 4.6 Screen 5, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from tissue -cultured plantlets 
in peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as treatements, with target 1 × 106 
CFU or spores/g plant growth medium (only positive results plus any isolate repeated between screens are presented) 

Treatment 
Applied concn 
(spores or 
CFU /g) 

Diseased 
stolons (%) 

Total no. of 
stolons 

No. of 
symptom-less 
stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g)+ 

No. of 
tubers 

Total tuber 
weight (g) 

No pathogen control  1.9 a 5.0 fg 4.9 a 4.16 a 0.68 4.5 a 13.63 a 
Pathogen control  95.8 de 3.2 abc 0.2 bcd 5.74 cdef 0.73 0.6 cd 0.36 d 
Appln solution (PPS)  97.7 de 3.6 abcde 0.2 bcd 5.50 bcdef 0.69 0.6 bcd 0.57 d 
SS1708 Bacillus sp. 9.57×105 90.2 bcd 3.9 bcdefg 0.4 bc 5.82 cdef 0.74 1.3 b 1.71 d 
RSP2072 B. mycoides 8.45×105 89.2 bc 4.9 defg 0.3 b 5.03 b 0.62 0.3 bcd 1.79 d 
RSP2090 Endospore bacterium 7.71×105 87.2 b 3.8 abcdefg 0.5 bc 5.18 bc 0.58 1.3 bc 3.62 c 
RSP2110 Pseudomonas sp. 1.07×106 100 e 4.2 bcdefg 0.0 d 5.62 bcdef 0.72 0.6 bcd 1.62 d 
RSP2013 B. mycoides 8.53×105 93.7 bcde 3.4 abc 0.3 bcd 6.87 g 0.83 0.2 d 0.05 d 
LU144 T. atroviride 1.00×106 97.2 cde 2.7 ab 0.1 cd 6.17 fg 0.74 0.7 bcd 0.89 d 
+No differences (P < 0.05) between any of the root dry weight treatment means 
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In disease suppression screen 6, ten isolates and pencycuron were tested in the seed raising 

(peat) mix, and four of these isolates plus pencycuron and the experimental controls were also 

tested in soil mix (Table 4.7). For the pathogen controls, disease was less severe in the soil 

than the peat mix, both for percent diseased and number of symptomless stolons, with several 

plant parameters less affected in the soil mix. Pencycuron in both plant growth media reduced 

disease to levels not different (P < 0.05) to the no pathogen controls, and the same was true of 

most plant parameters. Isolates SS1708, RSP2090 and RSPT106 were repeated from previous 

screens, and only RSPT106 in soil mix reduced canker (reduced percent diseased stolons and 

increased total number of symptomless stolons), but not in peat mix, and none of the three 

isolates improved any plant parameter in either plant growth medium. Isolate RSP2083 

increased the total number of tubers, but no other plant parameter was improved. Full results 

for screen 6 are presented in Appendix B, Table 7.7. 

Of the 22 isolates tested in disease suppression screen 7 (Table 4.8), five isolates reduced 

canker parameters. Isolates LU132 and RSPT122 increased total number of symptomless 

stolons, RSPT106 decreased percent diseased stolons, and LU549 and LU144 achieved both. 

In screen 7 there was no difference (P < 0.05) between pathogen and no pathogen controls for 

the mean total number of stolons or total tuber weight. Isolates LU806, RSPT119 and 

RSPT084 were repeat treatments from previous screens, but in this experiment no treatment 

significantly reduced canker parameters. Full results for screen 7 are presented in Appendix 

B, Table 7.8. 
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Table 4.7 Screen 6, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from tissue -cultured plantlets 
in peat mix or soil mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as treatements, with 
target 1 × 106 CFU or spores/mL plant growth medium (only positive results plus any isolate repeated between screens are 
presented) 

Treatment 
Plant 
growth 
medium 

Applied concn 

(spores or 
CFU /mL) 

Diseased 
stolons 
(%) 

Total no. of 
stolons 

No. of 
symptom-less 
stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

No. of 
tubers 

Total 
tuber 
weight (g) 

No pathogen control peat mix  0.6 a 10.0 a 9.9 a 3.03 ab 0.74 c 6.6 a 8.54 a 
soil mix  4.5 a 7.3 bcd 7.1 b 3.20 abc 0.57 ef 6.7 a 7.52 ab 

Pathogen control peat mix  97.0 fg 4.8 hij 0.2 h 3.99 gh 0.78 ab 0.4 ef 0.17 g 
soil mix  80.6 cd 6.2 cdefgh 1.7 d 3.32 bcd 0.56 efg 4.3 ab 4.72 cd 

Pencycuron peat mix  0.0 a 9.0 ab 9.0 ab 2.92 a 0.70 c 7.1 a 8.12 a 
soil mix  1.1 a 7.5 bcd 7.4 b 3.11 ab 0.47 g 5.7 ab 5.44 c 

Appln solution (PPS) peat mix  100 fg 5.2 fghij 0.0 h 3.93 efgh 0.70 cd 0.3 def 0.00 g 

SS1708 Bacillus sp. peat mix 1.13×106 100 fg 4.3 ij 0.0 h 4.02 fghi 0.69 cd 0.9 def 0.14 g 
soil mix 1.06×106 76.3 c 6.6 cdefg 2.3 de 3.33 bcd 0.47 g 4.6 b 2.50 ef 

RSP2090 Endospore 
bacterium 

peat mix 1.19×106 100 fg 5.4 efghij 0.0 h 4.29 hi 0.74 abc 0.6 def 0.08 g 
soil mix 9.63×105 88.1 de 6.9 cdef 1.0 def 3.57 cde 0.53 fg 2.7 c 3.21 de 

RSPT106 Trichoderma sp. peat mix 1.00×106 95.0 efg 4.6 hij 0.1 h 4.54 i 0.82 a 0.1 f 0.03 g 
soil mix 1.00×106 59.9 b 7.1 cde 3.3 c 3.10 ab 0.50 fg 5.4 ab 4.47 cd 

RSP2083 P. brassicacearum peat mix 1.00×106 96.0 efg 5.3 fghij 0.2 gh 4.26 hi 0.76 abc 0.8 d 0.81 fg 
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Table 4.8 Screen 7, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from tissue -cultured plantlets 
in soil mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected spore suspensions as treatements, with target 1 × 106 
spores/mL plant growth medium (only positive results plus any isolate repeated between screens are presented) 

Treatment Applied concn 
(spores/mL) 

Diseased 
stolons (%) 

Total no. of 
Stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight 
(g)+ 

Root dry 
weight (g)+ 

No. of 
tubers 

Total tuber 
weight (g) 

No pathogen control  0.2 a 4.89 bc 4.75 a 3.95 0.38 3.28 ab 6.05 bcde 
Pathogen control  66.2 defg 4.05 bcd 0.75 d 4.12 0.42 2.26 cd 4.08 def 
Pencycuron  5.3 a 7.20 a 6.62 a 3.57 0.40 4.20 a 10.08 a 
LU132 T. atroviride 1.00×106 45.3 bcd 5.00 bc 2.05 bc 3.94 0.36 2.60 bcd 7.09 abc 
LU549 T. virens 1.00×106 37.2 b 4.60 bcd 2.03 bc 3.66 0.36 2.20 bcd 7.21 abc 
RSPT106 Trichoderma sp. 1.00×106 39.2 bc 3.44 cd 1.75 bcd 4.11 0.38 2.78 abcd 4.28 bcdef 
LU144 T. atroviride 1.00×106 35.7 b 4.80 bcd 2.41 b 3.39 0.35 2.00 cd 7.20 abc 
RSPT122 Trichoderma sp. 1.00×106 50.2 bcdef 4.40 bcd 1.92 bc 3.82 0.36 3.20 abc 3.91 cdef 
LU806 T. atroviride 1.00×106 60.4 bcdefg 4.40 bcd 1.33 bcd 4.75 0.49 2.50 bcd 4.24 bcdef 
RSPT119 Trichoderma sp. 1.00×106 55.4 bcdefg 4.67 bcd 1.47 bcd 4.51 0.43 2.50 bcd 2.13 f 
RSPT084 Trichoderma sp. 8.25×105 66.3 defg 4.50 bcd 0.79 cd 4.33 0.42 2.60 bcd 4.44 bcdef 
+No significant differences (P < 0.05) between shoot dry weight means or root dry weight means 
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4.4.1.2 Validation assay results 
In the first validation assay (Table 4.9), only one isolate (RSP2193) reduced the percent of 

emerging shoots nipped, and only in the soil mix. Isolates RSP2193, LU806, RSPT113 and 

RSPT119 increased the percent emerging shoots nipped in the peat mix (but not the soil mix). 

Five isolates decreased the percent diseased stolons in the peat mix, but none in the soil mix. 

The only isolate to increase the number of symptomless stolons was RSPT125, and only for 

the soil mix. Isolate RSP2002 decreased the total number of tubers in the soil mix, and all six 

isolates decreased the total number of stolons in the peat mix. The effect of the disease on the 

pathogen controls was less in the soil mix than in the peat mix. 

In the second validation assay (Table 4.10), no isolate reduced either percent emerging shoots 

nipped or diseased stolons, or increased the total number of symptomless stolons. The only 

isolate to affect a plant parameter was RSPT106, which increased the total number of tubers. 

Isolate RSP2139 increased percent diseased stolons and decreased total number of 

symptomless stolons in the soil mix. In the peat mix, RSPT122 decreased number of 

symptomless stolons and SS1708 increased the percent of emerging stolons nipped. 

In the third validation assay (Table 4.11), which also included three isolate treatments at an 

increased inoculum rate (1×107 CFU/spores) and three treatments applied direct to minitubers, 

percent emerging shoots nipped was low in pathogen controls and no treatment reduced (P < 

0.05) this disease parameter. Six treatments increased the mean percent emerging shoots 

nipped. These were LU549, LU144 and RSPT106 at 1×106 mixed through the soil mix, and 

LU549, RSPT106 and RSP2139 applied direct to minitubers. Isolate RSPT106 applied direct 

to minitubers was the only treatment to decrease mean percent diseased stolons, but no 

treatment increased total number of symptomless stolons, and LU5498 applied direct to 

minitubers decreased this parameter. No treatment increased the total tuber weight, but four 

treatments (all three LU549 treatments and RSPT106 applied direct to minitubers) decreased 

this parameter. For the soil:pumice + pathogen control the only parameters for which there 

was a significant difference to the soil mix was shoot dry weight (soil mix gave greater dry 

weight) and root dry weight (soil mix gave less root dry weight).
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Table 4.9 Validation 1, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from minitubers in soil 
mix or peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as treatements, with target 
1 × 106 CFU or spores/mL plant growth medium 

Treatment 
Appln conc 
(spores or 
CFU / mL) 

 
Emerging 
shoots 
nipped (%) 

Diseased 
stolons (%) 

Total no. 
of stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

No. of 
tubers 

Total 
tuber 
weight (g) 

No pathogen control  

Pe
at

 m
ix

 

0.0 a 0.7 a 4.4 bcd 4.3 a 3.37 cde 0.64 fg 3.0 a 14.53 a 
Pathogen control  21.0 cd 98.0 h 3.7 cde 0.1 g 3.05 de 0.57 efg 0.2 f 0.53 g 
Pencycuron  0.0 ab 2.5 a 4.2 bcde 4.1 a 3.33 bcde 0.72 g 2.1 ab 8.94 b 
Appln solution (PPS)  29.2 cdef 95.5 fgh 3.0 def 0.2 defg 2.55 ef 0.39 cd 0.0 f 0.00 fg 
RSP2002 B. mycoides 4.07×105 36.9 def 76.4 b 2.6 efg 0.7 defg 2.05 fg 0.43 cde 0.4 f 1.11 defg 
RSP2193 Flavobacterium 1.22×106 50.0 f 90.0 cdefg 1.3 fg 0.2 defg 0.69 h 0.11 ab 0.4 ef 0.87 defg 
LU806 T.atroviride 1.00×106 42.3 ef 100 h 1.5 fg 0.0 efg 1.21 gh 0.26 bc 0.2 f 0.9 fg 
RSPT113 Trichoderma 1.00×106 49.2 f 82.6 bc 1.0 g 0.1 efg 1.32 gh 0.19 ab 0.1 f 0.03 fg 
RSPT119 Trichoderma 1.00×106 47.5 ef 86.2 cde 0.8 g 0.1 efg 0.421 h 0.03 a 0.4 f 0.41 efg 
RSPT125 Trichoderma 1.00×106 35.8 def 84.0 bcd 1.6 fg 0.3 efg 1.40 gh 0.24 bc 0.2 f 0.59 defg 
No pathogen control  

So
il 

m
ix

 

0.0 a 2.0 a 4.4 bcd 4.4 a 3.95 abc 0.53 def 3.1 a 16.43 a 
Pathogen control  34.1 def 92.8 efgh 5.9 a 0.4 cde 4.34 a 0.60 fg 2.3 bc 5.10 c 
Pencycuron  0.0 ab 0.0 a 4.6 abcd 4.6 a 3.768 abcd 0.51 def 3.2 a 17.52 a 
Appln solution (PPS)  22.5 bcde 93.6 efgh 5.7 ab 0.4 defg 4.48 a 0.68 fg 2.2 bcd 4.36 cdef 
RSP2002 B. mycoides 3.52×105 35.0 def 96.9 fgh 5.3 ab 0.2 defg 4.21 abc 0.58 defg 1.1 de 3.21 cdefg 
RSP2193 Flavobacterium 8.89×105 5.0 abc 87.7 cdef 5.2 ab 0.9 bc 4.22 abc 0.60 efg 1.7 bcd 6.07 bc 
LU806 T.atroviride 1.00×106 29.7 cdef 97.9 gh 5.8 ab 0.8 defg 4.33 ab 0.55 defg 1.4 cd 4.05 cdefg 
RSPT113 Trichoderma 1.00×106 31.7 def 92.2 defgh 5.5 ab 0.3 defg 4.265 ab 0.57 defg 1.3 cd 4.87 bcde 
RSPT119 Trichoderma 1.00×106 44.2 ef 90.9 cdefgh 6.3 a 0.6 bcd 4.68 a 0.72 g 2.2 ab 6.98 bc 
RSPT125 Trichoderma 1.00×106 37.2 def 92.3 defgh 5.0 abc 0.9 b 4.432 a 0.60 efg 2.5 ab 4.98 bcd 
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Table 4.10 Validation 2, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from minitubers in soil 
mix or peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as treatements, with target 
1 × 106 CFU or spores/mL plant growth medium (one exception) 

Treatment 
Appln conc 
(spores or 
CFU / mL) 

 
Emerging 
shoots 
nipped (%) 

Diseased 
stolons (%) 

Total no. 
of stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

No. of 
tubers* 

Total 
tuber 
weight (g) 

No pathogen control  

Pe
at

 m
ix

 

1.1 g 1.0 a 6.4 defg 6.3 h 3.27 0.69 a 2.3 4.56 
Pathogen control  26.8 d 86.4 efgh 5.7 cdefg 0.87 cdef 2.94 0.52 bcdef 0.2 d 0.05 
Pencycuron  0.0 efg 3.3 a 7.5 fg 7.3 h 3.08 0.72 a 2.4 2.48 
Appln solution (PPS)  36.3 abcd 94.9 h 4.6 abcde 0.3 ab 2.67 0.38 efgh 0.2 d 0.01 
RSP2009 B. mycoides 2.04×106 31.6 bcd 83.0 defgh 5.0 bcdef 0.9 bcdef 3.18 0.52 bcdef 0.1 d 0.38 
RSP2139 Paenibacillus 1.72×106 40.7 abcd 86.2 defgh 5.0 bcdef 0.8 abc 3.51 0.45 cdefgh 0.0 d 0.00 
RSPT106 Trichoderma 1.00×106 38.9 abcd 83.3 defgh 4.2 abcd 0.7 defg 2.33 0.34 ghi 0.4 bcd 0.08 
RSPT122 Trichoderma 1.00×106 21.7 def 92.9 gh 3.0 ab 0.2 a 1.57 0.32 hi 0.0 d 0.00 
SS1708 Bacillus 2.22×106 60.3 a 85.5 defgh 2.2 a 0.3 abcd 0.83 0.19 i 0.2 d 0.04 
RSPT125 Trichoderma 1.00×106 25.3 cd 80.3 bcdefg 4.9 bcdef 0.8 bcdefg 3.20 0.46 cdefgh 0.2 d 0.03 
RSPT125 Trichoderma 3.13×106 41.6 abcd 93.0 gh 3.6 abc 0.5 abcd 2.86 0.41 defgh 0.6 bcd 0.10 
No pathogen control  

So
il 

M
ix

 

3.3 fg 2.4 a 6.9 fg 6.7 h 3.49 0.57 bc 3.2 9.64 
Pathogen control  37.1 bcd 71.6 bc 6.7 efg 1.9 g 3.21 0.52 bcde 1.1 abc 0.65 
Pencycuron  0.0 efg 1.7 a 7.0 efg 6.9 h 3.39 0.64 ab 3.3 6.34 
Appln solution (PPS)  51.0 ab 81.3 cdefg 5.2 bcdefg 1.2 bcdef 3.95 0.46 cdefgh 1.3 ab 1.18 
RSP2009 B. mycoides 4.44×106 34.3 bcd 68.1 b 5.7 bcdefg 1.8 fg 2.77 0.45 cdefgh 1.1 abc 0.78 
RSP2139 Paenibacillus 1.48×106 39.3 abcd 90.6 fgh 7.8 g 0.9 abcde 3.73 0.56 abcd 1.6 a 0.83 
RSPT106 Trichoderma 1.00×106 45.0 abcd 79.5 bcdef 4.8 bcdef 1.1 cdefg 2.54 0.32 hi 1.1 abc 1.23 
RSPT122 Trichoderma 1.00×106 47.8 abc 69.7 bc 6.1 cdefg 2.7 fg 3.06 0.47 bcdefgh 0.9 abc 0.51 
SS1708 Bacillus 1.67×106 32.7 bcd 73.5 bcd 6.2 cdefg 1.8 efg 3.51 0.51 bcdefg 0.4 cd 0.08 
RSPT125 Trichoderma 1.00×106 38.2 abcd 76.0 bcde 5.1 bcdefg 1.5 defg 2.29 0.37 fghi 1.3 bcd 0.93 
RSPT125 Trichoderma 3.13×106 24.0 cde 75.5 bcd 6.9 defg 1.7 defg 3.43 0.51 bcdeefg 0.4 bcd 0.77 
*No-pathogen controls and pencycuron treatment data not included in analysis so parametric requirement of normal distribution satisfied. 
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Table 4.11 Validation 3, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from minitubers in soil 
mix or peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as treatements, with target 
1 × 106 or 107 spores/mL plant growth medium 

Treatment 
Appln conc 
(spores or 
CFU / mL) 

 
Emerged 
shoots 
nipped (%) 

Diseased 
stolons 
(%) 

Total no. 
of stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

No. of 
tubers 

Total 
tuber 
weight (g) 

No pathogen control  

Pe
at

 m
ix

 5.0 def 9.2 a 8.4 bcdef 7.6 a 2.87 bcdef 0.56 cdef 3.4 abcd 23.29 a 
Pathogen control  0.0 f 85.7 d 11.8 ab 1.7 bcd 4.44 h 0.70 ef 4.8 cdef 8.89 bcd 
LU549 T. virens 1.00×106 15.8 cdef 88.4 d 9.4 abcde 0.9 bcd 3.93 fgh 0.68 ef 4.0 abcde 5.85 cdef 
LU144 T. atroviride 1.00×106 21.7 bcde 89.6 d 6.9 defg 1.1 cd 3.84 efgh 0.59 cdef 4.1 abcdef 8.18 bcde 
No pathogen control  

So
il 

m
ix

 
0.0 ef 0.8 a 8.5 cde 8.4 a 3.35 defg 0.57 def 5.3 def 21.63 a 

Pathogen control  10.3 def 77.4 cd 12.2 a 2.6 b 4.16 h 0.63 ef 6.0 f 9.82 bc 
LU549 T. virens 1.00×106 40.5 ab 80.8 cd 6.9 defg 1.5 bcd 1.91 ab 0.28 a 2.5 abc 3.31 ef 
LU144 T. atroviride 1.00×106 31.7 abc 74.0 cd 7.5 cdef 1.9 bc 2.67 abcd 0.41 abcd 4.0 abcde 6.70 cdef 
RSPT 106 Trichoderma 1.00×106 33.8 abc 80.7 cd 5.7 efg 1.2 bcd 2.44 abcd 0.38 abc 3.2 abc 6.03 cdef 
RSP 2139 Paenibacillus 1.00×106 5.0 def 79.4 cd 10.4 abcd 2.2 b 3.87 efgh 0.68 ef 3.8 abcde 7.30 cdef 
LU549 T. virens 1.00×107 25.0 bcd 75 cd 8.3 bcdef 1.8 bcd 3.08 cdefg 0.51 bcde 3.1 abc 4.68 def 
RSPT 106 Trichoderma 1.00×107 11.7 cdef 74.7 cd 11.7 ab 2.5 b 3.83 efgh 0.62 def 4.8 cdef 8.17 bcde 
RSP 2139 Paenibacillus 1.00×107 5.0 def 76.2 cd 11.2 abc 2.5 b 4.22 gh 0.73 f 4.3 bcdef 6.55 cdef 
LU549, to tuber 1.00×106 49.6 a 81.1 cd 4.6 fg 0.4 d 1.94 abc 0.31 ab 2.1 ab 2.76 f 
RSPT 106, to tuber 1.00×106 54.1 a 51.1 b 3.5 g 1.0 bc 1.64 a 0.22 a 1.8 a 5.08 def 
RSP 2139, to tuber 1.00×106 39.6 ab 67.1 bc 6.3 efg 1.7 bc 2.28 abc 0.32 ab 2.4 abc 7.26 cdef 
Soil:pumice +pathogen  12.5 cdef 78.5 cd 11.4 abc 2.7 b 2.75 abcde 0.41 abcd 6.1 ef 13.11 b 
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4.4.2 Sclerotial suppression agar assay 

All Trichoderma (and one Gliocladium) isolates tested completely prevented in vitro 

sclerotial formation by both R. solani isolates, except for LU753 which achieved mean scores 

of 1.5 against isolate Rs043-2 and 0 against isolate Rs018-2. Mean suppression scores of the 

bacterial isolates tested are presented in Appendix B.2.2, Table 7.9. 

4.4.3 Black scurf suppression assay 

The results in Table 4.12 demonstrate that the isolate Rs018-2 (AG 3) produced no significant 

effect on number of tubers or yield. None of the biological control isolates reduced percent 

sclerotial coverage of tubers. The only treatment to reduce (P < 0.05) black scurf severity was 

the pencycuron fungicide treatment. 

 

Table 4.12 Black scurf suppression in vivo, mean yield parameters and black scurf 
severity for tubers produced by potato plants grown from seed potatoes in 
soil:pumice mix inoculated with Rhizoctonia solani isolate Rs018-2 and 
selected cell/spore suspensions as treatements, with target 1×106 spores/mL 
plant growth medium 

Treatment 
No. 

undersized 
tubers 

No. 
marketable 

tubers 

Total 
tuber 

weight (g) 

Average 
marketable 

tuber weight (g) 

Black scurf 
coverage 

(%) 
No pathogen control 2.1 ab 4.5 a 235.5 a 55.87 b 0.025 a 
Pathogen control 1.8 a 4.4 a 205.2 a 48.2 ab 7.57 b 
SS1708 Bacillus 2.3 ab 5.4 a 240.8 a 44.5 ab 7.740 b 
RSPT125 Trichoderma sp. 1.3 a 4.8 a 195.5 a 41.37 a 6.270 b 
RSPT106 Trichoderma sp. 2.5 ab 5.3 a 238.1 a 48.9 ab 6.548 b 
Pencycuron 3.1 b 4.5 a 218.3 a 50.23 b 0.030 a 
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4.4.4 Multi-screen analysis 

The number and percent of isolates which decreased the number of symptomless stolons 

relative to the pathogen control negatively correlated with the percent reduction in number of 

symptomless stolons in an assay (Table 4.13). For this parameter, there was a trend for more 

isolates able to reduce disease symptoms in assays with lower disease levels. This relationship 

was not found for percent diseased stolons. 

The analysis of the general biocontrol points data (Table 4.14) showed that of the six factors 

tested, only antibiotic production was a significant, and the interactions between antibiotic 

production and strong competition as well as between growth promotion and potential 

endophytism, gave significance levels P < 0.1. Other interactions could not be analysed as 

there were no data for all factor combinations. 

 

Table 4.13 Regression analyses of levels of canker disease in experimental controls 
against number and percent of isolates tested that decreased disease  

  ‘Positive’ 
isolates  ‘Positive’ 

isolates 

Sc
re

en
 

Diseased 
stolons (%) 

N
um

be
r 

%
 o

f t
ot

al
 Reduction in 

number of 
symptomless 
stolons (%) N

um
be

r 

%
 o

f t
ot

al
 

1 82.7 1 8.3 97.7 1 8.3 
2 79.8 5 41.7 99.5 1 8.3 
3 91.0 1 7.1 98.6 1 7.1 
4 62.9 2 9.1 88.4 1 4.5 
5 95.8 2 10.0 99.4 0 0.0 
6A 97.0 0 0.0 99.7 0 0.0 
6B 80.6 1 25.0 84.6 1 25.0 
7 66.2 3 13.0 84.2 4 17.4 
 R2 0.20 0.07  R2 0.45 0.59 
 P 0.31 0.54  P 0.10 0.03 
AData from peat based plant growth medium, BData from soil mix 
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Table 4.14 Unbalanced factorial ANOVA of biocontrol points data P values 

Factor P value  Interaction P value 
Taxon* 0.256  Taxon×GP 0.780 
Growth Promotion (GP) 0.991  Taxon×AB 0.318 
Previous biocontrol evidence (BC) 0.941  GP×AB 0.623 
Antibiotic producer (AB) 0.066  Taxon×Comp. 0.870 
Strong competitor 0.356  GP×Comp. 0.542 
Potential endophyte 0.246  AB×Comp. 0.022 

*Trichoderma/Gliocladium, 
fluorescent Pseudomonad, or 
endospore forming bacterium 

  Taxon×Endo. 0.261 
  GP×Endo. 0.079 
  AB×Endo. 0.338 
  Comp×Endo. 0.692 
  Taxon×BC 0.921 

 

Results from the unbalanced ANOVA (Table 4.15) demonstrate that isolates that produced 

antifungal compounds on agar scored lower on the biocontrol points scale than isolates that 

did not (P < 0.1).  

Table 4.15 Factor and interactions (P < 0.1) from unbalanced ANOVA of biocontrol 
points data 

Antibiotic production Mean biocontrol points Number 
Antibiotic producer -0.258 n=31 
Non antibiotic producer 0.026 n=115 
LSD(5%) 0.303  
Antibiotic production x competitive ability Mean biocontrol points Number 
Antibiotic producing strong competitors -1.500 n=2 
Antibiotic producing non-competitors -0.172 n=29 
Non antibiotic producing strong competitors 0.078 n=64 
Non antibiotic producing non-competitors -0.039 n=51 
Average LSD(5%) 0.692  
Growth promotion x Potential endophytism Mean biocontrol points Number 
Growth promoting potential endophyte -0.750 n=4 
Growth promoting no- potential endophyte 0.083 n=24 
Non growth promoting potential endophyte -0.091 n=22 
Non growth promoting non-potential endophyte -0.021 n=96 
Average LSD(5%) 0.591  
 

 

4.5 Discussion 

4.5.1 Suppression screens and validation assays 

In the Rhizoctonia disease suppression screens there were isolates in each screen which 

positively impacted on either a direct measure of canker symptoms (percent emerging shoots 

nipped, percent diseased stolons, number of symptomless stolons) or one of the plant 
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parameters affected in the pathogen control (number of stolons or tubers, total tuber weight, 

dry weight of shoots or roots). However, rarely did any isolate achieve positive results both 

for canker and plant parameters. Only isolate RSP0268 (Bacillus thuringiensis) in one assay 

and RSPT106 (Trichoderma sp.), if results over several assays are considered, gave reduced 

disease and increased plant parameters. Isolates which were repeatedly tested between screens 

often demonstrated conflicting results, exhibiting some capacity for disease suppression in 

one assay but none in another. Of the 22 isolates which demonstrated positive impacts on 

canker disease symptoms or affected plant parameters, 13 were tested in more than one 

screen, of which only three demonstrated positive effects (RSP0268, RSPT122 (Trichoderma 

sp.) and RSPT106) in more than one assay. 

In the three validation assays, 13 isolates had their screen assay results tested in the minituber 

system, both in peat mix and soil mix. Twelve of these had positive impacts in at least one 

screen assay, and one (RSP2193, Flavobacterium sp.) had shown no positive impact. Across 

the validation assays, isolates tested rarely improved the assessed parameters, and often had a 

negative effect on one or more. For example, isolate RSPT122, one of the few isolates to give 

positive results in more than one screen assay, decreased the number of symptomless stolons 

in the second validation assay. Isolate RSPT106 was the only partially consistent positive 

isolate from the screens to have a positive impact in the first or second validation assay. 

Therefore isolate RSPT106, along with two other isolates, was included in the third assay at a 

10-fold higher application concentration (1 × 107 spores/mL plant growth medium), as well as 

at the previous concentration, but as an application direct to the minitubers at planting. This 

was to determine if either of these approaches could improve the level of disease control and 

therefore form the basis of investigations into optimisation of biocontrol studies for selected 

isolates. This third assay demonstrated, again, that the selected isolates performed poorly with 

regards to disease control, with all three applications direct to minitubers actually increasing 

the percent emerging shoots nipped along with three of the other treatments. The validation 

assays did not provide evidence that any isolate would be a worthwhile candidate for future 

work on biocontrol of Rhizoctonia diseases of potato. 

The final validation assay also included a plant growth medium with no peat to determine if 

this component of the plant growth medium was increasing the disease pressure, as peat has 

been found to be conducive to Rhizoctonia diseases in previous studies (Bonanomi et al., 

2007). No significant difference was found, however, between the isolate treatment and the 

pathogen control in soil mix, for the direct measures of canker disease, for number of 

stolons/tubers or for total tuber weight, indicating that the peat was not promoting disease. 
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4.5.2 Black scurf suppression 

In spite of the ability of the biocontrol isolates tested in the shade house assay to suppress R. 

solani sclerotial production in vitro, they failed to reduce black scurf severity. Expecting an 

isolate incorporated into the soil at time of planting to suppress the action of the pathogen 

several months later may be unrealistic, and applications later in the potato growth period 

(perhaps near the vine kill stage of crop growth) could have a greater chance of success than 

application at planting. However, experiments described here offer no evidence that the 

selected isolates possess biocontrol potential. 

4.5.3 Multi-screen analyses 

The regression analyses between levels of canker disease in pathogen controls and the number 

of isolates achieving control suggest that reduction in disease by an isolate was more likely 

when disease pressures in the assay were less, at least for symptomless stolons. The disease 

levels in the screens were generally high, and so more isolates may have demonstrated some 

disease control capacity had the disease pressure been less. Ultimately, however, if an isolate 

is unable to offer control under high disease pressures, its suitability as a BCA would be 

difficult to justify. The efficacy of the fungicide pencycuron in all the experiments that 

included it as a treatment, demonstrates that disease control was achievable in the assay 

system, but that the isolates tested were not up to this standard. 

The analysis of assigned biocontrol score demonstrated that most selection criteria made no 

difference to the potential of an isolate to reduce Rhizoctonia canker disease in vivo. What 

was unexpected was that isolates which produced anti-fungal compounds in vitro were more 

likely than others to make disease parameters more severe or reduce plant parameters. While 

the results in Table 4.15 suggest that antibiotic producing strong competitors and growth 

promoting potential endophytes were statistically more likely to increase disease symptoms, 

the number of data points for those groups was very low (n = 2 and 4, respectively), so this 

conclusion does not have a solid foundation. 

4.5.4 Results of published studies 

Published studies (Table 4.16), which used similar assay systems to the present study, have 

tested many fewer isolates in in vivo greenhouse disease suppression assays, and 

demonstrated that far greater proportions of isolates reduced disease symptoms than were 

observed in the present study. 
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Table 4.16 Comparison between Rhizoctonia disease suppression and plant parameter 
impacts from assays in the present study and a selection of assays from 
published sources 

Study Disease 
parameter 

Disease 
level in 
control 

Number 
of isolates 
tested 

Number of 
‘positive’ 
isolates 

‘Positive’ 
isolates 
(%) 

Disease 
reduction 
achievedB 

Present study 

Diseased stolons 
(%) 63-97% 

89 (118A) 

15 12.7% Up to 76% 

Symptom-less 
stolons reduction 84-100% 9 7.6% Up to 35% 

Tuber weight 
reduction 37-100% 1 0.8% 24% 

Tuber number 
reduction 31-100% 4 3.4% Up to 18% 

Brewer and 
Larkin (2005) 

Stem canker 
incidence 83-100% 

28 (84A) 

22A 34.5% Up to 75% 

Stem canker 
severity 50-70% 31A 36.9% Up to 71% 

Black scurf 
severity 50-74% 35A 41.7% Up to 100% 

Grosch et al. 
(2005; 2006) 

Stem canker 
severity 46-70% 9 (24A) 12A 50% Up to 60% 

Tariq et al. 
(2010) 

Black scurf 
incidence 

Control = 
100% 9 7 77.8% Up to 74% 

Lahlali and 
Hijri (2010) 

Stem canker 
severity 89% 

6 
6 100% Up to 69% 

Reduction in 
yield 80% 6 100% Up to 86% 

ANumber including isolates repeated within screens.  
BPresented data are percentage reduction compared with positive experimental control. 

As Table 4.16 shows, of the isolates tested in previous similar greenhouse assays 

investigating suppression of Rhizoctonia disease of potato, a much greater proportion 

demonstrate disease suppression than was found in the present study. Direct comparison 

between published results and those from experiments conducted here is difficult, as different 

measurements of disease were made elsewhere, often based on ‘severity scales’. It would 

appear, however, that the disease pressure in the screens in the present study often reached 

levels greater than those experienced in the other studies. This could be related to differences 

in the strain of R. solani, with AG 3s the most common in previous studies, while this 

bioassay used an AG 2-1 isolate which was very proficient at causing cankers on, and 

‘nipping’ of, plant organs. Other differences that might have weighted these published assays 

more in favour of the biocontrol isolate include: Firstly, two methods (Lahlali and Hijri, 2010; 

Tariq et al., 2010) used sterilised plant growth medium, which might favour the BCA by 

removing competition from non-pathogen suppressive isolates; Secondly, two methods 

(Grosch et al., 2006; Lahlali and Hijri, 2010) inoculated the BCA into the plant growth 
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medium on a pre-colonised substrate, both at rates which could be considered high (1:10 v/v 

and 1:20 w/w respectively), which would give unrealistically high suppression levels if this 

application method could not be employed in the field. The assay by Brewer and Larkin 

(2005) was closest to the one employed in the present study, but none of the treatments tested 

reduced stem canker incidence and severity in all tests (this included isolates used in 

commercial biocontrol products as well as the fungicide azoxystrobin), with similar results for 

black scurf incidence and severity. 

Taken together, the results of these experiments do not offer much support for potential 

biocontrol of Rhizoctonia diseases of potato, using a single microorganism inundative 

approach. It is not surprising that, in spite of the global importance of potato crops and the 

ubiquity of pathgenic R. solani strains and important Rhizoctonia diseases in potato producing 

regions, there are no commercial biocontrol products marketed for the control of these 

diseases. It may be, as other authors have suggested, that successful suppression of 

Rhizoctonia diseases relies on a suite of suppressive organisms, rather than selected 

individuals (Bonanomi et al., 2010; Mendes et al., 2011). Organic amendments which support 

antagonistic communities may also have to be applied along with antagonistic organisms in 

order to support strong, consistent biological control (Hoitink and Boehm, 1999; Noble and 

Coventry, 2005). 

In many of the assays in the present study which used plants from tissue culture, the shoot dry 

weight of the pathogen control was often equal to, or greater than that of the no pathogen 

control, in spite of severe disease on below-ground plant parts. Increases in dry weight are 

likely to be due to lesion development on stolons preventing the transport of photosynthetic 

products to tubers, resulting in their redistribution elsewhere, as described by Hartill (1989). 

For this reason when examining potato crops, shoot biomass should not be relied upon as a 

proxy measure of yield, as in one recent high impact report on organic agriculture employed 

(Crowder et al., 2010). 

4.6 Conclusion 

Ultimately, the main finding of these experiments was that none of the 89 isolates tested, 

demonstrated sufficiently strong or consistent reduction in Rhizoctonia canker diseases of 

potato to make further investigations into their biocontrol potential worthwhile. This was in 

spite of the fact that isolates were were selected by targeted isolations and possession of traits 

potentially important for biocontrol, and were applied to potato plant growing media in an 

inundative manner in in vivo greenhouse screens and subsequent greenhouse validation 
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assays. It is possible that disease pressures from the chosen R. solani isolate were too great for 

moderate suppression of disease to be detected in the assays. Furthermore, individual 

antagonistic isolates may be insufficient to control disease, and control could possibly be 

achieved with a suite of suppressive organisms or by the application of an isolate(s) along 

with a substrate to support biocontrol activity. Nevertheless, the results from this study 

strongly indicate that effective, practical inundative biocontrol of Rhizoctonia diseases of 

potatoes is likely to be an elusive goal. 
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     Chapter 5 
Investigation of organic matter amendments for 

suppression of Rhizoctonia diseases of potato 

5.1 Abstract 

Organic matter (OM) amendments were selected based on published reports of suppression of 

Rhizoctonia diseases. These OMs were tested over two greenhouse assays, at several rates, to 

determine if any possessed the capacity to suppress the Rhizoctonia cankers of potato. Pine 

bark compost was selected to be tested in a third greenhouse assay at four rates, to generate a 

range of disease suppression levels. The aim of the third assay was to examine biological 

parameters which correlated with disease suppression, to indicate the mechanism 

underpinning disease suppression. The third experiment gave insufficient disease suppression 

to warrant a full investigation of underlying biological parameters. However, microbial 

community substrate utilisation data for the growth medium revealed that general increases in 

total community metabolic activity or diversity were insufficient to suppress Rhizoctonia 

cankers of potato. 

5.2 Introduction 

Chapter 4 focussed on ‘inundative biological control’ (Eilenberg et al., 2001), where specific 

organisms are applied to the environment with the expectation that they will directly suppress 

the pathogen (or disease) but not persist in the environment. As the results did not provide 

support for that strategy, the final two experimental chapters of this study focus on the 

‘conservation biological control’ strategy. This strategy was defined as “Modification of 

environment or existing practices to protect and enhance specific natural enemies or other 

organisms to reduce the effect of pests” by Eilenberg et al. (2001). The experiments in this 

chapter deal with the potential for general disease suppression, which is reliant upon 

establishment or enhancement of soil communities whose presence and activities reduce a 

pathogen’s capacity to inflict damage to its host. As appropriate soil conditions are required to 

support general suppression (Hoitink and Boehm, 1999), this type of suppression is not 

transferable in the way that occurs with specific suppression (e.g. by inundative applications 

of specific organisms). One method by which general suppression can be achieved is through 

the use of organic matter (OM) amendments to soils (Bonanomi et al., 2007; Huber and 

Sumner, 1996), which may provide substrates which increase the size or activity of 



 99 

suppressive microbial populations, or introduce those populations to the soils with an 

appropriate nutrient base. 

The aim of the experiments reported here was to test some OMs, selected from a review of 

literature on the subject, rather than screen a wide variety of OM amendments. These were to 

be assessed as potential Rhizoctonia disease suppressors, and their mechanisms of disease 

suppression were to be investigated. Economic viability of potential amendments was also 

taken into consideration in selecting the few OMs tested, as investigating amendments 

without any feasibility of practical use would not be consistent with the overall direction of 

this research. Experiments described here tested several concentrations of selected OMs, to 

determine if a range of levels of disease suppression could be generated. Investigation of the 

biological origin of disease suppressive conditions is easier when correlations can be made 

between disease severity and biological factors measured, for example, by combining disease 

suppressive with disease conducive soils in varying proportions, or by increasing the 

concentration of a suppressive amendment (Borneman and Becker, 2007), as discussed in 

Chapter 1, section 1.3.4.4.3. 

5.2.1 Overview of published research 

There have been many studies examining the potential of a wide variety of OM amendments 

to suppress soil-borne fungal plant pathogens, including Rhizoctonia spp. In a thorough 

review of this field, Bonanomi et al. (2007) divided OMs into four categories; green manures 

(crop residues), animal manure, composts and peats. Rhizoctonia solani was overall the most 

studied species, and green manures were suppressive in 41% of cases, but conducive to 

disease in 43% of cases; manures were suppressive 41% of cases and conducive in 23%, 

compost was suppressive in 32% of cases and conducive in 20%; peats were only suppressive 

in 4% of cases and conducive in 60%. Populations of R. solani increased in the majority of 

crop residue studies, but disease suppression was found only rarely to correlate with decreases 

in pathogen populations, and often the inverse relationship was true. In terms of phytotoxicity, 

green and animal manures were often phytotoxic at concentrations much lower than composts 

or peats. This is probably linked to their decomposition causing anaerobic conditions, 

although anaerobic conditions also negatively affects phytopathogenic fungi, which is 

potentially how they achieve some of their disease suppression. The authors recommended 

avoiding crop residues or organic wastes for R. solani control, as they provide erratic control, 

can be phytotoxic and R. solani can often use them as substrates. This leaves compost as the 

OM group most likely to provide consistent control of Rhizoctonia diseases. 
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In a follow up to their 2007 review, Bonanomi et al. (2010) correlated OM analytical 

parameters and disease suppressiveness for the most studied soilborne phytopathogens in the 

literature. For R. solani, decreases in disease levels were often correlated with increased 

pathogen populations, which is possibly related to induction of disease resistance in host 

plants or soil fungistasis, although these explanations have rarely been explored further. The 

40 OM chemical and physical variables analysed were, in general, poor predictors of 

suppressiveness, and less informative than enzymatic and microbiological predictors. For 

example, the C:N ratio was not informative for R. solani suppressiveness, which is not 

surprising as R. solani can utilise materials with a broad range of C:N ratios (Bonanomi et al., 

2007). Contrasting results were reported for trends linking fluorescein diacetate (FDA) 

hydrolysis (a method for determining total microbial activity) and R. solani suppressiveness: 

for crop residues the correlation was negative, while for composts it was positive, so 

composts may suppress Rhizoctonia diseases by increasing microbial activity. For all 

pathogens and OM types, 95% of the studies reviewed demonstrated that sterilisation reduced 

disease suppression, and this indicates that the biotic component of OMs is essential for 

control. Overall, the measures which most consistently positively correlated with disease 

suppression were populations of fluorescent Pseudomonads (73% of cases), spore-forming 

bacteria (60% of cases) and Trichoderma spp. (56% of cases), with none of the three ever 

negatively correlating with suppressiveness. This gives good reason to theorise that OM 

amendments that reduce Rhizoctonia diseases achieve success by stimulating antagonists 

within the soil microbial communities to induce biological control of R. solani. Therefore, 

OM amendments fit well into this research project. 

5.2.2 Selection of organic matter amendments active against Rhizoctonia spp. 

Based on the following information gathered from a review of the literature, three groups of 

OM; composted wood products, chitin/chitosan and biochar, were selected for invest igation 

of their potential to suppress Rhizoctonia diseases of potato. 

5.2.2.1 Composted bark products 
Based on the recommendations of Bonanomi et al. (2007; 2010) summarised above, 

composted OMs were targeted. When Scheuerell et al. (2005) tested 36 different composts for 

control of soilborne phytopathogens in a containerised (peat/perlite) system, six were found to 

suppress Rhizoctonia damping-off of cabbage. Of these, the most consistent were hemlock 

bark, dairy fir-bark compost, mushroom compost and nursery regrind compost. However, 

suppression was not related to any single physical, chemical or biological factor, making it 

difficult to predict which composts will suppress Rhizoctonia diseases. Of the variety of OMs 
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reported to suppress R. solani reviewed by Litterick et al. (2004), the wood products (wood 

chips and tree barks) stand out as often inducing disease suppression. In a review by Noble 

and Coventry (2005), one of the largest reductions of Rhizoctonia disease (81%) was with a 

hardwood bark. Composted barks, therefore, appear to be strong candidates for suppressing 

Rhizoctonia diseases. Supporting this is the study by Krause et al. (2001), which 

demonstrated that composted pine bark/peat potting medium was more frequently suppressive 

to Rhizoctonia diseases of radish and poinsettia, compared with sphagnum peat media of 

different decomposition stages. An explanation of why composted wood products may offer 

more consistent disease suppression than fresh material was summarised in a review by 

Hoitink and Boehm (1999). They suggested that low cellulose levels in composted bark 

encourage antagonism towards R. solani, as lignocellulosic substances are colonised by 

Trichoderma spp., and while fresh hardwood bark stimulates populations both of R. solani 

and Trichoderma spp. parasitic to them, damping-off severity is still increased. However, 

composted bark controls the pathogen even though the populations of parasitic Trichoderma 

spp. are far fewer than in fresh bark. If cellulose is combined with composted bark it returns 

to being conducive to Rhizoctonia diseases, even though the Trichoderma spp. populations 

rise considerably. Therefore, low cellulose levels promote fungal interactions, where the R. 

solani is suppressed. These authors also suggested that it is likely that production of chitin 

degrading enzymes decreases when the substrate cellulose, preferred by Trichoderma spp., is 

available. Van Beneden et al. (2010) demonstrated that the addition of lignin (1% w/w) 

reduced R. solani sclerotial viability in one soil type but not another, which was linked to 

differences in the response of the soil microbial communities to the amendment. In New 

Zealand, Monterey Pine (Pinus radiata D.Don) is grown extensively for the building and 

paper industries, so by-products such as bark are widely available, and likely to be economic 

sources of OM amendments. 

5.2.2.2 Chitin and chitosan 
Chitin is another OM with potential as a commercial soil amendment. Chitin is the second 

most abundant bio-polymer in the world, and a massive quantity of chitin-rich waste is 

regularly discarded by the seafood industry. Because it is a major component of fungal cell 

walls, it also has potential for increasing the activity of chitin-degrading communities. A 

study by Sneh and Henis (1971) found that while R. solani is able to colonise chitin particles, 

it was displaced from them within 30 days in non-sterile soil, suggesting that it is not a strong 

competitor for chitin. There is evidence from a variety of sources that chitin soil amendments 

reduced Rhizoctonia diseases. Huber and Sumner (1996) summarised that increasing the 

incubation time after chitin amendments to soil decreases the saprophytic growth of 
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Rhizoctonia. This suppression was also greater for the chitin amendment compared with a 

variety of plant residues, which the authors suggested was due to the accumulation of anti-

fungal substances as a result of chitin degradation. There have been several more recent 

studies in which chitin amendments have reduced Rhizoctonia disease severity. Glasshouse 

assays (Rajkumar et al., 2008) have shown that the addition of chitin increased the 

populations and disease suppressive capacities of two fluorescent Pseudomonads antagonistic 

to an R. solani isolate causing damping-off of pepper. The addition of chitin to the biocontol 

treatments of two Bacillus spp. isolates and one Trichoderma harzianum isolate improved the 

suppression of R. solani pepper root-rot (Sid Ahmed et al., 2003). Sultana et al. (2000) 

demonstrated that amending soil with crustacean chitin reduced R. solani infection on 

chickpea and sunflowers. Ellis et al. (1998) reported that a fine dust formulation of crab waste 

(270 to 1350 g chitin per m2 equivalent) improved sugarbeet seedling emergence in R. solani 

infested soil. On potato plants, Davies et al. (2002) found that the addition of chitin at 

‘realistic commercial rates’ reduced potato black scurf severity but not length of stem canker 

lesions. Lewis et al. (1996) successfully used chitin as a nutrient base in alginate prills of two 

biocontrol strains of Trichoderma spp. and one Gliocladium virens strain, and improved 

biocontrol of R. solani (AG 4) damping-off on zinnia. In addition, chitin was one of the best 

nutrient bases for Trichoderma spp. to reduce the survival of R. solani in infested beet seed. 

In addition to evidence of effect of chitin as an amendment, Sadeghi et al. (2006) 

demonstrated that the biocontrol potential of some R. solani antagonists (Streptomyces spp.) 

was linked, in part, to their chitinase producing capacity. Incubation of chitin in soil has been 

shown to disrupt both pathogenic and saprophytic activity of R. solani and was linked to 

increases in the population of actinomycetes (Henis et al., 1967). Also, transgenic expression 

of fungal chitinolytic genes can confer resistance of plants to fungal pathogens, including R. 

solani (Kumar et al., 2009). Introduction of a novel chitinase gene into a fluorescent 

pseudomonad enhanced its levels of control against rice sheath blight and cotton damping-off 

caused by R. solani (Xu et al., 2004). 

Chitosan, the de-acetylated form of chitin, is produced as a bio-fertiliser in Asia (El Hadrami 

et al., 2010), and is more water soluble than chitin. Chitosan, like chitin, demonstrates 

antimicrobial (including suppression of several phytopathogenic fungi) and plant defence 

promoting capabilities. Mazaro et al. (2009), investigating chitosan as an elicitor of plant 

defence genes, found it reduced Rhizoctonia damping-off of beet seedlings. Chitosan can also 

chelate minerals and metals, reducing their availability to pathogenic fungi, but has also been 

reported to bind mycotoxins (El Hadrami et al., 2010). When Palma-Guerrero et al. (2008) 

investigated the mycotoxic effects of chitosan, they found that chitosan amended fungal 
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growth agar reduced R. solani growth by about 30%, but the fungus would not grow on Water 

Agar amended with chitosan. However, the growth of two mycoparasitic Trichoderma spp. 

was strongly inhibited by chitosan amendments in agar media. Applications of chitosan to 

potato tubers have also been reported to decrease black scurf incidence (Kurzawinska and 

Mazur, 2008). If chitosan is able to reduce Rhizoctonia diseases of potato, it could potentially 

be through direct mycotoxic activity, stimulation of acquired resistance in host plants or 

possibly through mediating other physical processes in the soil, perhaps including changes in 

the microbial community. If use of chitosan becomes more popular globally, investigating the 

mechanisms of action of this compound would be of interest. 

5.2.2.3 Biochar 
Soil amendments with biochar (charcoal produced from biomass pyrolysis) have been the 

focus of recent research, as this material can act as a carbon sink as well as having positive 

effects on soil quality, fertility and leachates (McHenry, 2011). One biochar has been shown 

to reduce the leaching of at least one pesticide from soils, which can protect the surrounding 

environment, but it also slowed pesticide biodegradation and could reduce pesticide efficacy 

(Jones et al., 2011). Biochar has also been shown to induce plant defences and protect against 

foliar pathogens when used as a soil amendment (Elad et al., 2010). Graber et al. (2010) 

found that wood-derived biochar amendments enhanced pepper plant development, possibly 

due to promotion of plant health promoting rhizosphere communities. There have been 

several reports that biochars/charcoals, including wood charcoal, can increase beneficial 

plant-microbe interactions such as mycorrhizal partnerships, although these materials often 

had to be ‘charged’ with fertilizers, and could have a substantial impact on soil microflora 

(Ogawa and Okimori, 2010). Because biochars are porous and can retain soluble nutrients, 

‘charging’ them with fertilisers means that factors such as the C:N ratio can be easily adjusted 

for studies. For example, Huber and Sumner (1996) summarised that the addition of N 

fertilisers to amendments with high C:N ratios and suppressive to Rhizoctonia spp. 

counteracted the suppressive effect. They also noted that nitrate sources of N tended to reduce 

disease severity, while ammonium sources increased severity. This could offer an interesting 

area of study should biochars demonstrate any suppression of Rhizoctonia diseases of potato. 

While there is little published work on the effects of biochar on suppression of soilborne 

phytopathogens, the influence they can have on soil structure, plant health and soil 

communities means they have potential to yield positive results in this field. If their use in 

agriculture grows, then understanding their influence on plant-pathogen interactions will be 

important. 
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5.2.3 Experimental design 

Three experiments were carried out. Experiments 1 and 2 tested selected OMs at several 

concentrations to determine if relationships existed between concentration and disease 

expression. Experiments 1 and 2 were similar in design to the disease suppression bioassay 

designed in Chapter 3 and used in Chapter 4. Treatments consisted of pathogen and selected 

OM, applied to 0.9 L plastic pots filled with growing medium, prior to planting of minitubers. 

In Experiment 3, Pine bark compost was selected and tested for disease suppression at four 

concentrations, both non-sterile and sterilised. The concentrations were selected to produce 

treatments covering a range of Rhizoctonia disease severities, so that underlying microbial 

community factors could be investigated and correlated with disease expression as a way of 

identifying the mechanism of disease suppression (Borneman and Becker, 2007). The set-up 

of Experiment 3 also attempted to separate the growing medium under the influence of the 

plant roots (rhizosphere) from the medium not under direct plant influence (bulk) by growing 

the plants in pots with 20 µm nylon mesh covering their bases, sitting in larger planter bags of 

medium, to exclude plant-roots from the medium in the planter bag. This was to determine if 

the factors for disease suppression (if present) were due to changes in rhizosphere or bulk 

growth medium, or in both. 

5.3 Methods 

5.3.1 Pathogen inoculum 

This was prepared as detailed in Chapter 4. Barley grain + V8® juice medium (Appendix 

A.2.1) was inoculated with agar plugs from the edge of a growing colony of isolate Rs043-2, 

and incubated for 2 weeks at 25°C in darkness. The inoculation rate used in all three 

experiments was 0.10% (w/v). 

5.3.2 Organic matter details 

The following seven OMs were used in these experiments:  

1. Pine bark (Pinus radiata) compost: horticultural bark, grade 2 (South-Hort, NZ), sieved to 

3.5 mm maximum particle size.  

2. Garden Grow compost: composted pine bark plus cow and pig manures (South-Hort, NZ). 

3. Organic Compost: composted pine bark plus cow manure (Daltons™, NZ).  

4. Biochar: from a batch purchased in 2009 from David J. Underwood and Don Slater, made 

from pyrolysis (280-285°C at 5 Pa for 16 – 24 hours) of mainly kanuka wood (Kunzea 

ericoides A. Rich.), but also wood of pine (Pinus radiata D. Don.), macrocarpa (Cupressus 



 105 

macrocarpa Hartw. ex Gord.) and black wattle (Acacia mearnsii De Wild.). The biochar was 

sieved to 3.5 mm maximum particle size.  

5. ‘Charged’ Biochar was created as follows: Once sieved, 460 g of biochar was placed in 1 L 

of a 0.5% (v/v) solution of Nitrosol® original blood and bone fertiliser (N:P:K 8:3:6, Yates®, 

Auckland, NZ) for 3 h prior to experiment initiation.  

6. Chitin: Poly-[1→4]-β-N-acetyl-D-glucosamine, practical grade from crab shells (Sigma®, 

St Louis, Mo).  

7. Chitosan, which was prepared as follows: 30 g batches of chitin were added to 60 mL of a 

50% (w/v) NaOH solution in RO water, and then made to 450 mL with acetone. This was 

maintained at room temperature for 4 days and stirred five times a day. The chitosan was 

separated from the deacetylating solution by vacuum filtration and rinsed five times with 100 

mL RO water, then placed in a drying cabinet overnight.  

8. Liquid Chitosan: Armour-Zen®, 144 g/L (Botry-zen Ltd, Dunedin, NZ), supplied by Dr 

Tony Reglinski, Plant and Food Research, Hamilton. 

5.3.3 Fungicide treatment 

Pencycuron (Monceren® 250 FS; Bayer CropScience) was used at full label rate, as calculated 

in Chapter 4, as 4.5 mL of concentrate for ten plants. In Experiment 1, the full label rate, 

made to 50 mL with tap water, as well as treatments of 50% (2.25 mL concentrate), 25% 

(1.13 mL), 12.5% (0.56 mL) and 6.25% (0.28 mL) label rate, each made to 50 mL with tap 

water, were used as treatments. In Experiment 2, only 4.5 mL concentrate made to 50 mL 

with tap water (full label rate) was used. In Experiment 3, 4.5 mL of concentrate (full label 

rate) was also used, made to 200 mL with tap water. 

5.3.4 Potato plant propagules 

In Experiment 1, minitubers (cv. ‘Russet Burbank’) were used. These were grown from 

tissue-cultured plantlets (Aspara Pacific Ltd., NZ) in seed-raising mix (Appendix A.3.1) in an 

insect-exclusion cage, and stored at 4°C for 8 months before planting. The minitubers were 

incubated at 18°C, 12:12 h light:dark, lighting: two 30W/860 Lumilux® Daylight lamps 

(Osram, Germany), for 2 weeks prior to planting to break dormancy. In Experiment 2, 

minitubers (cv. ‘Desiree’, Alex McDonald (Merchants) Ltd., NZ) were incubated as above 

prior to planting. In Experiment 3, small seed potatoes (cv. ‘Russet Burbank’, mean weight 

16.7 g, Alex McDonald (Merchants) Ltd., NZ) were first washed free of soil, and tubers with 

noticeable damage or disease were discarded. Remaining tubers were surface sterilised (5 min 
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in 2% sodium hypochlorite solution, then rinsed in tap water) before incubation as above prior 

to planting to break dormancy. 

5.3.5 Amendment selection assays (Experiments 1 and 2) 

For Experiment 1, required weights of OM were pre-weighed into plastic buckets (58, 115 

and 230 g for chitin, pine bark compost, biochar and biochar+fertiliser, plus 460 g for all 

except chitin) and buckets made to 10 L with soil:pumice mix (Appendix A.3.3) – giving 

concentrations of OM of 5.8, 11.5, 23 and 46 g/L. These concentrations were calculated to be 

equivalent to 0.25, 0.5, 1.0 and 2.0 t/ha respectively. The contents of each bucket was tipped 

onto clean plastic sheeting, and pre-weighted pathogen-infested barley (10.0 g) was mixed in 

by hand. Ten 0.9 L plastic pots with individual saucers were then filled with the inoculated 

medium and placed in a randomised block design (ten blocks, one replicate per block) in a 

temperature controlled greenhouse cell at Plant and Food Research Ltd. (Lincoln), with 

glasshouse conditions as detailed in Chapter 3. After 2 weeks, pre-sprouted minitubers (cv. 

‘Russet Burbank’) were planted one per pot at ca. 30 mm depth. Pots were watered as 

required to maintain moisture, and once plants had reached approx. 20 cm in height they each 

received 30 mL of a 0.01% solution of High NK™ liquid fertiliser (8:6:13.5 N:P:K, 

Agrichem, Australia) twice each week to prevent nutrient deficiency. Plants were harvested 8 

weeks after planting (see 5.3.7). 

Experiment 2 was conducted using the same methods as Experiment 1, using the following 

OMs; three composts (pine bark, garden grow and Dalton’s organic) each at 46 and 92 g/L 

(equivalent to 2.0 and 5.0 t/ha), chitin and chitosan both at 58 g (equivalent to 0.25 t/ha) as 

well as 1.6 mL and 16 mL of liquid chitosan concentrate (equivalent to 7 and 70 L/ha 

concentrate, both made to 50 mL with tap water). After 2 weeks, pre-sprouted minitubers (cv. 

‘Desiree’) were planted one per pot at ca. 30 mm depth. Pots were watered, fertilised and 

harvested as in Experiment 1. 

5.3.6 Pine bark compost experiment (Experiment 3) 

Four weights of pine bark compost (0.69, 1.38, 2.76 and 5.52 kg) and sterile (autoclaved at 

121°C, 15 min, 15 psi) pine bark compost were dispensed into containers and made up to 

30 L with soil:pumice mix (Appendix A.3.3). Final concentrations of the OMs were 23, 46, 

92 and 184 g/L, equivalent to 3, 6, 12 and 24 t/ha. Pre-weighed pathogen inoculum (30 g) was 

mixed thoroughly into each treatment by hand. For each treatment, ten 3 L planter bags were 

half filled with medium, then a 0.9 L plastic plant pot with base removed and replaced with 20 

µm nylon mesh (Sefar Filter Specialists Ltd., Auckland) was placed in each bag. Each pot and 
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remaining bag volume were filled with medium, and each placed in a temperature controlled 

greenhouse unit in a randomised block design (ten blocks, one replicate per block) along with 

positive and negative controls and fungicide treatment. After 2 weeks, pre-sprouted small 

seed potatoes (cv. ‘Russet Burbank’, detailed above) were planted at ca. 50 mm depth, one 

per pot. Plants were watered, fertilised and harvested as in Experiment 1. 

5.3.7 Harvest procedure 

For all three experiments, plants roots were washed free of growing medium and the 

following parameters recorded for each plant: number of stolons (total and number with 

lesions), number of stolon tips (total and number ‘nipped’), number of tubers (total and 

number malformed or damaged by lesions), total tuber weight and dry weight of roots and 

shoots. For Experiment 3, first the 0.9 L pots were removed from the planter bags, growing 

medium samples (ca. 100 g) were them collected from each planter bag, directly below the 

pot. The potato plant was then removed from the pot and a further sample taken from the 

growing medium within the pot. 

5.3.8 Community metabolic profiling (Experiment 3) 

The growing medium samples collected at harvest (Experiment 3) were processed as follows: 

For each treatment, 2 g sub-samples of medium were taken from each of the ten replicate pots 

(bulk and rhizosphere separately) and combined in two 250 mL capacity conical flasks, five 

sub-samples per flask. Each flask was made up to 100 mL with 0.1% physiological agar 

(Appendix A.1.11), sealed with Parafilm® M (Brand GmbH, Germany) and shaken at 500 

oscillations/min on a Stuart® SF1 flask shaker (Keison International Ltd., UK) for 5 min, 

creating two replicate 1×10-1 g/ mL suspensions for bulk and rhizosphere growth medium for 

each treatment. The two replicates were then combined to make one suspension each for bulk 

and rhizosphere. These were both serially diluted by pipetting 2 mL into 18 mL of sterile 

physiological salt solution (0.85% NaCl) three times to achieve 1×10-4 g/ mL. This final 

dilution was used to inoculate a 96 well EcoPlate™ (Biolog Inc., Hayward, CA, Figure 5.1), 

at 100 µL per well, with two plates per treatment – one bulk growth medium, one rhizosphere 

growth medium. Plates were incubated at 25°C in darkness and the Absorbance at 590 nm for 

each well was recorded every 24 h for 9 days on a Microplate reader – SpectraMax 190 

(Molecular Devices, LLC, US), using Software – SoftMax Pro v5.4.3.001 (Molecular 

Devices, LLC, US). 



 108 

 

Figure 5.1 Example of a 96 well EcoPlate™ (Biolog Inc., Hayward, CA) for analysis of  
microbial community metabolic profiling. 

 

5.3.9 Statistical analysis 

All data were analysed by ANOVA and treatment means were compared using Fisher’s 

unrestricted LSD at P < 0.05. If data did not satisfy the parametric assumption of normal 

distribution they were transformed (square root for count data, log10 for weights) prior to 

analysis. In Experiment 1, the data was also analysed as a 4 × 4 factorial experiment, four 

treatments (Pine bark compost, biochar, biochar+nitrosol and pencycuron) and four rates, for 

which linear and quadratic components were included in the analysis. 

For Experiment 3, EcoPlate™ data for day 3 reading time first had average blank value (water 

well) subtracted from all plate values. Then mean well absorbance (average well colour 

development; AWCD) as well as number of wells exceeding a value of 0.25 (community 

metabolic diversity; CMD) were calculated for each of the three replicates per plate. AWCD 

and CMD data were then subjected to ANOVA using Fisher’s unrestricted LSD (P < 0.05) to 

compare treatment means. Regression analyses were conducted for group means of each 

Rhizoctonia disease or plant parameter with rhizosphere and bulk AWCD and CMD group 

means. 
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5.4 Results 

5.4.1 Experiment 1 

In Experiment 1, the majority of OM treatments had no significant positive effects on the 

disease parameters measured (Table 5.1). The greatest rate of chitin increased the number and 

proportion of symptomless stolons, but this did not translate into a yield benefit, as no tubers 

resulted from this treatment. The greatest rate of pine bark compost increased the total number 

of symptomless stolons, and also increased the number and total weight of tubers as well as 

the proportion of symptomless tubers. 

When the data were separately subjected to factorial analysis of variance (four amendments 

and four rates; arbitrarily represented by 12.5, 25, 50 and 100) with linear and quadratic 

polynomial components included, the overall effect of amendment type was significant (all 

P < 0.001) for all parameters measured, but rate was not. However, the linear component 

probabilities with rate were P = 0.061for percent diseased stolons, P = 0.069 for the number 

of healthy stolons (square root transformed), and P = 0.062 for the number of symptomless 

tubers (square root transformed). So for these three parameters, data were subjected to 

separate analyses for each amendment type with rate, and linear and quadratic components 

included in the analyses. Only the linear component of the pine bark compost treatment with 

rate was significant for percent diseased stolons (P = 0.05, Figure 5.2 a) and number of 

symptomless stolons (P = 0.01, Figure 5.2 b). The linear component was also significant for 

number of symptomless tubers (P = 0.04), as was the quadratic component of pencycuron 

with rate (P = 0.05, Figure 5.2 c). 

5.4.2 Experiment 2 

In Experiment 2, overall shoot nipping was low in the positive control, and two OM 

treatments (pine bark and Garden Grow composts at 5 t/ha) had significantly more nipped 

shoots than the positive inoculum control (Table 5.2). Both concentrations of pine bark 

compost, as well as the chitin treatment reduced percent diseased stolons, but of these only the 

chitin (plus Dalton’s compost at 5 t/ha) increased the number of symptomless stolons, 

compared to the positive control. Only the pine bark compost treatments reduced the percent 

of nipped stolon tips, and only Dalton’s compost increased the number of symptomless 

tubers. The treatment of liquid chitosan at 7 L/ha increased the number of tubers, and pine 

bark compost at 5 t/ha produced low numbers of tubers, but was not significantly different to 

the positive inoculum control. No OM treatment was significantly different to the positive 

control for total weight of tubers. 
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Table 5.1 Experiment 1 treatment means and ANOVA results for Rhizoctonia disease and physical parameters of potato plants grown from 
minitubers in growth medium amended with several rates of selected OMs 

Treatment Rate Nipped 
shoots No. stolons 

Diseased 
stolons 

(%) 

No. 
symptom-

less stolons 

Stolon tips 
nipped 

(%) 

No. 
tubers 

No. 
symptom-

less tubers 

Total 
tuber 

weight (g) 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

Neg. control 0.0 a+ 8.1 abcd 0.2 a 8.1 a 0.2 a 3.7 f 3.7 b 10.4 g 3.2 abc 1.03 a 
Pos. control 2.7 cde 6.28 efg 76.7 defg 1.4 cde 54.5 cd 1.4 bc 0.3 ef 1.3 cde 2.7 de 0.79 cdefg 

C
hi

tin
 

(t/
ha

) 0.25 2.6 cde 6.6 cdefg 66.6 cd 2.4 bc 58.6 cd 0.3 ab 0.1 ef 0.1 ab 3.2 abc 0.83 cdefg 
0.50 1.8 cd 5.8 efg 67.5 cde 1.8 bcd 55.8 cd 0.0 a 0.0 f 0.0 a 3.5 abc 0.70 efg 
1.00 2.2 cd 8.8 abcd 31.4 b 5.8 a 20.1 b 0.0 a 0.0 f 0.0 a 3.8 a 0.94 ab 

Pi
ne

 b
ar

k 
co

m
po

st 
(t/

ha
) 

0.25 1.8 cd 6.6 cdefg 84.9 g 0.9 de 51.1 cd 2.4 de 0.3 def 1.4 ef 2.6 de 0.72 defg 
0.50 2.0 cd 6.2 efg 84.7 fg 0.8 e 53.0 cd 2.1 bcd 0.4 def 1.6 bcde 2.5 de 0.78 g 
1.00 1.8 cd 6.1 efg 64.2 c 2.1 bc 44.7 cd 1.9 abcd 0.7 def 1.5 cde 2.5 de 0.76 bcdefg 
2.00 3.1 de 7.4 bcdef 68.2 cde 2.4 b 39.9 c 3.3 ef 1.0 c 4.5 f 2.8 bcde 0.84 bcdefg 

B
io

ch
ar

 
(t/

ha
) 

0.25 1.8 cd 7.6 abcdef 82.1 defg 1.2 cde 50.4 cd 2.0 cde 0.3 def 1.8 def 2.9 bcde 0.92 abc 
0.50 2.1 bc 6.2 efg 83.7 efg 1.0 bcde 55.1 cd 1.6 bcd 0.2 def 1.6 cde 2.9 bcd 0.79 bcdefg 
1.00 2.3 cde 8.1 abcde 73.8 defg 2.5 bcde 59.1 cd 1.7 cd 0.7 cd 1.6 cde 2.8 bcde 0.82 cdefg 
2.00 2.6 cd 6.1 efg 68.5 cdef 1.9 bcd 50.1 cd 1.6 bcd 0.2 ef 1.5 cde 2.6 de 0.77 bcdefg 

B
io

ch
ar

 +
 

N
itr

os
ol

 
(t/

ha
) 

0.25 4.3 e 4.8 g 72.1 defg 1.1 bcde 63.8 d 1.0 abc 0.1 ef 1.1 bcde 2.2 e 0.70 fg 
0.50 3.0 cde 6.5 defg 69.6 cdefg 1.9 bcde 48.3 cd 1.6 bcd 0.4 de 0.5 abcd 2.9 bcde 0.86 bcdef 
1.00 2.3 cde 5.4 fg 76.7 cdefg 1.3 bcde 47.3 cd 1.5 bcd 0.2 def 0.8 bcde 2.8 cde 0.82 bcdefg 
2.00 2.7 cde 6.5 defg 78.4 cdefg 1.2 bcde 56.0 cd 1.4 bcd 0.1 ef 0.3 abc 3.0 bcd 0.82 bcdefg 

Pe
nc

yc
ur

on
 

(L
/h

a)
 2.5 0.2 ab 9.9 a 12.6 a 8.7 a 11.5 ab 4.0 fg 3.4 b 10.9 g 3.5 ab 1.08 a 

5.0 0.1 ab 8.9 abc 7.9 a 8.4 a 4.0 ab 4.3 fg 4.3 ab 11.2 g 3.0 abcd 0.93 ab 
10 0.0 a 9.3 ab 5.6 a 8.9 a 0.0 a 5.1 g 4.9 a 10.5 g 3.2 abcd 0.90 abcd 
20 0.0 a 8.7 abcd 3.0 a 8.5 a 0.0 a 4.5 fg 4.5 ab 11.0 g 3.2 abcd 0.90 abcde 

+Means accompanied by the same letter are not significantly (P < 0.05); using Fisher’s unrestricted LSD. 



 

111 

 

Figure 5.2 Treatment means of Rhizoctonia disease parameters from factorial analysis of Experiment 1 data, including significant poynomial 
components of rate, for four rates of selected organic amendments and the fungicide pencycuron 
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Table 5.2 Experiment 2 treatment means and ANOVA results for Rhizoctonia disease and physical parameters of potato plants grown from 
minitubers in growth medium amended with selected OMs 

Treatment Rate  Nipped 
shoots 

No. 
stolons 

Diseased 
stolons 

(%) 

No. 
symptom-
less stolons 

Stolon tips 
nipped (%) 

No. 
tubers 

No. 
symptom-
less tubers 

Total 
tuber 

weight (g) 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

Neg. control 0.0 e+ 23.9 a 1.3 a 24.1 a 0.4 a 11.6 a 11.5 a 33.8 a 1.7 ab 0.29 bcd 
Pos. control 0.4 de 18.2 a 81.6 d 3.0 cd 52.8 c 7.2 cde 2.9 de 6.9 bc 1.6 bc 0.29 cd 
Pine bark 
compost (t/ha) 

2 0.9 abcd 15.8 a 57.8 bc 4.3 bcd 31.8 b 7.1cde 3.3 de 9.2 bc 1.1 cd 0.20 d 
5 1.3 ab 14.7 a 57.4 bc 3.8 bcd 33.4 b 3.1e 1.5 de 5.2 bc 0.8 d 0.18 d 

Dalton’s Org. 
Comp. (t/ha) 

2 0.1 e 14.0 a 73.5 bcd 3.1 bcd 47.7 bc 5.0 de 1.5 e 3.1 c 1.7 abc 0.28 abcd 
5 0.7 bcde 19.4 a 65.2 bcd 7.1 b 43.8 bc 9.3 abcd 6.8 bc 9.5 bc 1.3 bcd 0.25 cd 

Garden Grow 
Comp. (t/ha) 

2 1.0 abcd 15.3 a 75.6 cd 2.1 d 50.2 bc  7.6 bcde 1.8 de 7.1 bc 1.9 ab 0.29 abcd 
5 1.7 a 16.1 a 80.1 cd 4.2 bcd 50.2 c 7.5 de 3.8 cde 5.2 c 1.6 abc 0.27 abcd 

Chitin (t/ha) 0.25 1.2 abc 17.9 a 53.5 b 7.0 b 39.9 bc 5.4 cde 1.8 de 6.9 bc 2.2 a 0.41 a 
Chitosan (t/ha) 0.4 cde 24.0 a 82.9 d 3.7 bcd 52.6 c 7.1 cde 1.8 de 4.2 c 2.2 a 0.40 ab 
Liquid chitosan 
(L/ha) 

7 0.0 e 20.8 a 85.2 d 3.4 bcd 46.5 bc 11.5 ab 4.1 bcd 9.0 bc 2.3 a 0.38 abc 
70 0.7 bcde 20.9 a 75.9 cd 5.8 bcd 46.3 bc  8.9 abcd 4.2 cde 12.5 b 2.0 ab 0.36 abc 

Pencycuron(L/ha) 20 0.0 e 21.3 a 0.5 a 21.2 a 0.2 a 10.4 abc 9.6 ab 28.8 a 1.6 abcd 0.25 cd 
+Means accompanied by the same letter are not significantly (P < 0.05); using Fisher’s unrestricted LSD. 
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5.4.3 Experiment 3 

In Experiment 3, shoot nipping was noticeably greater than in Experiments 1 and 2. At 3, 6 

and 12 t/ha, neither OM significantly altered the number of shoots nipped, while both OMs at 

24 t/ha gave more shoots nipped than the positive inoculum control (Table 5.4). Neither OM 

recovered the reduction in number of stolons in the positive inoculum control at any rate, and 

non-sterile compost at 24 t/ha gave significantly fewer stolons. Non-sterile compost at 3 and 6 

t/ha, and sterilised compost at 3 and 24 t/ha, reduced percent diseased stolons and percent 

stolon tips nipped. No OM treatment gave numbers of symptomless stolons that were 

significantly different to the positive inoculum control. The shoot and root dry weights from 

both composts at 24 t/ha were significantly less than from the positive control. Very few 

tubers were present on the plants at harvest. 

From the pattern of AWCD and CMD over the course of 9 days after inoculation (Figure 5.3), 

the day 3 time point was selected for ANOVA and regression analysis, as the CMD ( Figure 

5.3 c, d) generally began to plateau after that point.  

The analysis of overall soil community metabolism at time of harvest in this experiment 

(Table 5.3) showed that in the rhizosphere, the greatest rate of compost, and the two greatest 

rates of sterile compost gave greater metabolic activity than either the inoculated or non-

inoculated controls, or the pencycuron treatment. In the bulk soil the greatest rates of both 

composts gave greater metabolic activity than either control, but the other rates did not. 

Analysis of the community metabolic diversity demonstrated that in the rhizosphere samples, 

only the two greatest rates of sterilised pine bark compost gave diversities greater than both of 

the control means. In the bulk samples, only the greatest rate of sterile compost gave greater 

metabolic diversity than either control. 

Table 5.3 Catabolic profile analyses of growing media from Experiment 3. Mean values 
for average well colour development (AWCD) and community metabolic 
diversity (CMD) for rhizosphere and bulk growing medium samples. 

  AWCD CMD 
Treatment Rate  Rhizosphere Bulk Rhizosphere Bulk 
Neg. control 0.19 de 0.23 cd 9.7 d 11.0 b 
Pos. control 0.18 de 0.24 cd 10.7 cd 12.7 b 

Pine bark 
compost (t/ha) 

3 0.23 bcd 0.26 bc 12.3 bc 13.0 ab 
6 0.22 bcd 0.18 d 12.3 bc 10.7 b 
12 0.20 cde 0.24 cd 11.3 bcd 12.3 b 
24 0.25 abc 0.35 a 11.7 bcd 14.0 ab 

Sterile pine bark 
compost (t/ha) 

3 0.22 bcd 0.28 abc 12.0 bc 13.3 ab 
6 0.20 cde 0.25 bcd 12.0 bc 12.3 b 
12 0.26 ab 0.24 cd 13.0 ab 12.7 b 
24 0.27 a 0.32 ab 14.7 a 16.3 a 

Pencycuron(L/ha) 20 0.17 e 0.25 bcd 11.7 bcd 14.0 ab 
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Figure 5.3 Experiment 3 substrate utilisation analysis of soil samples  using Ecoplate™ (Biolog Inc., Hayward, CA). Daily absorbance (590 
nm) readings used to calculate average well colour development of (a) rhizoshere and (b) bulk growing medium samples. 
Community metabilic diversity of (c) rhisosphere and (d) bulk growing medium samples over 9 days of incubation.  
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Table 5.4 Experiment 3 treatment means and ANOVA results for Rhizoctonia disease and physical parameters of potato plants grown from 
seed tubers in soil mix amended with non-sterile and sterile pine bark compost at four rates+ 

Treatment Rate  Nipped 
shoots 

No. 
stolons 

Diseased 
stolons (%) 

No. symptom-
less stolons 

Stolon tips 
nipped (%) 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

Neg. control 0.0 a 7.6 a 2.5 a 7.5 a 2.5 a 4.4 e 1.07 e 
Pos. control 4.3 b 3.7 b 44.6 e 2.3 cde 38.0 d 2.9 cd 0.69 d 

Pine bark 
compost (t/ha) 

3 4.6 bc 2.4 bc 20.5 abc 1.7 cde 14.7 abc 2.9 d 0.61 bcd 
6 6.7 bc 2.3 bc 23.5 bcd 1.5 de 12.4 abc 2.5 bcd 0.67 cd 
12 3.5 b 3.6 b 48.7 de 1.5 cde 34.2 cd 3.2 d 0.67 cd 
24 7.3 c 1.8 c 25.9 bcde 1.3 e 17.7 abcd 0.4 a 0.29 a 

Sterilised pine 
bark compost 
(t/ha) 

3 5.1 bc 3.6 b 16.0 abc 2.7 bc 12.7 abc 2.5 cd 0.61 bcd 
6 4.7 bc 3.7 b 34.5 cde 2.4 cd 26.4 bcd 2.5 bcd 0.70 cd 
12 4.8 bc 3.7 b 35.3 cde 2.5 cd 28.8 cd 2.0 bc 0.49 abc 
24 7.1 c 2.7 bc 6.4 ab 2.6 cde 3.1 ab 1.7 b 0.40 ab 

Pencycuron(L/ha) 20 0.1 a 6.2 a 14.4 abc 5.1 ab 16.7 abc 4.4 e 1.07 e 
+Means accompanied by the same letter are not significantly (P < 0.05); using Fisher’s unrestricted LSD. 
 

Table 5.5 Regression analyses of mean Rhizoctonia disease and plant parameters vs. mean catabolic parameters + 

Plant parameter Soil division 
Catabolic 
parameter P value R2 value Correlation 

Nipped shoots Rhizosphere AWCD 0.03 0.52 positive 
No. stolons Rhizosphere AWCD 0.09 0.36 negative 

Shoot dry weight Rhizosphere AWCD 0.08 0.38 negative 
Bulk AWCD 0.03 0.52 negative 

Root dry weight 
Rhizosphere AWCD 0.03 0.51 negative 

Bulk AWCD 0.01 0.66 negative 
CMD 0.04 0.48 negative 

Rate Bulk AWCD 0.06 0.48 positive 
CMD 0.06 0.47 positive 

+Only statistically significant regressions are presented 
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5.5 Discussion 

The results of Experiments 1 and 2 demonstrated that, at the rates tested, none of the selected 

OM amendments were strong suppressors of Rhizoctonia diseases of potato. However, 

because analysis of the application rates for individual OMs in Experiment 1 demonstrated 

that there was a significant linear relationship between increasing the rate of pine bark 

compost and decreasing Rhizoctonia disease symptoms (percent diseased stolons, number of 

symptomless stolons and number of symptomless tubers), this amendment was selected for 

testing in Experiment 3. The concentrations of pine bark selected for Experiment 3 were the 

greatest two from Experiment 1 (23 and 46 g/L) and two further doublings of concentration 

(92 and 184 g/L). This was to generate treatments covering a range of potential disease 

suppression levels, and to then determine if any physical or microbiological factors could be 

identified as mechanisms of disease suppression. The sterilised pine bark compost was 

included to help determine if any suppressive effects were due to the introduction of 

organisms on the OM, or alternatively through stimulation of soil communities. However, the 

results did not show a range of suppression levels which warranted further analysis of factors 

underpinning disease suppression (no treatment reduced shoot nipping or increased the 

number of symptom-less stolons). While it may appear that the greatest rate of sterilised 

compost reduced symptoms on stolons, this treatment also gave greater nipping of emerging 

shoots and reduced shoot and root dry weights, so this medium cannot be considered a disease 

suppressor. As described in a review by Hoitink and Boehm (1999), lignocellulosic material 

with greater cellulose content can stimulate R. solani, even though antagonist populations are 

increased, leading to disease. In spite of the pine bark having been composted, the total 

amount of cellulose remaining after composting may have been too great to stimulate 

antagonists of R. solani without also stimulating the pathogen. This may explain the greater 

shoot nipping at the greatest rates of pine bark compost in Experiment 3. It could be that more 

mature bark composts with lower amounts of cellulose, or lignin extracts, would not induce 

this response. 

The analysis of the community metabolic activity and metabolic diversity of samples taken 

from the ‘rhizosphere’ and ‘bulk’ growth medium of each treatment in Experiment 3 was 

conducted at the time of harvest, before analysis of Rhizoctonia disease and plant physical 

parameters had ruled out the need for further study. One of the main findings from the 

regression analyses between mean disease or plant parameters and catabolic parameters was 

the lack of relationship between disease parameters and levels of metabolic activity and 

diversity. Several other studies have found absence of relationships between total microbial 
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activity or general diversity and levels of disease suppression. These results reinforce the 

assertion that suppression of Rhizoctonia diseases is due to the activity of specific 

components of soil communities, rather than stimulation of the whole communities 

(Bonanomi et al., 2010). In addition, a study by Temorshuizen et al. (2006), which compared 

the suppressiveness of 18 composts against seven soilborne phytopathogens, demonstrated 

that one OM amendment could have contrasting effects on disease levels for different R. 

solani pathosystems: what was suppressive in one could be conducive in another. This is 

further indication that the suppression of Rhizoctonia spp. is quite specific, and unlikely to be 

governed by general increases in microbial activity. In the present study, increases in OM rate 

correlated with increases in the AWCD and CMD of bulk growth medium samples, but not 

rhizosphere samples. This indicates that the host plants influenced the microbial communities 

at levels strong enough to mask or negate the effects of the OMs. Even if an OM leads to 

background general community population increases, this might not be relevant in the 

infection courts where plant exudates dominate. 

When Scheurerell et al. (2005) investigated factors responsible for Rhizoctonia disease 

suppression in their suppressive composts they found that disease levels were not related to 

any single physical, chemical or biological factor – including: compost temperature, water 

content, particle size distribution, pH, electrical conductivity, levels of ammonium- or nitrate-

N, total C, N, Ca, Mg, K, P, Fe and Mn, ammonia volitization, respiration and respiration 

potential, concentrations of culturable bacteria, actinomycetes, yeast, fungi or Trichoderma 

spp. These authors did, however, report that the reduction of of Rhizoctonia damping-off from 

dairy fir-bark compost was increased (50 to 93%) when compost was inoculated with T. 

hamatum (T 382) 5 days prior to assay initiation. This reduction was less (71%) when 

inoculation occurred at assay initiation. This supported the hypothesis that R. solani 

suppression is not related to the general microbial populations, but corresponds to populations 

of specific fungal (and bacterial) antagonist species. Previous work on T 382 by Kwok et al. 

(1987) found that in plant growth media amended with composted hardwood tree bark, 

inoculation with combinations of the Trichoderma and antagonistic bacteria offered 

consistently greater suppression than T 382 alone. Similarly, in the study by Krause et al. 

(2001), addition of composted pine bark greatly enhanced the disease suppression capacity of 

two commercial biocontrol products (C299R2, a Chryseobacterium gleum, and T 382), while 

composted bark alone gave inconsistent disease suppression. 

The conclusion that Rhizoctonia disease suppression is mediated by populations of specific 

microorganisms is supported by other studies. For example, when investigating differences 
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between fungal communities from hardwood bark composts suppressive and conducive to 

Rhizoctonia damping-off, Kuter et al. (1983) found that disease suppression was not 

associated with a single fungal group, although populations of Trichoderma spp. were 

implicated in suppression. Recently, Pugliese et al. (2011) demonstrated that composts (from 

urban sludge) without inherent capacity to suppress Rhizoctonia diseases became suppressive 

when inoculated with biocontrol Trichoderma strains. 

Several authors have suggested that combinations of organic amendments and biocontrol 

organisms may be viable options for more consistent disease suppression. However, to 

attempt this with the amendments and isolates investigated in the present study would likely 

give negative results, for the following reason: None of the isolations were conducted with 

compatibility with specified organic matter amendments in mind, and there is therefore no 

information as to which, if any, would thrive in soil augmented with those amendments. The 

following section on future prospects covers a different potential starting point for a 

biocontrol strategy combining organic matter amendments and suppressive microorganisms. 

5.5.1 Future research 

It has been suggested that in order to ensure strong, consistent biological suppression of 

diseases caused by soil-borne pathogens like R. solani, it is necessary to combine suppressive 

microorganisms with organic matter amendments which will support their activity. The 

following strategy is suggested for targeted selection of OMs and organisms to generate 

appropriate combinations with a strong probability of achieving effective reduction of 

Rhizoctonia diseases of potato, with consideration of the economics of large-scale 

implementation. Firstly, abundant, low-cost organic amendments (e.g. chitin from seafood 

industries, lignin from paper production, barks and sawdust from timber production) should 

be selected. Selective media (agars) based on their most abundant component (e.g. chitin, 

lignin or cellulose) should be used for biocontrol agent selection. Thirdly, the amendment 

should be incubated in soils (perhaps from a variety of backgrounds, such as conventional and 

organic agricultural fields, as well as non-cultivated soils) along with pathogen inoculum. 

Next, potato plants would be grown in the incubated media, and plants not exhibiting disease 

symptoms identified. Isolations of microorganisms would then be conducted (using the 

developed selective media) from soil as well as from the host plant infection courts. This 

would generate a collection of organisms which utilise the amendment as a nutrient base. 

After discarding all isolates not amenable to common culture methods, those with phytotoxic 

effects, and those likely to be plant or human pathogens, the remaining isolates would be 

screened in rapid in vivo disease suppression assays. These assays should incorporate the 
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amendment (inoculated with test organisms) at concentrations which would be financially 

realistic when scaled up to crop areas used in conventional agricultural. The assays should 

have short run-times for high-throughput (e.g. only focus on shoot nipping, the first symptom 

of Rhizoctonia disease of potato), and isolates from different taxonomic groups should be 

tested in appropriate factorial design experiments. Thus, individual isolates, or combinations 

of isolates which suppress disease, could be determined. This process would be rapid, and 

should generate small cohorts of microbial isolates which perform well as biocontrol agents, 

directly supported by economically realistic amounts of organic amendment. These would 

then be tested and developed with good prospects for practical efficacy and use. 

Conclusions 

The types of organic amendments tested here were selected from results in published accounts 

of suppression of Rhizoctonia diseases. However, none provided sufficient disease control to 

be classified as suppressive, so no in depth investigation of underlying disease control 

mechanisms was warranted. Furthermore, no relationship was detected between most disease 

parameters and general microbial activity or metabolic diversity in the rhizosphere or bulk 

growth medium partitions from potato plants. Biological control of Rhizoctonia diseases is 

often associated with populations of specific taxa (rather than general increases in soil 

communities), which would either need to be already present in the soil, or in the OM 

amendment, for the amendment to have a suppressive effect. A commonly prescribed solution 

to produce, increase or reduce variability of biocontrol is to pre-inoculate OM with known 

BCAs. This was not investigated in the present study, as neither the isolates screened in 

Chapter 4, nor the amendments investigated here, demonstrated disease suppression strong 

enough to be considered suitable for further study. 
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     Chapter 6 
The impact of crop rotation on bacterial and fungal 

communities, Rhizoctonia solani populations and 

Rhizoctonia diseases of potato 

6.1 Abstract 

Crop rotations are regularly practiced to limit the build-up of soil-borne phytopathogens, 

including Rhizoctonia solani. The impact of different crop rotations on soil microbial 

communities is less well studied. In the present study, four different crop rotations from a 

long-term trial site in New Zealand were investigated for their impact on soil bacterial and 

fungal communities, using culture dependant and independent techniques, as well as for their 

impact on R. solani populations. The effect of crop rotation on the expression of Rhizoctonia 

canker symptoms and populations of inoculated R. solani was also investigated in a 

greenhouse assay. Since host plant monoculture has been demonstrated to occasionally lead to 

the induction of soils suppressive to soil-borne phytopathogens, the present study aimed to 

determine if potato monoculture had caused the development of a soil suppressive to 

Rhizoctonia diseases of potato. The results demonstrated that there had not been a measurable 

build-up of R. solani in any of the rotations, including one which had potato monoculture for 

eight successive growing seasons. Soil community structure was influenced more by the 

identity of the most recent crop than the rotation crop sequence. Rotation type did not 

influence the expression of Rhizoctonia canker symptoms in the greenhouse assay using soil 

from the field trial. This study demonstrates that soil bacterial and fungal communities can be 

very resistant to influence by crop rotation practice, and, for the soil type examined, potato 

monoculture did not result in either a build-up of R. solani populations, or the induction of 

Rhizoctonia disease suppression. 

6.2 Introduction 

6.2.1 Crop rotations and Pukokohe trial 

Crop rotations can be a practical method for preventing build-up of pathogen inoculum in 

agricultural soils, as well as improving soil structure, soil microbial community diversity and 

activity (see Chapter 1). Historically, crop rotations were normal practice for maintaining soil 

“health”. With the advent of synthetic fertilisers and pesticides, however, continuous 

monoculture or short intervals between specific crops have become commonplace in 
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agriculture, often with consequent build-up of soilborne pathogen inoculum. One 

phenomenon which can arise as a result of continuous high presence of pathogen populations 

is disease decline. In these situations, either pathogen populations rise to a peak and then 

subsequently recede to a level where they no longer cause severe disease, or populations 

remain high but disease symptoms on plants decline over time. In these situations there has 

been no alteration of land management practice, and the origins of this disease decline have 

been proposed to be biological in nature, and therefore fit well into the overall gamut of the 

present research project. 

One of the best studied examples of monoculture leading to disease decline is take-all decline 

in wheat, where many examples of spontaneous decline in disease severity (caused by the 

pathogen Gaeumannomyces graminis var. tritici) were found to correlate with increases in 

populations of Pseudomonads antagonistic to the pathogen. Antagonism has been 

demonstrated both in in vitro and in vivo assays (Borneman and Becker, 2007). 

While not as common, there have been a few reports of Rhizoctonia disease decline in 

agriculture. In Japan, monoculture of sugar beet resulted in decline of root rot severity caused 

by R. solani AG 2-2IV, as reviewed by Hyakumachi (1996). Wheat monoculture in Australia 

resulted in decline in severity of root rot caused by R. solani AG 8 (Roget, 1995). The most 

comprehensive investigation of Rhizoctonia disease decline to date was conducted by Mendes 

et al., (2011), who studied a soil from the Netherlands which had developed suppression to 

Rhizoctonia disease of sugar beet, resulting from continuous cropping. They employed 

bacterial/archeal phylochip analysis to determine which taxa of soil microorganisms were 

associated with suppressive soil, and subsequently highlighted γ-Proteobacteria, especially 

Pseudomonadaceae, for further investigation. Isolation of members of this group from beet 

rhizospheres, followed by a series of lab assays, revealed that protection of plants was 

conferred through antifungal activity exhibited by members of the Pseudomonadaceae, 

although other taxa were also likely to be involved. 

Results from experiments in the present study (Chapter 2) found that the Pseudomonads 

isolated from one of the four soil locations (Pukekohe) were more suppressive to R. solani in 

vitro than those from other locations. Since this soil had been sampled from a continuous 

potato monoculture (part of a long-term trial), it was hypothesised that there could have been 

a build-up of suppressive soil populations due to the cropping history. Experiments were 

therefore conducted to determine if soil from the Pukekohe trial, from plots of continual 

potato culture, were suppressive to Rhizoctonia disease of potato relative to other rotations at 
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the same location, and to investigate if the soil history had led to the formation of a 

Rhizoctonia-suppressive soil. 

Even in the absence of evidence of development of Rhizoctonia-suppressive soils at the 

Pukekohe rotation trial site, generating data on the impacts of the different crop rotation 

treatments on severity of Rhizoctonia diseases of potato will be useful to growers in this 

region, which is one of New Zealand’s main potato producing areas (Aitken and Hewett, 

2011). Knowing if there are differences in Rhizoctonia disease levels associated with certain 

crop rotations, as have been reported by other authors (Griffin et al., 2009; Larkin and 

Honeycutt, 2006; Larkin et al., 2010), will help inform growers as to which rotations are more 

likely to reduce economic losses from this pathogen. One hypothesis tested here was that soils 

from crop rotations with greater numbers of years between potato crops would harbour 

smaller populations of R. solani AGs pathogenic to potato. Populations of R. solani AG 3 and 

2-1 were determined in soil samples using a quantitative PCR (qPCR) method. 

Understanding the dynamic relationship between a pathogen, its host plants and the soil 

microbial communities is key to elucidation of how biological control of diseases is, or could 

be, achieved, as well as limitations of biocontrol over a range of environmental conditions and 

cropping practices. The experiments described here examined the effects of four different 

potato rotation practices on the populations of Rhizoctonia solani AGs 3 and 2-1, as well as 

the richness, diversity, evenness and total metabolic activity and diversity of bacterial and 

fungal soil communities. How these factors influence the levels of disease expression of 

Rhizoctonia cankers on potato was then investigated in a glasshouse assay, as well as their 

effect on the populations of R. solani over time. It was hypothesised that soil from rotations 

with a diverse succession of crops would harbour soil microbial communities with greater 

richness, diversity and evenness than soil from monoculture, or rotations with a more limited 

succession of crop species, and that these ‘healthier’ communities could possess greater 

capacity to suppress Rhizoctonia diseases of potato. 

In the past, investigations into soil microbial communities have relied on culture-dependent 

techniques, such as agar plating of diluted samples, which carries with it the large bias of only 

detecting those organisms able to be cultured. These include approximately only 17% for 

known fungi (Bridge and Spooner, 2001), and approximately 1% for known bacteria (Kirk et 

al., 2004). Also, in culture, fast-growing organisms can overgrow those which are less suited 

to the conditions, further biasing the results. Culture-independent methods of analysing soil 

microbial communities overcome some of these problems. Examples of these methods are: 

PCR based DNA fingerprinting techniques; denaturing or temperature-gradient gel 



 123 

electrophoresis (DGGE and TGGE), amplified ribosomal DNA restriction analysis (ARDRA) 

and rRNA intergenic spacer analysis (RISA) (Ranjard et al., 2000). The experiments 

described here employed both culture-dependent enumeration of bacteria and fungi on agar, 

as well as an automated RISA (ARISA) technique developed for bacterial community 

analysis by Fisher and Triplett (1999), and modified for fungal community analysis by 

Ranjard et al. (2001). This method allows rapid, cost effective, high resolution analysis to 

determine soil community richness, diversity and evenness. RISA exploits differences 

between taxa in the length of non-coding regions of the rRNA loci sitting between conserved 

coding regions of the genes. Organisms with the same intergenic spacer length therefore 

group together into Operational Taxonomic Units (OTUs), which can then be analysed for 

their presence and relative abundance in a sample, but cannot be identified per se. The 

experiments also utilised a recently developed method for extracting DNA from large 

quantities (50 g) of soil, so that analyses would be more representative of the different total 

communities in each treatment, especially for fungal populations and communities whose 

distribution can be heterogeneous throughout soils. Culture-dependent catabolic profiling was 

also performed (Biolog EcoPlate™) to assess soil metabolic parameters. Statistical analysis of 

the relationships between soil community factors and subsequent levels of Rhizoctonia 

disease in a greenhouse assay using the soils sampled was conducted to generate information 

regarding factors which might suppress disease. 

6.3 Methods 

6.3.1 Pukekohe rotation trial 

In 2004, a crop rotation field trial was established at the Pukekohe Research Station (grid 

reference: 2675590E, 6442200N), managed by Plant and Food Research Ltd. The trial 

continues, and is being used to study the ecology of pathogens, pests and beneficial organisms 

as well as disease expression to demonstrate the benefits of crop rotation, focusing 

particularly on onion and potato. The trial site (Figure 6.1 and 6.2) was 65 × 140 m (0.78 ha) 

and divided into 24 plots, each 25 m long and eight rows (potatoes) / four seed beds (onions) 

wide, with 4.5 m buffer spaces between plots. The trial consists of six rotation treatments 

(Table 6.1), with four replicate plots per treatment (originally in a randomised block design, 

later converted to a fully randomised design). 

6.3.2 Soil sampling and preparation 

Soil was collected from all replicate plots of rotation treatments 2, 3, 4 and 6 (Table 6.1, 

Figure 6.1 and 6.2), on the 14th March 2012, after the respective vegetable crops had been 



 124 

harvested (Table 6.2). Samples were taken from the inner four rows (potato plots) or inner 

two beds (onion plots) and consisted of 20 samples of ca. 350 mL  taken by hand trowel from 

the top 150 mm of soil, five per row (potato) or ten per bed (onion), evenly spaced along each 

row/bed, with plant litter avoided. Soil samples from each plot were combined in a pre-

labelled plastic sack, and the sacks were transported to Lincoln University. Upon arrival, soil 

from each plot was mixed thoroughly by tumbling in the sack for 5 min, before a ca. 200 g 

sub-sample was transferred from each into a zipper bag (Premium red line™ reclosable zipper 

bags, Minigrip®, GA) then placed in -20°C storage. Soil sacks were stored at room 

temperature in darkness until required (5 days). 

 

Table 6.1 Crop rotation plan showing six treatments in the Pukekohe vegetable rotation 
trial during successive growing seasons since 2004/05. Samples were taken for 
the present study from plots of rotation treatments 2, 3, 4 and 6 at the 2011/12 
growing season (bold) rotation. 

Rot. 
Trt.A 

Year 
04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12B 12/13 13/14 

1 Onion Onion Onion Onion Onion Onion Onion Onion Onion Onion 
2 Onion Onion Potato Potato Onion Onion Potato Potato Onion Onion 
3 Onion Potato Oats Brassica Onion Potato Brassica Potato Onion Potato 
4 Potato Potato Potato Potato Potato Potato Potato Potato Potato Potato 
5 Potato Potato Onion Onion Potato Potato Onion Onion Potato Potato 
6 Potato Onion Oats Brassica Potato Onion Squash Onion Potato Onion 
ARotation treatments 
BIn bold are crops grown the season prior to soil sampling. From 09/10 onward, potato 
cultivar changed from ‘Ilam Hardy’ to ‘Agria’. 
 

Table 6.2 Management practices applied to the Pukekohe vegetable crop rotation trial 
plots during the 2011/12 growing season. 

 Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar 
Onion: 

Lime, 
plough, 
fertilise, 
rotary 
hoe, bed 
formation 

Onion  

Potato:  Potato  

Oats: 2 crops of oats; 1st allowed to seed; 2nd sprayed off before seeding 
Brassica: Cabbage / Broccoli  

Squash:  Squash 
Standard regional agrochemical (including herbicide, fungicide and insecticide applications) 
and soil management practices were followed. 
 





 126 

6.3.3 Soil analysis 

6.3.3.1 Soil pH and moisture content 
Soil pH for each plot sampled was determined by suspending 10 g of air-dried soil in 25 mL 

of Nanopure® water (10 min on an orbital shaker at 225 rpm, room temperature), and each 

sample was then left to stand overnight before the pH was measured (pH Benchtop Meter 

2210, Hanna® Instruments). Triplicate samples of ca 5 g from each plot were weighed, dried 

in a 60°C oven (24 h) and then re-weighed. Mean soil moisture content was calculated for 

each plot from these weight data. 

6.3.3.2 Enumeration of culturable microorganisms and catabolic profiling 
The dilution and inoculation of agar plates and multi-substrate plates was conducted in plot 

order (random treatment). For each plot, 10 g of soil was dispensed into a 250 mL capacity 

conical flask and the volume adjusted to 100 mL with 0.1% physiological agar (Appendix 

A.1.11). Flasks were then sealed with Parafilm® M (Brand GmbH, Germany) and shaken at 

500 oscillations/min on a Stuart® SF1 flask shaker (Keison International Ltd., UK) for 5 min, 

creating 1 × 10-1 g/ mL suspensions. Suspensions were then serially diluted (1 mL pipetted 

into 9 mL sterile physiological salt solution; 0.85% NaCl) four times to produce 1 × 10-2, 10-3, 

10-4 and 10-5 dilutions of the soil suspensions. Triplicate Petri plates containing fungal 

enumeration agar (Appendix A.1.12) were each inoculated with a 25 µL aliquot of the  

1 × 10-2, 10-3 and 10-4 dilutions, which were spread on the agar surface with a sterile glass rod. 

The ‘microdot’ method was used to enumerate bacteria (personal communication, J. 

Swaminathan, AgResearch Ltd., Lincoln) as follows. Three 10 µL aliquots of each of the 1 × 

10-3, 10-4 and 10-5 dilutions were each dotted onto separate nutrient agar (NA) containing Petri 

plates (Appendix A.1.2), which were then tilted to allowed aliquots to run the length of the 

plate, creating three ‘lanes’ per plate. Using a modified version of the Zak et al. (1994) 

microbial community substrate utilisation method, the 1 × 10-3 suspension from each plot was 

used to inoculate one replicate (⅓) of an EcoPlate™ (Biolog Inc., Hayward, CA) with 100 µL 

per well. All agar plates and EcoPlates were incubated at 25°C in darkness. The numbers of 

mycelial fungal colonies (fungal agar) or bacterial colonies (NA) were recorded once colonies 

had grown but were not overlapped. The numbers of (culturable) fungal and bacterial colonies 

per g (dry weight) of soil for each plot were then calculated. The Absorbance at 590 nm for 

each well of the inoculated EcoPlates was recorded every 24 h for 6 days, with a final reading 

on day 8: Microplate reader – Microskan®GO (Thermo Fisher Scientific Inc.), Software – 

SkanIt Software 3.2 (for Multiskan®GO, Thermo Fisher Scientific Inc.). At each time point, 

average well colour development (AWCD) was calculated for each EcoPlate replicate by 
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taking the mean absorbance (590 nm) reading over all 32 wells after the blank (water well) 

was subtracted (Larkin, 2003). The community metabolic diversity (CMD) was calculated as 

the number of wells with absorbance reading greater than 0.25 (Xiong et al., 2010). 

6.3.3.3 Culture independent community analysis and pathogen quantification 
DNA extraction from soil samples was conducted as follows: Frozen soil samples (6.3.2) 

were thawed at 4°C for 48 h. Samples were then dried for 24 h in an oven at 40°C. For each 

field plot, 50 g of dried soil was weighed and combined with 50 g of a glass sand / glass bead 

(0.6 mm) 1:1 mix in a 350 mL BeadBeater® polycarbonate chamber. Extraction buffer (100 

mL; Appendix A.4.1) was added to each chamber and this mixture was beaten for 2 min 

(BeadBeater® 1107900, Biospec Products Inc.). A 15 mL screw cap tube was filled with the 

homogenised mix and centrifuged at 3220 rcf for 20 min. The supernatant (1 mL) was 

combined with 100 µL of ammonium acetate (10M, Appendix A.4.2) in an Eppendorf tube 

and left at 4°C overnight. Tubes were centrifuged at 16,000 rcf for 5 min and the supernatant 

combined with 1 mL of binding buffer (PB, Qiagen) and mixed well. This mixture was 

centrifuged at 16,000 rcf through a spin column (EconoSpin™ All-in-1 Mini Spin Column for 

DNA/RNA extraction, Epoch Life Sciences Inc.) and the supernatant from the catch tube 

discarded. The spin tube columns were washed by twice adding wash buffer (750 µL then 500 

µL, PE, Qiagen) and centrifuging at 16,000 rcf. DNA was recovered from the spin column by 

adding 50 µL of elution buffer (QF, Qiagen) to the spin tubes and centrifuging – this was 

repeated once. This process produced 100 µL of PCR ready DNA for each field plot sampled. 

Quantitative PCR reactions were conducted as follows: Reaction mixtures (total volume 

20 µL) contained 10 µL of mastermix (iTaq™ supermix with ROX, Bio-Rad Laboratories 

Inc., USA), 2 µL of each primer (3 µM concentration, primers for R. solani AG 3 and AG 2-1 

cannot be detailed due to intellectual property agreement), 2 µL of probe (1.5 µM 

concentration, 5’ is 6-FAM™ labelled with MBG-NFQ on 3’ end) 2 µL of Nuclease-free 

water (UltraPure™, Invitrogen Ltd.) and 2 µL of DNA template. Amplification was 

performed under the following conditions: 95°C for 2 min, then 40 cycles of 95°C for 15 sec, 

62°C for 20 sec, and 72°C for 20 sec, performed using a StepOnePlus™ Real-Time PCR 

Instrument (Applied Biosystems) with StepOne software (v2.2.2, Applied Biosystems). DNA 

extracts for qPCR from Pukekohe rotation treatment soils and the greenhouse disease assay 

were diluted in elution buffer, to reduce concentration of PCR inhibition factors, by1:10 and 

1:20, respectively.  

DNA amplification for ARISA was conducted as follows: Reaction mixtures (total volume 

50 µL) for PCR contained 2× Master Mix (25 µL, Go TaqGreen, Promega Ltd. which 
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includes dNTPs), Nuclease-free water (17 µL, Promega Ltd.), bovine serum Albumen (2 µL 

of 10 mg/mL solution, Invitrogen Ltd.) forward- and reverse-primers (2 µL of 10 µM 

solutions for each) and DNA template (2 µL). For analysis of bacterial community structure 

(B-ARISA), the bacterial intergenic spacer (IGS) located between the small (16S) and large 

(28S) subunits of ribosomal RNA genes were amplified using the following primers as 

detailed by Ranjard et al., (2001): targeting the eubacterial rRNA small subunit ( S-D-Bact-

1522-b-S-20, 5’-TGCGGCTGGATCCCCTCCTT-3’) and eubacterial large subunit (L-D-

Bact-132-a-A-18, 5’-CCGGGTTTCCCCATTCGG-3’). The small subunit primer was 

labelled at the 5’ end with HEX (6-carboxyhexafluorescein) fluorochrome (Invitrogen Ltd, 

NZ) for automated detection of amplified PCR product. To analyse the fungal community 

structure, the ITS1-5.S-ITS2 region was amplified using primers, again as detailed by Ranjard 

et al. (2001), which target the 3’ end of the 18S (primer 2234C, 

5’-GTTTCCGTAGGTGAACCTGC-3’)  and 5’ end of the 28S (primer 3126T, 

5’-ATATGCTTAAGTTCAGCGGGT-3’) genes in various organisms. The 18S primer was 

labelled at the 5’ end with HEX fluorochrome (Integrated DNA Technologies Inc, US). 

Amplification was performed under the following conditions: 95°C for 5 min, followed by 30 

cycles of 95°C for 30s, 61.5°C for 30s and 72°C for 1 min 30s, with a final phase of 72°C for 

5 min for extension of incomplete products. PCR products were visualised under UV on 1.5% 

(w/v) agarose gels made with 1×TBE (Tris/Borate/EDTA) buffer and SYBR® safe DNA gel 

stain (10 µL in 100 mL gel, Invitrogen Ltd.), and run for 40 min at 110V at room temperature. 

PCR products were purified for analysis using Zymo DNA Clean and Concentrator™ kits 

(Ngaio Diagnostics Ltd, NZ) to remove primers and small fragment DNA sequences. Purified 

PCR products were then processed on a 3130XL Capillary Genetic Analyser (ABI Ltd., 

Melbourne) using a 50 cm capillary with standard Genemapper protocol and increased 

runtime (15 kV, 3700 s), and the fluorescence data generated were converted to 

electropherograms (Figure 6.5) with Genemapper (v3.7, Applied Biosystems™), which also 

assigned a fragment length to peaks based on comparison with a standard ladder (LIZ1200, 

ABI Ltd.). 

6.3.4 Rhizoctonia solani inoculum 

Inoculum was prepared as detailed in Chapter 4. Briefly, barley + V8® juice medium 

(Appendix A.2.1) was inoculated with agar plugs from the edge of a growing colony of 

isolate Rs043-2 (AG 2-1), and incubated for 2 weeks at 25°C in darkness. 
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6.3.5 Greenhouse disease assay 

Five litres of soil from each field plot sampled (Figure 6.1) was combined with 2 L of pumice 

(3-5 mm grade, Egmont Commercial, NZ) in a plastic sack and mixed by tumbling for 5 min. 

The soil/pumice mix for each sampled plot was then used to fill three 0.9 L plastic plant pots. 

A further three pots were initially ⅓ filled and three R. solani infested barley grains (section 

6.3.4) were placed on top of the first layer of soil in each pot, roughly equally spaced from the 

pot edge and each other. The inoculated pots were then filled with the soil mix. All pots were 

planted with one pre-sprouted minituber (potato cv. ‘Desiree’, Alex MacDonald (Merchants) 

Ltd, NZ, stored at 4°C, incubated at 18°C, 12:12 h light:dark for 2 weeks to sprout, mean 

weight 2.3 g). Each minituber was planted at ca. 30 mm depth, then covered with mix. Pots 

were placed on greenhouse benches and arranged into four blocks. Each block contained all 

the pots from one plot of each of the four crop rotation treatments sampled from the field trial 

(treatments 2, 3., 4 and 6), e.g. block 1 had all pots of plot 5 (Treatment 2), plot 2 (Treatment 

3), plot 3 (Treatment 4) and plot 4 (Treatment 6). Each block took up ½ of a greenhouse 

bench, and was divided into three sub-blocks of paired pots from each plot sample (each pair 

consisted of one pot with, one without added pathogen inoculum), four pairs in a table width, 

with pairs in a random order and order of pots within pairs also randomised. Plants were 

grown in a temperature controlled greenhouse unit at Plant and Food Research Ltd., Lincoln 

with supplemental lighting (conditions as detailed in Chapter 3). Plants were watered as 

required to maintain moisture, and from 6 weeks after planting to harvest, each pot was given 

30 mL of a 0.01% solution of High NK™ liquid fertiliser (8:6:13.5 N:P:K, Agrichem, 

Australia) twice each week to prevent nutrient deficiency. The date of plant emergence for 

each pot was recorded. Plants were grown for 10 weeks, and at harvest the soil was shaken 

free from plant roots and soil from each of the two triplicate sets per plot sample (with and 

without added pathogen inoculum) were combined in separate plastic sacks and mixed. From 

these combined samples, ca. 300 g sub-samples were oven dried at 40°C then transferred to 

individual zipper bags, which were storage at -20°C. Plants were washed free of soil and 

number of stolons (total and number with lesions), number of stolons tips (total and number 

‘nipped’), number of tubers (total and number malformed or damaged by lesions), total tuber 

weight, and dry weight of roots (without tubers) and shoots were determined. Soil extraction 

and quantification of R. solani AG 2-1 was performed for all of the inoculated treatments (see 

section 6.3.3.3). 
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6.3.6 Statistical analyses 

The pH, fungal and bacterial enumeration, AWCD and CMD (at each time point) as well as 

plant physical parameters, Rhizoctonia disease data and R. solani quantification data, were 

subjected to ANOVA for complete randomised designs, and treatment means compared using 

Fisher’s unrestricted LSD (P < 0.05). Plant physical and Rhizoctonia disease data were also 

analysed as a 4 × 2 factorial ANOVA, with the four rotation treatments and +/- pathogen 

inoculation as factors. The EcoPlate™ substrate utilisation (SU) data at incubation day 2 were 

analysed by principal components analysis using the covariance matrix (Glimm et al., 1997). 

Generated principal component scores were then subjected to ANOVA, as above, so mean 

treatment scores could be statistically compared. ARISA electropherogram peak data 

(fragment length and peak height) were first edited using the protocol described by Ramette 

(2009). This protocol uses a custom R binning script to remove background ‘noise’ (peaks 

under 0.09% of total sample fluorescence) so that only clear peaks remain, and aligns peaks 

across samples to account for run-to-run variation. Only peaks > 100 bp and < 1000 bp were 

included in the analyses, as this encompasses the predicted range of fragments produced by 

the PCRs (Ranjard et al., 2001). Data were converted to spreadsheet format, then entered into 

PRIMER 6 (Plymouth Marine Lab, UK) with PERMANOVA add-on statistical software, 

licenced to Gavin Lear, Lincoln University. This was used to generate a pairwise Bray-Curtis 

similarity matrix (Bray and Curtis, 1957), and data were rendered to give visual 

representations of the matrices for the bacterial and fungal results. The software also 

generated OTU richness (number of peaks), diversity (Shannon index) and evenness (Pielou’s 

index) parameters for each sample, which were also subjected to ANOVA as detailed above. 

Correlations between the different soil community factors measured, and between soil factors 

and Rhizoctonia disease or plant physical parameters, were analysed by regression analysis 

(Microsoft Excel™ 2010, Microsoft® Corporation, USA). 

6.4 Results 

It was discovered that plot 12 (one of the rotation treatment 2 replicates) had received an 

incorrect planting in the second year (2005/06) of the rotation trial, so data for this plot were 

removed from the analyses. 

6.4.1 Effect of crop rotation treatment on soil communities 

6.4.1.1 Culture-dependent analysis 
The analysis of soil samples collected (Table 6.3) showed that there was no significant 

difference in pH or culturable fungal populations between the four rotation treatments. The 
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population of culturable bacteria in rotation treatment 6 was significantly smaller than for the 

other three rotations treatments, and the mean PC1 score, AWCD and CMD values for this 

rotation treatment were significantly less than those for treatment 3, but not for treatments 2 

and 4. Graphically, the principal component analysis of substrate utilisation (Figure 6.3) 

demonstrated that individual plots were often closer in profile to plots from other rotation 

treatments than to plots from their own treatment. Plots from rotation treatments 6 and 3 

clustered more closely compared with rotations 2 and 4. 

Table 6.3 Mean pH, culturable fungal and bacterial populations, and substrate 
utilisation parameters for each rotation treatment from ANOVA 

Rotation 
treatment Reps pH 

Fungal cfu / 
g dry soil 

Bacterial cfu 
/ g dry soil 

PC1B 
52.3% 

PC2B 
13.4% AWCD CMD 

2 3 6.3 a 1.08 × 105 a 1.27 × 106 b  0.22 ab -0.45 a 0.38 ab 12.0 ab 
3 4 6.5 a 7.89 × 104 a 1.21 × 106 b  1.15 b  0.37 a 0.53 b 15.8 b 
4 4 6.4 a 1.02 × 105 a 1.30 × 106 b  0.34 ab  0.24 a 0.44 ab 14.0 ab 
6 4 6.4 a 5.56 × 104 a 8.47 × 105 a -1.65 a  0.27 a 0.15 a 7.3 a 

LSDA Max-min 0.24 64923 343091  2.67  1.58 0.35 8.0 
LSDA Max rep 0.22 60107 317641  2.47  1.46 0.32 7.4 

AFisher’s unrestricted LSDs at P = 0.05. 
BPrincipal component scores generated from analysis of EcoPlate™ data after 48 h incubation 
with percent variation explained by each component. 

 

Figure 6.3 Scatter plot matrix of principal component scores for substrate utilisation 
(EcoPlate™) data after 48 h incubation, for microorganisms from soils from 
different crop rotation treatment plots. 
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6.4.1.2 Culture-independent analysis (qPCR and ARISA) 
Of the rotation treatment composite soil samples tested for R. solani AG 3 and 2-1 DNA by 

qPCR, no plot had detectable AG 3 DNA (Appendix B.3.1). All four plots from rotation 

treatment 3 (mixed rotation ending with potato) had detectable AG 2-1 DNA, as did one plot 

from treatment 4 (potato monoculture, plot 22). However, determined values fell outside the 

range of the standard curve, so exact quantities of DNA could not be calculated (Appendix 

B.3.2). 

The bacterial and fungal ARISA profiles (entered into PRIMER 6 software and Bray-Curtis 

similarity matrices generated, 6.3.6) are presented in Figure 6.4 as Non-Metric 

Multidimensional Scaling plots, displaying cluster analysis with resemblance levels of 40, 50 

and 60% similarity. 

There was at least 60% similarity between the bacterial community structures of all but two 

plots based on ARISA (Figure 6.4 a), with plots not grouping more closely with plots of the 

same rotation treatment than with plots of different rotations. There was at least 40% 

similarity between the fungal communities of all plots (based on ARISA, Figure 6.4 b), but 

rotation treatment 6 (mixed rotation ending with onion) plots grouped together, separate from 

the other plots at 50% similarity. The fungal communities of plots from rotation treatments 2 

(alternating onion and potato in 2 year cycles), 3 (mixed rotation ending with potato) and 4 

(potato monoculture) overall demonstrated no strong pattern of grouping together with other 

plots of the same rotations, and often had greater similarity with plots from other rotations. 

ANOVA of bacterial and fungal community richness (peak/OTU number), diversity (Shannon 

index) and evenness (Pielou’s index) demonstrated that there were no significant differences 

between rotation treatments for any of the three community measures for either bacteria or 

fungi (P values ranged from 0.62 to 0.94). 
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Figure 6.5 Examples of ARISA peak fluorescence data presented as electropherograms 
created by Genemapper software of (a) B-ARISA (plot 13) and (b) F-ARISA 
(plot 11) samples.  

6.4.2 Effect of rotation treatments on Rhizoctonia cankers in greenhouse 
assay 

The 4 × 2 factorial ANOVA (four rotation treatment soil samples, with or without R. solani 

isolate Rs043-2, AG 2-1) of the greenhouse Rhizoctonia canker assay (Table 6.4) showed that 

the only parameter for which there was an effect of rotation treatment (P < 0.05) was the 

number of symptom-less stolons. For this measure, rotation treatment 4 (potato monoculture) 

gave fewer symptomless stolons (mean = 3.9), than treatments 2 (5.7), 3 (5.1) or 6 (5.4). The 

addition of pathogen inoculum affected (P < 0.05) seven of the 12 parameters presented in 

Table 6.4, and the effect on number of shoots nipped was significant at P > 0.1. Addition of 

pathogen increased canker disease parameters (percent diseased stolons, number of symptom-

less stolons, percent stolon tips nipped, number of symptom-less tubers). Inoculation also 

decreased the total tuber weight, and increased number of stolons and stolons tips. The 

addition of the pathogen did not affect the number of stolon tips which were not nipped, or the 

total number of tubers or average tuber weight. 
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Table 6.4 Mean parameters obtained from a glasshouse assay for Rhizoctonia disease, using soil from different Pukekohe rotation treatment 
trial plots, which was either non-inoculated or inoculated with Rhizoctonia solani (Path). ANOVA and 4 × 2 factorial ANOVA 
probability values are included 

Rot. 
Trt.A Reps Path. 

Days to 
emerge 

No. 
shoots 

‘nipped’ 
No. 

stolons 

Diseased 
stolons 

(%) 

No. 
symptom

-less 
stolons 

No. 
stolon 
tips 

Tips 
nipped 

(%) 

No. non-
‘nipped’ 
stolon 
tips 

No. 
tubers 

No. 
symptom

-less 
tubers 

Total 
tuber 
weight 

(g) 

Average 
tuber 
weight 

(g) 

2 3 No 9.3 a 0.0 a 6.4 a 12.4 ab 5.4 bcd 6.4 a 3.0 a 6.2 ab 2.9 a 2.8 bc 7.12 c 2.77 ab 
3 Yes 10.0 ab 0.3 a 10.0 c 34.1 bc 6.0 cd 10.2 bc 27.2 bc 6.7 b 2.4 a 2.3 abc 5.11 ab 2.90 ab 

3 4 No 9.3 a 0.3 a 6.9 ab 16.2 ab 5.7 bcd 7.5 a 11.8 ab 6.3 ab 2.5 a 2.5 bc 6.38 c 3.26 b 
4 Yes 9.8 a 0.4 a 9.0 bc 47.2 cd 4.4 bc 10.1 c 32.6 c 6.3 ab 2.6 a 1.9 ab 4.59 a 1.91 a 

4 4 No 11.3 ab 0.0 a 6.6 a 21.8 ab 5.1 bcd 7.1 a 15.1 ab 6.0 ab 2.8 a 2.6 bc 6.19 bc 2.46 ab 
4 Yes 10.2 ab 0.4 a 6.3 a 51.2 cd 2.7 a 7.6 ab 33.1 c 4.7 a 2.6 a 2.3 abc 4.22 a 2.12 ab 

6 4 No 12.4 b 0.1 a 7.0 ab 4.7 a 6.7 d 7.0 a 4.7 a 6.7 b 3.0 a 3.0 c 6.45 c 2.67 ab 
4 Yes 9.5 a 0.1 a 9.2 bc 60.0 d 4.1 ab 10.3 c 37.9 c 6.3 ab 2.5 a 1.4 a 4.49 a 2.27 ab 

4 x 2 factorial ANOVA (4 rotation treatments, +/- pathogen) 

P 
value 

Rot. Trt. 0.315 0.524 0.12 0.36 0.029 0.361 0.585 0.27 0.939 0.714 0.236 0.905 
+/- Path. 0.232 0.06 0.003 <0.001 <0.001 <0.001 <0.001 0.424 0.314 0.005 <0.001 0.126 
Rot. × Path. 0.218 0.571 0.168 0.107 0.082 0.306 0.632 0.598 0.811 0.242 0.993 0.286 

+ pathogen mean 9.8 0.31 8.5 49.1 4.18 9.49 33.1 5.91 2.53 1.98 4.57 2.24 
- pathogen mean 10.7 0.09 6.8 13.9 5.73 7.04 9.0 6.29 2.78 2.71 6.50 2.69 

ARotation treatment 2 = alternating onion and potato in 2 year cycles, 3 = mixed rotation ending with potato, 4 = potato monoculture, 6 = mixed 
rotation ending with onion
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In addition to the results presented in Table 6.4, for root dry weight there was no significant 

difference between any of the treatment means in the overall ANOVA. The only statistically 

significant effect from the factorial analysis was of pathogen (P = 0.098), with plant roots 

slightly heavier (0.32 g) when inoculated with pathogen than un-inoculated plant roots 

(0.29 g). For shoot dry weight, only rotation treatment 6 had +/-pathogen group means 

significantly different at P<0.05 in the overall ANOVA, with plant shoots heavier (0.89 g) 

when inoculated with pathogen than un-inoculated plant shoots (0.64 g). The only significant 

effect from the factorial analysis was of pathogen (P = 0.016), with plant shoots heavier when 

inoculated with pathogen (0.812 g) than un-inoculated plant shoots (0.681 g). 

6.4.3 The effect of crop rotation on inoculated Rhizoctonia solani AG 2-1 
quantity 

All plant growth medium samples from the greenhouse assay tested had quantifiable R. solani 

AG 2-1 DNA (Appendix B.3.3). The ANOVA of qPCR results from the inoculated treatments 

in the greenhouse assay demonstrated that there was no significant difference (P = 0.617) 

between the group (rotation treatment) means in terms of the concentration of AG 2-1 DNA 

present. The mean amounts of AG 2-1 DNA in soil were: Rotation 2, 8.57 pg/g; rotation 3, 

6.05 pg/g; rotation 4, 6.74 pg/g; and rotation 6, 5.28 pg/g DNA per g soil. AG 2-1 DNA was 

present in all 19 inoculated plots at harvest. 

6.4.4 Relationships between soil microbial community parameters (plus pH), 
Rhizoctonia disease and plant physical parameters (plus AG 2-1 
populations) 

The soil community data which had been determined for each of the sampled Pukekohe 

rotation treatment plots (i.e. bacterial and fungal OTU diversity, richness and evenness, 

bacterial and fungal culturable populations, as well as soil community metabolism and 

metabolic diversity) plus pH were tested for relationships to Rhizoctonia disease and plant 

physical parameters determined in the subsequent greenhouse assay (6.3.5), using regression 

analysis. 

For plants grown in soil without additional R. solani inoculum, of the 121 combinations of 

soil community parameters (or pH) vs. Rhizoctonia disease or plant physical parameter, 

twelve were significantly (P ≤ 0.1) correlated (Table 6.5). Only three community parameters 

(bacterial community evenness, fungal diversity and culturable fungal population) 

significantly correlated with any of the Rhizoctonia disease-related parameters. Of the plant 

physical parameters which correlated with soil parameters, four negatively correlated with 
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increasing pH. These were number and total weight of tubers, and dry weights of shoots and 

roots. 

 

Table 6.5 Regression analyses of soil community parameters (per Pukekohe rotation 
treatment plot) vs. mean Rhizoctonia disease and plant physical parameters 
from the greenhouse assay (non-inoculated treatments only) 

Soil community parameter 
(or pH) 

Rhizoctonia disease or plant 
physical parameter P value R2 value Correlation 

Bacterial community 
evenness 

No. symptomless stolons 0.030 0.334 positive 
No. tubers 0.007 0.468 positive 
Average tuber weight 0.060 0.264 negative 

Fungal diversity Emergence time (days) 0.087 0.224 positive 

Fungal CFU No. symptomless tubers 0.060 0.246 negative 
Shoot dry weight 0.067 0.235 negative 

Soil metabolism (AWCD) Shoot dry weight 0.036 0.295 positive 
Soil metabolic diversity Shoot dry weight 0.081 0.215 positive 

pH 

No. tubers 0.039 0.287 negative 
Total tuber weight 0.018 0.362 negative 
Shoot dry weight 0.037 0.294 negative 
Root dry weight 0.016 0.370 negative 

Regression with results from greenhouse assay experiment without R. solani inoculation, only 
regressions significant at P ≤ 0.1 included in the table. 
 

For plants grown in soil inoculated with isolate Rs043-2 (AG 2-1 isolate), of the 156 

combinations of soil community parameters (or pH) vs. Rhizoctonia disease or plant physical 

parameters, 25 were significantly (P ≤ 0.1) correlated (Table 6.6). Of the Rhizoctonia disease 

parameters determined, increases in the number of ‘nipped’ shoots correlated with increases 

in bacterial community richness and diversity, and fungal community richness. Decreases in 

the number of symptomless stolons correlated with increases in fungal community richness, 

diversity and evenness. Conversely, decreases in the proportion of stolons with cankers and of 

stolon tips ‘nipped’ correlated with increases in the total culturable fungal populations, and 

increases in number of stolon tips which had not been ‘nipped’ correlated with increases in 

bacterial community evenness. Rhizoctonia solani AG 2-1 population did not correlate with 

any direct measure of Rhizoctonia disease, and larger populations at experiment termination 

correlated with greater total and average tuber weights. 
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Table 6.6 Regression analyses of soil community parameters (per Pukekohe rotation 
treatment plot) vs. mean Rhizoctonia disease and plant physical parameters 
from the greenhouse assay (Rhizoctonia solani inoculated treatments only)+ 

Soil community parameter  
(or pH) 

Rhizoctonia disease or 
plant physical 

parameter 
P value R2 value Correlation 

Bacterial community richness No. nipped shoots 0.020 0.376 positive 
Bacterial community diversity No. nipped shoots 0.089 0.222 positive 
Bacterial community evenness No. non-‘nipped’ tips 0.046 0.292 positive 

Fungal community richness No. nipped shoots 0.076 0.239 positive 
No. symptomless stolons 0.059 0.266 negative 

Fungal community diversity No. symptomless stolons 0.058 0.268 negative 
Average tuber weight 0.074 0.242 positive 

Fungal community evenness No. nipped shoots 0.076 0.239 positive 
No. symptomless stolons 0.059 0.266 negative 

Bacterial CFU No. symptomless tubers 0.025 0.332 positive 

Fungal CFU 

Diseased stolon (%) 0.002 0.530 negative 
Tips nipped (%) 0.008 0.433 negative 
No. symptomless tubers 0.095 0.200 positive 
Shoot dry weight 0.024 0.335 negative 

AG 2-1 population at harvest 

Days to emerge 0.045 0.275 negative 
Total tuber weight 0.055 0.254 positive 
Average tuber weight 0.035 0.297 positive 
Shoot dry weight 0.024 0.335 negative 

Soil metabolism (AWCD) No. tubers 0.037 0.293 positive 
No. symptomless tubers 0.028 0.319 positive 

Soil metabolic diversity No. tubers 0.090 0.205 positive 

pH 
Days to emerge 0.089 0.206 negative 
Shoot dry weight 0.048 0.268 negative 
Root dry weight 0.049 0.266 negative 

+Regression results from greenhouse assay experiment with R. solani inoculation, only 
regression significant at P ≤ 0.1 included in the table. 
 

6.4.5 Relationships between soil community parameters plus pH 

Relationships between selected soil community parameters, as well as between these 

parameters and soil pH and final AG 2-1 populations (from greenhouse assay, inoculated pots 

only), were determined using regression analyses. 

No statistically significant relationships between the soil community factors measured and 

final AG 2-1 population (of inoculated plots) were found. Metabolic soil factors only 

correlated with culturable bacterial populations, increasing populations correlating with 

greater total metabolism and metabolic diversity (Table 6.7), and not with any fungal or 

culture independent soil community measure made. None of the soil community measures 

correlated with soil pH. 
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Table 6.7 Regression analyses of soil microbial community parameters for each 
Pukekohe soil plot, inluding population of Rhizoctonia solani AG 2-1 
(inoculated pots from greehouse assay only) and soil pH 

Soil factor 1 Soil factor 2 P value R2 value Correlation 
Bacterial diversity Fungal CFU 0.087 0.225 negative 
Bacterial CFU Soil metabolism AWCD 0.001 0.609 positive 
Bacterial CFU Soil metabolic diversity 0.001 0.556 positive 
Fungal CFU Bacterial CFU 0.052 0.261 positive 
Only regression significant at P ≤ 0.1 included in the table. 

6.5 Discussion 

The results from the analysis of the soil samples from the four selected crop rotation 

treatments demonstrate that, at the time of sampling (post-harvest), there were no significant 

differences between the pH or total cultural fungal populations across all rotation treatments. 

There was no significant difference between the three rotation treatments which grew potatoes 

prior to sampling (treatments 2, 3 and 4) for total cultural bacterial populations, or substrate 

utilisation parameters. For rotation treatment 6, which grew onion prior to sampling, there 

were smaller culturable bacterial populations than the other three rotations, and this rotation 

treatment was significantly different to treatment 3 (the other ‘sustainable’/ mixed crop 

rotation) in several of the substrate utilisation parameters. Together, these data indicate that, 

for these factors, the crop history had far less influence than the final crop (either crop species 

itself or the agricultural management practice associated with that crop) on the parameters 

measured. 

The soil community structure, as assessed by culture-independent PCR based analysis 

(ARISA), demonstrated that the bacterial community structure of any plot (Figure 6.4 a) was 

often more similar to that of plots from other rotation treatments than to other plots of the 

same rotation. Also, there was at least 60% similarity between the bacterial communities in all 

but two of the plots. This indicates that the bacterial community structure in the plots was not 

strongly influenced either by the cropping history or the identity of the most recent crop. The 

fungal community analyses (Figure 6.4 b), however, showed that the communities of rotation 

treatment 6 plots grouped together with 50% similarity, while communities of the other three 

rotations grouped together (with the exception of one plot) with the same level of similarity, 

but show no stronger similarities within rotation treatment. This suggests that the fungal 

community was affected by the identity of the most recent crop (onion in rotation 6, potato in 

the other three), but was not strongly affected by crop history (three different crop histories 

for rotations 2, 3 and 4 but no consistent overall differences between their fungal community 
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profiles). The differences in fungal communities between rotation treatment 6 plots and the 

others did not have a discernible impact on Rhizoctonia disease expression, as treatment 6 

presented the same level of disease as the other rotation treatments for percent tips nipped, 

number of non-nipped stolon tips and number of shoots nipped, and the same level of disease 

as treatments 3 and 4 (but not 2) for percent diseased stolons and number of symptomless 

stolons (Table 6.4). 

This similarity between the four rotation treatments sampled in terms of the soil community 

factors measured is one of the more striking findings from this section of research, as 

differences in land use can often result in large differences in the structure of soil microbial 

communities (Garbeva et al., 2004). The data presented here demonstrate that the structure of 

soil bacterial and fungal communities (as determined by ARISA) was no more affected by 

eight successive potato crops than by just one (at the Pukekohe rotation trial site). The crop 

rotation also made no difference to the presence of R. solani AG 3 over the four rotation 

treatments sampled (below limit of detection from all samples). Rhizoctonia solani AG 2-1 

was detected in all four plots of rotation 3, but not in any other other plots. Furthermore, that 

rotation treatment made no discernible difference to the expression of Rhizoctonia diseases of 

potato, as measured in the greenhouse assay, which strongly suggests that whatever the 

disease suppressive capacity of the Pukekohe site soil, it was not enhanced or diminished by 

the crop rotation selection, along with its microbial community structure. 

To determine if any of the plot to plot variation in plant or disease parameters could be 

explained by the soil community measurements made, regression analyses between these 

groups were conducted. Few of the individual plot community measurements correlated with 

any of the disease expression parameters in the half of the greenhouse experiment which did 

not receive added R. solani inoculum (Table 6.5). The measurements which correlated with 

decreases in disease related parameters were increasing bacterial community evenness (on 

number of sympomless stolons), decreasing fungal diversity (on days to emerge) and 

decreasing culturable fungal populations (on the number of symptomless tubers). Some plant 

physical parameters correlated with soil community measurements, but soil pH correlated 

with the most (in the non-inoculated treatments). Decreasing pH correlated with increasing 

number and total weight of tubers, and dry weight both of shoots and roots. It is not surprising 

that for the non-inoculated treatments in the greenhouse experiment, there were few 

correlations between soil community factors and Rhizoctonia disease or plant physical 

parameters, as there were few overall differences found between the plot microbial 

communities themselves, or between plant responses to the different rotation soils. 
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Garbeva et al. (2004) indicated a positive correlation between diversity of soil microbial 

populations and the soil-borne disease suppressive capacity of soils. Regression analysis 

between soil community factors and treatment plots from the half of the greenhouse assay 

inoculated with R. solani (Table 6.6), gave unexpected correlations. Increasing OTU richness, 

diversity (of both bacterial and fungal communities) and evenness (fungal community only) 

correlated with increasing levels of Rhizoctonia disease (numbers of nipped shoots and 

symptomless stolons). Of the microbial community parameters determined by ARISA, 

evenness of bacterial community was the only factor to have positive correlation with a 

reduction in a measure of Rhizoctonia disease (number of stolon tips which were not 

‘nipped’). These findings suggest that, in general, a soil management strategy aimed at 

promoting the richness and diversity of bacterial and fungal communities (or of fungal 

community evenness), would not offer any protection against Rhizoctonia canker diseases of 

potato, and may even increase disease severity. Conversely, increases in total culturable 

fungal populations correlated with decreases in three measures of Rhizoctonia disease; 

proportion of stolons with cankers and of stolon tips ‘nipped’, as well as increases in the 

number of symptomless tubers. This suggests that interactions between culturable fungi and 

the pathogen may have reduced disease severity. If such a relationship exists, then it is 

unlikely to be one of direct destruction of the pathogen (e.g. mycoparasitism) as there was no 

relationship between total culturable fungal populations and populations of R. solani AG 2-1. 

There was no correlation between total population of R. solani AG 2-1 (at greenhouse assay 

harvest) and any direct measure of Rhizoctonia disease of potato. This appears counter-

intuitive, but a review by Bonanomi et al. (2010) states that several authors have reported the 

same phenomenon. Plants with greater AG 2-1 populations at experiment termination tended 

to have greater total tuber and average tuber weights, but less shoot dry weight. 

Overall, the Rhizoctonia disease expression in the greenhouse assay was low compared with 

many of the experiments conducted in previous phases of this study. This suggests that the 

Pukekohe soil possesses some suppressive capacity towards the R. solani isolate used as 

inoculum in the greenhouse experiment. However, this cannot be stated unequivocally, as 

treatments using the same soil type as used in the previous greenhouse experiments were not 

included in the assay carried out here, so direct comparison between the levels of disease 

cannot be made. It is possible that the variation of inoculation procedure, the quality of the 

inoculum or some other factor not related to the soil was responsible for the lower disease 

severity. If the lower disease severity in the assay was a result of the soil, then it remained 

mostly unaffected by crop rotation, as disease levels were consistent between the four rotation 
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treatments sampled. There was also a large degree of similarity between rotations for the 

biotic factors measured. That one, or a combination, of these factors is acting to suppress 

Rhizoctonia diseases of potato remains a viable hypothesis. Investigating this further would 

be worthwhile. 

6.6 Conclusions 

The hypothesis that continual potato culture at the Pukekohe trial site had led to Rhizoctonia 

disease decline was shown to be false. Since disease severity was low, it is possible that the 

Pukekohe soil is generally suppressive to Rhizoctonia disease (canker phase), but as no other 

soil types were tested, further experimentation is required to demonstrate this. The identity of 

the crop grown prior to sampling made some overall difference to the fungal community 

structure, but none to the bacterial community structure, and crop history (the previous eight 

growing seasons) made no difference to either community structure. For the Pukekohe site, 

decreases in severity of a few of the measures of Rhizoctonia disease correlated with 

decreases in bacterial and fungal community richness and diversity, and fungal community 

evenness, and with increases in bacterial community evenness and culturable fungal and 

bacterial populations. There was no correlation between disease severity and population of 

AG 2-1 from results of the greenhouse assay.  
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     Chapter 7 
General Discussion 

7.1 Themes explored 

As discussed in Chapter 1, there are many published reports of biological suppression of 

Rhizoctonia plant diseases, including those of potato. These include suppression achieved via 

inundative biological control (introduction of single/multiple soil microorganisms suppressing 

disease), as well as conservation biological control, including disease decline arising as a 

result of host plant monoculture, and also the induction of suppression from the introduction 

of exogenous nutrients in the form of organic matter (OM) amendments. In the present study, 

these three biocontrol alternatives were explored for suppression of Rhizoctonia diseases of 

potato from a New Zealand agricultural perspective. Microbial strains from three taxa 

frequently associated with suppression of Rhizoctonia diseases in published studies 

(Trichoderma, fluorescent Pseudomonads and endospore-forming bacteria), isolated from 

New Zealand potato cropping regions, were tested for their biocontrol potential when applied 

in an inundative manner in in vivo screens. Organic matter amendments were selected, based 

on published reports of Rhizoctonia disease suppression, along with considerations regarding 

agricultural economic realities in New Zealand. These OMs were tested for their capacity to 

suppress Rhizoctonia diseases of potato in vivo. Finally, soils from four rotation treatments 

(including a potato monoculture) at a long-term rotation trial in one of the main potato 

producing regions in New Zealand, were collected. These soils were analysed to determine if 

Rhizoctonia disease decline had developed as a result of potato monoculture, and also to 

determine if differences existed in the capacity of each soil to suppress Rhizoctonia diseases 

of potato, and whether biological factors of each soil sample were related to levels of disease 

expression. Exploration of these biocontrol themes highlighted the difficulty in achieving 

strong and consistent biocontrol of Rhizoctonia diseases of potato. On the basis of the results 

generated, recommendations for future biocontrol selection strategies are presented, which 

may prove to be more fruitful than those which were followed in the present study. 

7.2 Inundative biological control 

The primary aim of the present study was to identify a microbial isolate (or isolates) able to 

suppress Rhizoctonia diseases of potato in vivo, and then to investigate the mechanisms 

underpinning biological control. 
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7.2.1 Isolation and characterisation of microbes 

The targeted isolation of members of the genera Trichoderma, Bacillus (and other endospore-

forming bacteria) and Pseudomonas conducted in Chapter 2 was a reasonable strategy, based 

on the close relationship that strains from these groups can have with plants, as well as 

previous reports of suppression of Rhizoctonia diseases, and relative ease of culture (detailed 

in Chapter 1). This achieved the objective of generating a large collection of microorganisms 

(345 isolates) which were categorised with respect to their taxa, isolation details, and 

interactions with R. solani in dual culture. Since dual culture suppression of a pathogen is 

often a poor indication of in vivo biocontrol (Deacon, 1991; Fravel, 1988; Weller, 1988), 

isolates to be tested for in vivo suppression of Rhizoctoia diseases of potato were selected for 

a range of characterisatics, so that potential mechanisms underpinning biocontrol were not 

limited to direct destruction of the pathogen (production of antifungal compounds or 

mycoparasitism) but also included other potential mechanisms (spatial/nutrient competition, 

stimulation of acquired resistance and growth promotion). 

While not an original aim of the isolations, an in vitro suppression of R. solani scale was 

created for the bacterial isolates, based on the dual culture data. These data were then 

subjected to statistical analysis to determine if differences existed between the bacterial 

populations from the different soil locations and sample times. This showed that fluorescent 

Pseudomonads from the Pukekohe region soil, in general, possessed greater capacity to 

suppress R. solani in vitro than members of the same group from the other soil locations. The 

Pukekohe soil had come from a potato monoculture, and spontaneous Rhizoctonia disease 

decline as a result of host plant monoculture has been reported to be, at least in part, due to 

increases in R. solani suppressive Pseudomonad populations (Mendes et al., 2011; Postma et 

al., 2010a). This formed the basis of one hypothesis tested in Chapter 6 – that monoculture at 

the Pukekohe site had caused Rhizoctonia disease decline. 

It would have been of value to perform a Rhizoctonia disease assay using the four soil 

samples collected for the isolation experiments, so that the results from the isolations and 

subsequent R. solani dual culture assays could have been analysed with regards to the levels 

of disease suppression observed in different soils. Unfortunately this was not part of the 

objective of these experiments, and performing disease assays with newly collected soils from 

the same areas would have held little meaning, as the isolations would not have been made 

from the identical soil samples the results could not have been combined. 
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7.2.2 Rhizoctonia disease bioassay 

The results of experiments detailed in Chapter 3 fulfilled the objective of optimising 

conditions for an in vivo greenhouse assay to be used to screen for microbe isolates able to 

suppress Rhizoctonia diseases of potato. Comparing the Rhizoctonia disease expression over 

a large (100-fold) difference of initial pathogen inoculum concentrations in the plant growing 

medium generated interesting results. One R. solani isolate tested (R73-13b, AG 3), expressed 

disease symptoms at a consistent level across the range of inoculum concentrations. For the 

other isolate (Rs043-2, AG 2-1), however, disease incidence was less at the greater inoculum 

concentrations. This is consistent with published reports that populations of R. solani rarely 

correlate positively with disease levels (Bonanomi et al., 2010). These results also hold 

implications for biocontrol of Rhizoctonia diseases of potato. Organisms which are able to 

decrease the total population of R. solani in the soil, for example through mycoparasitism or 

production of compounds toxic to the pathogen, may not affect expression of disease. This 

was demonstrated in experiments outlined in Chapter 3, where less pathogen did not equate to 

less disease. This further justifies the need for potential biocontrol isolates to be screened in 

vivo. The selection process should not be reliant on strong suppression of the pathogen in dual 

culture, as partial destruction of the pathogen inoculum is unlikely to impact on levels of 

disease severity, as it may be that there is no inoculum threshold for this pathogen. 

7.2.3 Screening of potential BCAs 

In Chapter 4, 89 potential biocontrol isolates from the targeted taxa were tested in an 

inundative manner, for their capacity to suppress Rhizoctonia canker symptoms and disease 

impacts on potato plant parameters (including number of stolons and tubers, as well as tuber 

weigh and shoot/root dry weight). This was a much larger number of isolates than most 

previous biocontrol studies have tested in vivo for suppression of Rhizoctonia diseases of 

potato (Brewer and Larkin, 2005; Grosch et al., 2005; 2006; Lahlali and Hijri, 2010; Tariq et 

al., 2010). This was to put less emphasis on in vitro pre-screening selection of isolates. Few 

isolates positively affected both a measure of canker symptoms and improvement of plant 

parameters affected by disease. Of the 22 isolates which demonstrated positive impact on 

canker disease symptoms or affected plant parameters, 13 were tested in more than one 

screen, of which only three demonstrated positive effects in more than one assay. Thirteen 

isolates from the disease suppression screens were re-tested in a minituber system, but these 

rarely improved the assessed parameters, and often had negative effects on one or more 

parameter. This lack of convincing biocontrol or reproducibility meant that the investigation 

into inundative biocontrol was terminated.  
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The rationale for isolating and screening only members from the genus Trichoderma, the 

fluorescent Pseudomonads and endospore-forming bacteria, based on previous reports of 

Rhizoctonia disease suppression (Chapter 1, section 1.3.4.3), may not have been the best 

strategy. Results from this study demonstrated that the strains from the three targeted groups 

tested did not give strong or consistent biocontrol of Rhizoctonia diseases of potato. 

Narrowing the selection of isolates may have excluded strains from other groups which could 

have offered superior biocontrol, such as other members of the γ-Proteobacteria, for example 

Lysobacter spp. (Postma et al., 2010b). Members of groups very different to those tested, 

such as Actinomycetes or yeasts could also potentially have offered disease suppression 

(Kulik, 1996). Alternatively, the number of isolates screened in vivo (89) may have been 

insufficient for discovery of a strong BCA. A higher-throughput screening process could 

compensate for this, as discussed in the following three sections (7.2.3.1, 7.2.3.2 and 7.2.3.3). 

The previously published studies tested fewer potential BCAs in vivo, and reported stronger, 

if not always consistent, suppression of Rhizoctonia diseases of potato. However, these 

studies often applied BCAs using methods which may not be realistic in a New Zealand 

commercial agricultural setting. This includes using sterile plant growing medium to test 

BCAs (Lahlali and Hijri, 2010; Tariq et al., 2010), and amending the plant growing medium 

with nutrient substrate pre-colonised with BCA at high concentrations (Grosch et al., 2006; 

Lahlali and Hijri, 2010). In the present study, potential BCAs were tested as spore or cell 

suspensions to non-sterile plant growth media, at concentrations more applicable to the field. 

However, this attempt to replicate more realistic field conditions within the greenhouse assays 

is likely to be the reason for poor levels of biocontrol compared with published reports for 

similar potential BCAs. Potential BCAs could have been applied in basic formulations, 

including polymer gels such as xanthan gum or alginate (Weller, 1988), rather than aqueous 

suspensions. This may have improved biocontrol by protecting the organisms from 

environmental stresses. However, while formulations are necessary to ensure viability and 

consistency of products, they do not necessarily improve the efficacy of a BCA. Experiments 

conducted by Brewer and Larkin (2005) tested commercial formulations of the biocontrol 

products SoilGard® (Trichoderma virens, GL-21) and RootShield® (Trichoderma harzianum, 

T-22) alongside aqueous spore suspensions of the strains cultured on PDA, for control of 

Rhizoctonia diseases of potato. Their results demonstrated that un-formulated spores 

sometimes achieved the same level of biocontrol as formulated spores, although in some 

experiments formulated products achieved biocontrol when un-formulated did not. In one 

experiment, GL-21 aqueous spore suspension reduced black scurf severity when the 

formulated product did not. This suggests that formulations are unlikely to improve the 
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performance of a BCA under controlled conditions, and so it is doubtful that formulation of 

the strains examined in the present study would have improved their efficacy. 

The inundative biocontrol results supported the opinion stated by several researchers, that the 

single isolate inundative approach is insufficient for consistent biological control of 

Rhizoctonia diseases, and a range of suppressive organisms may be required (Bonanomi et 

al., 2010; Kuter et al., 1983; Mendes et al., 2011). Multiple isolates may act synergistically 

due to increased ecological range of activity, as well as by combining several mechanisms of 

action (Larkin et al., 1998). To incorporate this hypothesis into the screening process, screens 

could have been based on a factorial design with even numbers of isolates from the three 

targeted groups in screens. This may have enhanced the likelihood of determining which 

combinations of isolates were necessary for disease suppression. However, far fewer isolates 

could be screened by this method compared with the assays described here. 

The bioassay system used was sufficient to screen a relatively large number (89) of potential 

biocontrol agents in vivo. Improvements to this assay could make it higher-throughput, 

reducing total assay time, cost and potentially reduce variability (requiring fewer replicates), 

so that larger numbers of isolates (or isolate combinations) could be screened over the same 

period of time. The following sections outline methods that should be adopted for future 

assessments. 

7.2.3.1 Plant propagule choice and disease symptoms assessed 
Plants grown from tissue culture plantlets were used in many of the assays which screened the 

majority of the Trichoderma, Bacillus and Pseudomonas sp. isolates. This was to remove 

variability introduced by the plant propagule, as all the plants had identical aseptic culture 

conditions, were physiologically similar and did not carry their own microorganisms 

(including pathogens). These propagules, however, already possessed above ground shoots at 

assay initiation they were not susceptible to shoot ‘nipping’, the early stage of Rhizoctonia 

diseases of potato, so this symptom could not be assessed. The assays were run for periods 

when lesions on stolons and early yield impacts could be measured. The total time taken to 

screen the isolates could have been reduced (along with total cost) if the disease assay had 

used only plants propagated from tubers, and focused on the shoot nipping symptom. This 

would reduce the volume of plant growth medium required per plant, because only shoot 

emergence would have been assessed, rather than effects on stolons and tubers, which require 

greater volumes of growth medium to support formation. The assays could, therefore, have 

been conducted in incubators with even greater control and reproducibility of environmental 

conditions, potentially reducing variability between screens. Due to the very controlled 
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manner of their production, minitubers or microtubers (Ranalli, 2007; Struik, 2007) would 

still be the plant propagules of choice, but seed potatoes would also be suitable if graded to be 

of very similar in size and sprout number upon dormancy breaking. Surface sterilisation of 

tubers should also be included, to keep variability to a minimum and prevent the introduction 

of unwanted potato pathogens into the assays. Making these changes to the bioassay would 

allow a greater number of potential biocontrol isolates to be screened in vivo, under more 

tightly controlled environmental conditions. 

7.2.3.2 Pathogen inoculum 
Culturing the Rhizoctonia on a nutritionally complex medium (barley grain + V8® juice) 

could have introduced a source of variability into the assays, in the form of competition from 

microorganisms present in the plant growth medium for what remained of the introduced 

substrate. This could explain why the greatest concentrations of inoculum for R. solani isolate 

Rs043-2 gave less disease than the smallest concentrations, as demonstrated in Chapter 3. In 

future, it would be advisable to culture the pathogen on a less nutritionally complex medium 

which would be exhausted more fully prior to bioassay inoculation. An example could be the 

medium of perlite drenched in malt extract peptone, used by Boogert and Luttikholt (2004) in 

their disease assays. This may also reduce variability within assays. 

7.2.3.3 Plant growing medium 
The growing medium used in the disease assays was initially a peat:pumice based seed raising 

mix, with strong disease pressure, followed by a growing medium based on crushed soil as 

the main component. While this change resulted in less disease in general, it carries with it the 

issue of inconsistent microflora and physical conditions both between and within assays, as 

soil is very heterogeneous (Kirk et al., 2004). A soil-based plant growth medium is, however, 

closer to the environment in which a BCA will have to operate. A compromise between the 

two would be the preparation of an artificial soil, like the standard mix described in the OECD 

Guideline 207 (1984), consisting of; 10% sphagnum peat, 30% kaolin clay and 70% quartz 

sand. Another alternative would be the artificial soil developed by Ellis (2004), designed to 

replicate a habitat similar to natural soil but lacking factors that complicate experimental 

work. This consists of the following components from chemical suppliers; sand, kaolinite (1:1 

clay), bentonite (2:1 clay), CaCO3 and humic acid. These plant growth media should be 

physically similar to soil, but sparse in naturally occurring microbial populations, decreasing 

this source of variability. This type of growing medium would also present the option of 

inoculation with a homogenous suspension of microflora from soil samples, which should 

ensure a uniform soil community through the medium, if effects in more biologically realistic 
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or complex systems are required. Inoculation of an artificial soil with the full or partial 

microbial community of field soils would also be a useful tool for investigations into naturally 

occurring disease suppression, a theme explored in Chapter 6. If artificial soils are to be used 

as bioassay plant growth media, then a variety should be tested and compared with field 

Rhizoctonia disease results, to select one which presents similar disease pressure levels as 

those occurring naturally. 

7.3 Conservation biological control 

Since the single isolate inundative biological control did not present any results which 

warranted further investigation, the study changed direction to focus on induction of 

Rhizoctonia disease suppression either by OM amendment, or through crop rotation practice. 

7.3.1 Organic matter amendments 

There have been many reports of suppression of Rhizoctonia diseases induced by the addition 

of organic matter (OM) amendments, although, of the most common soil-borne 

phytopathogens studied, R. solani is the least consistently controlled (Bonanomi et al., 2007). 

However, when disease suppression has been achieved, it is the biological parameters such as 

populations of antagonistic microorganisms which were most frequently associated with 

suppression (Bonanomi et al., 2010), implying that disease suppression has been biological in 

its nature. The first two experiments in Chapter 5 tested whether selected OM amendments 

could suppress Rhizoctonia diseases of potato. Since there was a significant linear trend 

linking increased concentrations of pine bark compost with decreasing Rhizoctonia canker 

symptoms, this OM was further analysed in a third experiment. Pine bark compost was tested 

over an 8-fold range of concentrations, to determine if stimulation of soil microbial 

community by this OM could offer suppression of Rhizoctonia diseases of potato. In the third 

experiment, the pine bark compost amendments failed to suppress the Rhizoctonia diseases of 

potato, and therefore deeper analysis of soil microbial community was not conducted. 

However, analysis of the community metabolic activity and diversity demonstrated that 

increases in these parameters per se were insufficient to suppress disease. This result agrees 

with the suggestion made above, that biological suppression of Rhizoctonia diseases is reliant 

upon enhancing populations of a cohort of specific antagonists, rather than an increase in one 

strain or, in this case, the community as a whole. Several published studies have concluded 

that pre-inoculation of OM with biocontrol strains improves the consistency of disease 

suppression of either component alone (Krause et al., 2001; Kwok et al., 1987; Pugliese et al., 

2011; Scheuerell et al., 2005). This avenue was not explored in the present research, as the 
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isolates tested in Chapter 4 had not demonstrated sufficient biological control activity to 

warrant further study. They had also not been selected for compatibility with the selected 

OMs. Expecting synergistic effects would have been optimistic. Hence, in Chapter 5 (the OM 

experiments) it was suggested that future investigations into biocontrol of Rhizoctonia 

diseases of potato should start with the assumption that BCAs will require a nutrient base 

when applied in the field, in order to give consistent and effective disease suppression. 

Therefore, isolations and screenings should be conducted in conjuncture with an economically 

viable OM, to provide a stronger likelihood of identifying a practical combination of an OM 

and BCA for use in commercial crop management. 

7.3.2 Suppressive soils and crop rotations 

There was some evidence from the fluorescent Pseudomonad dual culture data (Chapter 2) 

that the soil collected from a crop rotation trial site in Pukekohe, New Zealand, may have 

become suppressive to R. solani as a result of potato monoculture. The present study 

examined whether this was the case by comparing the populations of R. solani AG 3 and 2-1 

in plots from four rotation treatments using qPCR. In addition, the capacity of soil samples 

from each of the four rotation treatments to suppress Rhizoctonia diseases and R. solani 

populations was tested in a greenhouse assay. The results of the greenhouse experiment 

demonstrated that the soils from the four rotation treatments did not differ with respect to the 

expression of Rhizoctonia canker symptoms, or in their impact on the population of an 

introduced R. solani AG 2-1. The study also found that there had been no build-up of R. 

solani AG 3 or 2-1 in the rotation treatments, even in the treatment which had an 8 year potato 

monoculture. This was a surprising result, since crop rotations are widely practiced to prevent 

the build-up of soil-borne phytopathogen populations, including R. solani (Garbeva et al., 

2008; Larkin et al., 2011; Sweetingham, 1996). The soil at the Pukekohe trial site could be 

moderately suppressive to Rhizoctonia diseases of potato irrespective of crop history, but no 

experiment was conducted with soils from different potato cropping regions to compare levels 

of disease in each soil. 

There have been several published reports that the selection of the crop in rotation with potato 

can impact on the severity of Rhizoctonia diseases, and that crop rotations also affect soil 

microbial communities (Garbeva et al., 2004; Larkin, 2008). The present study tested what 

impact the four rotation treatments had on bacterial and fungal soil communities, using 

culture-dependant enumeration and substrate utilisation profiling, as well as the culture 

independent PCR-based community fingerprinting technique, ARISA (Ranjard et al., 2001). 

There was strong similarity between the bacterial communities over the four treatments. The 
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identity of the crop before harvest influenced the fungal communities, not the rotation history. 

This lead to the conclusion that eight growing seasons of potato monoculture at the Pukekohe 

site had not had a greater impact on the soil microbial community than a single potato crop. 

It has been indicated that the disease suppressive capacity of soils is frequently correlated 

with diversity of soil microbial populations (Garbeva et al., 2004). Relationships between the 

determined community parameters and levels of Rhizoctonia canker symptoms, and R. solani 

soil populations, from the greenhouse assay, were tested using correlation analysis. The 

results demonstrated that for the soil samples under investigation, increases in bacterial or 

fungal community richness and diversity correlated with increases in levels of Rhizoctonia 

disease, the converse of what was expected. These results align with the results from the OM 

section of the present study, where general increases in microbial community activity were 

not sufficient to suppress Rhizctonia diseases of potato. 

Together, the results outlined in Chapters 5 and 6 indicate that attempts to control Rhizoctonia 

diseases of potato by enhancing the general activity or diversity of the soil microbial 

community are very unlikely to generate strong or consistent Rhizoctonia biocontrol. This 

conclusion is of value to New Zealand potato growers looking for methods alternative or 

complimentary to synthetic fungicide control for suppression of Rhizoctonia diseases, as 

simply increasing background microbial community richness and diversity in soil is unlikely 

to offer control of these diseases. 

7.4 Fungicide control 

Many of the in vivo greenhouse assays in the present study included treatments with the 

fungicide pencycuron. The New Zealand label registration from Monceren® 250 FS (Bayer 

CropScience), which was used here, recommends the product only be used for potatoes 

(AgriMedia Limited, 2008). This fungicide gave strong (often complete) and consistent 

suppression of Rhizoctonia disease symptoms for the R. solani strains used in the assays, even 

when applied at 12% of the full label rate (Chapter 5). This demonstrates two things; first that 

the fungicide is still a viable option for potato growers, and second that the assay was able to 

detect disease suppression. The method of application, thorough mixing through a small 

volume of plant growth medium, no doubt favoured control, as all pathogen inoculum would 

have been likely to come into contact with the fungicide. The product label states that the 

fungicide is only ‘slightly mobile in soil layers’. In the field, therefore, where the fungicide is 

applied only as an application to tubers before planting, R. solani inoculum in soil distant to 

the seed tubers is less likely to be affected. It has been demonstrated in field studies that 
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fungicide control is less effective when initial inoculum levels are high (Tsror and Peretz-

Alon, 2005). Pencycuron has the potential to be applied in conjunction with fungal (or 

bacterial) BCAs for enhanced Rhizoctonia disease control, because it is a Rhizoctonia-specific 

fungicide. Boogert and Luttikholt (2004) found that co-application of pencycuron with the 

mycoparasite Verticillium biguttatum provided greater reduction of black scurf than either 

used alone. Disease control strategies which combine chemical fungicides with BCAs have 

the potential to reduce the concentration of chemical applied, or delay the development of 

fungicide resistance. 

7.5 Final conclusions 

The present study has shown that strong, consistent biological control of Rhizoctonia diseases 

of potato is unlikely to be achieved through the inundative application of single isolate 

biocontrol microorganisms. Furthermore, these diseases are unlikely to be reduced by general 

increases in soil microbial richness, diversity or metabolic activity. The study also repeatedly 

found no correlation between the size of R. solani populations and severity of Rhizoctonia 

diseases of potato. This finding indicates that any biocontrol strategy aimed at destruction of 

R. solani inoculum would have to achieve near complete eradication of the pathogen to ensure 

disease suppression. It is, therefore, advisable that investigations into biocontrol of these 

diseases should not focus solely on elimination of the  pathogen for disease suppression. 

Future study of biocontrol of Rhizoctonia diseases of potato should focus on identifying 

combinations of OM amendments and cohorts of biocontrol isolates which act synergistically. 

This approach has the greatest potential for achieving worthwhile and practical biological 

management of these diseases. 
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     Appendix A 
Media and buffers 

A.1 Agar and broth 

A.1.1 Potato-dextrose agar (PDA) 

39.0 g Potato Dextrose Agar (Oxoid) 
1 L dH2O 
Preparation: Combine all ingredients in a 1 L capacity Schott Bottle and autoclave at 121 °C, 
15 psi, for 15 min. 

A.1.2 Nutrient Agar (NA) 

Nutrient Agar 28.0 g (if Oxoid) or 23.0 g (if Difco) 
1 L dH2O 
Preparation: Combine all ingredients in a 1 L capacity bottle and autoclave at 121 °C, 15 psi, 
for 15 min. 

A.1.3 Kings Medium ‘B’ (KB) 

15.0 g Agar 
15 mL Glycerol 
3.0 g Magnesium sulphate heptahydrate (MgSO4.7H2O) 
2.0 g Dipotassium hydrogen orthophosphate (K2HPO4) 
20.0 g Proteose peptone 
1 L dH2O 
Preparation: Combine all ingredients in a 1 L capacity bottle and autoclave at 121 °C, 15 psi, 
for 15 min. 

A.1.4 Trichoderma selective medium (TSM) – Lincoln University 

20.0 g Agar 
3.0 g  Glucose 
1.0 g Ammonium nitrate 
0.9 g Dipotassium hydrogen orthophosphate trihydrate (K2HPO4.3H2O) 
0.2 g Magnesium sulphate heptahydrate (MgSO4.7H2O) 
0.15 g Potassium chloride (KCl) 
0.2 g Terrachlor® 75WP fungicide (quintozene 750 g/kg a.i.) 
0.15 g Rose Bengal 
 
1 mL chloramphenicol stock solution (a 2.5 mg/mL solution made with absolute (96%) 
ethanol) 
  
1 mL mixture of following: 
 1.0 g Iron sulphate (Ferrous sulphate) 7 hydrate (FeSO4.7H2O) 
 0.65 g Manganous sulphate tetrahydrate (MnSO4.4H2O) 
 0.9 g Zinc sulphate (ZnSO4.7H2O) 
 Preparation: dissolve all three ingredients in 1 L dH2O 
1 L dH2O 
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Preparation: Combine all ingredients in a 1 L capacity bottle and autoclave at 121 °C, 15 psi, 
for 15 min. 

A.1.5 ¼ Strength Potato Dextrose Agar 

9.8 g Potato Dextrose Agar (Oxoid) 
15.0 g Agar 
1 L dH2O 
Preparation: Combine all ingredients in a 1 L capacity bottle and autoclave at 121 °C, 15 psi, 
for 15 min. 

A.1.6 Luria Bertani (LB) Broth 

25.0 g of Luria Broth (Sigma) 
1 L dH2O 
Preparation: Combine ingredients in 1 L capacity glass beaker, still thoroughly until all 
powder dissolved, dispense into required containers (e.g. 18 mL capacity Univeral Bottles) 
and autoclave at 121 °C, 15 psi, for 15 min. 
 

A.1.7 Minimal Media for Slants 

15.0 g malt extract 
15.0 g Agar 
1 L dH2O 
Preparation: Combine all ingredients in a 1 L capacity bottle and autoclave at 121 °C, 15 psi, 
for 15 min. 

A.1.8 Physiological peptone solution (PPS) 

8.5 g NaCl 
1.0 g Bacteriological Peptone 
1 L dH2O 
Preparation: Combine all ingredients in a 1 L capacity Schott Bottle and autoclave at 121°C, 
15 psi, for 15 min. 

A.1.9 Water Agar (WA) 

15.0 g Agar 
1 L dH2O 
Preparation: Combine all ingredients in a 1 L capacity Schott Bottle and autoclave at 121°C, 
15 psi, for 15 min. 

A.1.10  PDA:NA 1:1 (v/v) 

19.5 g Potato Dextrose Agar (Oxoid) 
14.0 g Nutrient Agar (Oxoid) 
1 L dH2O 
Preparation: Combine all ingredients in a 1 L capacity Schott Bottle and autoclave at 121°C, 
15 psi, for 15 min. 

A.1.11 0.1% physiological agar 

1 g Agar 
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8.5 g NaCl 
1 L dH2O 
Preparation: Combine all ingredients in a 1 L capacity Schott Bottle and autoclave at 121°C, 
15 psi, for 15 min. 

A.1.12 Fungal enumeration agar 

39 g Potato dextrose agar (Oxoid) 
2 mL Triton X-100 (Scintron®) 
100 µL of 100 mg/mL chloramphenicol (Sigma life science) stock solution (in 96% Ethanol) 
300 L of 100 mg/mL streptomycin sulphate (Sigma-Aldrich) stock solution (in RO water) 
1 L dH2O 
Preparation: Combine agar, Triton and water in a 1 L Schott Bottle and autoclave at 121 °C, 
15 psi, for 15 min. Cool to 60°C in a water bath. Add chloramphenicol stock to bottle, as well 
as streptomycin stock (filtered through 0.2 µm sterile luer-lock nylon membrane filter), shake 
end-over-end to mix and immediately pour into standard petri plates. Store at 4°C until 
required. 
 

A.2 Inoculum Media 

A.2.1 Barley grain + V8 juice® 

50 g Barley grain 
50 mL Original V-8® juice (Campbell’s Soups Australia, Australia) 
Preparation: Combine all ingredients in a 250 mL capacity Erlenmeyer flask, plug flask neck 
with cotton wool, cap with tinfoil and autoclave at 121 °C, 15 psi, for 15 min. 

A.2.2 Wheat bran + RO water 

25 g Wheat bran 
50 mL Reverse osmosis water 
Preparation: Combine all ingredients in a 250 mL capacity Erlenmeyer flask, plug flask neck 
with cotton wool, cap with tinfoil and autoclave at 121 °C, 15 psi, for 15 min. 

A.2.3 Bran:peat medium 

25 mL wheat bran (loose) 
25 mL sphagnum peat (loose) 
25 mL dH2O 
Preparation: Combine all ingredients in a 250 mL capacity conical flask, plug neck loosely 
with cotton wool and cap with tinfoil. Autoclave at 121°C, 15 psi, for 15 min. 
 

A.3 Plant growth media 

A.3.1 Bioassay potting mix 

Sphagnum peat (New Zealand Growing Media, Winton, NZ) 
Bulk pumice 1-3 mm grade (Egmont Commercial, Christchurch, NZ) 3:2 (v/v), with 200 g 
Osmocote Extract Mini® N:P:K (16:3.5:0.1) + Trace Elements (Scotts, NSW, Australia 
Dolomite lime (Golden Bay Dolomite, Golden Bay, NZ) 
Hydraflo2® wetting agent (Scotts, NSW, Australia) 
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Preparation: Mix peat and pumice in a 3:2 (v/v) ratio, with 200 g Osmocote, 400 g lime and 
100 g wetting agent per 100 L. 

A.3.2 John Innes shrub mix 

7 parts Wakanui silt loam soil passed through crusher 
3 parts sphagnum peat 
2 parts pumice (1-3 mm grade) 
1.2 g/L blood and bone 
1.2 g/L superphosphate 
0.3 g/L potassium sulphate 
2.0 g/L Agricultural lime 
3.5 g/L dolomite lime 
Preparation: Combine all ingredients and turn three times by shovel to mix thoroughly, store 
in shade and add water if required to prevent mix becoming dry. 

A.3.3 Soil:pumice mix 

7 parts Wakanui silt loam soil passed through crusher 
3 parts pumice (1-3 mm grade) 
1.2 g/L blood and bone 
1.2 g/L superphosphate 
0.3 g/L potassium sulphate 
2.0 g/L Agricultural lime 
3.5 g/L dolomite lime 
Preparation: Combine all ingredients and turn three times by shovel to mix thoroughly, store 
in shade and add water if required to prevent mix becoming dry. 
 

A.4 Buffers 

A.4.1 Soil extraction buffer 

100 mL of 1M Tris-HCl 
20 mL of 5M NaCl 
100 mL of 0.5 M EDTA 
100 mL of 10% SDS solution 
Preparation: Combine Tris-HCl, NaCl and EDTA solutions in a measuring cylinder, make up 
to 800 mL with ddH2O. Add SDS solution. Check solution pH, adjust to pH6.4 with cHCl. 
Make up to 1 L with ddH2O. 

A.4.2 Ammonium acetate (10 M) 

77 g Ammonium acetate 
100 mL H2O 
Preparation: Dissolve ammonium acetate in 70 mL of H2O at room temperature. Adjust 
volume to 100 mL with H2O. Sterilise the solution by passing it through a 0.22 µm filter. 
Store solution in tightly sealed bottle at or below room temperature. 
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     Appendix B 

Additional tables and figures 

B.1 Isolate selection 

B.1.1 Isolates from Bio-Protection Research Centre Culture Collection, Lincoln 
selected to be screened for in vivo suppression of Rhizoctonia diseases of potato 

Table 7.1 Isolates from Bio-Protection Research Centre Culture Collection selected for 
in vivo screening 

Identifier Isolation location Identity Selection Rationale 
LU132  Pukekohe, Auckland, 

NZ 
Trichoderma atroviride  

Biocontrol of Sclerotium 
cepivorum 

LU144 UV mutant of LU132 Biocontol of Rhizoctonia sp. 

LU298 Tauranga, NZ Biocontrol of Botrytis cinerea, 
Sclerotinia sclerotiorum 

LU569 Wellington, NZ T. virens Biocontrol of Ciborinia camelliae 
LU151 NZ T. harzianum Biocontrol of Phytophthera sp. 
LU713 Auckland, NZ T. koningiopsis Biocontrol of Phytophthora 

cactorum LU740 Wainui, Auckland, NZ 
T. hamatum LU593 Canterbury, NZ Biocontrol of Sclerotinia 

sclerotiorum 

LU140 Pukekohe, Auckland, 
NZ T. atroviride Biocontrol of Sclerotium 

cepivorum 
LU547 Christchurch, NZ T. virens Biocontrol of several fungal plant 

pathogens LU549 
LU806 LU132 protoplast fusion T. atroviride Cold tolerant  
LU297 Auckland, NZ 

Trichoderma sp. Growth promotion of several 
plant species 

LU753 Canterbury, NZ 
LU1370 Christchurch, NZ 
LU540 NZ T. virens 
LU996 Canterbury, NZ Trichoderma sp. Potential plant growth promoter 
SS1635 

Brassica seed Bacillus sp. Strong antibiotic producer and 
potential BCA of plant pathogens 

SS1708 
SS1902 
SS573 Bacterium 

LU1187 Canterbury, NZ Paenibacillus polymyxa Suppressive to Aphanomyces 
euteiches 
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B.2 Screening results 

B.2.1 Full screening results tables 

Table 7.2 Screen 1 full results, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from minitubers in 
peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell suspensions as treatements, with target 1 × 106 CFU/g 
plant growth medium 

Treatment 
Applied concn 
(CFU/g) 

Emerging 
shoots 
nipped (%) 

Diseased 
stolons (%) 

Total no. 
of  stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

No. of 
tubers 

Total tuber 
weight (g) 

No pathogen control  0.0 a 0.0 a 9.4 a 9.4 a 1.99 d 0.21 c 4.7 a 4.61 a 
Pathogen control  48.2 e 76.1 cd 3.9 d 0.8 bcd 1.14 ab 0.11 a 1.4 c 3.09 ab 
Appln solution (LB:PPS)  36.9 cde 47.7 b 4.0 cd 1.5 bc 0.85 a 0.08 a 1.7 bc 0.86 cde 
RSP0002 1.00×106 49.8 e 84.6 cdef 3.1 d 0.2 de 0.86 a 0.10 a 0.7 c 0.53 efg 
RSP0017 7.21×105 44.6 de 87.8 def 5.3 bcd 0.7 bcde 1.19 abc 0.13 ab 1.4 bc 0.33 fg 
RSP0144 7.29×105 30.5 cde 65.0 bc 3.9 cd 0.7 bcde 1.07 ab 0.13 ab 1.9 bc 0.61 def 
RSP0170 5.43×105 33.8 cde 94.3 ef 5.5 bcd 0.4 cde 1.24 abc 0.13 ab 1.6 bc 0.40 efg 
RSP0268 8.53×105 13.6 abc 79.4 cde 7.3 abc 1.8 bc 1.85 bcd 0.15 abc 2.8 ab 0.82 cd 
RSP0362 7.05×105 38.1 cde 91.8 def 5.4 cd 0.2 de 1.43 abcd 0.14 abc 1.4 bc 0.62 def 
RSP2004 1.85×106 19.9 abcd 100.2 f 6.2 abcd 0.0 e 1.37 abcd 0.14 abc 1.6 bc 0.56 def 
RSP2020 1.07×106 35.5 cde 101.8 f 3.7 cd 0.0 e 0.77 a 0.09 a 0.6 c 0.72 def 
RSP2042 1.36×106 27.9 bcde 98.6 ef 5.6 bcd 0.0 e 1.13 ab 0.10 a 1.9 c 0.55 bc 
RSP2086 2.02×106 36.8 cde 104.0 f 4.9 cd 0.0 e 0.80 a 0.08 a 1.4 c 0.66 def 
RSP2139 8.45×105 48.6 de 47.9 b 4.3 cd 1.8 b 0.79 a 0.08 a 0.9 c 0.24 g 
RSP2183 9.30×106 48.3 de 87.6 def 3.8 cd 0.7 bcde 1.15 ab 0.12 a 2.1 bc 1.89 bc 
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Table 7.3 Screen 2 full results, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from minitubers in 
peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected spore suspensions as treatements, with target 1 × 106 
spores/g plant growth medium 

Treatment 
Applied concn 
(spores/g) 

Emerging 
shoots 
nipped (%) 

Diseased 
stolons (%) 

Total no. of  
stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

No. of 
tubers 

Total tuber 
weight (g) 

No pathogen control  0.0 a 0.5 a 7.9 a 7.8 a 1.86 a 0.22 a 4.4 a 4.18 a 
Pathogen control  65.1 bc 79.8 cd 0.9 de 0.2 cd 0.23 de 0.04 d 0.5 c 0.22 bc 
RSPT113 1.00×106 67.5 bc 42.5 b 1.8 bcde 0.9 bc 0.44 cde 0.04 cd 0.2 bc 0.03 bc 
RSPT105 1.00×106 59.2 bc 100.0 e 2.1 bcde 0.4 bcd 0.33 cde 0.07 bcd 0.5 bc 0.05 bc 
RSPT124 7.21×105 81.1 c 69.2 c 1.1 bcde 0.6 bcd 0.34 cde 0.08 bcd 0.2 bc 0.27 bc 
RSPT119 1.00×106 63.9 bc 50.0 b 1.9 bcd 0.5 bcd 0.70 bcd 0.10 bcd 0.7 bc 0.14 bc 
RSPT028 1.00×106 55.9 bc 72.6 c 2.7 b 0.5 bcd 0.73 bcd 0.11 bc 0.3 bc 0.16 bc 
RSPT037 1.00×106 49.3 b 96.7 e 2.3 bcd 0.6 bcd 0.71 bcd 0.07 bcd 0.9 bc 0.18 bc 
RSPT085 6.98×105 59.2 bc 100.0 e 0.7 cde 0.0 d 0.29 de 0.04 cd 0.2 bc 0.01 bc 
RSPT122 1.00×106 56.4 bc 43.4 b 2.2 bcd 1.0 b 0.76 bc 0.07 bcd 0.9 bc 0.16 bc 
LU806 1.00×106 80.2 c 2.9 a 0.1 e 0.1 d 0.04 e 0.03 d 0.0 c 0.00 c 
RSPT106 9.77×105 45.2 b 90.0 de 2.6 b 0.3 bcd 1.19 b 0.14 b 0.7 b 0.70 b 
RSPT116 1.00×106 46.4 b 73.2 c 2.6 bc 0.7 bcd 0.94 bc 0.10 bc 0.5 bc 0.18 bc 
RSPT125 7.21×105 60.1 bc 4.2 a 0.8 bcde 0.2 bcd 0.43 cde 0.05 cd 0.1 bc 0.01 bc 
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Table 7.4 Screen 3 full results, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from tissue-
cultured plantlets in peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as treatements, 
with target 1 × 106 CFU or spores/g plant growth medium 

Treatment Applied concn 
(spores or CFU /g) 

Diseased 
stolons (%) 

Total no. 
of stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g)+ 

Root dry 
weight (g) 

No. of 
tubers 

Total tuber 
weight (g) 

No pathogen control  0.4 a 4.6 a 4.4 a 4.18 0.95 abc 4.0 a 9.01 a 
Pathogen Control  91.0 de 2.7 cde 0.3 d 5.06 0.94 abc 0.3 cd 0.29 b 
Appln solution (LB:PPS)  72.3 bc 3.7 abc 1.2 b 3.60 0.62 ef 0.2 cd 0.04 b 
RSP0268 1.01×106 94.7 de 4.0 ab 0.2 d 5.53 0.96 abc 0.3 cd 0.09 b 
RSPT5080 1.00×106 81.6 cde 2.7 cde 0.6 bcd 5.34 0.95 abc 0.7 bc 0.67 b 
RSP2002 6.59×105 88.3 cde 2.7 cde 0.4 cd 4.70 0.88 bcd 0.7 bc 0.17 b 
RSP2009 1.63×106 60.8 b 2.4 cde 1.2 bc 3.68 0.72 def 0.0 d 0.00 b 
RSP2014 3.10×105 85.6 cde 3.3 abc 0.5 bcd 5.13 1.10 a 0.7 cd 0.17 b 
RSP2015 1.09×106 93.0 de 2.9 bcde 0.3 d 5.43 0.97 abc 0.4 bcd 0.14 b 
RSP2110 3.88×105 78.7 cd 2.8 abc 0.6 bcd 4.16 0.73 def 0.4 bcd 0.03 b 
RSPT018 1.00×106 83.4 cde 2.2 cde 0.5 cd 5.14 0.93 abc 0.4 cd 0.10 b 
RSPT037 1.00×106 87.7 cde 3.3 abc 0.5 cd 4.54 0.85 cd 0.4 cd 0.36 b 
RSPT084 1.00×106 98.2 e 2.9 abc 0.1 d 5.79 0.11 ab 0.9 b 0.46 b 
RSPT5030 1.00×106 98.4 e 3.0 abcd 0.1 d 5.12 0.99 abc 0.2 cd 0.13 b 
RSP0362 7.05×105 91.7 de 2.6 cde 0.2 d 5.03 0.82 cde 0.1 cd 0.01 b 
LU 132 1.00×106 85.9 cde 1.9 e 0.4 bcd 3.84 0.57 f 0.1 cd 0.17 b 
LU 140 1.00×106 92.7 de 2.1 de 0.2 d 4.66 0.85 cd 0.3 cd 0.02 b 
+No differences (P < 0.05) between any of the shoot dry weight treatment means 
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Table 7.5 Screen 4 full results, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from tissue-
cultured plantlets in peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as treatements, 
with target 1 × 106 CFU or spores/g plant growth medium 

Treatment Applied concn 
(spores or CFU /g) 

Diseased 
stolons (%) No. of Stolons No. of symptom-less 

stolons 
Shoot dry 
weight (g) 

Root dry 
weight (g) 

No pathogen control  1.0 a 2.4 a 1.78 abcde 0.39 abcde 2.5 a 
Pathogen control  62.9 cdefg 0.5 cdef 1.86 bcde 0.35 de 1.6 ab 
Appln solution (LB:PPS)  80.7 fghi 0.5 cdefg 1.77 abcde 0.33 e 2.3 ab 
RSP2002 5.43×104 39.6 b 0.8 bcde 1.89 abcde  0.37 bcde 1.6 abc 
RSP2009 1.55×106 55.3 bcdef 0.9 bcdef 2.06 e 0.45 a 2.3 ab 
RSP2013 8.14×105 39.7 b 1.4 b 1.62 abc 0.35 cde 2.3 ab 
RSP2014 1.09×106 63.3 bcdefgh 0.5 bcdefg 1.66 abcde 0.33 e 1.5 ab 
RSP2016 6.16×105 90.1 hi 0.4 defg 1.57 ab 0.36 cde 2.6 a 
RSP2023 2.56×106 43.2 bcd 1.0 bcdef 1.50 a 0.37 bcde 2 ab 
RSP2024 8.53×104 68.5 defghi 0.7 bcdefg 1.91 abcde 0.40 abcde 1.9 abc 
RSP2026 1.47×106 67.3 cdefghi 1.0 bcdef 1.79 abcde 0.35 cde 2.4 ab 
RSP2027 0.00 51.6 bcde 0.5 bcdefg 1.95 bcde 0.37 abcde 1.1 bcd 
RSP2053 4.88×105 46.3 bcd 0.3 defg 1.60 ab 0.33 e 0.7 cd 
RSP2057 1.71×106 93.9 i 0.1 g 2.01 cde 0.37 abcde 1.4 abc 
RSP2067 1.02×106 67.0  bcdefghi 0.2 efg 2.03 cde 0.19 abcde 0.7 d 
RSP2071 2.48×106 40.9 bc 1.6 bc 1.85 abcde 0.35 cde 2.4 ab 
RSP2089 1.82×106 70.0 defghi 0.6 bcdefg 1.75 abcde 0.35 cde 1.9 ab 
RSP2116 1.67×106 75.2 efghi 0.7 bcdefg 1.84 abcde 0.43 abc 2.3 ab 
RSPT001 1.00×106 84.6 ghi 0.2 efg 1.64 abcd 0.36 cde 1.4 abc 
RSPT005 1.00×106 81.3 fghi 0.4 defg 1.82 abcde 0.41 abcd 1.6 ab 
RSPT007 1.00×106 49.0 bcde 0.9 bcd 1.69 abcde 0.37 abcde 1.7 ab 
RSPT029 1.00×106 80.0 fghi 0.4 cdefg 1.79 abcde 0.42 abc 2.2 ab 
RSPT097 1.00×106 68.3 cdefghi 0.6 cdefg 1.76 abcde 0.39 abcde 1.7 ab 
RSPT107 1.00×106 80.5 fghi 0.6 bcderfg 1.87 abcde 0.38 abcde 2.3 ab 
RSPT110 1.00×106 90.0 hi 0.2 fg 1.83 abcde 0.42 abc 1.8 ab 
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Table 7.6 Screen 5 full results, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from tissue -
cultured plantlets in peat mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as treatements, 
with target 1 × 106 CFU or spores/g plant growth medium 

Treatment 
Applied concn 
(spores or 
CFU /g) 

Diseased 
stolons (%) 

No. of 
stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g)+ 

No. of 
tubers 

Total tuber 
weight (g) 

No pathogen control  1.9 a 5.0 fg 4.9 a 4.16 a 0.68 4.5 a 13.63 a 
Pathogen control  95.8 de 3.2 abc 0.2 bcd 5.74 cdef 0.73 0.6 cd 0.36 d 
Appln solution (PPS)  97.7 de 3.6 abcde 0.2 bcd 5.50 bcdef 0.69 0.6 bcd 0.57 d 
LU 1187 3.33×105 98.4 e 4.4 defg 0.1 cd 6.18 fg 0.76 0.9 bcd 0.52 d 
SS 573 5.81×105 94.2 bcde 4.1 cdefg 0.3 bcd 5.65 bcdef 0.66 0.6 bcd 0.15 d 
SS 1635 7.37×105 93.7 bcde 3.6 abcde 0.4 bc 5.30 bcde 0.71 1.2 bcd 0.63 d 
SS 1708 9.57×105 90.2 bcd 3.9 bcdefg 0.4 bc 5.82 cdef 0.74 1.3 b 1.71 d 
SS 1902 9.42×105 98.1 de 3.7 abcde 0.4 bcd 5.27 bcde 0.67 0.6 bcd 0.56 d 
RSP 2072 8.45×105 89.2 bc 4.9 defg 0.6 b 5.03 b 0.62 0.9 bcd 1.79 d 
RSP 2090 7.71×105 87.2 b 3.8 abcdefg 0.5 bc 5.18 bc 0.58 1.3 bc 3.62 c 
RSP 2094 6.67×105 94.2 bcde 2.9 abc 0.2 bcd 5.87 cdef 0.64 0.8 bcd 0.22 d 
RSP 2110 1.07×106 100.0 e 4.2 abcdefg 0.0 d 5.62 bcdef 0.72 1.3 bcd 1.62 d 
RSP 2120 1.43×106 100.0 e 3.4 abcd 0.0 d 5.78 cdef 0.69 0.5 bcd 0.59 d 
RSP 2158 6.98×105 98.0 de 2.9 abc 0.1 cd 5.73 bcdef 0.77 0.7 bcd 0.18 d 
RSP 2013 8.53×105 93.7 bcde 3.4 abc 0.3 bcd 6.87 g 0.83 0.2 d 0.05 d 
LU 144 1.00×106 97.2 cde 2.7 ab 0.1 cd 6.17 fg 0.74 0.7 bcd 0.89 d 
RSP 5182 1.00×106 100.0 e 3.9 abcdefg 0.0 d 5.48 bcdef 0.69 0.4 bcd 0.44 d 
RSPT 003 1.00×106 96.7 cde 2.5 a 0.1 cd 5.95 ef 0.77 0.7 bcd 0.18 d 
RSPT 031 1.00×106 96.3 cde 4.6 efg 0.2 bcd 5.88 cdef 0.72 1.0 bc 0.37 d 
RSPT 036 1.00×106 94.7 bcde 4.1 cdefg 0.2 bcd 5.19 bcd 0.69 1.0 bc 1.77 d 
RSPT 060 1.00×106 93.6 bcde 3.5 abcde 0.5 bcd 5.62 bcdef 0.77 0.9 bcd 0.68 d 
RSPT 079 1.00×106 98.0 de 3.4 abcdef 0.4 bcd 5.90 cdef 0.81 0.8 bcd 0.18 d 
RSPT 093 1.00×106 100.0 e 3.4 abc 0.1 cd 5.96 ef 0.75 0.7 bcd 1.07 d 
+No differences (P < 0.05) between any of the root dry weight treatment means 
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Table 7.7 Screen 6 full results, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from tissue -
cultured plantlets in peat mix or soil mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected cell/spore suspensions as 
treatements, with target 1 × 106 CFU or spores/mL plant growth medium 

Treatment 
Plant 
growth 
medium 

Applied concn 

(spores or 
CFU /mL) 

Diseased 
stolons (%) 

No. of 
stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g) 

Root dry 
weight (g) 

No. of 
tubers 

Total 
tuber 
weight (g) 

No pathogen control 

Peat mix 

 0.6 a 10.0 a 9.9 a 3.03 ab 0.74 c 6.6 a 8.54 a 
Pathogen control  97.0 fg 4.8 de 0.2 h 3.99 gh 0.78 ab 0.4 ef 0.17 g 
Appln solution (PPS)  100.0 fg 5.1 cde 0.0 h 3.93 efgh 0.70 cd 0.3 def 0.0 g 
Pencycuron  0.0 a 9.0 ab 9.0 ab 2.92 a 0.70 c 7.1 a 8.12 a 
SS 1708 1.13×106 100.0 fg 4.3 cde 0.0 g 4.02 fghi 0.69 cd 0.9 def 0.14 g 
RSP 2090 1.19×106 100.0 fg 5.4 cde 0.0 h 4.29 hi 0.74 abc 0.6 def 0.08 g 
RSP 2083 1.00×106 96.0 efg 5.3 cde 0.2 gh 4.26 hi 0.76 abc 0.8 d 0.81 fg 
RSP 2125 9.44×105 100.0 fg 5.9 bcde 0.0 h 4.09 ghi 0.76 abc 0.9 de 0.55 g 
RSP 2193 1.11×105 90.2 def 5.0 cde 0.5 fgh 4.07 ghi 0.73 bc 0.2 def 0.18 g 
RSPT 124 1.00×106 100.0 g 5.9 bcde 0.0 h 3.66 def 0.71 c 0.3 def 0.02 g 
RSPT 106 1.00×106 95.0 efg 4.6 cde 0.1 h 4.54 i 0.82 a 0.1 f 0.03 g 
LU 540 1.00×106 100.0 fg 6.0 bcde 0.0 h 3.82 efg 0.70 c 0.9 de 0.47 g 
LU 713 1.00×106 92.5 efg 3.8 e 0.2 gh 3.94 efgh 0.75 abc 0.3 def 0.10 g 
LU 740 1.00×106 99.6 fg 5.9 bcde 0.0 h 4.34 i 0.76 abc 0.6 def 0.28 g 
No pathogen control 

Soil mix 

 4.5 a 7.3 abcd 7.1 b 3.20 abc 0.57 ef 6.7 a 7.52 ab 
Pathogen control  80.6 cd 6.2 bcde 1.7 d 3.32 bcd 0.56 efg 4.3 ab 4.72 cd 
Pencycyron  1.1 a 7.5 abcd 7.4 b 3.11 ab 0.47 g 5.7 ab 5.44 c 
SS 1708 1.06×106 76.3 c 6.6 bcde 2.3 de 3.33 bcd 0.47 g 4.6 b 2.50 ef 
RSP 2090 9.63×105 88.1 de 6.9 bcde 1.0 def 3.57 cde 0.53 fg 2.7 c 3.21 de 
RSPT 124 1.00×106 86.9 de 7.5 abcd 0.9 efg 3.93 efgh 0.62 de 1.8 c 1.10 fg 
RSPT 106 1.00×106 59.9 b 7.1 bcde 3.3 c 3.10 ab 0.50 fg 5.4 ab 4.47 cd 
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Table 7.8 Screen 7 full results, mean values for Rhizoctonia disease and physical plant parameters for potato plants grown from tissue -
cultured plantlets in soil mix, inoculated with Rhizoctonia solani isolate Rs043-2 and selected spore suspensions as treatements, with 
target 1 × 106 spores/mL plant growth medium 

Treatment Applied concn 
(spores/mL) 

Diseased 
stolons (%) 

No. of 
Stolons 

No. of 
symptom-
less stolons 

Shoot dry 
weight (g)+ 

Root dry 
weight (g)+ 

No. of 
tubers 

Total 
tuber 
weight (g) 

No pathogen control  0.2 a 4.89 bc 4.9 a 3.95 0.38 3.28 ab 6.05 bcde 
Pathogen control  66.2 defg 4.05 bcd 1.3 d 4.12 0.42 2.26 cd 4.08 def 
Pencycuron  5.3 a 7.20 a 6.8 a 3.57 0.4 4.20 a 10.08 a 
LU 132 1.00×106 45.3 bcd 5.00 bc 2.7 bc 3.94 0.36 2.60 bcd 7.09 abc 
LU 1370 1.00×106 67.3 defg 5.33 ab 2.1 bcd 3.74 0.40 2.00 cd 2.55 f 
LU 151 1.00×106 66.1 cdefg 3.90 bcd 1.4 bcd 4.06 0.42 2.70 bcd 5.34 bcdef 
LU 297 1.00×106 66.3 cdefg 4.87 bcd 1.8 bcd 4.12 0.44 2.75 abcd 4.41 bcdef 
LU 298 1.00×106 78.1 g 3.67 bcd 1.2 d 4.43 0.37 2.22 bcd 3.12 ef 
LU 540 1.00×106 53.1 bcdefg 5.40 ab 2.5 bc 4.71 0.46 2.30 bcd 7.93 ab 
LU 547 1.00×106 55.5 bcdefg 5.00 bc 2.0 bcd 5.12 0.56 2.83 abcd 5.63 bcdef 
LU 549 1.00×106 37.2 b 4.60 bcd 2.5 bc 3.66 0.36 2.20 bcd 7.21 abc 
LU 593 1.00×106 75.8 fg 3.80 bcd 1.2 d 4.82 0.47 2.40 bcd 5.52 bcdef 
LU 753 1.00×106 73.1 efg 3.89 bcd 1.5 cd 4.24 0.37 2.00 cd 6.69 abcde 
LU 806 1.00×106 60.4 bcdefg 4.40 bcd 1.8 cd 4.75 0.49 2.50 bcd 4.24 bcdef 
RSP 5075 1.00×106 52.3 bcdefg 3.00 d 2.1 cd 4.23 0.40 1.40 d 2.44 f 
RSP 5163 1.00×106 53.7 bcdefg 3.30 cd 1.2 cd 5.06 0.48 1.60 d 3.02 ef 
RSPT 037 1.00×106 60.6 bcdefg 3.80 bcd 1.4 cd 4.08 0.42 2.50 bcd 7.34 abc 
RSPT 084 8.25×105 66.3 defg 4.50 bcd 1.4 cd 4.33 0.42 2.60 bcd 4.44 bcdef 
RSPT 085 1.00×106 61.7 bcdefg 3.90 bcd 1.4 cd 4.03 0.36 1.90 cd 4.46 bcdef 
RSPT 106 1.00×106 39.2 bc 3.44 cd 2.1 bcd 4.11 0.38 2.78 abcd 4.28 bcdef 
RSPT 119 1.00×106 55.4 bcdefg 4.67 bcd 2.0 bcd 4.51 0.43 2.50 bcd 2.13 f 
RSPT 122 1.00×106 50.2 bcdef 4.40 bcd 2.4 bc 3.82 0.36 3.20 abc 3.91 cdef 
LU 144 1.00×106 35.7 b 4.80 bcd 2.9 b 3.39 0.35 2.00 cd 7.20 abc 
RSP 5182 1.00×106 47.9 bcde 3.89 bcd 2.3 bcd 4.05 0.39 2.78 abcd 3.93 bcdef 
LU 569 1.00×106 74.4 fg 4.30 bcd 1.4 cd 4.14 0.46 2.40 bcd 7.69 abc 
+No significant differences (P < 0.05) between shoot dry weight means or root dry weight means 
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B.2.2 Dual plate sclerotial suppression 

Table 7.9 Mean sclerotial suppression scores from agar plate assays (for bacterial 
isolates) assessed on a 0 to 3 scale: 0 = no sclerotia, 1 = light coverage, 2 = 
medium coverage, 3 = heavy coverage (similar to experimental controls) 

Identifier Identity R. solani isolate 
Rs043-2 Rs018-2 

RSP2015 

Bacillus sp. 

2.5 2 
RSP2067 3 3 
SS 1635 1 1 
SS 1708 1 1 
SS1902 1 1 
RSP2071 Bacillus methylotrophicus 1 0.5 
RSP0170 

Bacillus mycoides 

2 1 
RSP2002 1.5 2 
RSP2009 3 3 
RSP2013 1 1 
RSP2072 3 3 
RSP2027 Bacillus soli 3 3 
RSP0002 

Bacillus thuringiensis 

3 3 
RSP0017 3 2 
RSP0144 3 2 
RSP0268 2 2 
RSP2016 3 3 
RSP2158 3 2 
RSP2024 Brevibacillus laterosporus 3 2.5 
RSP2090 Endospore bacterium 3 3 
RSP2026 

Flavobacterium sp. 

2 3 
RSP2004 3 3 
RSP2020 3 3 
RSP2053 3 3 
RSP2094 3 3 
RSP2193 2 2 
RSP2139 Paenibacillus peoriae 3 1 
LU1187 Paenibacillus polymyxa 3 2 
RSP0362 Paenibacillus sp. 3 2.5 
RSP2057 

Pseudomonas sp. 
2 1.5 

RSP2086 3 2 
RSP2110 0.5 0 
RSP2083 Pseudomonas brassicacearum 2 3 
RSP2023 Pseudomonas jessenii 2 1.5 
RSP2042 3 3 
RSP2014 Pseudomonas koreensis 2 1.5 
RSP2125 1.5 0.5 
RSP2116 Pseudomonas lurida 1 0 
RSP2120 1 0 
RSP2089 Pseudomonas mohnii 3 3 
RSP2183 Pseudomonas reinekei 0 0 
SS 573 Bacterium 1 0 
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Table 7.10 Results for Rhizoctonia solani AG 3 qPCR analysis of Pukekohe trial plots, 
including quantification cycle (Cq) value, calculated quantity of DNA per 
sample plus mean and standard deviation (SD) for DNA quantity per sample  

Sample Name Cq Quantity (pg 
DNA) 

Quantity mean 
(pg DNA)+ Quantity SD 

Water 36.74320602 0   
Water Undetermined Undetermined 0 N/A 
Plot 2 Undetermined Undetermined   
Plot 2 Undetermined Undetermined 0 N/A 
Plot 3 36.30620956 6.09873E-05   
Plot 3 Undetermined Undetermined 0 N/A 
Plot 4 Undetermined Undetermined   
Plot 4 Undetermined Undetermined 0 N/A 
Plot 5 36.45093918 5.49694E-05   
Plot 5 Undetermined Undetermined 0 N/A 
Plot 8 Undetermined Undetermined   
Plot 8 36.22825241 6.44973E-05 0 N/A 
Plot 9 Undetermined Undetermined   
Plot 9 34.62841415 0.000203365 0 N/A 
Plot 11 Undetermined Undetermined   
Plot 11 Undetermined Undetermined 0 N/A 
Plot 12 36.86979675 4.06955E-05   
Plot 12 Undetermined Undetermined 0 N/A 
Plot 13 36.81325912 4.2381E-05   
Plot 13 36.03949356 7.38559E-05 Cq > LOD Cq > LOD 
Plot 14 Undetermined Undetermined   
Plot 14 36.62240982 4.86034E-05 0 N/A 
Plot 15 Undetermined Undetermined   
Plot 15 Undetermined Undetermined 0 N/A 
Plot 16 Undetermined Undetermined   
Plot 16 Undetermined Undetermined 0 N/A 
Plot 17 Undetermined Undetermined   
Plot 17 Undetermined Undetermined 0 N/A 
Plot 19 Undetermined Undetermined   
Plot 19 36.5153923 5.24842E-05 0 N/A 
Plot 22 36.27754593 6.22551E-05   
Plot 22 35.95970917 7.82091E-05 Cq > LOD Cq > LOD 
Plot 24 Undetermined Undetermined   
Plot 24 Undetermined Undetermined 0 N/A 
+As one replicate of water control gave a Cq value of 36.7, a limit of detection (LOD) was set 
at Cq = 36. Only samples where Cq < LOD for both replicates were considered to have true 
detection of AG 3 DNA. 
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Table 7.11 Results for Rhizoctonia solani AG 2-1 qPCR analysis of Pukekohe trial plots, 
including quantification cycle (Cq) value, calculated quantity of DNA per 
sample plus mean and standard deviation (SD) for DNA quantity per plot 

Sample Name Cq Quantity (pg 
DNA) 

Quantity mean 
(pg DNA)+ Quantity SD 

Water Undetermined Undetermined   
Water Undetermined Undetermined 0 N/A 
Plot 2 36.90377045 3.50428E-06   
Plot 2 34.91073608 1.2891E-05 8.19765E-06A 4.69337E-06 
Plot 3 Undetermined Undetermined   
Plot 3 Undetermined Undetermined 0 N/A 
Plot 4 Undetermined Undetermined   
Plot 4 Undetermined Undetermined 0 N/A 
Plot 5 Undetermined Undetermined   
Plot 5 Undetermined Undetermined 0 N/A 
Plot 8 35.37225342 9.5344E-06   
Plot 8 35.51543427 8.68268E-06 9.10854E-06 A 4.25859E-07 
Plot 9 35.75098038 7.44386E-06   
Plot 9 Undetermined Undetermined 0 N/A 
Plot 11 Undetermined Undetermined   
Plot 11 Undetermined Undetermined 0 N/A 
Plot 12 38.37695313 1.33801E-06   
Plot 12 Undetermined Undetermined 0 N/A 
Plot 13 Undetermined Undetermined   
Plot 13 Undetermined Undetermined 0 N/A 
Plot 14 Undetermined Undetermined   
Plot 14 Undetermined Undetermined 0 N/A 
Plot 15 36.61934662 4.22015E-06   
Plot 15 36.5336647 4.4632E-06 4.34167E-06 A 1.21529E-07 
Plot 16 Undetermined Undetermined   
Plot 16 Undetermined Undetermined 0 N/A 
Plot 17 36.25614166 5.35078E-06   
Plot 17 34.45550537 1.73579E-05 1.13543E-05 A 6.00355E-06 
Plot 19 Undetermined Undetermined   
Plot 19 Undetermined Undetermined 0 N/A 
Plot 22 35.91032791 6.70765E-06   
Plot 22 35.33633804 9.76084E-06 8.23425E-06 A 1.5266E-06 
Plot 24 Undetermined Undetermined   
Plot 24 Undetermined Undetermined 0 N/A 
+Mean value calculated if both plot replicates provided a determined Cq. As neither water 
replicate gave a Cq value, no limit of detection was set. 
AValues fall outside of the standard curve, and so absolute quantity of DNA cannot be 
determined. 
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Table 7.12 Results for Rhizoctonia solani AG 2-1 qPCR analysis of Pukekohe soil 
greenhouse disease assay, including quantification cycle (Cq) value, 
calculated quantity of DNA per sample plus mean and standard deviation 
(SD) for DNA quantity per plot 

Sample Name Cq Quantity (pg 
DNA) 

Quantity mean 
(pg DNA)+ Quantity SD 

Water Undetermined 0   
Water Undetermined 0 0 N/A 
Plot 2 28.94010162 0.002038401   
Plot 2 28.82536507 0.002197082 0.002117742 7.93408E-05 
Plot 3 29.5643959 0.001355641   
Plot 3 29.43620872 0.00147407 0.001414855 5.92145E-05 
Plot 4 27.91941833 0.0039711   
Plot 4 28.73789978 0.002326295 0.003148698 0.000822403 
Plot 5 27.932024 0.003938528   
Plot 5 27.95082664 0.00389044 0.003914484 2.40443E-05 
Plot 8 27.66910362 0.004676687   
Plot 8 27.64811516 0.00474126 0.004708973 3.22866E-05 
Plot 9 27.29111671 0.005986775   
Plot 9 27.48420334 0.005277207 0.005631991 0.000354784 
Plot 11 28.86472893 0.002141296   
Plot 11 28.61606216 0.002519049 0.002330172 0.000188876 
Plot 12 28.21530533 0.003273047   
Plot 12 28.15021706 0.00341524 0.003344143 7.10964E-05 
Plot 13 27.09556961 0.006802677   
Plot 13 26.9943409 0.007267813 0.007035245 0.000232568 
Plot 14 28.32759094 0.003041522   
Plot 14 28.24924469 0.003201267 0.003121394 7.98724E-05 
Plot 15 28.352705 0.002992022   
Plot 15 28.42509842 0.002853796 0.002922909 6.91129E-05 
Plot 16 28.86343765 0.002143104   
Plot 16 28.66718864 0.002436292 0.002289698 0.000146594 
Plot 17 28.65478325 0.002456119   
Plot 17 28.79358101 0.002243185 0.002349652 0.000106467 
Plot 19 29.10816574 0.001826421   
Plot 19 28.89467621 0.002099806 0.001963114 0.000136692 
Plot 22 27.77106667 0.004375281   
Plot 22 27.95005798 0.003892394 0.004133838 0.000241444 
Plot 24 29.07152557 0.001870672   
Plot 24 29.02673912 0.00192622 0.001898446 2.7774E-05 
+Mean value calculated if both plot replicates provided a determined Cq. As neither water 
replicate gave a Cq value, no limit of detection was set. 
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