
 
 

 

 

 

 

 

 

 

 

 

 

House Price Prediction:  

Hedonic Price Model vs. Artificial Neural Network 

 
Visit Limsombunchai 

Commerce Division, Lincoln University, Canterbury 8150, New Zealand. 

e-mail: limsombv@lincoln.ac.nz 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paper presented at the 2004 NZARES Conference 
Blenheim Country Hotel, Blenheim, New Zealand. June 25-26, 2004. 

 
 

Copyright by author(s). Readers may make copies of this document for non-commercial 

purposes only, provided that this copyright notice appears on all such copies. 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lincoln University Research Archive

https://core.ac.uk/display/35467021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

House Price Prediction:  

Hedonic Price Model vs. Artificial Neural Network 

 
Visit Limsombunchai

1
 

Commerce Division, Lincoln University, 

Canterbury 8150, New Zealand. 

Email: limsombv@lincoln.ac.nz 

 

Abstract 
 

The objective of this paper is to empirically compare the predictive power of the hedonic 

model with an artificial neural network model on house price prediction. A sample of 200 

houses in Christchurch, New Zealand is randomly selected from the Harcourt website. Factors 

including house size, house age, house type, number of bedrooms, number of bathrooms, 

number of garages, amenities around the house and geographical location are considered. 

Empirical results support the potential of artificial neural network on house price prediction, 

although previous studies have commented on its black box nature and achieved different 

conclusions.  
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1. Introduction 
 

An accurate prediction on the house price is important to prospective homeowners, 

developers, investors, appraisers, tax assessors and other real estate market participants, such 

as, mortgage lenders and insurers (Frew and Jud, 2003). Traditional house price prediction is 

based on cost and sale price comparison lacking of an accepted standard and a certification 

process. Therefore, the availability of a house price prediction model helps fill up an 

important information gap and improve the efficiency of the real estate market (Calhoun, 

2003). 

 

In New Zealand, most people know the benefit of owning a house, because buying a house is 

considered the most utilised and profitable investment. New Zealand has one of the highest 

ratios of people owning their houses in western world with over 70% of its citizens living in 

their own houses. As house market in New Zealand is thriving, house price becomes a crucial 

factor for house seekers. 

 

Over the last two decades there has been a proliferation of empirical studies analysing 

residential property values, with Ball (1973) being last major study.  Each succeeding 

research has generally improved the predictive power of the models by emphasising attributes 

of property value such as housing site, housing quality, geographical location and the 

environment. More recent studies have focused on location externalities, transaction costs and 

factors affecting the future expected cost in homeownership (Norman, 1982). 

 

                                                 
1
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The hedonic price models have been commonly used to estimate house prices and property 

values.  Most of the models include housing attributes such as location, neighbourhood, and 

house size.  However, there is a limited number of studies in this area using an artificial 

neural network technique. This paper uses the hedonic method and artificial neural network to 

empirically determine the house prices in Christchurch, New Zealand.  Secondary data from 

200 houses in Christchurch is used in a hedonic price framework and artificial neural network 

to empirically compare the predictive power of both techniques and to suggest an appropriate 

technique for the house price prediction.  

 

This paper is divided into the following sections. Section 2 provides an overview of the 

hedonic price model and artificial neural network. Section 3 presents the models and section 4 

discusses the data, variables and methodology that used in this paper. Section 5 reports the 

empirical results, and section 6 concludes the findings. 

 

 

2. Hedonic Price and Artificial Neural Network Theory 
 

2.1 Hedonic Price Theory 

 

Hedonic price theory assumes that a commodity such as a house can be viewed as an 

aggregation of individual components or attributes (Griliches, 1971).  Consumers are assumed 

to purchase goods embodying bundles of attributes that maximize their underlying utility 

functions (Rosen, 1974). Rosen (1974) describes the process in which prices reveal quality 

variations as relying on producers who "tailor their goods to embody final characteristics 

described by customers and receive returns for serving economic functions as mediaries".  

Hedonic price theory originates from Lancaster's (1966) proposal that goods are inputs in the 

activity of consumption, with an end product of a set of characteristics. 

 

Bundles of characteristics rather than bundles of goods are ranked according to their utility 

bearing abilities.  Attributes  (for example, characteristics of a house such as number of 

bedrooms, number of bathrooms, number of fireplaces, parking facilities, living area and lot 

size) are implicitly embodied in goods and their observed market prices.  The amount or 

presence of attributes associated with the commodities defines a set of implicit or "hedonic" 

prices (Rosen, 1974).  The marginal implicit values of the attributes are obtained by 

differentiating the hedonic price function with respect to each attribute (McMillan et al., 

1980).  The advantage of the hedonic methods is that they control for the characteristics of 

properties, thus allowing the analyst to distinguish the impact of changing sample 

composition from actual property appreciation (Calhoun, 2001). 

 

Hedonic price theory has been applied to valuation of agricultural commodities (Brorsen et 

al., 1984; Ethridge and Davis, 1982; Wilson, 1984), residential amenities (Blomquist and 

Worley, 1981; McMillan et al.,1980; Witte et al., 1979; and Milon et al., 1984,) and wildlife 

related recreation resources (Pope and Stoll, 1985; Livengood, 1983; Pope et al., 1984; and 

Messonnier and Luzar, 1990).  Other applications have involved the estimation of the benefits 

of environmental improvements (Freeman, 1979; Blomquist and Worley, 1981; Harrison and 

Rubinfeld, 1978; and McMillan et al., 1980). 

 

While the hedonic technique is an acceptable method for accommodating attribute differences 

in a house price determination model, it is generally unrealistic to deal with the housing 

market in any geographical area as a single unit. Therefore, it seems more reasonable to 
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introduce geographical information or location factor into a model that allows shifts in the 

house price level. Frew and Wilson (2000) employ the hedonic price model to examine the 

relationship between location and property value, in Portland, Oregon, and the authors found 

that there was a significant relationship between location and property value. 

 

Fletcher et al. (2000) examine whether it is more appropriate to use aggregate or disaggregate 

data in forecasting house price using the hedonic analysis. It is found that the hedonic price 

coefficients of some attributes are not stable between locations, property types and age. 

However, it is argued that this can be effectively modelled with an aggregate method.  The 

hedonic price model has also been used to estimate individual external effects (e.g. 

environmental attribute) on house prices. For example, there is a number of studies that have 

applied the hedonic price model in quantifying the effects of noise (Mieszkowski and Saper, 

1978; Damm et al., 1980; Uyeno et al. 1993) and air pollution on house prices (Ridker and 

Henning, 1982; Graves et al, 1988). 

 

Even though the hedonic price model has been widely recognized, issues such as model 

specification procedures, multicollinearity, independent variable interactions, 

heteroscedasticity, non-linearity and outlier data points can seriously hinder the performance 

of hedonic price model in real estate valuations. The artificial neural network model has been 

offered as a possible solution to many of these problems, especially when the data patterns 

show non-linearity (Lenk et al. 1997; Owen and Howard, 1998).  

 

Tay and Ho (1991), using a large sample of data from the apartment sector in Singapore, 

found that a neural network model performs better than a multiple regression model for 

estimating value. The authors concluded that the neural network can learn valuation patterns 

for “true” open market sales in the presence of some “noise” as a way of establishing a robust 

estimator. Similar results can be found in Do and Grudnitski (1992) and McCluskey (1996) 

studies. 

 

Worzala et al. (1995), on the other hand, take on a contrary position and cast some doubt upon 

the role of neural networks compared to the traditional regression models. The authors argued 

that even when the same data is used, results from models prepared by different neural 

network software package could be inconsistent and did not always outperform regression 

models. Lenk et al. (1997) also reached the similar conclusions. Their study documented very 

similar performance between the hedonic model and the neural network models. 

 

2.2 Artificial Neural Network Theory 

 

Neural network is an artificial intelligence model originally designed to replicate the human 

brain’s learning process. The model consists of three main layers: input data layer (example 

the property attributes), hidden layer(s) (commonly referred as “black box”), and output layer 

(estimated house price). Neural network is an interconnected network of artificial neurons 

with a rule to adjust the strength or weight of the connections between the units in response to 

externally supplied data (see Figure 1) (Stanley et al., 1998). 
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Figure 1: Feed-forward neural network structure with two hidden layers. 

 
Source: James and Carol, 2000. 

 

Each artificial neuron (or computational unit) has a set of input connections that receive 

signals from other computational units and a bias adjustment, a set of weights for input 

connection and bias adjustment, and transfer function that transforms the sum of the weighted 

inputs and bias to decide the value of the output from computational unit (see Figure 2). The 

output for the computation unit (node j) is the result of applying a transfer function  to the 

summation of all signals from each connection (Ai) times the value of the connection weight 

between node j and connection i (Wji) (refer to equations 1 and 2). 

 

  Sumj = j (WjiAi)        [1] 

 

  Oj =  (Sumj)         [2] 

 

where Oj is output for node j and  is transfer function which can take many different forms: 

linear functions, linear threshold functions, step linear functions, sigmoid function or 

Gaussian functions (James and Carol, 2000). 

 

 

Figure 2: Structure of a Computational Unit (node j) 

 

 
Source: James and Carol, 2000. 
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3. Models 
 

3.1 Hedonic Price Model 

 

The hedonic model involves regressing observed asking-prices for the house against those 

attributes of a house hypothesized to be determinants of the asking-price.  Attributes 

hypothesized to contribute to the price of a house include land size (in square meters), house 

age (in years), number of bedrooms, number of bathrooms, number of toilets, and number of 

garages, binary variables representing the type of house (with garden, or without garden) and 

amenities around the residential areas (such public facilities).   In addition, the geographical 

location of the house also plays an important factor in influencing the house price. In this 

paper, the Christchurch area is divided into six different geographical locations. They are 

Inner Christchurch, North Christchurch, South Christchurch, East Christchurch, West 

Christchurch, and Northwest Christchurch. The location dummy variables equal to 1 if a 

particular property is situated in the identified location, 0 otherwise.  

 

Implicitly, the model for the hedonic price function is specified as: 

 

PRICE = f (LAND, AGE, TYPE, BEDROOMS, BATHROOMS, GARAGES, 

AMENITIES, INNER CHRISTCHURCH, NORTH CHRISTCHURCH, 

SOUTH CHRISTCHURCH, EAST CHRISTCHURCH, WEST 

CHRISTCHURCH, NORTHWEST CHRISTCHURCH, ε)   [3] 

 

Variables in the model are defined as: 

PRICE =  Price of house in Christchurch in NZD 

LAND (+) =  Land size (in square meters) 

AGE (-) =  Age of the house (in years) 

TYPE (+) =  Type of house; 1 if the house has a garden, 0 otherwise 

BEDROOMS (+) = Number of bedrooms 

BATHROOMS (+) = Number of bathrooms 

GARAGES (+) = Number of garages 

AMENITIES (+) = Amenities around the house; 1 if the house is close to two or more 

public facilities (i.e. bus stop, school, public park and so on), 0 

otherwise 

ε =   Error term 

 

A priori hypotheses are indicated by (+) and (-) in the above specification.  Based on previous 

literature, it is hypothesised that most of the variables have a positive relationship with the 

house price, except age of the house. For example, a house with garden is more expensive 

than a house without garden. A small house should cheaper than a large house. A house that 

has multiple bedrooms, bathrooms, garages and close to public amenities (such as public 

parks, public libraries, etc) is expected to command a higher price than a house that has less 

number of bedrooms, bathrooms, toilets, garages and no public amenities nearby. Conversely, 

the age of a house would have a negative relationship with house price since an old house 

commands a lower price compared to a newly built house. 
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3.2 Artificial Neural Network Model 

 

The use of the neural network model is similar to the process utilized in building the hedonic 

price model. However, the neural network must first be trained from a set of data. For a 

particular input, an output (estimated house price) is produced from the model. Then, the 

model compares the model output to the actual output (actual house price). The accuracy of 

this value is determined by the total mean square error and then back propagation is used in 

an attempt to reduce prediction errors, which is done through the adjusting of the connection 

weights.  

 

The performance of the network can be influenced by the number of hidden layers and the 

number of nodes that are included in each hidden layer. Unfortunately, there exists little 

theory to support the process for the determination of the optimal number of hidden layers 

and nodes, and also the optimal internal error threshold (Lenk et al., 1997). Therefore, a trial-

and-error process is applied to find the optimal artificial neural network model. A feed-

forward/back-propagation neural network software package, NeuroShell, was used to 

construct the artificial neural network model. 

 

There are no assumptions about functional form, or about the distributions of the variables 

and errors of the model, neural network model is more flexible than the standard statistical 

technique (Mester, 1997). It allows for nonlinear relationship and complex classificatory 

equations. The user does not need to specify as much detail about the functional form before 

estimating the classification equations but, instead, it lets the data determine the appropriate 

functional form. 

 

In accordance to standard analytical practice, the sample size was divided on a random basis 

into 2 sets, namely the “training set” and the “production set” (as known in neural network 

literature), or the “estimation set” and the “forecasting set” (as know in regression analysis 

literature). The training set and the production set contain 80% and 20% of the total sample, 

respectively. To evaluate the forecasting accuracy of both models, an out-of sample 

forecasting is operated, subsequently, the R
2
 and the Root Mean Square Error (RMSE) were 

calculated and compared (refer to equations 4 and 5). The model with a higher R
2
 and lower 

RMSE was considered to be a relatively superior model. 
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where Pi is actual house price, iP̂  is estimated house price and n is the number of 

observations. 
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4. Data and Procedures 
 

A sample of 200 housing information in the Christchurch area is randomly selected from the 

largest real estate agent, Harcourt. The data set is retrieved from Harcourt’s website 

(www.bluebook.co.nz) in May 2003. 

 

Since most business offices, restaurants and shops are located in the inner city centre, the 

proportion of residential houses is quite small. Only 15 housing data is collected from the 

inner city, 25 housing information is from North Christchurch, and 40 housing information 

for the remaining four identified locations.  There are 200 observations utilized in this study. 

 

Economic theory offers little guidance with respect to the choice of functional form for the 

hedonic model as the hedonic price function represents an equilibrium relationship derived 

from individuals’ preferences and suppliers’ cost functions (Freeman, 1993).   While earlier 

hedonic studies used linear specifications, recent investigations aimed at identifying more 

appropriate functional specifications have indicated the superiority of flexible forms (Cooper 

et al., 1987; Milon et al., 1984).  Coefficients resulting from linear specifications identify the 

relative contribution of their respective attributes to the price of the product.  Linear 

specifications, however, imply constant marginal willingness-to-pay for all households 

consuming the good (Freeman, 1979).  This does not allow for the identification of the 

demand schedule for the attribute in question and also ignores the possibility that demand for 

the attribute may be a function of its level as well as the level of other attributes.  In the case 

of non-linear specifications, the first derivative of the hedonic price function with respect to 

the specified attribute yields the implicit marginal price of the attribute (McMillan et al., 

1980).   

 

As economic theory provides no clear guidance regarding the choice of functional form to be 

used in hedonic regression, this paper employed the semi-log model because price is a very 

sensitive and volatile component (Shonkwiler and Reynolds, 1986).   

 

 

5. Empirical Results 
 

The estimated coefficients of equation 1 are shown in Model 1 (see Table 1). The weighted 

least square (WLS) technique and the White (1982) adjustment for estimating a 

heteroscedasticity consistent covariance matrix are applied to equation 1 instead of the 

ordinary least square technique because of heteroscedasticity. The number of toilets was 

dropped from equation 1 to avoid multicollinearity problem since the number of toilets (TO) 

was found to have a high correlation with the number of bathrooms (BA) (see Table 2).  

 

Model 1 shows that all of coefficients have correct hypothesised signs and most of the 

coefficients are statistically significant. It should be noted that White heteroscedasticity test 

still indicate the heteroscedasticity problem, even if the weighted least square (WLS) and the 

White adjustment techniques are utilized. The estimated results demonstrate that houses with 

more bedrooms and bathrooms are priced higher. A relatively new house is more expensive 

than an old house, and a house with garden is priced higher than one without garden.  

Location variables play a significant role on house prices. For example, houses in the 

Northwest of Christchurch (such as Burnside, Fendalton, Ilam, and Merivale) are priced 

higher since they have access to good public and private high schools in those area due to the 

school-zone policy and the University of Canterbury. Furthermore, Fendalton has traditionally 

http://www.bluebook.co.nz/
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been known as an upper income area. On the contrary, properties in East of Christchurch 

(such as Linwood, Phillipstown, Aranui, and Bexley) are priced lower than the rest of areas 

since it is relatively a poor neighbourhood and most of houses are relatively older than those 

in other areas.  

 

Table 1: Hedonic Price Models 

 

Variable
1/ Coefficient 

Model 1
2/ 

Model 2
2/

 Model 3
2/

 

C 11.1763
**

 11.2526
** 

10.3075
**

 

LAND (L) 0.0001 0.0004 -0.0020 

AGE (A) -0.0028
*
 -0.0029

**
 -0.0118 

TYPE (TY) 0.3599
* 

  

BEDROOMS (BD) 0.0788 0.0622 0.6687
**

 

BATHROOMS (BA) 0.2411
**

 0.3517
**

 0.3314 

GARAGES (G) 0.1826
* 

0.0506 0.0321 

AMENITIES (AM) 0.0366
 

0.0941
*
 0.1997 

North Christchurch (NC) -0.1955
* 

-0.0281 0.2436 

South Christchurch (SC) -0.2759
** 

-0.0170 na. 

East Christchurch (EC) -0.4521
** 

-0.2483
**

 -0.1040 

West Christchurch (WC) -0.2250
* 

-0.0001 0.1947 

Northwest Christchurch (NWC) 1.9423
** 

2.3804
**

 1.5601
**

 

R
2
 0.7833 0.8780 0.7817 

Adj. R
2
 0.7657 0.8660 0.6944 

F-stat. 44.2913
** 

73.2795
** 

8.9516
** 

White Heteroscedasticity Test 7.1970
**

 2.3153
**

 5.3612
**

 

 n = 160 n = 124 n = 36 
 

Note: 1/ Dependent Variable is Log(P). 

2/ WLS and White adjustment for estimating a heteroscedasticity consistent covariance matrix. 

*, ** represent 10% and 5% significant level, respectively. 

 Model 1 is hedonic price model for both house with garden and without garden. 

 Model 2 is hedonic price model for house with garden. 

 Model 3 is hedonic price model for house without garden. 

  

In general, houses with gardens are usually located away from the city or shopping mall areas, 

while the houses without garden are located closer to the business district centre, town, and 

university. Thus, houses with gardens versus houses without gardens reflect different market 

segment and different pricing strategy.  For example, Model 1 shows the average price of a 

house with garden is higher than a house without garden in every location (see Table 1).  

Therefore, it can be concluded that house prices are determined differently according to its 

type.  

 

 

 

 

 

 



 10 

Table 2: Correlation Coefficient Matrix 

 

 P L A BD BA TO G 

P 1.00       

L 0.09 1.00      

A -0.19 0.30 1.00     

BD 0.18 0.50 -0.12 1.00    

BA 0.35 0.22 -0.33 0.61 1.00   

TO 0.47 0.20 -0.35 0.58 0.85 1.00  

G 0.33 0.35 -0.32 0.52 0.52 0.53 1.00 

 

 

The hedonic price models (Models 2 and 3) are segregated according to property type, that is, 

houses with gardens and houses without gardens respectively (see Table 1). The R
2
 in both 

models is relatively high but the coefficients in both models, such as land size, garages and 

some geographical locations, are statistically not significant. Furthermore, the null hypothesis 

of White heteroscedasticity test is rejected at 5 the percent level in both models. The results 

indicate that the segregation model improves the explanatory power of the model but cannot 

overcome the problem of heteroscedasticity. The insignificant of the variables may be caused 

by the reduction of the sample size since there are only 36 observations on house without 

garden model. 

 

The back propagation training process is always regarded as a black box in the neural network 

model, thus the internal characteristics of a trained network is simply a set of numbers which 

prove to be difficult in relating back to the application in a meaningful fashion. For that 

reason, the learned output (weights or coefficients) cannot be interpreted or utilized as price 

adjustments.  

 

The relative contribution factors of the best artificial neural networks (the relative importance 

of inputs) are shown in Table 3. All three networks employ the same variables for the input 

layer nodes that are used as the independent variables to create the hedonic price models. 

Ward networks (multiple hidden slabs with different activation functions), which use 

Gaussian, Tanh, and Gaussian Complement (Ward System Group Inc., 1993) as the activation 

functions for 3 hidden slabs and each slab contains 6 hidden nodes, are considered as the best 

networks in this study. Although neural networks with 1 and 2 hidden layers are examined 

and their results are slightly better than the hedonic price models, the results are not presented 

here because they do not outperform Ward networks.  

 

The relative contribution factor in Table 3 shows that land size and number of garages, 

respectively, are important factors that determine the house price for house with garden while 

amenities near the house area is the less important factor (see model 2). Generally, houses 

with gardens are located in the outskirt of the business district centers since they require large 

land sizes. Thus amenities around the house area may not be an important factor impact the 

house price. However, a larger land size means a higher price of the house. 
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Table 3: Neural Networks’ Relative Contribution Factor 

 

Factor 
Relative Contribution 

Model 1 Model 2 Model 3 

LAND (L) 0.0879 0.1724 0.0608 

AGE (A) 0.2231 0.0936 0.1804 

TYPE (TY) 0.0766   

BEDROOMS  (BD) 0.0649 0.0598 0.1749 

BATHROOMS (BA) 0.0621 0.1206 0.0517 

GARAGES (G) 0.1700 0.1615 0.1824 

AMENITIES (AM) 0.0675 0.0355 0.1160 

North Christchurch (NC) 0.0299 0.0747 0.0463 

South Christchurch (SC) 0.0306 0.0639 na. 

East Christchurch (EC) 0.0391 0.0453 0.0375 

West Christchurch (WC) 0.0493 0.0788 0.0319 

Northwest Christchurch (NWC) 0.0990 0.0940 0.1181 

R
2
 0.9450 0.9942 0.9378 

 n = 160 n = 124 n = 36 
 

Note: Ward network is utilized with learning rate = 0.1, momentum = 0.1 and initial weight = 0.3. 

Model 1: house with and without garden. 

 Model 2: house with garden. 

 Model 3: house without garden. 

 

For house without garden, age of house and the number of garages are factors that have strong 

impact on the house price (see Model 3 in Table 3). Land size for house without garden is less 

important compared to house with garden. On the other hand, age of the house, the number of 

bedrooms, the number of garages and amenities around the house areas do impact the house 

price for the house without garden when compared to the house with garden. 

 

On the aggregate model (see Model 1 in Table 3), the neural networks’ relative contribution 

factor demonstrates that the age of the house and the number of garages, respectively, have 

contributed to the predictive power of model than the other variables. Geographical location 

such as Northwest of Christchurch has a relatively high impact to the house price compared to 

land size, house type, number of bedrooms, number of bathrooms and amenities around the 

house area. The result indicates that geographical location plays an important role on the 

house price determination. 

 

The R
2
 from neural network models are higher than the R

2
 from hedonic price models (see 

Table 3). The results imply that the neural network model can estimate the house price more 

accurately than the hedonic price model in both aggregate and disaggregate models (see 

Figure 3). However, the results do not provide strong and conclusive evidence of superiority 

in term of prediction capability between both models, as shown by the sample results.  

 

Table 4 shows the out-of-sample forecast evaluation results for hedonic price models and 

neural network models. Again, the R
2

 of neural network models are higher than the R
2
 of 

hedonic price models, and the RMSE of neural network models are lower than hedonic price 

models. Therefore, it can be concluded that the neural network model is relatively superior 

model for house price prediction (see Figure 4).  



 12 

Figure 3: Actual and estimated house prices in log form (in sample forecast) 

 
 

Table 4: Comparing the Out-of-Sample Forecast Evaluation Results for Hedonic Price 

Model and Neural Network Model 

 

  Model 1 Model 2 Model 3 

Hedonic price model    

- R
2
                 0.6192                  0.7499                  0.3807  

- RMSE          876,215.63           642,580.05        1,435,810.81  

    

Neural network model    

- R
2
                 0.9000                  0.8408                 0.6907  

- RMSE          449,111.46           512,614.99       1,014,721.92  

 n = 40 n = 31 n = 9 
 

Note: Model 1: house with and without garden. 

 Model 2: house with garden. 

 Model 3: house without garden. 

 

 

The results from Table 4 also suggest that the better model for house price prediction should 

be the aggregate neural network model rather than the disaggregate models, as it has the 

highest R
2
 and the lowest RMSE. Even though the neural network models for house with and 

without garden have relatively high R
2
 in the case of in sample forecast (0.9942 and 0.9378, 

respectively), their performances are not good compared to the out-of-sample forecast, 

especially houses without garden. The low number of observations may be one of the possible 

explanation for the poor performance of the model since the aggregate model has higher 

number of observations than the disaggregate models. 
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Figure 4: Actual and estimated house prices in log form (out-of-sample forecast) 

 
 

 

6. Conclusion 
 

This paper empirically compares the predictive power of the hedonic price model with an 

artificial neural network model on house price prediction.  Artificial neural network models 

and hedonic price models are tested for their predictive power using 200 houses information 

in Christchurch, New Zealand. 

 

The results from hedonic price models support the previous findings. Even if the R
2
 of 

hedonic price models are high (higher than 75%) for in sample forecast, the hedonic price 

models do not outperform neural network models. Moreover, the hedonic price models show 

poorer results on out-of-sample forecast, especially when comparing with the neural network 

models. Thus, the empirical evidence presented in this paper supports the potential of neural 

network on house price prediction, although previous literatures have commented upon its 

black box nature and reached different conclusions.  

 

The non-linear relationship between house attributes and house price, the lack of some 

environmental attributes, and inadequate number of sample size could be the cause of the 

poor performance of the hedonic price models. However, it should be noted that the optimal 

artificial neural network model is created by a trial-and error strategy. Without this strategy, 

the results may not indicate superiority of the neural network model (Lenk et al., 1997). 

 

There are, however, some limitations in this paper. Firstly, the house price used is not the 

actual sale price but the estimated price due to the difficulty in obtaining the real data from the 

market. Secondly, this paper considered only the current year’s information of the houses. 

The time effect of the house price, which could potentially impact the estimated results was 

ignored (the same house should have different price in different years, assuming that age 

factor is constant). Finally, the house price could be affected by some other economic factors 

(such as exchange rate and interest rate) are not included in the estimation.  
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