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Abstract 
 
Background 
 
Acute Respiratory Distress Syndrome (ARDS) results in collapse of alveolar units and 

loss of lung volume at the end of expiration. Mechanical ventilation is used to treat 

patients with ARDS or Acute Lung Injury (ALI), with the end objective being to 

increase the dynamic functional residual capacity (dFRC), and thus increasing overall 

functional residual capacity (FRC). Simple methods to estimate dFRC at a given 

positive end expiratory pressure (PEEP) level in patients with ARDS/ ALI currently 

do not exist. Current viable methods are time consuming and relatively invasive.  

 

Methods 
 
Previous studies have found a constant linear relationship between the global stress 

and strain in the lung independent of lung condition. This study utilizes the constant 

stress strain ratio and an individual patient’s volume responsiveness to PEEP to 

estimate dFRC at any level of PEEP. The estimation model identifies two global 

parameters to estimate a patient specific dFRC, β and mβ. The parameter β captures 

physiological parameters of FRC, lung and respiratory elastance and varies depending 

on the PEEP level used, and mβ is the gradient of β vs PEEP.  
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Results 
 
dFRC was estimated at different PEEP values and compared to the measured dFRC 

using retrospective data from 12 different patients with different levels of lung injury. 

The median percentage error is 18% (IQR: 6,49) for PEEP = 5 cm H2O, 10% (IQR: 

9,18) for PEEP = 7 cm H2O, 28% (IQR: 12,33) for PEEP = 10 cm H2O, 3% (IQR: 

2,10) for PEEP = 12 cm H2O and 10% (IQR: 9,11) for PEEP = 15 cm H2O. The 

results were further validated using a cross correlation (N = 100,000). Linear 

regression between the estimated and measured dFRC with a median R2 of 0.948 

(IQR: 0.915,0.968 ; 90% CI: 0.814,0.984) over the N = 100,000 cross validation tests. 

 

Conclusions 
 
The results suggest that a model based approach to estimating dFRC may be viable in 

a clinical scenario without any interruption to ventilation and can thus provide an 

alternative to measuring dFRC by disconnecting the patient from the ventilator. The 

overall results provide a means of estimating the dFRC at any level of PEEP with 

clinically reasonable accuracy for evaluating the impact of changes in PEEP or other 

mechanical ventilation settings.  
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Introduction 
 
Patients admitted to the intensive care unit (ICU) with acute lung injury (ALI) or its 

more severe form, acute respiratory distress syndrome (ARDS) [1-3] have mortality 

rates ranging from 20% to 70% [4]. ALI or ARDS occurs when the lung is inflamed 

and fills with fluid and cellular infiltrate causing a loss of functional lung units. This 

series of events results in a stiffer and smaller lung – the so called “baby lung” [5]. 

Currently, there are no specific treatments for ALI/ ARDS. Management is essentially 

supportive with an emphasis on minimising harm to the lungs, which results from 

suboptimal mechanical ventilation [6]. Typically, the severity of ARDS is measured 

as the ratio of the arterial partial pressure of oxygen divided by the fraction of inspired 

oxygen (PiO2/FiO2 ratio). A PiO2/FiO2 value less than 300 implies the patient has 

ALI, while anything lower than 200 is characterised by ARDS [7]. 

 

Mechanical ventilation is the primary treatment for ARDS and aids recovery by 

reducing or completely taking over the work of breathing. A positive end expiratory 

pressure (PEEP) is used to maintain a partially inflated lung at the end of expiration 

and to maintain recruitment during subsequent breathing cycles [8-11]. The optimal 

level of PEEP has been widely studied and debated with no conclusive results [8]. 

 

Functional Residual Capacity (FRC) represents the pulmonary gas volume of the lung 

at end expiration at atmospheric pressure. The objective of mechanical ventilation is 

to maximise gas exchange, while minimizing any additional lung injury due to over 

distension by using PEEP to increase FRC through the resulting alveolar recruitment. 

PEEP can be used to increase FRC, however there is a risk of overstretching healthy 

lung units in the process [12]. 
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Currently, there are few methods of measuring FRC at the bedside. Gas washout/ 

washin techniques are one type of method [13], but are not readily available on most 

ventilators. A limitation of this type of measurement is that only an absolute value of 

FRC is measured. Hence, no information on the potential for new recruited lung 

volume is given, which is critical in setting PEEP to gain maximum recruitment with 

minimum added injury.  

 

 
Figure 1 shows a schematic of the lung. When FRC is measured using a washout/ 

washin technique, it cannot be determined how many potential recruitable units are 

available. Therefore, as shown in the schematic, a lung with an FRC of 1.4 litres 

could be a result of a lung with 1.4 litres of fully recruited healthy lung units or 1.0 

litres of recruited lung plus an additional amount of lung which has been recruited due 

to additional PEEP. 

 

FRC can also be measured by using computed tomography (CT) scans [14]. Timed at 

the end of expiration, the gas volume can be assessed at each slice and summed across 

all the slices in the lung to evaluate true lung FRC. However, this type of 

measurement is unrealistic for regular use or monitoring in the ICU.   

 

Although specialised ventilators may have FRC measurements (GE ventilators), most 

standard ventilators do not measure FRC, do not give the appropriate information 

required for optimal ventilator treatment, or require transportation of the patient (CT 

scanning). Thus, there is generally no practical bedside method that can be used to 

estimate recruited lung. Therefore, there is a motivation to be able to estimate the 
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level of potential recruitment in the lung to help clinicians optimise mechanical 

ventilation treatment. 

 

The ability to use standard ventilator data to estimate a dynamic FRC (dFRC), which 

includes recruited lung, would be a significant potential enhancement in ventilation 

management. Dynamic FRC is the level of additional lung volume that is achieved in 

the lung due to an additional level of applied PEEP and is shown schematically in  

Figure 2 [15]. Although dynamic FRC cannot by itself estimate the potential of lung 

recruitment, used with gas measurements it can provide the clinician with useful 

information on lung recruitability. 

 
Thus, dynamic FRC value represents an aspect of the clinical endpoint in ventilation 

management, with the potential to be continuously tracked with changes in patient 

condition. This research develops a tool to estimate the level of additional pulmonary 

volume of collapsed alveolar units resulting from changes made to the applied 

inspiratory and expiratory airway pressures during mechanical ventilation. The 

method is based on identifying global parameters using a stress strain approach and 

estimating the level of additional lung volume due to PEEP. The potential for the 

model to be used in a clinical setting is explored based on the measurements required. 
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Method 
 
Retrospective clinical data from 12 patients was obtained with different levels of lung 

injury or ARDS from the study of Bersten et al [12]. Bersten et al reported 10 patients 

in this paper, however an additional two patients were not reported due to limited PV 

loops recorded. These data sets include PV loops for each patient at a minimum of 3 

different PEEP values with a measured dFRC. PEEP was applied and held for 30 

minutes before sampling was done. During the final 60 seconds, the data was then 

sampled at 100 Hz. After approximately 40 seconds of tidal ventilation at PEEP, the 

ventilator is then set to zero end expiratory pressure (ZEEP), allowing the lung to 

deflate to FRC.  Although this manouver does not measure FRC directly, it does 

capture FRC by measuring dynamic FRC, the extra volume due to PEEP which can 

lead to optimising lung recruitment. 

 

Chiumello et al [16] studied the relationship between the global stress and strain 

during mechanical ventilation in ARDS patients. They defined the clinical equivalent 

of stress as the transpulmonary pressure (∆PL), while the strain was defined as the 

ratio of change in volume (∆V) to the volume at the relaxed state of the lung or FRC. 

They also defined the specific lung elastance (ELspec) as the transpulmonary pressure 

at which FRC effectively doubles. 

 

The relationship between stress and strain is defined [16]: 

FRC
VEstressP LspecL

∆
×=∆ )(  

(1) 

where ∆V/FRC is the strain and ELspec is the specific lung elastance. The values of the 

specific lung elastance ELspec in [16] are  reported as 13.4 ± 3.4 for surgical control 
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subjects, 12.6 ± 3.0 for medical control subjects, 14.4 ± 3.6 for ALI subgroup and 

13.6 ± 4.1 cm H2O for the ARDS subgroup. This indicates that ELspec does not vary 

significantly within different groups and has a tight range of values.  

 

 

The general relationship between the change in plateau airway pressure, ∆Paw, when 

the airflow is zero and the corresponding transpulmonary pressure is [16]: 

α×∆=∆ awL PstressP )(  (2) 

CWL

L

EE
E
+

=α  
(3) 

where α represents the static lung elastance and represents the ratio of the lung 

elastance (EL) to the chest wall elastance (ECW). It is critical to understand the 

importance of α in mechanical ventilation therapy. When a given airway pressure is 

applied, part of the pressure is used to inflate the lungs, with the remaining used to 

inflate the chest wall. The aim of mechanical ventilation is to ventilate patients while 

simultaneously trying to minimise the stresses exhibited in the lungs. Figure 3 shows 

the effect of different elastance values for the lungs and chest wall. Although in both 

cases, the total elastance is the same, Figure 3(a), typical of an ARDS patient, would 

experience a higher lung stress than Figure 3(b) as the lung is stiffer due to the higher 

elastance. Thus, α gives an indication of the severity of the ARDS affected lung. 

 

The values of  α in [16] varied from 0.69 ± 0.15 for surgical control subjects, 0.74 ± 

0.16 for medical control subjects, 0.64 ± 0.15 for the ALI subgroup and 0.71 ± 0.16 

for the ARDS subgroup, all of which showed that α remained relatively constant 

across all patients with little deviation. 
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The equation of motion for airway pressure is defined as: 

0_ PRQEVP totaw +×+×=∆  (4) 

where ∆Paw_tot represents the total airway pressure, V is the lung volume, E is the 

respiratory elastance, Q is the airflow rate, R is the respiratory resistance and P0 is the 

offset pressure which is a combination of applied PEEP and intrinsic PEEP  [18, 19]. 

The equation of motion describes the total airway pressure as a function of the 

resistive and elastic components of the respiratory system. As resistance and elastance 

increase, the equation shows the airway pressure increases in order to overcome the 

respiratory resistance and the increased elastic recoil of the respiratory system.  

 

In the case of no flow, the resistive term is zero. In this case, the airway pressure is 

purely a function of the respiratory elastance and is known as the plateau airway 

pressure, as shown in Equation (5).  

0PEVPaw +×=∆  (5) 

 

Typically, if the pressure is measured, it is done at the ventilator or near the mask. 

Hence, all the PEEP data in this study represent plateau airway pressures. Because 

transpulmonary pressure is not typically measured at the bedside, it is estimated using 

the PEEP. Thus, rather than using the transpulmonary pressure ∆PL, the airway 

pressure is used as an estimate based on Equation (2).  

 

At the beginning of inspiration, when the airway pressure is equal to PEEP, there is a 

point of zero flow, when the airflow reverses between expiration and inspiration. At 

this point in time, the volume is measured as dynamic FRC. Because plateau airway 

pressure occurs during zero flow, this justifies the use of PEEP and the corresponding 

dynamic FRC as a substitute for plateau airway pressure and lung volume. 
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Combining Equations (1) and (2) yields a formula for FRC involving the two easily 

measured quantities ∆V and ∆Paw = ∆PEEP assumed here:  

Equation (6) represents the FRC as a function of the specific lung elastance and the 

volume responsiveness of the patient. The data provided by Bersten et al did not 

include any FRC measurements. However, it did include the extra lung volume due to 

a given level of additional PEEP, or dynamic FRC. These values are graphically 

represented in Figure 4, where FRC is shown as the baseline, and dynamic FRC is 

measured relative to an unknown FRC value. 

 

Figure 4 shows the dynamic FRC for a low and a high PEEP setting. The dynamic 

FRC is composed of FRC and the additional volume due to PEEP. As PEEP increases 

from PEEP1 to PEEP2, there is an increase in dynamic FRC. In a recruitment 

manoeuvre, additional PEEP is applied to re-inflate collapsed alveoli. Once the 

additional PEEP is removed, some of the re-inflated alveoli remain open and hence 

dynamic FRC is increased. Therefore physiologically, the change in dynamic FRC 

represents the ∆FRC plus the change in alveolar recruitment due to PEEP. In this 

model, the FRC is not known, and the effect on FRC due to the recruitment 

manoeuvre is also not known, and typically is quite intensive or difficult to measure 

in a typical clinical situation.  

 

α
LspecE

PEEP
VFRC ×

∆
∆

=  
(6) 
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The aim of this research was to model the increase in dFRC due to PEEP. Thus, we 

hypothesised that the dFRC follows similar mathematical form to Equation (6). The 

given PEEP and dFRC in Figure 4, correspond to ∆V =  ∆dFRC and ∆Paw = ∆PEEP. 

Therefore, the dynamic FRC takes the form: 

x
E

PEEP
dFRCdFRC Lspec ××

∆
∆

=
α

 
(8) 

 

where x is a function of the PEEP level that dynamic FRC is to be estimated at. 

Because ELspec and α are constant values, this suggests that these parameters can be 

lumped into a single parameter. Therefore an alternative model for estimating dFRC 

is developed: 

β×
∆
∆

=
PEEP
dFRCdFRC  

(9) 

where β is a function of the PEEP level. It must be noted, the assumption that α 

remain constant only holds for the linear portion of the static PV curve. 

Re-arranging Equation (6) to solve for ∆dFRC/∆PEEP, and substituting into Equation 

(9), we can solve for β, where β is: 

FRC
dFRCELspec ×=

α
β  

(10) 

The term ∆dFRC/∆PEEP indicates the volume responsiveness of the patient to the 

specified change in PEEP. Thus, for a given PEEP, we have hypothesised that β can 

be assumed to be constant over all patients. 

 

With PEEP increasing, the dynamic FRC also increases as more recruitment occurs as 

seen in Figure 4. Because β is linearly related to dFRC as shown in Equation (10), β is 

also a function of the PEEP. Thus, β represents the potential for additional recruitment 

( )x
E

PEEP
dFRCdFRCFRC Lspec +×

∆
∆

=+ 1
α

 
(7) 
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based the given level of PEEP and also accounts for the level of damage to the lung 

by taking into account the elastances of the chest wall and lung.  

 

In the clinical setting, the dynamic FRC is a parameter that is not normally measured 

and it is this variable that the model estimates. Because dynamic FRC is a function of 

PEEP, and β is a function of dynamic FRC, it is possible to combine parameters such 

that β is a function of PEEP. This then provides a method to estimate dynamic FRC 

using known β and PEEP. 

 
Because FRC was not known for any patient, β was analytically solved based on 

Equation (9) using the measured dFRC value from the data. Once β values were 

calculated for each patient at each PEEP value, a median β was then evaluated for 

each PEEP level. This median value was then approximated as a β value for a given 

PEEP across the entire population. The dFRC was then estimated using this median β 

value. The overall process is summarised in Figure 5. 

 

The median and interquartile range non parametric statistics were chosen to be the 

summary statistics to report. Because of the limited number of data points available 

(N = 39 PV loops to predict from), the distribution of errors was non-Gaussian. In 

such situations it is better to present the median which is a true representation of the 

central tendency and the 50th percentile [20]. As the number of data points increases, 

the mean value would tend to converge to the median value if the distribution was 

Gaussian. 
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The dFRC values that were estimated using the median β value were compared with 

the actual dFRC values measured to measure the estimate error over the method and 

assumed population constant value of β.  

 

The model based method was validated using a correlation test with the measured 

clinical dFRC. The data provided 40 different dFRC measurements at various PEEP 

levels. Thus, 80% of the data (32 data points) were randomly selected without 

replacement and the median β value found for each PEEP along with the gradient of β 

vs PEEP, or mβ. 

 

Using these calculated parameters from 80% of the data, the dFRC was then estimated 

for the remaining 20% of the data. A linear regression was performed by comparing 

the estimated dFRC with the measured dFRC for the remaining 20% of the data (8 

data points). This process was then repeated 100,000 times and summary statistics 

reported.  

 

This repetition ensures a wide and reasonably exhaustive coverage of possible test (n 

= 8) and validation (n = 32) sets are examined. This approach eliminates or reduces 

the potential that random chance or specific patient data sets skewed the results. It 

thus serves to statistically validate the general modelling and analysis approach 

presented. 
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Results 
 
Table 1 shows the analytical solution of β for each PEEP level over all 12 patients. 

The median and IQR are shown. The dFRC for each PEEP value was then estimated 

using the median value of β at that PEEP value.  

Table 1- Exact and Median Values of β for different PEEP for all patients 

PEEP [cm H2O] 0 5 7 10 12 15 
Patient       
1  4.67 7.14  11.79  
2 0.48 5.31  10.48   
3  6.10 7.96 11.09   

4  2.96 5.25 8.00   
5  4.96 6.75 9.12 12.23  
6  2.07 3.58 6.79 8.98  
7  4.49 6.51 9.50 11.49  
8  3.15 5.67  10.28  
9    10.13 12.44 15.17 
10  4.73 7.23 9.75 11.94  

11  3.85 5.95 8.86   
12  2.43  6.88  12.43 
Median 0.48 4.49 6.51 9.31 11.79 13.80 
IQR N/A [3.06, 4.85] [5.67, 7.14] [8.22,10.04] [10.89,12.09] [13.12,14.49] 

 
 

Table 2 shows the percentage error between the clinically measured dFRC and the 

dFRC estimated with the model. Figure 6 shows the general trend of clinical dFRC vs 

predicted dFRC for a PEEP of 5 cmH2O across all patients, yielding R2 = 0.712 (R = 

0.845). This relatively low linear trend is attributed to the limited number and range of 

data points at the one PEEP level.  
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Table 2 - Percentage Error of actual dFRC and predicted dFRC for all patients at all PEEP 
levels 

PEEP [cm H2O] 0 5 7 10 12 15 
Patient             

1   3.93 8.86   0.01   
2 0.52 15.41   11.19     
3   26.44 18.19 16.02     
4   51.55 24.06 16.40     
5   9.50 3.54 2.13 3.62   
6   116.52 81.97 37.14 31.24   
7   0.02 0.00 2.00 2.58   
8   42.65 14.75   14.70   
9       8.10 5.19 9.02 

10   5.11 9.98 4.53 1.24   
11   16.69 9.42 5.07     
12   84.95   35.27   11.04 

Median 0.52 16.69 9.98 9.64 3.62 10.03 
IQR N/A [7.31, 47.10] [8.86, 18.19] [4.66, 16.30] [1.91, 9.94] [9.52, 10.54] 

 
 

 

Figure 7, which shows the predicted dFRC versus the measured dFRC across all 

patients at all PEEP levels shows greater linearity over all PEEP values with R2 = 

0.947 (R = 0.973). The relatively lower R2 value in Figure 6 could thus also be 

attributed to the relatively low range of dFRC values as compared to Figure 7. Hence, 

the linear trend in clinical vs predicted dFRC is sustained over all PEEP values and a 

very wide range of dFRC. 

 
In order to show the range of errors for the predicted dFRC, Figure 8 shows a Bland 

Altman plot with a 90% confidence. Although a few points exist outside the interval, 

the majority of the points are within a 90% confidence interval of the mean indicating 

that there the maximum deviation from measured dFRC is around 200 ml. 

 
 
The summary statistic and results in the cross validation test are shown in Figure 9 

and Table 3. Figure 9 shows the median β across all patients and PEEP levels and 

clearly shows a linear relationship with PEEP. 
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Table 3 shows the statistical results for the R2 correlation coefficient between the 

estimated and actual dFRC. It also shows the value of mβ across all PEEP values as 

per Figure 9 and the β for each PEEP level. As shown, a 90% confidence interval still 

produces a very high correlation coefficient. The low variability in mβ and β indicates 

the potential to label them as global parameters that can be used to describe any 

patient at this level of PEEP. 

 

Table 3 - 90% Median IQR and Confidence Interval of R2 correlation coefficient, mβ and β at 
every level of PEEP 

  Median IQR 90% CI 
R2 Coefficient 0.944 [0.933, 0.952] [0.910, 0.960] 

Beta Gradient (mβ) 0.953 [0.877, 1.046] [0.804, 1.164] 
Beta at PEEP = 5 cmH2O 4.065 [3.695, 4.458] [3.057, 5.020] 

Beta at PEEP = 7 cmH2O 6.257 [5.823, 6.680] [5.122, 7.233] 

Beta at PEEP = 10 cmH2O 9.074 [8.628, 9.520] [7.883, 10.190] 

Beta at PEEP = 12 cmH2O 11.371 [10.873, 11.887] [10.235, 12.230] 

Beta at PEEP = 15 cmH2O 13.800 [12.512, 15.170] [12.430, 15.170] 

 
Figure 9 showed a linear relationship between β and PEEP. At a PEEP = 0 cmH2O, 

the dynamic FRC value should be zero, and hence the linear relationship between β 

and PEEP is described as: 

ββ m
PEEP

=  
(11) 
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Discussion 
 
Stress Strain Relationship 
 
The ability of using lung stress and strain as a proxy produces a reasonable estimate to 

the dynamic FRC. For the clinical data set used, the study indicated that β increased 

very linearly as a function of PEEP. Chiumello et al [16] indicated that the ratio of 

lung elastance to total respiratory elastance (α) varied between a value of 0.33 to 0.95 

over various PEEP settings. Gattinoni et al [21] showed that the respiratory mechanics 

may vary in patients depending on whether the ARDS originated from pulmonary or 

extrapulmonary disease [21]. They concluded that, depending on the origin of ARDS, 

the total respiratory elastance could increase or decrease as a function of increasing 

PEEP. However, no significant changes for β occured in this study, as in [16], 

implying that ELspec and α are interdependent on each other.  

 

In this analysis, because β incorporates the dynamic FRC, FRC, ELspec and α 

according to Equation (9), then as the β increases the value of dFRC also increases 

linearly. Hence, mathematically, β is linearly related to dFRC, so that as β increases, 

dynamic FRC also increases.  

 

Model Parameters 
 
The model uses 2 parameters to estimate the dynamic FRC for a given PEEP. The 

parameters are β and mβ, where mβ is the gradient of the line of β vs PEEP, as shown 

in Figure 9. Cross correlation and validation showed very tight ranges around high 

values of R2. This result implies that β and mβ can be used as universal parameters 

across all PEEP levels to estimate the dFRC and its change for a given PEEP, as well 
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as for any ARDS patient. However, this conclusion must be subject to validation in a 

larger clinical trial or with a larger equivalent clinical data set given the small patient 

numbers in this study. 

 

Clinical Implications 
 
The estimation of a dynamic FRC will be highly useful in the clinical setting. 

Although dFRC by itself only gives information on the additional lung volume due to 

PEEP changes, it can be used in conjunction with gas measurements to help model the 

recruitment potential of the lung. In particular, it can be combined with existing 

models of gas exchange [22] to create a fully modelled based approach to estimating 

lung recruitment. Clinicians can thus predict the amount of extra recruitment due to an 

increase in PEEP before applying it to a patient. However, to evaluate the dFRC 

according to Equation (9), a series of ∆PEEP or incremental pressure holds must be 

performed to evaluate ∆dFRC/∆PEEP. Given only three such results, it is possible to 

estimate the volume responsiveness of the patient and apply Equation (9). 

 

Another implication of this model is as a means to estimate FRC. According to 

Equation (10), β is related to the value of α, ELspec and dFRC at a given PEEP. 

Assuming a constant value of α and ELspec and using the predicted dFRC in this study, 

Equation (10) can be used to find an average value of FRC. Using an average value of 

ELspec = 13.6 cm H2O and α = 0.7, the predicted FRC ARDS patients was 875 ml, 

which is within the values reported by Chiumello et al [16] of 1013 ± 593 ml. This 

result further validates the model and methods presented. 
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However, in reality, the value of α and ELspec varies and FRC can thus also take on a 

range of values. This range of FRC values can then give an indication of the level of 

recruited lung without any mechanical ventilation treatment and, as a result, an 

indication of the total lung damage in the patient. Therefore, tracking this value daily, 

or more frequently, could potentially see increasing estimated mean FRC and thus 

provide an indicator on when to begin weaning a patient from mechanical ventilation. 

 

Specific Lung Elastance  
 
Chiumello defined the specific lung elastance as the transpulmonary pressure at which 

FRC doubles [16] and measured ELspec using the supersyringe technique and inflating 

the lungs with an additional volume equal to FRC. In the model presented in this 

study, when dFRC equals FRC, the volume of the lung has essentially doubled (total 

lung volume equalling FRC plus dFRC), and this results in a β value of 19.3 cmH2O 

(using average values for α = 0.7, ELspec = 13.6 cmH2O). Using the median value for 

mβ shown in Table 3 and Equation (11), the PEEP which produces this β value is 

calculated to be 18.4 cmH2O. According to Equation (10), this corresponds to an 

equivalent transpulmonary pressure of 12.9 cmH2O.  In this study, the value of ELspec 

is therefore evaluated to be 12.9 cm H2O which falls within the limits found by [16]. 

 

Although this is not the exact value, the difference in specific lung elastance values 

could arise from the fact that different data sets were used. This study used data from 

Bersten [12] with patients who had severe ARDS. In Chiumello’s study, the specific 

lung elastance in ARDS patients had a range from 9.5 to 17.7 cm H2O. The value 

obtained in this study falls within the reported range for ARDS patients. Secondly, 

[12] reported PiO2/FiO2 values as low as 66, however the ranges reported by [16] for 
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ARDS patients had a minimum value of 83. This difference could also cause the 

specific lung elastance to be slightly lower, as the more significant the ARDS, the less 

applied pressure required for doubling the FRC. 

 

Limitations 
 
Although the method predicts dFRC, there are some severe limitations to the 

predictive capability. At lower PEEP the error for predicted dFRC was shown to be as 

high as 120% as shown on Table 2. As PEEP increases, the percentage error drops but 

some patients exhibit a difference of about 200 ml between measured and predicted 

dFRC. At lower PEEP, a difference of 200 ml and can cause the predicted dFRC to be 

very different than true dFRC. Despite a high r2 value shown on Figure 7, the 

predicted value either over states or understate the amount of potential lung volume 

that is being recruited. In the case of the lower PEEP settings, a large prediction error 

therefore can limit the potential estimator method.  

 

Another limitation with this model is the assumption ELspec and α being constant. This 

assumption only holds during the linear portion of the static PV curve.  The linear 

portion of the static PV curve is where most of the data points occur on any measured 

dynamic PV loop. Based on the work of Sundaresan et al [23], over 90% of the data 

points from measured PV loops occur in the static portion of the static PV curve and 

are the points primarily used in this analysis. The non-linear portions at PEEP and PIP 

are actually high flow regions and are thus do not account for or include the majority 

of the data. This is further highlighted by assuming that ∆dFRC/∆PEEP, effectively 

the compliance, does not change as a function of PEEP. An estimate of the static PV 

curve was plotted using the points of zero flow from each of the PV loops and is 
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shown in Figure 10. A linear line of best fit was plotted and the R2 coefficient was 

computed to show if the estimated static PV curve was linear or non linear showing 

there and in Table 4 that the linear assumptions and data points used hold almost 

exclusively. 

 
 

Table 4 - Linearity of static PV curve for each patient. 
Patient R2 Patient R2 

1 0.9977 7 1.0000 
2 0.9998 8 0.9971 
3 0.9995 9 0.9978 
4 0.9981 10 0.9972 
5 0.9885 11 0.9998 
6 0.9975 12 0.9980 

 

Finally, the data used in this study is considered to be idealised. In each case, the 

PEEP is held for 30 minutes before any sampling was done. In a clinical setting, 

holding two or three PEEP settings for 30 minutes to measure ∆dFRC/∆PEEP is not 

practical. Thus, the model may be limited in the clinic as in reality it would be 

difficult to hold for 30 minutes. Therefore, in order for clinical application, the 

∆dFRC/∆PEEP would have to be estimated without the 30 minute hold on PEEP. 
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Conclusions 
 
The research presented provides an easy to use tool that can be implemented in the 

intensive care unit. By monitoring or tracking changes in patient respiratory 

mechanics, the clinician is able to evaluate the potential of recruitable lung in the 

patient. This in turn can help understand what the optimal level of PEEP that is 

required during mechanical ventilation. The research method provides an easy to use 

tool without any special ventilator or the use of time consuming methods such as CT 

scans. 
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