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'Abstract, 

problem of effective coding for the Rayleigh fading channel is addressed. 

A signal transmitted over the Rayleigh fading channel experiences quasi-periodic 

deep fades in the signal amplitude, and random phase shifts. The fades in signal 

amplitude are the cause of error events and limit the bit error rate of an uncoded 

system to about 10-4 at a signal-to-noise ratio of 30 dB. For applications where a 

lower error rate is desired, more sophisticated methods of transmission and detection 

are required. vVe present an extensive generalised analysis of the probability of 

error of maximum likelihood sequence estimation techniques for the Rayleigh fading 

channeL 

This analysis provides the criteria for good code design for the Rayleigh fading 

channel and we extend the recently developed area of geometrically uniform (GU) 

codes for the AWGK channel, to the Rayleigh fading channel, and present the results 

of searches for good trellis codes. 

The concept of geometric uniformity is extended to set of points to form geomet­

rically uniform partitions of signal sets. The GU partitions readily allow powerful 

multi-level codes to be defined with good distance properties. Multi-level codes 

have the advantage of outperforming trellis codes in terms of decoding complexity 

at the cost of greater decoding delay. Good multi-level codes over GU partitions are 

presented and compared with similarly performing trellis codes. 

Finally a system is presented which combines the techniques of multiple symbol 

differential detection (MSDD) with multi-level coding to obtain a good probability 

of error performance without assuming coherent detection, or ideal channel state 

information. 
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Communication is fundamental to human existence and nothing is more indica­

tive of this need than the phenomenal growth of The Internet and the World \Vide 

vVeb. For any form of communication we a medium or channel for the propa­

gation of information. most common modern medium is the telephone channel 

which traditionally carried audio signals in analogue form. With the advent of com­

puters and digital techniques, most information traffic is now digital and this has 

opened the need for research into a new area of difficult and interesting engineering 

problems. The number of applications of digital traffic is limited only by the imag­

ination, but we can readily divide it into two classes. The first class can tolerate a 

relatively high error (from 10-3 to and examples of this class are digitised 

voice and video The occasional incorrectness of the data does in 

not affect the quality of communications significantly. On the other hand, the 2nd 

class of traffic ideally requires perfect integrity of data (in practice an error rate 

of about 10-9
), and an example is computer information. In this thesis we study 

the communications channel, known as the Rayleigh fading channeL With a sim­

ple uncoded modulation format, digital data transmitted across the Rayleigh fading 

channel typically, as a result of the quasi-periodic deep fades experienced by the sig­

nal, experiences an error rate of about 10-4 and therefore is only suited for the class 

of applications discussed that can tolerate a high error rate. With the technique of 

coding it is possible, at the expense of complexity, to vastly improve on the error 

rate without sacrificing the data rate, increasing the bandwidth or increasing the 

power. 

The work reported in this thesis is specifically concerned with trellis coding and 

multi-level coding techniques based on the concept of geometric uniformity of the 

code sequence set. The property of geometric uniformity implies the code perfor­

mance may be evaluated by considering only one codeword and therefore reducing 

search evaluation complexity significantly. 

The first chapter describes the nature of the fading channel and a bound on its 

capacity. The capacity bound shows that it should be possible to achieve a perfor­

mance much better than uncoded modulation. Chapter two describes and analyses 

the technique of maximum likelihood sequence estimation (MLSE) to improve upon 
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uncoded modulation. These results supply the necessary conditions for good codes 

for the Rayleigh fading channel. Chapter three introduces the concepts of signal 

space coding and decoding. In chapter four we extend the definition of geomet­

ric uniformity and apply this definition to discover GU good trellis codes for the 

Rayleigh fading channeL Chapter five extends the concept of geometric uniformity 

to a set of points to form geometrically uniform partitions, which are applied to 

construct multi-level codes in chapter six. Multi-level codes trade off performance 

for decoding complexity, such that for a given level of decoding complexity they 

still outperform maximum likelihood trellis codes. Chapter seven combines multiple 

symbol differential detection (MSDD) with multi-level codes into a system that can 

tolerate a high speed of fading compared to conventional differential detection, while 

still maintaining a low error rate. The conclusions are presented in chapter eight. 

The contributions considered original are those of chapters t\vo, four, five, six and 

seven. 

The work reported in this thesis was performed during the period of February 
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hapt 

he ayle~ fading channel 

1.1 The fading channel model. 

An RF signal of carrier frequency fe that is transmitted from a base station to a 

mobile unit in a typical urban or rural environment exhibits extreme variation in 

both phase and amplitude. These effects are due to the motion of the vehicle and 

the scattering of the signal by interfering objects such as trees, poles and buildings, 

Three components in the received faded signal can be identified at the mobile an­

tenna: the direct line-of-sight component, the specular component and the diffuse 

component. The combined direct and specular components are usually referred to 

as the coherent received component and the diffuse component referred to as the 

noncoherent received component. In this study of the terrestrial mobile channel, it is 

assumed that the received coherent component is totally blocked, i.e, there are no 

line of sight or specular components. If a received coherent component does exist 

then the channel is referred to as Rician. The channel is modelled as shown in figure 

1.1. The mobile is travelling at a velocity v, and at any point in time receives N 

Figure 1,1: Travelling mobile. 

1 



2 CHAPTER 1. THE RAYLEIGH FADING CHANNEL 

incoming multipath signals each with a different incidence angle an This received 

signal can be represented by a linear superposition of waves of random phase each 

of whose frequencies is affected by a Doppler shift in of the carrier frequency. This 

shift is a function of the mobile velocity, carrier frequency and angle of incidence to 

the antenna and can be expressed as 

in 
v 
-cosa A n 

(1.1) 

where an is the incidence angle of the mobile to the nth incoming wave, v is the 

velocity of the mobile and A is the wavelength of the transmitted carrier frequency. 

The maximum Doppler shift occurs when the incoming wave heads straight for the 

mobile (an 0) and is defined as 

V 

iD = ;::' (1.2) 

The received signal e(t) is written as the sum of N incident waves. 

N 

e(t) = E (1.3) 
n=l 

where 

(1.4) 

and the <Pn are random phase angles uniformly distributed from 0 to 21r. The en are 

zero mean and normalised such that the ensemble average E[I:;;r=l e~] = 1. Therefore 

E 2/2 represents the mobile's average received signal power. 
. 1 

To analyse the statistics of the received signal, equation (1.3) is expressed in 

bandpass form 

(1.5) 

where 

N 

(1.6) 
n=l 

N 

Ts(t) E Len sin(21r int + ¢n), (1.7) 
n=l 
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For large N, the central limit theorem states that Tc(t) and Ts(t) become Gaussian 

random processes. Denoting Tc(t) and l~(t) by Tc and 1~ respectively for fixed t, 

the random variables Tc and Ts have zero mean and equal variance of 

(1.8) 

where the expectation is taken over the random variables Qin, ¢n and en. Tc and Ts 

are also uncorrelated 

(1.9) 

The probability density functions of the Gaussian variables Tc and Ts are of the form 

p(x) = V~7rb e-
x2

/
2b 

, -00 < x < 00 (1.10) 

where b = E2/2 is the mean power, and x Tc or Ts- It can be shown that the 

probability density function for fixed t of the envelope, 

u (1.11) 

of e(t) is given by 

{ 

.Y.e-u2/2b u> 0 
( ) 

b ,-
P u = 

0, u < 0 
(1.12) 

which is the Rayleigh distribution [51]. The probability density of the phase 

(1.13) 

of e(t) is uniform and is given by 

p(¢) = , 0 ~ ¢ < (1.14) 

The autocorrelation function of u(t), assuming isotropic scattering, can be shown to 

be [43] 

E[u(t)u(t + T)] (1.15) 

where Jo (.) is the zero-order Bessel function. 

By normalising the maximum Doppler frequency fD to the symbol rate liT the 

figure fDT (called the normalised Doppler frequency) indicates the rate of fading 
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Figure Simulated faded carrier amplitude u(t) for fDT = 0.0l. 

and the number of symbols which are significantly correlated. Values of JvT ranging 

from 0.001 to 0.1 are understood to mean very slow to very fast fading respectively. 

Figures 1.2 and 1.3 show simulated fading envelopes u(t) for values of JvT of 0.01 

and 0.1 respectively. The typical behaviour of the amplitude of the Rayleigh fading 

process is an oscillatory motion with sudden rapid deep fades occurring at almost 

regular intervals. The depth of the fades can easily be as much as 20 dB and these 

are the cause of most error events in a communication system. The analysis of the 

travelling mobile shows that the phase and amplitude of the received carrier signal 

varies with time. The electronics of the front end receiver contributes a thermal 

noise component to the received signal. We may write the overall system in complex 

baseband form such that if c(t) is the transmitted complex baseband signal then the 

received baseband signal r( t) after passing through the channel is modelled by the 

equation 

r(t) u(t)c(t) n(t) (1.16) 

where u(t) is now the complex baseband equivalent of the fading process, i.e. a 
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1.3: Simulated faded carrier amplitude u(t) for fDT = 0.1, 

complex Gaussian random variable, and n(t) represent complex additive Gaussian 

noise. Equation (LI6) is the channel model used for the remainder of this work 

The effect of u(t) is that it randomly rotates the phase and scales the amplitude of 

the received signal c(t). instantaneous value of u(t) is referred to as the channel 

state. Clearly the receiver requires information about the channel state for successful 

detection. Channel state information (CS1) may be obtained through pilot tones, 

pilot symbols and differential detection. Often for the purpose of analysis ideal CS! 

is assumed, and represents the best we can hope for in practice. More about channel 

state estimation is presented in chapters 2 and 7. 

1.2 Channel capacity. 

In 1948 Shannon derived the now famous bound on the capacity of the additive 

white Gaussian noise (AWGN) channel [66]. This bound relates the capacity C of a 

bandlimited Gaussian channel to the bandwidth and the SNR of the system and is 
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given by 

C = B log2(1 + r) bits/second (1.17) 

where B is the channel bandwidth and r - Es/ N is the signal-to-noise ratio of the 

system. This equation tells us the absolute best that the system can provide given 

the channel parameters rand B. It shows that the channel has infinite capacity as 

r approaches infinity, and that the channel capacity does not become infinite when 

the bandwidth B becomes infinite because the noise power increases with increasing 

bandwidth. If N = NoB, where No is the noise power per Hertz, then in the limit 

as B tends towards infinity equation (1.17) becomes: 

c = _1 __ ~ 1.44-. 
loge 2 No No 

(1.18) 

This defines the Shannon limit of 1.6 dB below which error free communication is 

10r-------~-------r------~--------~------~------~ 

9 

8 

. . . . 
""., ......... ,.. . ....... ,'., . ...... , ..................... . 

. ................. ...... . .. ... ...... ...... ~ ... , ............... ; ............ .. 
: Rayleigh capacity : 

2 "', •••••• , ••• , •• "J." •••••••••••• : •••••••••••••••• :,.,.,., 

OL-------~-------L------~------------~--~------~ 

o 5 10 20 25 30 

Figure 1 Channel capacity in the Ganssian and Rayleigh fading channels. 

not possible at any bandwidth. The Rayleigh fading channel may be thought of as a 

conventional AWGN channel with a time varying signal-to-noise ratio (SNR) that is 
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Rayleigh distributed. capacity on the Rayleigh fading channel may be obtained by 

averaging the instantaneous AvVGN capacity over the Rayleigh distribution. w.e.Y. 
Lee performed this derivation resulting 

Rayleigh fading channel for r > 2 [46]: 

the following average capacity of the 

C = Blog2 e' (1.19) 

where 'Y is Euler's constant given by'Y 0.5772 .... In figure 1.4 we have plotted the 

normalised channel capacity bounds of equations (1.17) and (1.19) of the AWGN 

and Rayleigh fading channels respectively. We see that the SNR required on the 

Rayleigh fading channel to achieve the same normalised capacity as the Gaussian 

channel is only about 2.5 dB higher for large SNR. For an unlimited bandwidth B 

the capacity of the Rayleigh fading channel is 

lim 
B-+oo 

(1.20) 

and is the same as that for the Gaussian channel. 

103 Uncoded performance. 

We will compute here the probability of error of uncoded BPSK transmitted across 

the Rayleigh fading channeL This is a one-dimensional modulation and the two 

signal points with average energy Es are drawn ill the IQ plane ill figure 1 By 

o 

Q 
I 
I 
I 

I Decision boundary 
I 

1 
I 

1 A BPSK signal constellation in the IQ plane. 
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symmetry the decision boundary is at r = O. If we assume coherent detection then 

the received point r is given by 

r u+n (1.21) 

where 11. is the transmitted point multiplied by the Rayleigh fading process random 

variable and n is additive white Gaussian noise with variance N o/2. The probability 

density function of u is given by 

and the pdf of n is 

f(11.) ; e~u2/2Es: 11.:2: 0 
s 

f(n) 1 ~n2/No 
--==e 
V 7rNo 

(1.22) 

(1.23) 

The probability density function of r is the convolution of the pdf's of u and nand 

is given by 

f(r) r: 11.(x)n(r - x)dx 

--==8= xe~x 2Ese~x N0dx E 100 
2/ 2/ 

V7rNo 0 
(1.24) 

The probability of confusing the signal point 0 for signal point 1 is the probability 

that r < 0 and is 

p(r < 0) 

< 
1 

(1.25) 

which shows that the probability of error of an uncoded binary PSK system is 

inversely proportional to the SNR of the system. In comparison with the AWGN 

transmitting BPSK the probability of error is given by [31] 

(1.26) 
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and decreases exponentially with increasing SNR. In figure 1.6 we have plotted the 

probability of error curves of coherent BPSK operating on the AWGN channel and 

Rayleigh fading channel. Drawn also are the capacity limits for error-free transmis­

sion of 1 bit/symbol/Hertz for one-dimensional modulation obtained from equations 

(1.17) and (1.19) for the AWGN and Rayleigh fading channels respectively. Note 

that equations (1.17) and (1.19) need to be halved a one-dimensional modulation. 

From figure 1.6, uncoded BPSK operating on the Rayleigh fading channel performs 

H o 
H 
H 
Q) 
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Figure 1.6: Probabilities of error of uncoded coherent BPSK on the Gaussian and Rayleigh 

fading channels. The dashed lines show the capacity of each channeL 

extremely poorly compared to the theoretical channel capacity bound. At an error 

rate of 10-4 the uncoded performance is over 22 dB away from the capacity com­

pared to about 4 dB for the Gaussian channel. It has now been well established that 

capacity can almost be achieved for the Gaussian channel by the trellis coding tech­

niques pioneered by Ungerboeck [75]. Clearly the potential for coding techniques 



10 CHAPTER 1. THE RAYLEIGH FADING CHANNEL 

for the Rayleigh fading channel is enormous. 

1. Summary. 

We have presented the model of the Rayleigh fading channeL Rayleigh fading is a 

multiplicative interference characterised by quasi-periodic deep fades in the strength 

of the received signal. The speed of variation of the process is a function of the speed 

of the mobile and is normalised to the symbol rate to give the normalised fade rate 

parameter JDT, The work by w.e.Y. Lee derives the capacity of the Rayleigh fading 

channel and we have shown that simple uncoded modulation performs extremely 

poorly compared to the theoretical capacity of the channel. This result justifies the 

need for investigation into superior methods of signal transmission and detection. 



er 

likeliho d sequen 

estimation. 

In section 1.3 of chapter 1 we discussed the performance of an uncoded system op­

erating on the Rayleigh fading channel making symbol by symbol decisions. 

difference between the performances of coherently detected PSK and the theoretical 

channel capacity is not only large) but also rapidly diverging with increasing 

Clearly more sophisticated methods of decoding need to be considered. Maximum 

likelihood sequence estimation (MLSE) is a technique which makes a decision based 

on as much of the information available at the receiver as possible. This informa­

tion typically consists of the received signal) the statistics of the random processes 

affecting it, and the set of possible transmitted sequences (the code). Generally it is 

assumed the codeword a priori probability of transmission is equiprobable. Divsalar 

and Simon [22] first derived a ML decoder for the Rayleigh fading channel assum­

ing ideal channel state information (CSI), and infinite interleaving and provided an 

upperbound on the pairwise error performance of the decoder. The work by Cavers 

and Ho [13] extended the ML decoder to include a channel state estimate, but still 

assumed infinite interleaving. Their derivation resulted in an exact expression for the 

pairwise probability of error of the system. Ho and Fung considered the effect of fi­

nite interleaving combined with differential detection to establish a channel estimate 

[32]. Other authors considered other special cases, some of which in combination 

with trellis coding [15]'[18L[25L [27L[70]. In this chapter we derive a generalised 

form of a decoder for the Rayleigh fading channeL The model takes into ac-

11 



12 CHAPTER 2. MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION. 

count the amplitude and correlation statistics of the multiplicative Rayleigh fading 

process as described in chapter 1, the additive white Gaussian noise (A\NGN), and 

assumes an unbiased, noisy channel state estimate is available at the receiver. VVe 

then derive an exact analytical expression on the pairwise probability of error and 

analyse this expression further to derive tight upperbounds on the error performance 

for a number of special cases . 

. 1 System model. 

The block diagram of the system model used in this study is shown in figure 2.1. 

The input to the system is a sequence of binary digits to be transmitted, denoted 

a (aI, a2, . .. J an), where each ak E {O, I}. For the purposes of the model it is 

assumed that the binary stream is independent and identically distributed. This 

means the probabilities of a 0 or 1 occurring are the same and the outcome is 

uncorrelated with the previous input history. Real world data typically is correlated 

and the redundancy may be removed by an appropriate compression algorithm such 

as Huffman coding [34]. The encoder maps the sequence a to a sequence Si of symbols 

drawn from a signal constellation S. The constellation S may be multi-dimensionaL 

The sequence Si is mapped onto a sequence of channel symbols Ci = (Cit, Ci2, ... ) CiL) 

where each Cik is a point in the complex plane and is normalised such that the 

expectation ~ E[ICik 12] over all codewords equals 1. The normalisation ensures the 

average energy of the channel symbols is unity and allows for fair comparison of 

the distance properties of the underlying signal constellation. Typical encoding 

schemes are trellis codes, block codes, and multi-level codes. Special forms of trellis 

and multi-level coding appropriate for the Rayleigh fading channel are discussed in 

chapters 4, 6 and 7. The sequence of baseband symbols Ci is modulated onto the 

carrier frequency to give the base band equivalent time-domain signal 

L 

c(t) = L Cikp(t - kT) (2.1) 
k=l 

where T is the symbol period and p(t) is the complex impulse response of a pulse 

shaping filter that satisfies the Nyquist criterion for zero inter-symbol-interference 

(lSI). The energy of the pulse is normalised such that 

f: Ip(t) 1

2dt = 1. (2.2) 
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ak encoder Cik .. modulator c(t) channel 1'( 
-

t) 

rk 
demodulator 

ak decoder 

Vk channel ... 
estimator 

Figure 2.1: System model block diagram. 

The received signal 

1'(t) c(t)u(t) n(t) (2.3) 

is described by the channel model of chapter 1 and is passed through a filter matched 

to the pulse p(t) and sampled every T seconds to produce the output sequence 

r (1'1,1'2, . .. ,1'L). Details of optimal pulse shaping and filtering techniques are 

subjects in themselves and are not considered. Each sample 1'k can be described in 

terms of the corresponding transmitted symbol Cik by 

(2.4) 

The nk's are statistically independent identically distributed complex Gaussian vari­

ables with a variance, 

(2.5) 

the one-sided power spectral density of the additive white Gaussian noise. The 'Uk'S 

are a sequence of correlated, zero mean, complex Gaussian random variables and 

represent the fading process experienced by the transmitted sequence. The variance 

of the Uk is is 

(2.6) 

The ratio Es/No represents the average signal-to-noise ratio (SNR) of the signaL 

As described chapter 1 the amplitude of the complex Gaussian variables Uk is 

Rayleigh distributed and the autocorrelation of the Uk'S is 

p(m) = ~E[UkU~+ml = Es Jo(2rrmfDT), (2.7) 
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where Jo is the maximum Doppler frequency, T is the symbol period, and Jo (,.) is 

the zero order Bessel function. The quantity JDT is called the normalised Doppler 

frequency and is a measure of the ratio of the maximum Doppler shift Jo experienced 

by the mobile's carrier frequency to the symbol rate. The channel estimator of figure 

2.1 extracts information about the complex gain Uk of the channel from the received 

signal r(t). The output of the estimator is assumed to be a sequence of zero mean 

complex Gaussian random variables, v = (VI, V2, ... ,VL), which estimate the true 

channel state sequence 11 = (Ub U2,'" ,urJ No attempt is made in the present 

analysis to specify a method of channel estimation. This allows the analysis to be 

used for a broad class of channel estimators. 

The received signal sequence, r = (rl' r2, ... ,rL), and the channel state estimate, 

v (VI, V2, ..• ,VL), are input to a maximum likelihood decoder which selects the 

most probable estimate Cj of the transmitted sequence Ci. The metric for such a 

decoder is derived in the following section . 

. 2 The maximum likelihood decoder. 

Let the set of all possible codewords of the encoding scheme be denoted by 

(2.8) 

A maximum likelihood decoder will select the code sequence Cj for which the a 

posteriori probability P(cjlr,v) is the largest, i.e. given the received signal sequence 

r and the channel state estimate sequence v, the decoder chooses the sequence Cj 

which is the most likely to have been transmitted. This is equivalent to choosing 

the codeword Cj with the largest conditional probability density function, 

(2.9) 

To proceed, we write the received vector r in matrix form as 

(2.10) 

where the LxI matrix 

(2.11) 
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now represents the received sequence (the symbol T is the matrix transpose opera­

tor), The transmitted sequence is represented by the L x L matrix 

Cjl 

C· J (2.12) 

where the off-diagonal entries are zero. The channel state vector u, the channel state 

estimate vector v, and the noise vector n are similarly represented by the matrices 

U j V and N respectively. 

(2.13) 

(2.14) 

and 

(2.15) 

The length L vectors, U, V and of zero mean complex Gaussian variables have 

associated with them the auto-correlation and cross-correlation matrices, <Puu j <I> NN 1 

<PVVl and <Puv , <PVN respectively. The matrices <l!vv, ~uv, and ~VN are dependent 

on the method of channel estimation and are derived for the cases of ideal CSI in 

section 2.4.1, and pilot tone aided detection in section 2.7. The matrices <Puu and 

<I! NN do not depend on the method of channel state estimation. The element in the 

ith row and ph column of <Puu represents the autocorrelation of the channel's fading 

process. These values are found from equation (2.7) to give the real Toeplitz matrix 

<Puu 

p(O) 

p(l) 

p(l) 

p(O) 

p(L 1) 

p(L - 2) 

p(L 1) p(L 2) p(O) 

(2.16) 

The additive noise terms nk of equation (2.4) are assumed to be statistically indepen­

dent and identically distributed complex Gaussian variables with the autocorrelation 

matrix 

<PNN = Nol (2.17) 
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where I is the L x L identity matrix, and No is the variance of nk as defined in 

equation (2.5). We want to find the joint conditional probability density function 

p(R, VICj), of Rand V. This is equivalent to finding the probability density function 

(pdf) of the vector of 2L random variables 

(2.18) 

From equation (2.10), for fixed Cj, R is a vector of zero-mean Gaussian variables. By 

assumption the channel estimate V is a zero mean Gaussian variable and therefore 

W is a vector of zero-mean Gaussian variables. The general form of a zero-mean 

multi-variate complex Gaussian probability density function is [51] 

e-twt<!>}JwICjW 

p(WICj) = (27r)2L det(<Pwwlcj)' 

where t denotes the Hermitian transpose. The matrix 

is the autocorrelation of W. The autocorrelation of R is 

.!. E[RRt] 
2 
1 

= 2E[(Cj U + N)(CjU + N)t] 

= Cj<PuuCJ + <P NN 

since U and N are uncorrelated. The cross correlation of R and V is 

.!.E[RVt] 
2 

= .!.E[(CjU + N)Vt] 
2 

= Cj<Puvlcj <PNvICj 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

maximum likelihood receiver is one which selects the codeword Cj which maximises 

the conditional density of equation (2.19) for the received vector and channel esti­

mate vector V. Using the property that the exponential function of equation (2.19) 

decreases monotonically, we can take the natural log, and arrive at an equivalent 

decoding metric 

(2.23) 
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The maximum likelihood decoder selects the codeword Cj for which the metric of 

equation (2.23) is a minimum. 

2.3 The pairwise event probability. 

Let the transmitted codeword be Ci. 

if 

decoder will pick the erroneous codeword 

(2.24) 

or equivalently if 

(2.25) 

where Md is the decoding metric of equation (2.23). The probability of an error 

event can be written as 

P(D < 6) (2.26) 

where the decision variable D is 

(2.27) 

The parameter 6 is defined as 

5; 1 det(<I>wwlci) 
u=2n ( )' det <pwwlCj 

(2.28) 

and corresponds to a decision threshold. We can write the decision variable D as 

the quadratic form 

D = VVtFW (2.29) 

where 

(2.30) 

Note that <I>MJWICi and <I>HJwlcj are Hermitian matrices and is Hermitian also. 

result of [63, Appendix can now be applied to express the two sided Laplace 

transform characteristic function of the decision variable D as 

<I>D(S) 
1 

(2.31) 
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where <PWWICi and <pwwlCj are found from equation (2.20). The pairwise event prob­

ability can be found by the appropriate integration of the inverse Laplace transform 

of <pv(s) (which gives the probability density function of D). However, following 

[13] it is simpler to calculate 

P(C; -+cj) = { --
Residue [eos<Pv(s)/s] b:s::: 0 

2:: Residue [eOsf'Pv(s)/s] 1 b > 0 
LPpoles 

(2.32) 

instead. The notation RPpoles and LPpoles refers to the right hand plane poles and 

left hand plane poles of f'Pv(s) respectively. To calculate (2.32) it is useful to note 

that the 2L poles Pi, of equation (2.31), are related to the eigenvalues Ai of <PwwF 

by 

-1 
Pi = 2A-

t 

and equation (2.31) can be written as 

If Ai = 0 then 

f'Pv (s) IT -Pi. 
i=l s Pi 

-Pi = 1 
s - Pi 

and the number of poles of f'Pv(s) is reduced accordingly. 

2.4 Channel estimation methods. 

(2.33) 

(2.34) 

(2.35) 

In chapter 1 we explained the need for the acquisition of channel state information 

for the purpose of decoding the incoming signal. In section 2.4.1 we analyse the 

performance of the system on the assumption that ideal channel state information 

is available, i.e. the receiver knows the exact state of the channel at any time. 

Although this is an unrealistic assumption, it is useful for determining a limit on 

the performance of the system to which practical techniques may be compared. The 

common techniques used for estimating the channel state in practice are pilot tones, 

pilot symbols and differential detection. Pilot tones are analysed in section 2.7 while 

chapter 7 is devoted to the analysis of differential detection. Pilot symbols have been 

shown to perform similarly to pilot tones and are not considered here [15]. 
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2.4,1 Ideal ........ .lLU • .lLA ... .IL state information (CSI). 

assumption of ideal channel state information allows many simplifications of 

the general decoding metric for the Rayleigh fading channel derived in section 2.2. 

The generalised metric reproduced from equation (2.23) is 

(2.36) 

With ideal CSI the receiver has perfect knowledge of the channel, and hence 

v u (2.37) 

In this case, the correlation matrices dependent on the method of channel estimation 

are simply 

<l?vv ICj <l>uu, 

<l>uv I Cj <l>uu, 

<l?NvICj = 0 

(2,38) 

(2.39) 

(2.40) 

With these values, the autocorrelation matrix of W required for the decoding metric 

reduces to 

(2,41) 

and the complexity of the decoding metric of equation (2.36) reduces significantly, 

Simplifying the second term: 

( 
OJ<l>uuot + <l? NN Oj1>Uu) 

2Indet(<PwwICj) = 21ndet J t 
1>uuOj <Puu 

21n det J det . det J 
{ ( 

0' J) ( <Puu 0) ( ot 
I 0 0 <PNN I ~) } 

(2,42) 

but 

(
OJ I) det 
I 0 

-1 (2.43) 
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and 

( 

q?uu 0) L det = No det q?uu 
o q?NN 

(2.44) 

hence 

(2.45) 

which is independent of Cj and the term 2ln det( q?wwICj) may be omitted. The first 

term of the metric reduces as 

(2.46) 

where the inverse has been found using the matrix identity described in appendix 

A. Expanding the matrix product gives 

(2.47) 

The last term and the factor ~o are independent of Cj and may be discarded to give 

the decoding metric for ideal CSI: 

L 

(2.48) 
k=l 

simply a Euclidean distance metric which is independent of fDT and is suitable 

for use with the Viterbi decoding algorithm. Note that with ideal channel state 

information, the knowledge of the correlation of the channel does not aid in the 

decision process. 

Ideal OSI error performance. 

We examine the variation of the error performance of an ideal CSI system as a 

function of the sequence of symbols, SNR and the fade rate fDT. Equation (2.32) for 
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the evaluation of the pairwise probability of error simplifies. The decision threshold 

parameter (j equals zero since the determinants of <I>WWICi and <l.>wwlcj are equal as 

shown by equation (2.45). The matrix F of equation (2.30) reduces to 

(2.49) 

and the matrix <pwwlcj is as described by equation (2.41). The pairwise probability 

of error is given by 

(2.50) 

where the poles of <l.>D(8) are related to the eigenvalues of <I>wwlcjF by equation 

(2.33). From equation (2.48) it is clear that if Cik = cp." no contribution is made 

towards the decision variable D of equation (2.27). This means for every Cik = Cjkl 

<I>wwF has a pair of zero eigenvalues and the number of poles of equation (2.50) is 

reduced by two. Hence the number of pairs of poles of W D (8) is equal to the number 

of symbols different between the sequences Ci and Cj. This number is simply the 

Hamming distance between Ci and Cj and is denoted by the symboll. We define 1] 

to be the set of indices k such that Cil.~ i= l.e. 

1] = {k . Cik i= cp." 1 :::; k :::; L} (2.51) 

and the order of 1] is 

(2.52) 

As an example of the behaviour of the pairwise error probability with ideal 

consider two message sequences drawn from a 4-PSK constellation, the all-zeroes 

sequence 

Si {O,O, ... ,O} (2.53) 

and a sequence of the following form 

(2.54) 

the sequence consists of a non-zero start symbol 81, followed by L - 2 zeroes and 

a non-zero end symbol 8L. The 4-PSK sequences Si and Sj map onto the channel 
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symbol sequences and respectively as 

Cjk 

jrosu, 
e 2 (2.55) 

(2.56) 

As discussed, if Cik = Cjk then no contribution is made towards the decoding metric, 

and the dimensionality of the problem is reduced accordingly. The matrices from 

which the probability of error may be derived are the message sequence matrices 

(~ ~) (2.57) 

Cj = 
( 

Cjl 0) 
o CjL 

(2.58) 

and the channel correlation matrix: 

(2.59) 

The parameter pfJ is the correlation between the fading experienced by the symbols 

Cw and CiL and is related to Land JDT by 

PfJ = JO(2rrf3JDT) (2.60) 

where f3 L 1, the distance between non-equal symbols in the sequences. Figure 

2.2 is a plot of the probability of the decoder confusing the sequence Ci for the 

sequence Cj as a function of the SNR for PfJ LO, PfJ = 0.99, PfJ 0.95 and 

pfJ = 0.0. A number of important observations can be made. For a value of PfJ = 1.0 

(i.e. the fading is completely correlated), the probability of error of the system 

decreases at a rate proportional to the inverse of the SNR, the same at that of an 

uncoded system (see section 1.3). This case is analysed in detail in section 2.4.1. 

For a value of PfJ = 0 (i.e. there is no correlation between the fading affecting the 

symbols), the performance improves and, as we show in section 2.4.1, the probability 

of error now falls off inversely with the square of the SNR For the two values of 

pfJ between 0.0 and 1.0 the asymptotic behaviour (i.e. the slope of the curve) with 

increasing SNR is the same as PfJ 0.0, however there is significant loss with respect 

to PfJ = 0.0. Section 2.5 quantifies this loss analytically. 
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Figure 2.2: Pairwise probability of error versus SNR, for a two symbol sequence, with varying 

symbol correlation values of p(3. 

To study the transitional behaviour as pf3 varies from 0.0 to 1.0, figure plots 

the probability of error as a function of PfJ for a fixed SNR of 20 dB. Clearly the 

error probability is minimised for pf3 0.0 and maximised for PfJ 1.0. Significant 

improvements are realised for only small deviations away from Pf3 = LO as is evident 

in figure 2.2. Alternatively the probability of error may be plotted as a function of 

f3iDT (see figure 2.4), which is related to Pf3 by equation (2.60), 1'he system operates 

at the two distinct error levels, For values of f3 iDT > 3 x 10-1 the performance is 

determined by the inverse of the square of the SNR and for values of f3iDT < 10-2 

the performance is only inversely proportional to the SNR. Clearly it is advantageous 

to operate the system at high values of f3iDT. Far reasons such as increased 

carrier synchronisation problems, and channel state recovery, it is difficult to operate 

a practical system at high values of iDT (fast fading). The alternative is to increase 

the value of f3 by interleaving as described in section 2.6. The trade-off is an increase 

in the overall transmission delay of the system. In the next sections we analyse the 
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Figure 2.3: Pairwise probability of error as a function of Pf3 of a two symbol sequence. 

dB. 

ideal CST system for the cases of highly correlated fading, uncorrelated fading, and 

partial fading. 

Completely correlated fading with ideal CS!. 

If the fading is completely correlated, the channel, at any instant, looks like a 

Gaussian channel where the SNR is drawn from a Rayleigh distribution. Vlfe analyse 

this limiting case in detail, assuming the receiver has ideal CS!. For such a system, 

the channel correlation matrix <Puu is 

1 1 1 

1 1 1 
<Puu Es (2.61 ) 

1 1 1 
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Figure Pairwise probability of error as a function of f3 fDT of a two symbol sequence. 

i.e. the fading affects all symbols equally. This is equivalent to a very slowly fading 

channel where fDT -+ O. Since we are assuming ideal OSI, the ML decoding metric is 

the Euclidean distance as defined by equation (2,48). To determine the probability 

of error we examine equation (2.50). After some manipulation we can show that 

there are only two non-zero eigenvalues of the matrix <I>wwF. They are given by 

(2.62) 

where d
2 = ICik - Cjkl 2

, the squared Euclidean distance between codewords Ci 

and Cjl and Es/No is the average signal-to-noise ratio of the system. remaining 

eigenvalues are zero, do not contribute to q:. D (s), as shown by equation (2.35), and 

are discarded. Substituting the eigenvalues into equation (2.50) and noting that 

only PI = ;;.: lies in the right hand plane, results in the exact expression for the 

pairwise probability of error for ideal OSI and correlated fading. 

2 
P( Ci -+ Cj) = --=---Jr==========;::;=:, 

4 + + d (l1k)2d2 + 4~ 
No No 

(2.63) 
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For a high SNR we can tightly upper bound the probability of error by 

1 
P(c· -+ c·) <--

~ J - d2b 
No 

(2.64) 

which agrees exactly with the upper bound given by Divsalar and Simon [22, equa­

tion (34)] for K 0 and C 1. We see that for very highly correlated fading, 

the pairwise error event probability only decreases inversely with the signal-to-noise 

ratio independently of the length of the codewords, The inverse decrease in error 

probability with increasing SNR is the same as the behaviour of an uncoded system 

as shown in chapter L Next we examine the uncorrelated fading case. 

U ncorrelated fading with ideal OSI. 

For an uncorrelated fading system, the channel autocorrelation matrix is 

1 0 0 

1>uu = 
o 1 o 

(2.65) 

o 0 1 

l.e. the fading affecting any pair of transmitted symbols is independent. The max­

imum likelihood decoding metric is Euclidean distance. To calculate the pairwise 

probability of error we need the eigenvalues of 1>wwF. With some manipulation we 

can show that the l pairs of non-zero eigenvalues of 1>wwF are given by 

(2.66) 

where d~ = ICik cjkl 2
, The remaining eigenvalues for k tj. 1] are zero and are 

discarded. From equation (2.33) the poles of 1>D(S) are 

1 
Pk, Pk+ L = -=E=--2----;=;::=====;:,=, k E 1] 

1t;dk ± 
(2.67) 

Clearly Pk lies the right hand plane and Pk+L lies in the left hand plane. The 

pairwise probability of error may be written from equation (2.50) as 

p( Ci -+ Cj) = -81, PkPk+L (2.68) 
kE1/ 

where 

(2.69) 
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is the sum of the residues of the poles in the right hand plane. The product of the 

pair of poles Pk and Pk+L is simply 

1 
(2.70) 

and now 

(2.71) 

For high SNR, Pk ----+ ~, and Pk+L -+ -0, and as shown in appendix B, Sr for these 

limits is upper bounded by 

(_4)1(2l - I)! 
Sr:; l!(l - 1)! (2.72) 

where l 1171. Combining equations (2.71) and (2.72) gives an upperbound on the 

pairwise probability of error of a sequence transmitted over an uncorrelated Rayleigh 

fading channel with perfect CSI as 

(2l 1)1 1 
P(Ci ----+ Cj) :; l!(l - I)! kE'f/ ta~· (2.73) 

The pairwise error probability is inversely proportional to the SNR raised to the 

power of the Hamming distance l, and inversely proportional to the product distance 

defined by 

(2.74) 

This is a significant improvement over both the cases of uncoded modulation and 

completely correlated fading. Note that the upperbound by Divsalar and Simon 

) for the identical system, is 

(2.75) 

Using quite a different technique to the one presented here, Dingman [18] derives an 

upperbound, again for the same system as 

1 2t 4 
p( Ci ----+ Cj) < r 2 sin21 (¢ )d¢ II .£. 2 

1r .10 kE'f/ No dk 

(2.76) 

He did not show however that the closed form expression for the integral is 

~ (Ii " 21 (A.)dA. = (2l - I)! 
1r.lo sm 'I' 'I' 41l!(l - I)! (2.77) 
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which when combined with equation (2.76) gives the same bound as equation (2.73). 

The bound of equation (2.73) is tighter than that of equation (2.75) which can be 

shown by induction. Assuming bi = t!~~=~~; < 4i we will show that bi+1 :s: 4i +1 

b· ~ < 4i 

(2i - 1)! 
< 4i 

i!(i - 1)! 
(2i 1)! 2i(2i + 1) 

< 4i x 2i(2i + 1) 

"e 1)1 x (i + 1)i (i+1)i ~. ~ 

. 2 
bH1 < 4t x (4--) 

i+1 
bi +1 < 4Hl (2.78) 

And for i 1, bi = 1 < 4 hence the inequality is true for all i 2:: 1 and the 

bound is tighter than that of equation (2.75). To demonstrate the tightness of 

the upperbound of equation (2.73) consider 3 pairs of sequences using antipodal 

signalling, with increasing Hamming distance. 

c~ 
~ 

{1}, 

cr = {1, 1}, 

cr = {1, 1, 1 }, 

c} = {-1} 

cJ = {-1, 

c~ = {-1 
J ' 

1} 

1, -1} 

(2.79) 

(2.80) 

(2.81) 

In figure 2.5 we have plotted the exact pairwise probability of error and the cor­

responding upperbound for the pairs of sequences ci and cj. The solid lines show 

the exact pairwise probability for the three pairs of symbol sequences and the cor­

responding bounds of equation (2.73) are shown in dashed lines. At high SNR the 

bounds almost precisely match the exact calculations. The case of n = 1 represents 

uncoded BPSK transmission, which has a diversity of one. Clearly higher diversity 

symbol sequences vastly improve the performance of the system, especially at lower 

error rates. It must be kept in mind that such gains in performance are only pos­

sible by ensuring that the fading affecting the symbols in the transmitted sequence 

is uncorrelated. The next section analyses the relative loss performance of the 

system due to non-zero correlation in the channel. 
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Figure 2.5: Exad pairwise probability of error in solid lines and corresponding upperbounds 

in dashed liues. Curves 1, 2 and 3 are length 1, 2 and 3 sequences respectively. 

2. Partially correlated fading with ideal C 

In the example of section 2.4.1 we observed that the asymptotic behaviour of a 

system with some channel correlation is the same as that of an uncorrelated system, 

but with some loss in performance. We now show that this is indeed the case and 

quantify this loss analytically for an ideal OSI system. The channel correlation 

matrix is given by equation (2.16) and reproduced here for convenience: 

p(o) 

p(1) 

p(l) 

p(o) 

p(L 1) 

p(L 2) 

p(L - 1) p(L - 2) p(O) 

(2.82) 

The correlation parameters p(n) are defined by equation (2.7). The maximum like­

lihood decision metric is Euclidean distance. For arbitrary SNR, the exact prob­

ability of error can only be computed by summing the residues of the right hand 
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plane poles of g?wwF as defined by equation (2.50). For high SNR however, this 

expression simplifies significantly. Equation (2.50) is written in the form used in the 

previous section, i.e. 

p( Ci -+ Cj) = -Sr PkPk-;-L 

kETJ 

The product of the poles is, as shown in appendix C, is given by 

(2.83) 

(2.84) 

where g?~vw and F' correspond to <l?ww and F respectively with the rows and 

columns i and i + L deleted for 1 ::; i ::; L,i ¢ rl. From equation (2.49) the 

determinant of FI is 

(2.85) 

and from equation (2.45) the determinant of g?~w is 

(2.86) 

where 

(2.87) 

For high SNR, the poles of g? D (s) tend toward Pk -+ ~ and Pk",L -+ -0 and combining 

the equation with the result from appendix B, the probability of error for correlated 

fading and ideal CSI is bounded by 

1 (2l - I)! 1 
P(Ci -+ Cj) ::; detg? ll(l-I)1 II .f1...d2 

p . • kETJ No k 

(2.88) 

which is identical to that of uncorrelated fading divided by det g?p. Figure 2.6 shows 

the application of the bound to the example of section 1, figure 2.2. The solid 

lines are the exact calculations, and the dashed lines are the upper bound of equation 

(2.88). 

The loss in performance op) measured in dB of SNR, relative to uncorrelated 

fading is 

(2.89) 
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Figure The illustration of a tight upper bound on the pairwise probability of error over a 

correlated Rayleigh fading channel assuming ideal CSI. The sequences have Hamming distance of 

two. 

For example, in section 2.4.1, figure 2.2, we plotted the performance of an ideal 

CSI system transmitting two possible symbol sequences as a function of SNR. The 

matrix (J) p for this example is 

( 
1 P(3) 

P!3 1 
(2.90) 

and the determinant is 

(2,91) 

The asymptotic loss for PB 0.99 is 

10 ( 2) L1p lpi1=o.99 -2"10g1o 1 - 0.99 

~ 8.51 dB (2.92) 
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and for P!3 = 0.95 is 

~ 5.05 dB (2.93) 

which agree with the losses observed in figure 2.2. In figure 2.7 we have plotted a 

family of curves describing the loss in dB as a function of j3 JDT for l = 2, l 3 

and l = 4. Note that the loss experienced by longer sequences is greater than 

shorter sequences. Again these curves emphasise the need for independently faded 

w w ..s 
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20 
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Figure 2.7: Performance loss, measured in dB of SNR, of a correlated system compared to an 

uncorrelated system as a function of f3fDT. Ideal aSI assumed. 

symbols. The next section explains the technique of interleaving and deinterleaving 

to effectively achieve this objective . 

. 6 er leaving 

The analysis of the pairwise probability of error of an ideal CSI system shows that the 

fading affecting the symbols in the message sequence must be independent to realise 

the full potential of coding. The correlation of the fading affecting two symbols in 
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a sequence is given by 

(2.94) 

where f3 is the distance, symbols, between the two symbols. As shown by the 

example in section 2.4.1, values of f3fvT > 3 x 10-1 are sufficiently high for the 

fading affecting the symbols to be regarded as uncorrelated. Therefore we require 

or equivalently 

f3fvT > 3 x 10-1 

3 X 10-1 

f3 > fvT 

(2.95) 

(2.96) 

For example, for a maximum fvT of 0.01, f3 must be greater than 30. This im­

plies that for the fading affecting the symbols in the transmitted sequence to be 

uncorrelated, there needs to be a spacing in time between the symbols of at least 30 

symbols. We describe the technique of block interleaving to achieve this objective. A 

block interleaver consists of a buffer with a rows and f3 columns as shown in figure 

2.8. The symbols Cik fill the interleaver row by row, while the output sequence of 

...... ------ f3 -------j ..... 

--
--

symbols in -- a: 

-- I 

-
i ! t t ! t ! 

symbols out 

Figure 2.8: An a: x f3 block interleaver. 

the interleaver is obtained by reading out buffer's content column by column. 

Therefore a sequence of length a has all of it's symbols spaced by f3 symbols at 

the output. At the receiver there is a corresponding deinterleaver which inverts the 
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interleaving process. A deinterleaver is implemented in the same manner as an in­

terleaver but with a and {3 reversed. Figure 2.9 illustrates the mapping between the 

input sequence and output sequence of a block interleaver for a = 3 and {3 4. 

Input 

Output 

(:J (:J (:J (:J 

Figure 2.9: Mapping between input and output of a block interleaver for Q 4, and (J = 3. 

2.6.1 Interleaver delay 

The necessity for interleaving and deinterleaving to achieve optimal coding gains in­

troduces a delay in the overall transmission time of the system. To fill and empty the 

interleaver and deinterleaving buffers takes 2a{3 symbols. Therefore the minimum 

transmission delay measured in symbols associated with an interleaver deinterleaver 

pair to achieve uncorrelated fading for coding is 

6 x lO-ll 
J symbols 
DT 

(2.97) 

:For example, for l = 4 and JDT 0.01, the minimum delay is 240 symbols. 

2.7 Pilot tone detection. 

The assumption in the previous sections of ideal CSI is useful for establishing lower 

bounds on the performance of the communications system, but is not necessarily 

indicative of how a real system will perform. As discussed in section 2.1, we need 

to know the state of the fading process in order to recover the transmitted data. 

One method used in practice to obtain an estimate of the channel's fading process 
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is to transmit a known pilot tone along with the data bearing signal. Such a pilot 

tone is inserted into a spectral null of the power spectrum of the data bearing signal 

and is extracted using a narrowband with a frequency response wide enough 

to allow the fading process to pass through undistorted. The receiver therefore has 

an estimate at each point in time of the fading process, assuming the fading is fiat 

across the frequency band of the transmitted signaL tradeoff of this technique 

is that some of the total power is taken up by the pilot tone, With a pilot tone, the 

sampled baseband representation of the system is 

(2.98) 

where Ck is the data symbol, Pt is the pilot tone and is a constant to normalise to 

unit transmission energy. If we define 'Y to be the ratio of the pilot tone energy to 

the total energy transmitted symbol then 

Pt=/1 (2.99) 

and 

1 
A= --=== (2.100) 

The received signal is filtered into two components, namely the data bearing com­

ponent 

(2,101) 

and the pilot tone component which provides the channel estimate 

(2. 

Bp is the bandwidth of the frequency response function H (I) of the pilot tone zonal 

filter 

H(f) = P - J - p 

{ 

1 -B < 1: < B 

o elsewhere 
(2.103) 

To allow all of the fading process to pass through the filter we have 

(2.104) 
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where fD max is the maximum Doppler frequency experienced by the mobile. The 

variance of the noise component of the channel state estimate is related to No by 

(2.105) 

\¥ith a pilot tone the system covariance matrices differ. The autocorrelation of the 

received samples Tk now reflects the reduced energy 

1 
--C'<Puuct + <PNN ,+ 1 J J 

(2.106) 

The covariance matrix of the fading process Uk and the pilot tone aided channel 

estimate Vk is 

1>uvlC j = V"I: 11>",,· 

and the covariance between Tk and Vk is 

<PRvlcJ· = 1 <Puu· . ,+ 
The autocorrelation matrix <Pvv equals 

, 
--1 <Puu + <P1)1) ,+ 

(2.107) 

(2.108) 

(2.109) 

where <P1)1) is the covariance matrix of the additive estimation noise of equation 

(2.102). Note that the 'rJk)S represent bandpass filtered white Gaussian noise sampled 

at a rate of liT and are not independent. The ith row and jth column of the 

covariance matrix equals 

(2.110) 

where sinc(x) = 'IT:!) • The covariance matrix <PNvicj) between the channel esti­

mate Vk and the additive white Gaussian noise nk is zero because rlk and nk are 

samples of output noise processes of two filters whose frequency responses do not 

overlap. 

The generalised decoding metric does not simplify for pilot aided detection as it 

does for ideal channel information and the combination of equations (2.32), (2.106), 

(2.107) and (2.109) may be used to compute the pairwise probability of error of a 

pilot tone assisted system. 
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Ideal interleaving with pilot tone aided detection. 

We have shown that interleaving is required to take full advantage of the gains 

offered by coding. We now analyse the case of ideally interleaved pilot tone aided 

decoding. With ideal interleaving the fading affecting the symbols in the message 

sequence is uncorrelated and the channel correlation matrix is simply 

<Puu 
(

10 ". 0 

o 1 ... 0 

E, l ~ ~ ; (2.111) 

The process of interleaving and deinterleaving also decOlTelates the additive white 

noise affecting the channel state estimate sequence and 

(2.112) 

With these parameters, the matrices <PRR[Cj, <PRV[Cj and <I>vvlCj reduce to diagonal 

forms 

+No 0 0 

<DRRlcj = 
0 +No 0 

(2.113) 
0 0 +No 

.JiEsCjl 0 0 
'1+1 

0 0 
<DRvlcj = (2.114) 

0 0 JrEsci L 

'1+1 

and 

+ fDTNo 0 0 

0 + fDTNo 0 
<Dvv 

0 0 + fDTNo 
(2.115) 

and combine to form <DwwICj. The inverse of <DwwlCj is required for the generalised 

decoding metric of equation (2.23) and is found by applying the matrix inverse 
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identity of appendix A: 

o 

<PHlwlCj 
0 aL 0 

-b* 0 1 Cl o 
(2.116) 

0 b* -L 0 

where the elements ak, bk and Ck equal 

(2.117) 

(2.118) 

(2.119) 

and 

fk No (ry + ICjkl2 fDT) + fDT(, 1) (2.120) 

The determinant of <Pww ICj is 

L A 
det <pwwlCj = N,2( 1) 

k=l 0' + 
(2.121) 

Substituting equations (2.116) and (2.121) into the generalised decoding metric of 

equation (2.23) gives 

L 

k=l 

= L aklrk _ bk vkl 2 

k=l ak 
L 

2: aklrk 
k=l 

1) 

(2.122) 

The terms !k{J+1) and 2ln N,2(ry 1) are independent of CJ'k and may be discarded, a., 0 

The maximum likelihood decoding metric for ideally interleaved pilot tone aided 

detection is 

(2.123) 
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which is suitable for Viterbi decoding. the signalling format is PSI{ then !cjkl2 = 1 

and the metric of equation (2.123) reduces to 

(2.124) 
k=l 

The probability of error for ideally interleaved pilot tone aided decoding may 

be derived using equation (2.32). The characteristic polynomial p(x) of the matrix 

<PwwF is 

(2.125) 

where the coefficients a~, b~ and c~ are 

a~ = (ry + 1) ~: (, + ICjkl2 fDT) + fDT(ry + 1)) (2.126) 

b~ - ~: (fDT(l cikl
2 -ICjkI 2

)(, + 1) + io ,dD (2.127) 

I __ .(Es )2d2 
ck I No k 

(2.128) 

where 4 ICik cjkl2. From the eigenvalues of equation (2.125) the poles of <PD(S) 

are 

(2.129) 

The pole Pk lies the left hand plane and Pk+L lies in the right hand plane. The 

decision threshold parameter 8 is in general non-zero and given by 

,~+ fDT(ry f-I Cik12 1) 
8 2ln II 0 0 

kE7I'~ + fDT(ry+ ~ICjk12 + 1) 
(2.130) 

and the pairwise probability of error may be computed using these equations. 

Ideally interleaved with pilot tone aided detection. 

The symbols of a PSI( constellation have unit energy and the expressions for the 

pairwise probability of error for a pilot tone aided, ideally interleaved system sirn­

plify. With ICikl2 = ICjkl2 = 1, equations (2.127), (2.128) and (2.128) defining the 

characteristic polynomial simplify to 

a~ = (ry + 1) No (ry + fDT) + fDT(ry + 1)) (2.131) 

b' _ (Es )2d2 

k 'No k 
(2.132) 

c' _ (Es )2d2 
k 'No k 

(2.133) 
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and the parameter (j equals O. With these simplifications, the exact pairwise prob­

ability of error may be written as 

IIpkPk+L (2.134) 
kE1] 

where 

• S - Pi 1 
8r = hm--

iE1] S~-+Pi S kE1] (s - Pk)(S - Pk+L) 
(2.135) 

the sum of the residues of the poles in the right hand plane. The product of the pair 

of poles Pk and Pk-t-L is 

-(, + l)(to(, JDT) + fDT(, + 1)) 
4,(Es/No)2d~ 

and the exact pairwise probability of error is 

kE1] 

-(, + l)(to(, + fDT) fDT(, + 1)) 
4,(Es/No)2d~ 

For high SNR the poles Pk and Pk+L tend toward 

1 
Pk+L -+ 2' 

(2.136) 

(2.137) 

(2.138) 

(2.139) 

Using the bound on 81' from equation (2.72) we have the following bound on the 

pairwise error probability of a pilot tone aided PSK system with ideal interleaving 

(2.140) 

optimal pilot tone 

The upperbound of equation (2.140) on the pairwise probability of error for pilot 

tone aided decoding is a function of the parameter " the ratio of the pilot tone 

power to the data signal power. We may optimise this parameter to minimise the 

probability of error of the system. From the upperbound expression for the pairwise 

probability of error, we need to maximise 

1)(, + fDT) 
(2.141) 
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with respect to "/. Differentiating and setting the result to zero gives 

d¢(ry) 
d,,/ 

which gives the optimal value of,,/ as 

"/opt =V fDT 

(2.142) 

(2.143) 

at high SNR, with PSK signalling, the optimal pilot tone ratio is only a function 

of the fade rate fDT, \Vith the optimal value of,,/ the pairwise probability of error 

of ideally interleaved PSK with pilot tone aided detection is 

(2,144) 

The loss compared to ideally interleaved ideal channel state information is 

20 10glO( J fDT 1) (2.145) 

Figure 2.10 shows the loss of pilot tone aided detection as a function of fDT for 

the optimal power ratio Even at relatively fast fading (jDT 0.1) the loss 
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Figure 10: Loss in performance over ideal CSI with pilot tone aided detection as a function 

of iDT. 
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in performance with the aid of a pilot tone is only about 2.4 dB relative to ideal 

channel state information and therefore it is a good method of obtaining a channel 

state estimate. 

2.8 Summary. 

\Ve have presented a new generalised derivation of a maximum likelihood decoder for 

signal sequences transmitted on the Rayleigh fading channel. The analysis takes into 

account a non-ideal channel state estimate, consisting of the ideal channel state and 

a Gaussian distributed error term, and the correlation of the fading process. The 

final decoder metric is a maximum likelihood decoding metric of a general form. 

We derived an exact analytic expression for the pairwise probability of error for this 

decoding metric and discovered a new tight upperbound on the probability of error 

for the case of ideal CSI with non-interleaved transmission. The analysis of the 

probability of enor shows that the correlation of the fading process is detrimental to 

the performance of a coded system and that interleaving is essential to optimise code 

performance fully. With interleaving the pairwise probability of error is inversely 

proportional to the signal-to-noise ratio to the power of the Hamming distance and 

inverse proportional to the squared product distance as shown by Divsalar and 

Simon [22]. This means that the optimal codes are those with the greatest Hamming 

distance and squared product distance in contrast to maximum Euclidean distance 

as is the case for the Gaussian channel. The need for interleaving means there is a 

fixed transmission delay proportional to the rate of fading and the diversity of the 

code. 



hapter 

rod to oding~ 

chapter introduces the technique of coding in the context of chapters 4, 6 and 

7 on geometrically uniform codes, multilevel codes and codes designed for multiple 

symbol differential detection respectively. We review the definition of signal space 

codes, the maximum likelihood decoding thereof, the performance evaluation meth­

ods and the consequent design criteria. In section 3.5 we introduce trellis codes as 

a special case of signal space coding and the discussion includes the performance 

evaluation, the decoding by the Viterbi algorithm and a bound on the maximum at­

tainable Hamming distance (the desired maximised code parameter for the Rayleigh 

fading channel) of a trellis encoder over a multi-dimensional signal constellation. 

301 Introduction. 

In chapter 2 we analysed in detail the pairwise performance of maximum likelihood 

(ML) decoded symbol sequences transmitted across the Rayleigh fading channel. 

has been established that the asymptotic behaviour of the probability of confusing 

sequence Ci for the sequence (the pairwise probability of error) is bounded by 

(3.1) 

where the constant K is a function of the channel correlation and the method of 

obtaining channel state information. The set TJ contains the indices for which Cik 

Cjk and has order l, the Hamming distance between the sequences Ci and Cj. 

probability of error decreases inversely with the signal-to-noise ratio (SNR) ES/lvo
l 
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raised to the power of I and inversely with the product distance 

d~ = I Cik Cj k 12. (3.2) 
kE'r/ 

For sufficiently high SNR, an increase in I reduces the probability of error faster 

than an increase in a:. To minimise the probability of error, we want to maximise 

the minimum Hamming distance l of the sequences first, and the squared product 

distance d; second. 

A first order approach to increase the Hamming distance is simply to lengthen 

the sequences by symbol repetition. For example for uncoded 4-PSK, instead of 

transmitting one of the symbols 0, 1, 2, or 3, corresponding to the binary inputs 00, 

01,11 or 10, we transmit one of the repetition sequences (0,0), (1,1), (2,2), or (3,3). 

The Hamming distance between these sequences is two and the error probability is 

reduced by a factor of the SNR Clearly the drawback of this method is that the data 

rate of the system is halved, and is reduced even further for symbol repetitions of a 

higher order. To restore or maintain the original data rate, the signalling rate would 

have to be increased, leading to an increase in the bandwidth of the system and 

this may not be desirable. An alternative which does not require this tradeoff is the 

technique of coding. Coding aims to reduce the probability of error by constructing 

sets of symbol sequences with increased distance (relative to uncoded signalling) 

without sacrificing the data rate, or increasing the bandwidth of the system. The 

cost is an increase in complexity. 

3.2 and Soft decision Coding Systems. 

The literature on coding and decoding techniques is vast and only be touched upon 

in anyone body of work. vVe will distinguish two types of coding on the manner 

by which they are decoded, namely hard decision decoding and soft decision de­

coding. In a hard decoding system, the processes of demodulation and decoding 

are performed independently as illustrated in figure 3.1. vector a of k bits to be 

transmitted is input to a binary encoder C. The encoder C is such that it outputs a 

unique codeword c of length n bits corresponding to each a. The set of all codewords 

c is denoted C, and the order of C is 2k, the number of possible input vectors. The 

code C has a Hamming distance d and as such can correct up to t = d/2 - 1 random 
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encoded Transmission 

Figure 1: The block diagram of a hard-decision decoding system. 

bit errors [30]. Such a code is an (n,k,d) block or convolutional code. The stream of 

codewords c is mapped to a signal constellation S, such as 4-PSK, and transmitted 

across the channeL The receiver demodulates the signal, corrupted by the channel, 

and makes a decision on the received symbols on a symbol by symbol basis. These 

symbols are mapped back to binary and assembled into output codewords c'. The 

binary codewords have effectively passed through an uncoded system and contain 

random bit errors introduced by the channel. The decoder exploits the redundancy 

inherent the code to correct up to t random bit errors caused by the channel 

outputs the binary k-tuple most likely to have been transmitted. If more than t bit 

errors occurred then the decoder will make an incorrect decision and the output will 

not correctly reflect the transmitted data. The advantage of a hard decision 

nique is that the problems of coding and modulation are separated and the systems 

may be designed individually. The fact that block codes may be defined algebraically 

over finite fields means that many very efficient algebraic decoding algorithms and 

techniques may be for decoding [7],[16],[47],[48]. Convolutional codes are an­

other hard decision scheme, similar to block codes, except that the codewords are 

of infinite length. Much work on convolutional encoding and decoding techniques is 

in the literature [1],[14],[401,[38],[361,[37],[55]. 

The disadvantage of a hard-decision technique is that a loss of performance is 

incurred due to decision information being lost in the hard decision process in the 

demodulator. 

In contrast to a hard decision system, a soft decision decoding system is one 

which combines the processes of demodulation and decoding a.."l illustrated in figure 

3.2. The binary input data a is mapped directly onto a set of channel symbols S, 

such as a PSK constellation, and the resultant code C is treated as a set of points 

in a real Euclidean space in contrast to a set of vectors over a binary field as is the 
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Combined Coding and Modulation Combined Demodulation and Decoding 

Figure 3.2: The block diagram of a soft-decision decoding system. 

case in a hard decision system. Such a code C is called a signal space code. The 

stream of signal space codewords is modulated onto the carrier to give c(t) and is 

transmitted across the channel. The receiver demodulates the received signal r(t), 

corrupted by the channel, and outputs a stream of points in Euclidean space. This 

stream of points is decoded, not by making a symbol by symbol decision, but by 

making a decision on a sequence of symbols, as introduced in chapter 2. Such a 

decision is made by computing a metric (which is a function of the channel) between 

the received point and the set of all possible points that may have been transmitted. 

The codeword C E C which minimises the metric to the received point r is the output 

of the decoder. The soft-decision process does not discard any decision information 

as occurs in the demodulator of a hard decision system. By computing a metric, 

individual symbols in a codeword are weighted by a "reliability" or "confidence" 

factor which increases the decision accuracy. Our continuing discussion will focus 

on signal space codes only. Section 3.3 is a discussion on signal space constellations 

leading up to the definition of signal space codes in section 3.4. Sections 3.4.1, 3.4.2, 

3.4.3 discuss decoding, error evaluation and design criteria respectively. Trellis codes 

are a special case of signal space codes and are the topic of section 3.5. 

. 3 space constellations . 

In a conventional uncoded digital communications system we transmit points (sym­

boIs) from a two-dimensional constellation S across the channel on a symbol by sym­

bol basis. Two dimensions are transmitted per symbol because the carrier frequency 

has two degrees of freedom, namely phase and amplitude, or alternatively in-phase 

and quadrature components corresponding to a polar and rectangular representation 

respectively. The two-dimensional points to be transmitted are drawn from a two-
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dimensional constellation such as 1\1-PSK, or QAM. We may relabel such a system 

by taking the L-fold product of a two-dimensional constellations S and calling it a 

multi-dimensional constellation , an example of which is Lx A1-PSK. Clearly SL 

is a set of ISI L points in 2L dimensional space. The communication system may 

alternatively be represented as one which transmits a sequence of 2L-dimensional 

points in contrast to transmitting a sequence of two-dimensional points. The con­

trast is shown in figure 3.3. The advantage of considering constellations of higher 

k bits Point selector 

S 

(a) Selector from S. 

s E S kL bits Point selector 

from SL 

(b) Equivalent selector from SL. 

3,3: A system transmitting points from a two-dimensional constellation S is represented 

equivalently by a system transmitting points from a multi-dimensional constellation 

dimensionality is that it is possible to design constellations in higher dimensions with 

better distance properties than those in lower dimensions. An informative exam­

ple [29] illustrating the concept of higher dimensional constructions is based on the 

S =16-QAM constellation shown in figure 3.4. vVith the coordinate system labelled 

.. • 3 

• 1 

-3 -1 3 

.. -1 '. 

-3 .. 

Figure 16-QAM constellation. 

on the axes, the minimum Euclidean distance between points is 2. The two-fold 

product S2 of S is a four dimensional constellation consisting of 256 points with the 
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same distance properties as the und«~rlying 16-QAM constellation. However, unlike 

two-dimensional 16-QAM, it is possible to add points to this four-dimensional con­

stellation without changing the minimum distance. For example if a point is added 

to the origin, i.e. at (0,0,0,0) then the distance to one of its nearest neighbours, 

say (1,1,1,1) is Jp + 12 + 12 + 12 == 2 which is the same the minimum distance of 

16-QAM. Similarly points may be added at all positions with even coordinates in 

the range of -2 ... 2 to give a 625 point constellation. By selecting the 256 point 

subset of this constellation shown in table 3.1 we have a four dimensional constella­

tion S' with the same number of po:.nts as the square of 16-QAM, but with better 

distance properties after the normalisation of the constellations to unit energy. The 

Generator Number of permutations 

1 (1,1,1,1) 16 

2 (2,0,0,0) 8 

3 (2,2,0,0) 24 

4 (2,2,2,0) 32 

5 (2,2,2,2) 16 

6 (3,1,1,1) 64 

7 (3,3,1,1) 96 

total 256 

Table 3.1: 256 signal points generated by taking all sign and coordinate permutation of each of 

the seven generators. 

constellation S' is a subset of the densest known lattice in four dimensions, namely 

the Schafli or D4 lattice [17]. Notice that S' cannot be written as a product of two 

lower dimensional constellations. This is true in general for a higher dimensional 

constellation, however they can always be represented as a subset of an L-fold prod­

uct of a lower dimensional constellation. To show this consider a constellation S in 

L x N dimensions. We wish to write S as a subset of an L-fold product of an N 

dimensional constellation So. To do :;0, we may write S as a set of L-tuples over N 



3.4. SIGNAL SPACE CODES. 49 

dimensions. 

(3.3) 

where n = lSI, the number of points in S. A projection Pj(S) of S is defined as the 

set 

(3.4) 

The underlying N-dimensional comtellation So, such that S c Sf; is 

L 

So = U Pj(S), (3.5) 
j=I 

the union of all projections of S. For example, the projections PI (S'), and P2 (S') 

of S', where S' is defined in the prEvious example, are shown in figure 3.5. We have 

PI (S') = P2 (S'), Sb = PI (S') U P2 ( S') and S' c Sb x Sb, hence S' has been written 

as a subset of a power of a lower d"mensional constellation Sb. 

• • 3 • • • 3 • • 

• • • • 

• • 1 • • • 1 • • 

-3 -I 3 -3 -I 3 

• • -I • • • -I • • 

• • • • 

• • -3 • • • -3 • • 

Figure 3.5: Projections Pl (S') and P2 (S') of S' respectively. 

3.4 Signal space Codes. 

In the previous section we have shown that all multi-dimensional signal space con­

stellations may be written as a sub~;et of a power of lower dimensional constellations. 
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From a simple example it was shown that gains can be made by carefully selecting 

such a subset. The technique of systematically generating good subsets of products 

of lower dimensional constellations is called signal space coding. Depending upon 

the encoding technique used to generate the signal space code it may be convenient 

to define the underlying constellation as multi-dimensional (see chapter 4, however 

such a constellation may again be reduced to a subset of a power of lower dimen­

sional constellations. Traditionally the lowest number of dimensions considered is 

two, the degrees of freedom of the carrier. Definition 1 formally defines a signal 

space code. 

Definition 1 Consider a signal constellation S in the real L dimensional space RL. 

The N -fold Cartesian product of S, written as SN, is the set of all poss'ible length 

N sequences over'S: 

(3.6) 

SN may be viewed as a set of ISIN points in N L dimensional space. Any subset C 

of SN is a signal space code. 

Definition 1 is general and does not make any assertions as to how to construct 

good signal space codes or how to decode them. The block diagram of a signal space 

encoder is drawn figure 3.6. A vector a of k bits is input to the encoder. The 

a Signal Space 

Encoder 

Figure 3.6: A sigllal-space encoder. 

c 

output is a unique sequence C E C of points in Euclidean space. The order of C is 

(3.7) 

We may write the one-to-one mapping between a and C as 

c = C(a) (3.8) 
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And the inverse mapping as a C-1 (c). The rate r of the signal space code C in 

bits per two-dimensional symbol is 

2k 
r=-

LN 
(3.9) 

3.4.1 Signal Space 

A signal space code C is decoded using a decoding metric m(r, c). The metric m(r) c) 

measures the "distance" between the received vector r and the postulated codeword 

c E C. The decoder selects the codeword c E C which minimises the metric m(r, c), 

i.e, 

c = min cEC m(r, c) (3.10) 

Typically m(r, c) is derived for a particular channel such that the output of the 

decoder is the maximum likelihood estimate of the transmitted codeword. It has 

been shown by Divsalar and Simon [22] and in chapter 2 that the ML decoding metric 

for the Rayleigh fading channel, assuming ideal interleaving and ideal CS1, is the 

squared Euclidean distance metric, i.e. m(r, = Ilr - cWo The Euclidean distance 

is also the maximum likelihood decoding metric for the additive white Gaussian noise 

(AWGN) channel [38]. Associated with each codeword in the code C is a region of 

space called the Voronoi region. The Voronoi region V(c) of a codeword c is the 

region of space containing all points closer to c than to any other codeword in C J i.e. 

V(c) = {r, mincEC m(r, c) = m(r, c)} (3,11) 

The Voronoi region of a codeword c is also known as the decision region of c, that 

is, if the received vector r is in V(c) then the decoder decides on c as its output. 

3.7 shows the Voronoi region of a code point c in two-dimensional space, with 

m(r, c) Ilr c11 2
. For arbitrary positioning of the code points in space, the Voronoi 

regions are not easily computed and the complexity increases quickly with increased 

dimensionality of the problem. For an arbitrary signal space code the decoding 

algorithm is to compute the decoding metric from the received point r to every 

codeword C E C and to output that codeword which produces a minimum. Clearly 

such an exhaustive method is very computationally intensive and the complexity 

increases exponentially with the dimensionality of the code. Much more efficient 



52 CHAPTER 3. INTRODUCTION TO CODING. 

Figure 3.7: Voronoi region of a code point c in two dimensions. The decoding metric is the 

Euclidean distance. 

methods are available for specific encoding techniques, such as trellis codes. These 

are discussed in section 3.5. 

3.4.2 Error evaluation of Signal Space Codes. 

If the codeword Ci was transmitted, and the decoder selects the codeword Cj #- Ci 

as its output then an error event is said to have occurred. Associated with an error 

event are a number of bit errors which are the number of bits different between the 

corresponding binary input words of Ci and Cj. Clearly it is of interest to determine 

the probability of an error event occurring, and if possible the average probability 

of a bit error. To do this we consider the probability density function (pdf) p(rlci) 

of the received vector r conditioned on the transmitted codeword Ci. Assuming the 

a priori probability of transmission p( Ci) to be equiprobable, then the probability of 

making a correct decision, is the probability of the received vector r occurring in the 

Voronoi region V( Ci) of Ci. This probability may be found by integrating the pdf of 

r conditioned on Ci over V( Ci) and is written as 

(3.12) 

The probability of making an error when Ci is transmitted is simply Perr(Ci) = 

1 - Pcorrect(Ci) and this probability may be averaged over all codewords to give the 

average probability of error Perr(C) of the code 

1 
Perr(C) = -ICI L: Perr(Ci) 

ciEC 

(3.13) 
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To compute the bit error rate (BER) of the system, we must take into account the 

number of bits different between the codeword actually transmitted and an error 

word. The expression for the is 

(3.14) 

where W(Ci, Cj) is the weight or the Hamming distance between the corresponding 

binary inputs of codewords Ci and Cj' Although equations (3.13) and (3.14) are 

exact, they are, with the exception of trivial examples, very difficult to compute 

in practice. In general, for good codes, the Voronoi regions are multi-dimensional 

polytopes making the integration over the probability density function difficult. A 

useful upperbound on the probability of error Perr( Ci) of a codeword Ci is the union 

bound given by 

Pen,(Ci) ~ l: p(Ci-7Cj) 
CjEC 

Cji'Ci 

(3.15) 

where p( Ci -7 Cj) is the pairwise probability of confusing the codeword Ci for Cj. 

For the Rayleigh fading channel, p( Ci -7 Cj) has been evaluated exactly for different 

system configurations in chapter 2. Figure 3.8 shows the application of the union 

bound to calculate the probability of error of a two-dimensional codeword. The 

areas on the other side of the lines bounding Ci have been integrated. The darker 

areas show the overlap regions and generally the union bound is a loose bound, 

particularly at low signal to noise ratios. As the SNR increases, the bulk of the area 

of the conditional pdf of the received vector is within the Vorono! region and the 

union bound tightens, The union bound on the overall probability of error of the 

system is 

(3.16) 

and similarly the union bound on the overall is 

1 
BER ~ TCf ~ (3.17) 

Cj 

special case on the probability of error of the system exists if the code has what is 

known as a uniform error property (UEP). This property means that the probability 
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Figure 3.8: Example of application ofthe union bounding technique. 

of error Perr ( Ci) , when Ci is transmitted, is constant independently of Ci and the 

evaluation of the probability of error of the code greatly simplified because only the 

error probability for one codeword needs to be considered. Typically the codeword 

considered is the all zeroes codeword written as Co, that is the codeword generated 

when a stream of all zeroes is transmitted. With this condition and assuming an 

equiprobable a priori transmission, the exact probability of error of a code C is given 

by 

and the union bound is 

Perr(C) = 1 - r p(rlco)dV 
iv(co) 

Perr(C)::; I: p(co -+ Cj) 

Cj EC 

Cj#CO 

(3.18) 

(3.19) 

It is desirable to construct codes with a uniform error property as it greatly simplifies 

the code search effort. The geometrically uniform trellis codes constructed in chapter 

4 by design have the UEP property. 

3.4.3 Signal space code design criteria. 

In the previous section we examined the probability of error of signal space codes. 

This probability of error calculation should be used as a guide to designing good 

signal space codes for the channel of interest by designing the code such that the 

probability of error is minimised for a specified level of system complexity. The 
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union bound of equation (3,19) on the probability of error of the system is in terms 

of the pairwise probability of error p(Ci -+ Cj). By substituting the appropriate 

pairwise probability of error expression for the channel we can determine the code 

properties necessary to minimise the probability of errol', We briefly examine the 

design criteria for the classical additive white Gaussian noise (AWGN) channel and 

compare it to the channel of interest to us, the Rayleigh fading channeL We will see 

that the design criteria for these channels are quite different, 

AWGN channel, 

The pairwise probability of error for the AWGN channel is bounded by 

(3,20) 

where d( Ci, Cj) is the Euclidean distance between the codewfrds Ci and Cj, and Q U 
is the Gaussian error-probability function defined by 

1 100 

i!.. Q(x) = ~ e- 2 dy 
y2n x 

(3,21) 

Substituting equation (3,20) into the union bound of equation 3.19 gives 

(3,22) 

which is dominated by the codewords Cj with the smallest Euclidean distance to 

the codeword Co' Clearly the code performance is optimised when the minimum 

Euclidean distance of the code dfree is maximised. 

Ray leigh fading channeL 

The channel of interest to us is the Rayleigh fading channel. The union bound of 

equation (3,19) is in terms of the pairwise probability of error which has been found 

exactly in chapter 2 and a tight upperbound at high SNR is given by [22] 

(3,23) 

The product in equation (3,23) is taken over the set 7J of k for which Cik =I Cjk, The 

average probability, Perr (C), of a ML decoded GU code C; assuming the transmission 
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of each code word to be equally probable, is bounded by the union bound 

Perr(C) ::; I: p(Co --+ Cj) (3.24) 
CjEC 

The minimum Hamming distance lo, between any two codewords, is referred to as 

the diversity of the code. By combining the contribution of the codewords with 

equal Hamming distance, equation (3.24) can be written to give 

(3.25) 

where 

(3.26) 

The set Cz is the set of codewords at a Hamming distance of l from the all zero 

codeword Co. Effectively pz is a weighted "multiplicity" [75] term of the dominant 

error event. We denote the term (P1o)-1 as the weighted product distance a;w and it 

is defined by 

(3.27) 

At high SNR, the pairwise error performance of the code is dominated by the terms 

of equation (3.25) that have a Hamming distance equal to the diversity lo. Therefore 

the code design criteria for the Rayleigh fading channel are 

1. To find the set of codes with maximum diversity lo. 

2. To select from this set, the code that maximises the weighted product distance 

d;w' 

Note that the design criteria for the Gaussian channel is to maximise the minimum 

Euclidean distance while for the Rayleigh fading channel we want to maximise the 

minimum Hamming distance. 

3.5 Trellis codes. 

'Trellis coding is a method for generating a signal space code with good distance prop­

erties for which an efficient decoding algorithm exists. 'Trellis codes were first intro­

duced by Ungerboeck [75] for the AWGN channel and many papers have since been 
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published on the topic [4J,[6],[1l ],[12],[19],[26],[28],[39],[49],[53], [54],[59],[73],[74], [83]. 

general form of a trellis encoder is shown in figure 3.9. The encoder consists 

k bits State 
Machine 

u uncoded bits 

n bits 

Figure 3.9: General form of a trellis encodeL 

Output Symbols 

of a binary finite state machine with v memory elements and a mapper onto an L 

dimensional signal constellation S. At time step j, b bits to be transmitted enter 

the encoder. Of the b bits, k are passed to the state machine and the remaining 

u b k bits, referred to as the 'un coded bits are passed directly to the signal point 

mapper. The rate of the state machine is kin to give a total of u + n bits entering 

the signal point mapper. signal mapper maps the u + n bits one-to-one onto 

the constellation Clearly the order of S is lSI = 2u+n . The rate of the overall 

signal space code in bits two-dimensional channel symbol is 

r 
2b 
L' (3.28) 

Figure 3.10 shows an example of a trellis encoder from the paper by Ungerboeck [75]. 

The encoder consists of a two delay element encoder, giving a total of 22 = 4 states. 

Output Symbols 

2 input bits 

1 lUlcoded bit 

Figure 10; A 4-state rate 2/3 trellis encoder. 

Of the two input bits, one is uncoded and one is encoded to give two output bits. 

The three bits are combined and mapped onto an 8-PSK constellation using the 

mapping shown in table 3.2. This mapping has been obtained by using the method 
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of set partitioning [75]. The structure of a trellis code may be conveniently drawn on 

aOala2 PSK symbol 

000 0 

001 4 

010 2 

011 6 

100 1 

101 5 

110 3 

111 7 

Table 3.2: The mapping from the encoder output bits to an 8-PSK constellation. 

a trellis diagram. A trellis diagram consists of the states of the state machine drawn 

as points vertically and repeated horizontally to represent transitions with time. An 

input to the encoder causes a state transition and an output symbol drawn from the 

constellation S . The state transition is represented by a line connecting the initial 

state at time j and the state at time j + 1. Drawn on the line is the corresponding 

output symbol. Figure 3.11 shows the state transition diagram of the trellis encoder 

of figure 3.10. 

o o o 
DO 

01 

IO 

11 

Figure 3.11: State diagram ofthe trellis encoder of figure 3.10. 
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5.1 Decoding of codes. 

Trellis codes are a special case of signal space codes and as such are decoded by 

computing a metric m(r, c) between the received sequence r and every sequence in 

the code C. Consider a code sequence c and a received sequence r. Let the notation 

rl:i] denote the ith element of vector r and the notation r[i, j] the subsequence of 

r from elements i to j inclusive. the metric m(r, c) can be written in the form 

m(r, c) = I:: m(r[i]' eli]) (3.29) 
i 

then a trellis code can be efficiently decoded using the Viterbi algorithm [38]. Exam­

ining equation (3.29) we see that the Euclidean distance metric m(r, c) = Ilr - c11 2
, 

used for decoding codes on the AWGN and Rayleigh fading channels may be writ­

ten in this form. The Viterbi algorithm is described by the algorithm in table 3.3. 

Suboptimal techniques for the decoding of trellis codes are also exist but are not 

1. Starting at time unit j = 0, compute the metric for the single path entering 

each state of the encoder. Store the survivor path and its metric for each 

state. 

2. Increment the time j by one. Compute the metric for all paths entering each 

state by adding the metric of the incoming branches to the metric of the 

connecting survivor from the previous time unit. For each state identify the 

path with the lowest metric as the survIvor of step Store the survivor and 

its metric. 

3. If all survivor paths have a common path to a state at time k then 

that is the maximum likelihood decision and is the decoder output. Repeat 

at step 2. 

The Viterbi algorithm for the maximum likelihood (ML) decoding of trellis codes. 

discussed here [56]. 
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3.5.2 Evaluation of Trellis codes. 

If we assume the trellis code has a uniform error property, then the performance 

of a code is dominated by the shortest distance codeword to the all-zero codeword, 

where shortest distance for the Rayleigh fading channel is measured by the Hamming 

distance and product distance. To compute the shortest distance codeword we need 

to find a path through the trellis starting and ending in the zero state which has 

the minimum distance properties. In contrast to the Gaussian channel where the 

only distance measure of interest is the Euclidean distance, for the Rayleigh fading 

channel there are two distances of interest, namely the Hamming distance and the 

squared product distance and minimising the Hamming distance has priority over 

minimising the product distance. We therefore a combined distance measure 

between sequences two sequences Ci and consisting of the Hamming distance and 

product distance combined in a two element vector d, 

(3.30) 

where dH(Ci, Cj) and a~(ci' Cj) are the Hamming distance and squared product dis­

tance between Ci and Cj respectively. vVe define the operation EEl of adding two 

distance metrics d 1 = (dHll d;J and d 2 (dH2 , a;2) by 

(3.31) 

and the logical "less-than" comparison operator < by 

(3.32) 

The algorithm to compute the minimum distance measure is shown in table 3.4. 

The explanation of the algorithm to compute the minimum distance of a trellis code 

is as follows. Step 1 initialises the time variable t. Step 2 initialises the metric 

variables m(s, t) at time tOby computing the minimum distance from the zero 

state to each state sO . .. N 1. Steps 3 and 4 update the distance metrics into 

each state at time t 1. At step 5, if the distance measure for the path remerging 

with the zero state is less than the minimum distance measure to any other state 

then the algorithm has found the smallest measure path and terminates. 
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Definitions 
b(Sl S2) The set of branch symbols connecting states Sl and S2' 

m(s, t) The minimum distance metric entering state s at time t. 

Co The output symbol on the zero state branch. 

Input The number of N. 

The minimum distance measure d rnin . 

l.t=O 

2. m(s, t) = mincEb(O,n) d(co, c), 0 s s < N. 
cleo 

3. t=t+1 

m(s,t) = minO<nl<N {d(co, c) EDm(s',t 1)}, ° s < N 
cEb(SI,S} 

if minO<s<N m(s, t) > m(O, t) then goto 3 

6. output m(O, t) 

61 

.A.<JlIUJI.'lJ 3.4: The algorithm to compute the minimum Hamming distance and associated minimum 

product distance of a trellis code. 
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3.5.3 Bounds on the Hamming distance of trellis codes. 

Before any code searches are performed it is useful to establish an upper bound on 

the diversity that can be achieved by a multiple symbol per trellis branch encoder 

for a given number of states and spectral efficiency (measured in bits transmitted 

per symbol). 

Theorem 1 The diversity l, of an N = 2V state trellis code transmitting L symbols 

per branch and r bits per symbol is upperbounded by 

(3.33) 

where the notation l-J rounds its argument to the nearest lowest integer. 

Proof: 

The number of bits transmitted per state transition in the trellis is r L and hence 

the number of branches, b, leaving each state is 

(3.34) 

Consider the branches starting from a common state s. There must exist two re­

merging paths after at most k steps through the trellis when bk - 1 > N. Since L 

symbols are transmitted per branch the greatest diversity of such a path is kL, lead­

ing to equation (3.33). In figure 3.12 we illustrate the argument behind the bound. 

We have a 4 state trellis transmitting L = 2 symbols per branch at a rate of! bit per 

o 

1 • 

2 • 

3 • 

Figure 3.12: An example trellis illustrating the bound on the maximum Hamming distance of 

a trellis code. L = 2 and r = ~. 

symbol. The number of branches leaving a state is therefore b = 2TL = 2. Starting 
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from the zero state, two states can be reached after one step, then after two steps 

four states can be reached, and after three steps, eight states can be reached. How­

ever the trellis only has four states and therefore there must be a path remerging 

with the zero state. This path is in bold face. Therefore k = 3 and the maximum 

diversity l is bounded to be less than or equal to 6. 

A necessary condition for meeting equation (3.33) with equality is that the num­

ber of points in the underlying constellation is at least 

(3.35) 

This is due to 2TL branches leaving any state and to achieve the bound there must 

be at least that many symbols in our alphabet. Table 3.5 lists the results of the 

application of equation (3.33) for bit rates of r = 1,2,3 and values of L from 1 to 

4. There are a number of trends to be noted from table 3.5 and equation (3.33). 

L=l L=2 L=3 L=4 

v bits/symbol bits/ symbol bits/symbol bits/symbol 

1 2 3 1 2 3 1 2 3 1 2 3 

1 2 1 1 2 2 2 3 3 3 4 4 4 

2 3 2 1 4 2 2 3 3 3 4 4 4 

3 4 2 2 4 2 2 6 3 3 4 4 4 

4 5 3 2 6 4 2 6 3 3 8 4 4 

5 6 3 2 6 4 2 6 3 3 8 4 4 

6 7 4 3 8 4 4 9 6 3 8 4 4 

7 8 4 3 8 4 4 9 6 3 8 4 4 

8 9 5 3 10 6 4 9 6 3 12 8 4 

Table 3.5: Maximum attainable diversity of multiple symbol per branch trellis codes. 

For larger L, there is a potential for greater diversity for a low number of states. To 

take advantage of the greater diversity offered by codes using a higher L requires a 

move to a far greater number of states. For example for an L = 4 code transmitting 

2 bits/symbol can achieve a diversity of 4 easily for a low number of states but no 

improvement can be made until the number of states is increased to 256. Careful 

study of table 3.5 shows that there are potentially a number of particularly good 
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codes. For example, L = 2, r = 2 and v = 4; L = 3, r = 2 and v = 6; or L = 4, 

r = 1 and v = 4. 

The attainable squared product distance for PSK based codes is bounded by 

(3.36) 

where l is the diversity of the code. The upper bound of equation (3.36) is a result 

of the greatest squared Euclidean distance between two signal points in a PSK 

constellation equalling 4. 

3.6 Summary. 

In this chapter we have reviewed the technique of signal space coding with maximum 

likelihood decoding in context of the chapter 4, 6 and 7. Signal space codes have 

the advantage over hard decision coding schemes of making use of the reliability 

information of the symbols available at the receiver. We have examined the signal 

space code design criteria for the Rayleigh fading channel and compared them to 

those of the AWGN channel. An upperbound on the maximum Hamming distance 

of trellis codes has been derived. 



c 4 

G metrically des 

The paper by Forney [41] describes the concept of geometric uniformity of a set 

points Euclidean space. Geometric uniformity means the constellation (or code) 

looks the same when viewed from any signal point (or codeword), relative to an 

associated distance measure implies that the error performance of the code 

may be completely characterised by considering only one codeword. The work by 

Benedetto et al. [2],[3], applies the theory of GU codes to construct good codes for 

the additive white Gaussian noise (AWGN) channeL Forney's definition of ,,""'U'.LLL'" 

uniformity is based on the squared Euclidean distance measure between points in 

signal space, which is the most important coding parameter for codes operating on 

the Gaussian channel, because the error performance of the code is an exponentially 

decreasing function with increasing minimum Euclidean distance [75], and under 

ideal conditions, Euclidean distance is also the metric for ML decoding. However, 

channels, such 3...'3 the Rayleigh fading channel or Rician fading channel, have other 

distance measures associated with them. For the Rayleigh fading channel the error 

performance is inversely proportional to the signal-to-noise ratio (SNR) raised to the 

power of the Hamming distance of the code and inversely proportional to the squared 

product distance of the code [22]. However, the maximum likelihood soft decoding 

metric for coherent detection and ideal CSI is Euclidean distance. Therefore, for a 

code to be considered for the Rayleigh fading channel it must not only look the 

same from every codeword with respect to Euclidean distance, but also with respect 

to Hamming and squared product distance. this reason we extend the definition 

of the geometric uniformity of a signal constellation such that the constellation is 

65 
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geometrically uniform with respect to sets of distance measures, which allows the 

error performance of the code to be evaluated in a similar manner to the AWGN 

channel, i.e. by considering only the all-zero codeword. We begin by discussing 

distance measures between points in RN. 

4.1 Distance measures. 

Definition 2 Consider two points x and y in the space RN. A distance measure 

D (x, y) is defined as a function of x and y such that 

D(x, y) = D(y, x) (4.1) 

and 

(4.2) 

Distance measures are very useful in the context of communication systems. Typi­

cally they are used as a parameter or set of parameters characterising the expected 

performance of the system. For example the minimum squared Euclidean distance 

determines the performance of a coded system operating on the Gaussian channel, 

while squared product distance and Hamming distance characterise the error per­

formance of the Rayleigh fading channel. Distance measures are also useful in the 

context of decoding, where with some additional properties to those of equations 

(4.1) and (4.2) they are referred to as metrics. A decoder computes the metric, ap­

propriate to the channel and method of detection, between the received vector and 

each postulated codeword, and selects that codeword which minimises or maximises 

the metric. The form of a distance measure or metric D(x, y) is generally dependent 

on the problem for which it is derived. In the context of communication systems, 

and particularly coded systems, a useful general form for distance measures is as 

follows. First we write the vectors x and y as L-tuples of subvectors of length l: 

x 

y 

(4.3) 

(4.4) 
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and define a distance measure DI(Xil Yi) over the subspace Rl, We then write the 

general form of a distance measure y) as 

D(x, y) = f(d},~, ... ,dl ), 

7 , 

i.e. D(x, y) is a function of the distance measures di given by: 

Equation (4.5) is generaL Four special cases of interest are 

( 4.5) 

(4.6) 

1. Squared Euclidean Denoted by £F(x, y). Here l = 1, Dl(x, y) 

Ix - Yl2 and the function f(dll~" _. ,dL ) is given by 

Hence £F(x, y) 

[, 

f(dl'~'''' ,dL ) = Ldi . 

_1 2 
y~ . 

i=l 

(4.7) 

2. Generalised Denoted by dgp(x, y). Here land Dl are 

arbitrary and f(d ll d21 ••• ,dL ) is defined by: 

L 

f(dI, d21 ••• ,dd = II DI(Xi, Yi). (4.8) 

Note that the product is only over the i such that Xi Yi. 

3. Squared product distance: Denoted by ~(x) y). This is a special case of 

4. 

the generalised product distance where l = 2 and Dl = IXi 12 £F(Xil Yi). 

Hence 

context 

L 

d;(x, y) = II IXi Yil2
, 

;=1 
Xi#Yi 

Denoted by dH(x, y). Here l is 

equal to two. The distance measure DI(Xi, Yi) is 

Yi 

Yi 

Yi 

(4.9) 

but in our 

(4.10) 

(4.11) 
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Squared Euclidean distance is the most common distance measure occurring in com­

munication systems. It characterises the performance of a coded system operating 

on the Gaussian channel and is also the ML decoding metric for both the coher­

ently detected Gaussian channel, and as shown in chapter 2, the metric for decoding 

sequences transmitted over the Rayleigh fading channel assuming ideal CSI. 

Special cases of the generalised product distance occur in the characterisation of 

the error performance of codes operating on the Ray leigh fading channeL For exam­

ple the pairwise probability of error is inversely proportional to the squared product 

distance between code sequences. In chapter 7 on multiple symbol differential de­

tection we present a special case of the generalised product distance important for 

differential detection. 

The Hamming distance as defined by equation (4.11) is a measure of the number 

of subvectors different between two vectors. It is generally useful only when mea­

sured between vectors of elements drawn from a common finite alphabet. Hamming 

distance determines the asymptotic slope of the probability of error characteristic of 

codes operating on the Rayleigh fading channel. Stemming from this discussion we 

make the following definitions: 

Definition 3 We define the set V to denote a set of distance measures over R N , 

(4.12) 

Note that each Di is defined over the same number of dimensions N. 

Definition 4 We will denote the set of distance measures pertinent to the additive 

white Gaussian noise (AWGN) channel by 

(4.13) 

and the set of distance measures pertinent to the Rayleigh fading channel by 

(4.14) 

Now that distance measures are understood we continue the discussion with map­

pings that are invariant under a distance measure or set of distance measures. 
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4.2 Isornetries. 

Consider a real N-dimensional space RN with an associated set of distance measures 

V(x,y) {D1 (x,y) D2(x,y)"o. ,Dn(x,y)} for x ERN, Y RN, where each 

distance measure Di(x, y) is as defined by definition 2. 

Definition 5 An isometry relative to the set of distance measures 

(4.15) 

is a mapping u : RN -+ RN such that} given any two points x E RN) Y E RN) 

(u(x),u(y)) = Di(x,y) for all E i. e. the mapping is distance invariant 

under each distance measure Di in the set V. 

This definition is a generalisation of the definition of an isometry used by Forney 

[41], which is defined as an invariant mapping under Euclidean distance. The two 

are equivalent for V {£f(x, y)}. 

Definition 6 We denote the set U(D) to be the set of isometries in the space RN 

relative to the distance measure D, and U(V) to be the set of isometries relative to 

V. 

Note that the size of U(D) is a function of the number of dimensions N over which 

D is defined. 

Theorem 2 Let V be a set of n d'istance measures, V {Db D2 ,.,. Dn}. The set 

of isometries relative to the set of distance measures V is 

n 

U(V) = n U(Di) (4.16) 
i=l 

Proof: From set theory and definition 5 it is clear that U(V) must be the intersections 

of U(Di)' 

4.2.1 under Euclidean 

First we will discuss isometry mappings under the distance measure of Euclidean 

distance, i.e. V(x, y) = {£f(x, y)}. From the study of geometry, two classes of 

isometries for squared Euclidean distance are: 
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1. Translations: t(x) x + 7, for 7 ERN. 

2. Orthogonal transformations: r(x) = Ax, where A is an orthogonal matrix; i.e., 

A is an N x N matrix such that AT A = I, the identity matrix. It follows 

from the orthogonality of A that detA = ±1. If detA +1, then r is a pure 

rotation; if detA 1, then r is a rotation with reflection and if detA = -1 

and A2 = I then r is a pure Tefledion. 

It can be shown that any isometry u of RN can be uniquely expressed as the com­

position of an orthogonal transformation A with a translation t: 

u(x) AX+7, (4.17) 

where A is an orthogonal matrix and 7 is an element of RN. Figure 1 illustrates 

a translation, a pure rotation, and a pure reflection. For example, in the space R2, 

B 

c 
c 

A 

D 

D 

(a) (b) 

A 
B 

( 

A 
D 

D 
c 

(c) (d) 

1. Isometry mappings of a figure ABeD in (a) The original. (b) A translation. 

(c) A pure anti-clockwise rotation of 90° about the origin. (d) A pure reflection about the vertical 

axis. 

the orthonormal transformation matrices can be shown to be one of the two forms: 
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rotation: Denoted by the R¢ and given by 

(

COS cP 

sin cP 

- sincP ) 

cos cP 
(4.18) 

and represents an anti-clockwise rotation about the origin by the angle cPo It is 

a pure rotation because the determinant of R¢ is det R¢ = cos2 cP sin2 cP L 

For example the 90° anti-clockwise rotation about the origin of figure 4.1( c) is 

represented by the matrix 

( 0 -1) 
R900 = 1 0 . (4.19) 

2, Pure reflection: Denoted by the matrix V¢ 

. ( cos 2cP sin 2cP ) 
V¢= 

sin 2cP - cos 2cP 
(4.20) 

and represents a reflection about the line passing through the origin and 

meeting the horizontal at angle cPo It is a pure reflection because det 

- cos2 cP - sin2 cP and (V¢)2 = [, For example the reflection about the 

vertical axis of figure 4.1 (d) is represented by the matrix 

( -1 0) ,;goo = 0 1 . (4.21) 

4. 2 under generalised product distance. 

Given two vectors, written as a concatenation of length l subvectors, x = {Xl; X2; 

... ; XL}, Y {YIJ .,. j YL} and a distance measure Dl over Rl, the generalised 

product distance from equation (4,8) is defined by 

L 

(4.22) 

From this definition we may readily define three classes of isometries relative to 

1. Permutation mappings p over the subvectors of Xi. Clearly if the subvectors 

of X and yare permuted in the same manner, then the distance measure 
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is invariant by the commutative property of the multiplications in equation 

(4.22). A permutation mapping may be written as 

(4.23) 

where Ap is a permutation matrix. From combinatorics, the number of distinct 

permutation mappings is L!. An example of a permutation matrix Ap for L = 3 

and l = 2 is 

Ap = (~ ~ ~ 1 
001 

(4.24) 

where 1= (~ ~). This instance of Ap swaps the first two clements of the 

vector it operates on. 

2. The mapping U of x = {Xl, X2,'" ,XL} of the form 

( 4.25) 

where each Ui(Xi) is an isometry relative to the distance measure Dl, i.e. 

DI(Ui(Xi)) = DI(Xi). The mapping U is an isometry because 
L 

dgp(u(x) , u(y)) = II 
i=l 

Ui(Xi)7'cUi(Yi) 

L 

II DI(Xi, Yi) 
i=l 

X#Yi 

dgp(x,y). ( 4.26) 

3. Compositions of permutation mapping p and the mappings U defined by equa­

tion (4.25). If both p and U are distance invariant relative to dgp then the maps 

p( u(x)) and u(p(x)) are invariant also. 

4.2.3 Isometries under squared product distance. 

Squared product distance is a special case of the generalised product distance and 

is defined by: 
L 

~(x, y) = II IXi - Yi1 2
, 

i=l 

X#Yi 

(4.27) 
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which implies Dt(Xi, Yi) = d2 (XiJ Yi), the squared Euclidean distance measure, and 

l is typically equal to two. We may combine the results of sections and 4.2.2 

to define the three classes of isometries of the distance measure a; (x, y). 

L Permutations of the length l subvectors of Xi. We this isometry as 

p(X) Apx (4.28) 

where Ap is a permutation matrix. 

2. From section 4.2.1 we know that the isometries of squared Euclidean distance 

are of the form u = Ax + 7, where A is an orthonormal matrix, hence from 

equation (4.25) a second class of isometries of a; (x, y) may be written as 

U(X) +7 ( 4.29) 

where 

Al 

AM 
A2 

(4.30) 

A£ 

and 

71 

72 
7 (4.31 ) 

7£ 

Each Ai is an l x l orthonormal matrix, and each 7i is a length l vector. 

3. The composition of permutations and u: 

U(X) Ap(AMX + 7) 

ApAMX+ Ap7 

AX+71 (4.32) 

which is of the form of equation (4.17), the isometries under Euclidean distance. 

The isometries relative to squared product distance are a subset of the isometries 



74 CHAPTER 4. GEOMETRICALLY UNIFORM CODES 

relative to squared Euclidean distance because det A = det Ap det AM = ±1, and A 

is orthonormal because AT A = (ApAM)T ApAM = I. Hence we have the relationship; 

( 4.33) 

which states that the isometries relative to squared product distance are a subset of 

the isometries relative to squared Euclidean distance. Equality of equation (4.33) is 

met for l = L, i.e. then we have d4 d2
• 

4.2.4 Isometries under Hamming distance. 

Hamming distance is defined by 

( 4.34) 

And similarly to the generalised product distance of section 4.2.2 there are three 

classes of isometries given by 

1. Permutations over the subvectors Xi. 

2. The mapping U of x = {Xl, X2,'" ,XL} of the form 

(4.35) 

where each Ui(Xi) is an isometry relative to the distance measure DH, i.e. 

DH(Ui(Xi)) = DH(Xi), which implies Ui is such that 

( 4.36) 

3. The compositions p(u(x)) and u(p(x)) of permutation mapping p and the 

mappings u. 

An example of an isometry mapping of the form of equation (4.35) and satisfying 

equation (4.36) is Ui = ~. In general we have 

(4.37) 

i.e. the isometries relative to squared product distance are a subset of the isometries 

relative to Hamming distance. 
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4.2,5 Isometries DR" 

The set of distance measures denoted by the 

,",Vl.lua,Llli:> the elements 

V R is defined section 4.1 and 

(4.38) 

and is important for the analysis of the performance of a coherent communication 

operating on the Rayleigh fading channel. From theorem 2 of section 4.2 the 

set of isometries relative to 'DR are 

U(d2
) n U{J;) n U(dH ) 

U{J;) (4.39) 

where the result has been obtained from the application of equations (4.33) and 

(4.37), i.e. the isometries relative to 'DR are the isometries relative to the distance 

measure ct;. 

Symmetries of constellations. 

So far we have discussed mappings over a continuous space that are invariant over 

a distance measure or a set of distance measures. Now we apply these mappings to 

a signal constellation S, a set of discrete points in RN , and define a symmetry of S: 

Definition 7 Let S be a signal constellation in a real N -dimensional space . An 

isometry under' the set of distance measures 'D(x, y) which maps a constellation S 

to itself is called a symmetry of S relative to the set of distance measures V(x, y). 

In general, the set of symmetries of S forms a group under the composition of 

mappings, called the symmetry group r(S, V) of S, relative to the distance measures 

V. \¥hen the set V is clear, or not relevant from the context of the discussion, we 

simply write r(S) to denote the group of symmetries of S. Clearly r(S, V) ~ 

U(S, V). 

The class of conventional balanced M-PSK constellations defined two dimen­

sions, hence l 2 and L = 1, is an example of a of highly symmetrical signal 

constellations. A member of this class is S 8-PSK shown in figure 4.2. The 

symmetries of S relative to the V R are discrete rotations and reflections about 



76 CHAPTER 4. GEOMETRICALLY UNIFORM CODES 

2 V3 
I 
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6 

Figure 4.2: Two example symmetries of an 8-PSK constellation. 

the origin. Equation (4.18) gives the general form of a rotation in R2 and the set 

of rotation symmetries of 8-PSK are the matrices RtPi' where cPi = ~i radians, for 

i = 0,1, ... ,7. Similarly equation (4.20) gives the general form of a reflection in R2 

and the set of reflection symmetries of 8-PSK are the matrices VtPi , where cPi = ~i 

radians, for i = 0,1, ... ,7. A shorthand notation to denote these symmetries are 

the symbols ro, rl, ... ,r7 to represent the corresponding eight rotation symmetries 

and vo, VI, ... ,v7 to represent the corresponding eight reflection symmetries. These 

sixteen symmetries form the symmetry group of S = 8-PSK: 

( 4.40) 

which is isomorphic to the dihedral group D8 (see appendix D reviewing the funda­

mentals of group theory). 

4.3.1 Symmetries of M-PSK. 

In general the symmetries of M-PSK relative to the set of distance measures DR is 

the set of orthogonal transformations 

( 4.41) 

where i = 0,1, ... ,M - 1, the matrices RtPi and VtPi are defined by equations (4.18) 

and (4.20) respectively, and cPi = 2::J. The symmetry group is isomorphic to DM. 
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4,3.2 Symmetries of x M-PSK 

The L-fold Cartesian product of an M-PSK constellation S is a multi-dimensional 

constellation R2L and is written as SL. f(S) is the symmetry group of 

S, then [f(S)]L is a group of symmetries of SL but it is not the complete 

symmetry group of ,Benedetto et al. [3] have shown that the symmetry group of 

an L x 1\;[-PSK constellation relative to the distance measure set DAis isomorphic 

to: 

(4.42) 

where Pn is the symmetric permutation group on a set of n elements, and the 

operator • represents a direct producto The case for M = 4 is special due to the 

additional symmetry resulting from the ability to write a 4-PSK constellation as the 

square of the I-dimensional GU constellation {-1, 1}. The number of elements in 

f(SL) is given by 

{ 
(2L) !22L ).\;[ = 4 

If(SL)1 = 
L!(2M)L M even and M > 4 

( 4.43) 

Theorem 3 The symmetries of Lx M -PSK relative to the set DR are the same as 

the symmetries of Lx 1\1-PSK relative to D A for M > 4, while for 1\1 4, they are 

a subset of D A. i.e. 

f(SL, DR) C ,D A) 1\11 = 4 

f(SL,DR) f(SL,DA) 1\1>4 

Proof: Since U(DR) ~ U(D A) we must have 

have shown that the isometries of DR are of the form 

Clearly translations need not be considered as symmetries of L x 

Equation (4.47) then reduces to linear transformation 

(4,44) 

(4,45) 

(4.47) 

and 1" = o. 

(4.48) 
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where Ap is a permutation matrix over L elements of dimension l, and AM is of the 

form of equation (4.30). For U to be an element of f(SL, DR)' each 2 x 2 submatrix 

A of AM must represent a symmetry of M-PSK given by equation (4.41). Hence 

the number of elements of f(SL, D) is IApllAMI = L! x (2M)L. For lvl> 4 we have 

If(SL, DR)I If(SL, DA)I, and f(SL, DR) C f(S, DA), and therefore 

f(SL, DR) f(SL,DA), M 4, L=l 

r(SL, DR) C f(SL, DA ), M 4, L > I, 

completing the proof. 

( 4.49) 

(4.50) 

(4.51) 

The composition of two symmetries Ul(X) AplAMl and U2(X) = Ap2AM2 may 

be written as 

AplAM1Ap2AM2 X 

(ApI A;21) (Ap2AM1Ap2AMJX 

ApAMX (4.52) 

which is a matrix in the form of equation (4.48) and equation (4.52) may be used 

to define the operation table of the symmetry group of L x M-PSK. 

4.3.3 Notation for symmetries of X 

The codes presented in this chapter are based on Lx 1VJ-PSK constellations and the 

description of the code generators are in terms of vectors of elements of the symmetry 

group of the underlying constellation. vVe have shown that the symmetries of L x M­

PSK relative to DR are of the form 

(4.53) 

where Ap is a permutation matrix over L elements and AM is a matrix of the 

form of equation (4.30), where each submatrix Ai corresponds to a symmetry of 

M-PSK. A shorthand notation is to write a symmetry U as a concatenation of 

two shorthand notations corresponding to Ap and AM respectively. The matrix 
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Ap represents a permutation over L elements and can be written from the group 

algebra of permutation groups as the resultant vector of the permutation operating 

on the vector (1,2, ... ,L). For example the permutation represented by the matrix 

of equation (4.24) may be written as 

p = (2,1,3) (4.54) 

or using a cycle notation [60] as 

p=(1,2) (4.55) 

matrix AM can be described by a vector m of L clements, where each element 

represents a matrix Ai' From equation (4.41) we can represent each by an el­

ement from the set {ro, 1'1, ... ,rM-17 VOl VI, •. ' ,VM-l}' Hence we write u as the 

concatenation of p and m. 

u (4.56) 

An example is 

(4.57) 

permutation. symmetries are not considered then u is written simply as a vector 

over elements of r(SM-PSK). 

4.4 Geometrically uniform signal sets. 

comprehensive work by Forney [41] defines the conditions for geometric unifor-

mity of a signal S in terms of the symmetry mappings of S. Now we extend the 

Forney'S definition of the geometrical uniformity of a signal set to the geometrical 

uniformity of a signal set relative to a set of distance measures V: 

Definition 8 Let S be a signal set and V(x, y) a set of distance measures. The 

signal set S is geometrically uniform relative to V(x, y), if for any two points sand 

Sl in S, there exists a symmetry u relative to V(x, y) of S that maps s to Sl, while 

leaving S invariant, i. e. 

u(s) 

u(S) 

I 
S, 

S. 

(4.58) 

(4.59) 
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For example consider the constellation S = 8-PSK shown in figure 4.2, and the set 

of distance measures DR. The symmetry group relative to DR is given by equation 

(4.40). By inspection there exists a symmetry that maps any point in S to any other 

point in S and therefore 8-PSK is GU with relative to DR. 

4.4.1 Symmetry properties of G U signal sets. 

Here we reproduce, in the context of our definitions, two of the main results by 

Forney [41] on the symmetry properties of GU signals sets. Essentially geometric 

uniformity of S implies that S looks the same when viewed from any of its points. 

Decision regions, 

Given a decoding metric D(x, y), the decision region Rv(s) associated with a point 

s of a signal constellation S is 

Rv(s) = {x E RN : D(x, s) = mins'Es D(x, s'n, ( 4.60) 

I.e. the set of points x in RN where the metric D(x, s) is less than or equal to the 

metric D(x, s') measured between x and any other point s' E S. If D(x, y) == d2 

then the decision region of s is referred to as the Voronoi region of s. 

Theorem 4 If S is a geometrically uniform signal set relative to the distance mea­

sure set D, and sand s' are points in S, then 

u(Rv(s)) = Rv(s') 

where u is a symmetry mapping s to s'. 

Proof: By definition, x E RN is in Rv(s) if and only if 

D(x, s) = min D(x, s") 
s"ES 

(4.61) 

( 4.62) 

If s' is another point in S, then there exists a symmetry u such that u( s) = s', and 

u(S) = S. If u is such a symmetry and x is in Rv(s) thenu(x) is in Rv(s') because 

D(u(x), s') D(u(x), u(s)) 

D(x, s) 

min D(x, S") 
s"ES 

min D( u(x), U(S")) 
s"ES 

min D( u(x), Sill) 
s"'ES 

( 4.63) 
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where as sl/ ranges through S, so does ,c/' = U(S"). 

Distance profiles. 

The distances seen by a point in a constellation S to 

terises the error probability of that point. 

other points in S charac-

Definition 9 The global distance profile associated with any point s E S and a 

distance measure D is the set of distances to all points in S measured by D: 

DP(s, D) {D(s, 8'), 8' E (4.64) 

Theorem 5 Let S be a geometrically uniform constellation relative to the set of 

distance measures V. If D E V then all points 8 E S have the same global distance 

profile DP(s, D). 

Proof: Let 8 and s' be two points Sand u a 

distance profile of 8 equals 

of S mapping s to 8', The 

DP(8, D) {D(s, sl/), sl/ E S} 

{D(u(s), U(81/)), 81/ E S} 

{D( ",', u( sl/), 81/ E S} 

{D(8', V), yES} 

DP(S',D) 

where as 81/ ranges through S so does y = u( s/l). 

(4.65) 

In the context of communications, the importance of theorem 4 is that all decoder 

decision regions have the same shape (assuming equiprobable signal point transmis­

sion). Theorem 5 implies the probability of error is identical for each transmitted 

signal point, and hence the probability of error of the system can be calculated by 

considering only one (arbitrary) signal point. 

4.5 

The symmetry of geometrically uniform constellations have been char-

acterised, and we may induce group properties on the constellation by defining a 

mapping between S a group. Such groups are generating group'" [41]. 
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Definition 10 Let 3 be a geometrically uniform constellation with symmetry group 

f(3). A generating group G(3) of 3 is a subgroup off(3) sufficient to generate 3 

from any single point in 3, i. e. 

\:Iso E 3 {g(so), g E G(3)} = 3 ( 4.66) 

The map from G(3) to 3 induces a group structure on 3 that is isomorphic to 

G(3). In general a GU constellation has multiple generating groups. For example 

the constellation 3 = 8-PSK has exactly two generating groups given by 

( 4.67) 

and 

( 4.68) 

These two groups have a different group structure. The group G1 is isomorphic to 

the abelian group Zs, while G2 is isomorphic to the non-abelian group D4 . 

Benedetto et al. [3] have shown that a necessary and sufficient condition for a 

subgroup G of f(3, V), such that IGI = 131, to be a generating group of 3 is: 

\:Ig E G,g =1= e 

!-lsi E 3 such that g(Si) = Si, 
( 4.69) 

l.e. no element of G can leave unchanged an element of the constellation 3. This 

definition may be used to help construct the generating groups of 3 as will be shown 

in section 4.8.3. 

In general there are exactly two generating groups of an M-PSK constellation. 

One isomorphic to ZM and one isomorphic to DM / 2 • 

4.6 Geometrically uniform constructions. 

A very useful property of geometrically uniform constellations is the ability to con­

struct more geometrically uniform structures starting from a GU constellation [41]. 

The two main constructions are: 

1. Powers of GU constellations: If 3 is a GU constellation then 3 L is also a 

GU constellation. If G(3) is a generating group of 3 then GL (3) is a generating 
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group of 8L , If r(8) is the symmetry group of 8 then in general we have 

(4.70) 

where PL is the symmetric permutation group of L elements. Equation (4.70) 

implies that the complete symmetry group of 8L is not simply the L-fold direct 

product of the symmetry group of 8 and also includes other symmetries. 

2. Subgroups generating groups: If 8 is a GU constellation and 0(8) is a 

generating group of 8 then a normal subgroup G' of a induces a partitioning 

of 8 into 81 and its cosets. The set 8' is geometrically uniform and has G' as 

a generating group. 

The proofs of these constructions are in Forney's paper [41]. The power of construc­

tions 1 and 2 is that they can be applied recursively. Starting from a simple CU 

constellation 8 with a generating group OJ we apply construction 1 to create 

a GU constellation with L times the dimensionality. From construction 2, the sub­

groups of OL define a large set of new geometrically uniform constellations. The 

creation of geometrically uniform trellis codes is based on the application of these 

constructions. 

4.7 Geometrically uniform trellis codes. 

Now that the properties of geometrically uniform signal sets have been established 

we are interested in systematically constructing signal space codes with the same 

properties as a GU constellation. From section of chapter 3 we have shown that 

any signal space code may be written as a subset of a power of an underlying signal 

constellation) Le. 

(4.71) 

A connection may readily be made with geometrically uniform constellations. 'Ne 

have seen from section 4.5 that a geometrically uniform constellation has associated 

with it a generating group 0(8). direct powers aN (8) of G(8) are generating 

groups for the geometrically uniform constellation 8 N, Any subgroup H of aN (8) 

therefore defines a subset of 8N and forms a signal space code. construction 



84 CHAPTER 4. GEOMETRICALLY UNIFORM CODES 

2 of section 4.6 this set of points is geometrically uniform and forms a group code 

[69]. The comprehensive work by Forney and Tl'ott [42] shows how to construct a 

minimal encoder for any group code based on the decomposition into elementary 

constituents, called granules. This decomposition is very general, and includes time­

varying codes. We will reiterate some of the results by Forney and Tl'ott in context 

of our discussion to explain the construction of the codes presented. 

4.7.1 Linear codes over groups. 

Definition 11 A code C is a set of sequences C = {Ck' k E I}) defined on a discrete 

index I. The symbols Ck are drawn from groups Gk ) k E I. 

The code C is linear if the code sequences form a group under component-wise group 

operation. In the context of the codes defined in this chapter the code symbols are 

drawn from a generating group G, i.e. Gk = G and C is called a linear code over G. 

Definition 12 Given a subset J ~ I) the projection PJ : W ---+ W is the map that 

sends a sequence g E W to the sequence hEW defined by 

{ 

9k, if k E J 
hk = 

0, if k tJ- J 
(4.72) 

It can be shown that the image of C under the projection PJ is a subgroup of C 

denoted PJ(C). The subset J is typically an interval. For example, p[m,n) denotes 

the projection onto the interval J = [m, n). In the notation for intervals, a square 

bracket is inclusive and a round bracket is exclusive. Therefore for the example 

interval J = [m, n) we have mE J, while n tJ- J. 

Definition 13 If a linear code C is generated by all code sequences c E C of length 

v + 1 or less then C is referred to as v-controllable. 

The sequences that generate a code are called the code generators. 

Definition 14 The j-controllable subcode of a linear code C is defined as the code 

OJ generated by the sequences in C of length j + 1 or less: 

(4.73) 
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In general we have for a v-controllable code C that 

(4.74) 

which forms a normal series. There is a one-to-one correspondence with the chain 

coset decomposition 

(4.75) 

Given that a linear group code may be decomposed in the manner described by 

equations (4.73) and (4.75) we may construct a group code by appropriately defining 

the sub codes Cj. We use the form of a general feed-forward convolutional encoder 

to define the codes Cj as described in the next section. 

4,7.2 Encoder structure. 

The general structure of a trellis encoder for the codes of our interest is shown in 

figure 4.3. The encoder consists of b binary tapped delay lines. The number of delay 

elements in the ith line is li and ranges from 0 to v. The delay lines are drawn 

in order of increasing length from the top of the diagram downwards. Each tap of 

each delay line is weighted by an element gij from the group G. If a segment of the 

delay line is active (i.e. contains a 1) the corresponding weight contributes to the 

current output by addition using the group operator. We may observe that if the 

encoder is in the zero-state and a one is entered into the ith input at time k then 

the contribution to the output starting at time k is the sequence 

(4.76) 

These sequences are called the code generators. We define the set Si to contain the 

generators of the encoder of length i, and denote the elements of Si by 

( 4.77) 

The purpose of a code search is to select the weights g E G of the tapped delay line 

such that the encoder structure of figure 4.3 forms a linear group code and hence a 

geometrically uniform code over G. We may do so by applying the results of Forney 

and Trott given in section 4.7.1 to figure 4.3. We know from equation (4.74) that a 

group code can be decomposed into chain of subgroups. The ith group in the chain 
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______ ~g00r_ __ ----__ ----------------------------------~ 

~------------------------------~+ 

Figure 4.3: General structure of a convolutional encoder for the generation of trellis codes. 

is composed of all the length i sequences in C. From equation (4.73) it is clear that 

the group Ci cannot contain the elements of the set Sj for j > i. Therefore the 

subcode Co is generated by the elements from the set So and we must select So such 

that it forms a group. The group C1 contains the group Co which is generated by 

the elements from So. Since the elements from S2 and above cannot be in 0 1 we 

know that 0 1 must be formed from the union of 0 0 and its cosets, where the coset 

representatives are the elements generated from S1. Hence S1 expands 0 0 to 0 1 , 

Similarly S2 expands 0 1 to O2 etc. up to Sv expanding OV-l to Ov = C. The code 

construction strategy is therefore to first select the elements of So such that (So) 

forms a subgroup of G. We then have 0 0 = (So)L. The next step is to select the 

elements of SI such that 0 1 = (00 , SI) forms a group etc. until all generators are 

defined. 

An example trellis encoder is shown in figure 4.4. The figure is drawn using a 

shorthand notation of the general encoder of figure 4.3 where the generators have 
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(VI, r2) 

(rOl VI) (V31 VI) I 
-+-

I 

(V3l T2)."1 Ll 
(ro, V3) 

I 

I 

Figure 4.4: An example trellis encoder of a code transmitting 1.5 bits/symbol using S = 2 x 4-

PSK. 

been written directly on the tapped delay lines instead of as multipliers of the lines. 

The generators are elements from the generating group G 2 x 4-PSK isomorphic 

to (D2)2 and given by 

(4.78) 

A notation for the encoder is to describe it by the encoder matrix 

(

(Vb r2) (T.O) TO) 1 
= (TO l Vl) (V3' VI) 

(V3,T2) (TO,V3) 

(4.79) 

and a more compact notation is to write down the generators separated by semi­

colons. 

(4.80) 

The encoder consists of three tapped delay lines, one of length zero, and two of 

length one. The sets So and are 

(4.81) 

and 

(4.82) 

From figure 4.3 we observe that the tapped delay lines oflength zero do not encode 

the incoming bits, and these are referred to as the uncoded input bits. Of the b bits 
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entering the encoder, the number of uncoded bits is denoted bu and the remaining 

be bits are the coded bits. The number of uncoded bits determines the number of 

parallel branches in the trellis diagram of the encoder. set of parallel branches 

forms a group called the parallel transition group P of the code. The parallel group 

is related to So by 

p = (So) (4.83) 

The order of P is 

( 4.84) 

In general if the encoder of figure 4.3 is constructed over an L-dimensional constel­

lation and b input bits are accepted per trellis interval then the spectral efficiency r 

of the code in bits per two-dimensional symbol is 

( 4.85) 

The number of delay elements v in the code is given by 

( 4.86) 

4.7.3 Decoding complexity. 

The most efficient method of maximum likelihood decoding of trellis codes is the 

Viterbi algorithm [38] described in section 3.5.1 of chapter 3. The core of the 

gorithm consists of computing the minimum cumulative metric entering each state. 

This is done by extending the branch metrics of all branches entering a state and 

retaining the minimum. If the trellis has parallel branches then the branch metric 

is the minimum metric from the parallel set to the received vector. The normalised 

decoding complexity has been defined by vVei [77] and others [73] as the number 

of distinct trellis transitions to be dealt with by the decoder per two dimensional 

symbol received. If v is the constraint length of the encoder, be is the number of 

coded bits and L is the number of two dimensional symbols per branch then the 

normalised trellis complexity of a code C is defined by 

~T(C) L . (4.87) 
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We will refer to eT( C) as the normalised trellis complexity or simply the trellis com­

plexity of the code C. This definition ignores parallel branches in the trellis which 

are not very significant when their numbers are small (e.g. two or four). However 

geometrically uniform trellis codes over multidimensional constellations can often 

have large parallel groups and these need to be accounted for when considering the 

decoding complexity. The number of cosets of the parallel group in the code is 

(4.88) 

where G is the generating 

coding complexity by 

and we define the normalised parallel group de-

(4.89) 

where Np is the number of cosets of P in the code, and e(p) is the decoding com­

plexity of P. We the modified normalised decoding complexity of a trellis 

code by 

e(C) = eT(C) + ep(C) (4.90) 

i.e. the sum of the trellis complexity and the parallel group complexity. 

7.4 of e(p). 

To decode the parallel group P 1 we need to compute the metric between each element 

in P and the received vector r. However since is a subgroup of G it forms a linear 

subcode and is written as a trellis. In general this trellis is time-varying and starts 

and ends in the zero state. If at time k the has Tk states and Bk branches 

then the decoding complexity of the trellis is 

e(p) (4.91) 
k 
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For example if P is the subset of points from a 6 x 4-PSK constellation generated 

by the nine generators 

P = ((r2, r2, r2, r2, ro, ro), 

(rO,r2,rO,r2,rO,rO), 

(rl,rl,rl,rl,rO,rO), 

(r2,rl,r2,rl,rO,rO), 

(ro,ro,rO,rO,r2,r2), 

(ro,ro,ro,rO,rO,r2), 

(ro, ro, ro, ro, rl, rl), 

(ro,ro,rO,rO,r2,rl), 

(rO,rO,r2,r2,r2,r2)) 

( 4.92) 

then there are a total of 512 points. Clearly an exhaustive comparison to find 

the minimum distance element is computationally expensive. Alternatively we may 

construct an equivalent trellis representation of P. To do so we need to find the 

minimal representation as described in the paper by Forney and Trott [42]. For the 

example set of generators of equation (4.92), the minimal representation is described 

by the set of generators given by 

P= ((r2' r2, r2, r2, ro, ro), 

(r2,r2,rO,rO,ro,ro), 

(rl,rO,rl,rO,rO,ro), 

(rO,rl,r2,rO,rO,ro), 

(rO,r2,rl,r2,rO,rO), 
(4.93) 

(rO,rO,rl,rl,rO,rO), 

(ro,ro,rO,rO,r2,rO), 

(ro,ro,rO,rO,rl,rO), 

(ro,ro,ro,rO,rO,r2), 

(ro,ro,ro,rO,rO,rl))' 

The skeleton of the corresponding trellis diagram of the group P is shown in figure 

4.5 and the minimum squared Euclidean distance to the set P may now be found by 

applying the VA to this trellis. The number of metric computations and comparisons 

now required is reduced to ~(P) = 4 + 16 + 16 + 4 + 4 + 4 = 48, which is a factor of 

about 11 less complex than the direct implementation. A coset of P may be written 
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Figure 4,5: The trellis structure for the set P. 

as pI = gP and its trellis is identical to that of with each branch modified by the 

coset representative g, hence ~(PI) = ~(P), In general a reduction in complexity is 

possible only if IPI is large. 

The next section describes the algorithms used to construct generating groups 

and to search for good geometrically uniform codes for the Rayleigh fading channel. 

8 Code construction algorithms. 

We have presented how the code generators must be chosen such that the convolu­

tional encoder of figure 4.3 generates a geometrically uniform trellis code. In this 

section we present algorithms that efficiently implement the code search. There are 

three main steps: 

1. construction of the generating groups of the underlying geometrically uni-

form constellation. The trellis code search is based on the generating groups. 

The expansion of each generating group G(S) into a subgroup tree. This step 

is a pre computation for the code search algorithm. 

3. The trellis code search over the group G(S). 

Each of the the three construction steps relies on the construction of subgroups 

of a group. We first present a method of constructing subgroups of a group by the 
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technique of cyclic extension, and then discuss each of the above three steps in detail 

in sections 4.8.3, 4.8.2, 4.8.4 respectively. 

4.8.1 Subgroup by cyclic extension. 

A computationally efficient technique for constructing subgroups of a group is by 

the method of cyclic extension [9]. This is a general method that constructs a new 

subgroup by starting with a known subgroup and adding a well-chosen generator. In 

the code constructions we are concerned only with subgroups with orders that are 

powers of two, and only use expansions that double the size of the starting group. 

This construction is as follows: 

Definition 15 Doubling construction: If G 'is a group and H is a subgroup of G I 

then the set H' = {H, hH} forms a group of order 21HI provided h satisfies the three 

conditions: 

and 

hH=Hh 

(4.94) 

(4.95) 

(4.96) 

.From the last condition we need only consider those elements h E G that normalise 

H. The set of elements that normalises H forms a group [60]. 

Definition 16 The normalising group N(H, G) of a subgroup H of G is defined as 

N(H, G) = {g E G: gH Hg} (4.97) 

If N(H, G) G then H is a normal subgroup of G. 

The doubling construction can be used recursively to construct all subgroups of 

a group that are an order of a power of 2. A starting subgroup always exists, namely 

the trivial subgroup H = {e}. The recursive construction forms a subgroup tree of a 

group G. 
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4.8 trees. 

The application of the doubling construction to the trivial group H = {e} forms 

subgroups of order two. The application of the doubling construction to these groups 

produces subgroups of order four etc. The resulting groups may conveniently be 

drawn a tree structure, where the ith level of the tree contains those subgroups of 

order and the branches connecting the levels represent the generators expanding 

the group from level i to i L The algorithm of table 4.1 which is a specialisation of 

the cyclic extension method constructs the subgroup tree of a group G of order 211, 

[9]. algorithm works top down by expanding each subgroup at level i using the 

doubling construction of definition 15 and placing the resulting subgroups at level 

t L set A contains the candidate generators for the group at level i under 

consideration and elements of A are eliminated under the following conditions: 

L The elements not in the normalising group N(Ui1 G). 

If U ij is a subgroup of a group U(i+l)k on level i 1 then the elements of U(i+1)k 

are eliminated from A thus avoiding the construction of identical groups. 

algorithm begins with Uo - {{ e}} and works down to level n, ending with 

Un {G}. 

An example of a binary subgroup tree of is shown in figure 4.6, where the 

group G = {ro, rlJ r2, ra, 1)0, Vb V2, Va}, the symmetries of 4-PSK. Note that the ith 

level contains those subgroups of order and that a path from level 0 to level n 

defines a subgroup chain of G. 

8.3 Construction of ,",-'-'"A.""'''' groups. 

The generating groups of a constellation 8 are those subgroups of the symmetry 

group ,(8) with the properties given by equation (4.66). To find these generating 

groups we may simply scan the appropriate level of the binary subgroup tree of 

the symmetry group. However this is inefficient because the size of a subgroup tree 

grows exponentially with the size of the symmetry group of the constellation. A more 

efficient technique is to use a modification of the binary subgroup tree generation 

algorithm of table 4.1 that only generates those subgroups satisfying the criteria 

of a generating group. Another reduction in complexity is possible because we are 
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Input G, a group of order 2n 

Output : The binary subgroup tree of G, described by the set U of sets of 

subgroups Ui at level i, where 2i is the order of the subgroups in Ui. 

begin 

Set Uo = {{e}} 

for i = 0 to n do 

for each subgroup Uij in Ui do 

A := N(Uij, G) - Uij 

for each subgroup UCi+1)k in U i+1 do 

if Uij ~ UCi+1)k then A := A UCHl)k end if 

end for 

while IAI > 0 do 

choose 9 E A 

if g2 E Uij then 

U i +1 := Ui +1 + (Uij ) g) 

A:= A- (Uij,g) 

else 

A :=A- 9 

end while 

end for 

end for 

Output U = {Ui : i 0,1, ... ,n} 

end. 

Table : Algorithm for constructing a binary subgroup tree. 

interested in the generating groups only for the construction of codes. Clearly if two 

generating groups are such that they have the same group structure and distance 

properties then they will produce codes with the same distance properties and hence 
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1'1 

Va '1'1 

Vo 

fro, '1'1, '1'2, 'fa, 
Vo, Vb V2, 'Vs} 

9,5 

Figure 4.6: An example binary subgroup tree of the group G {ro, 1'11 1'2,1'3, 'Vo, VI, 'V2" V3}. 

only one of the two generating groups needs to be considered, The following theorem 

identifies such groups. 

Theorem () Two generating groups GI (8) and G2 (8) of a signal set 8 have .0 
the same group str'ucture and 2) the same distance structure if for some element 

,E f(8): 

Proof 1) The mapping a(x) = ',-lX, is an isomorphism hence 

isomorphic 

8 and hence 

have the same group structure. 2) The element, is a 

distance structure of G1 is the same as that 

to be congruent. 

(4.98) 

of 

are 

For example consider two generating groups of the 2 x 4-PSK signal constellation, 

(4.99) 

and 

(4.100) 
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Clearly G1 and G2 have the same structure and distance properties and can be con­

sidered equivalent for code generation purposes. The isomorphism is G1 G2 'Y, 

for 'Y = (1,2), i.e. the swapping of coordinates. The algorithm we have used to 

construct the generating groups of a constellation is based on subgroup tree 

algorithm and is a modification of that used by Benedetto et at. [3], to include the­

orem 6 such that no congruent generating groups are constructed. The algorithm is 

shown in table 4.2 In general the number of generating groups constructed by the 

algorithm of table 4.2 is too large to be practical for an exhaustive code search and 

the number considered in practice needs to be reduced. Typically this is done by 

considering only specific classes of generating groups. classes considered for the 

code search results we present are discussed on a case by case basis section 4.9. 



OODE OONSTRUOTION ALGORITHMS. 

Input : r(S), the symmetry group of the signal constellation S. 

Output : A set of generating 

begin 

Eliminate from r(S) all the different from the identity which 

leave unchanged at least one symbol of S. Call the resulting subset r'(S). 

Set Uo = {{e}} 

for i = 0 to n do 

for each subgroup Uij Ui do 

A ;= [N(Uij, r(S)) Uij] n r'(S) 

for each subgroup UCi+l)k in Ui+1 do 

if Uij <;; UCi+l)k then A := A - UCi+1)k 

if Uij 'Y-1UCi+1)k'Y then A := A - 'Y-1U(i+1)k'Y 

end 

while IAI > 0 do 

choose 9 E A 

if g2 E Uij then 

Ui+1 Ui+1 + (Uij, g) 

A A (Uij,g) 

else 

A:= A {g} 

if 

end while 

end 

end 

Output 9 Un 

97 

Table An algorithm to construct the generating groups of a constellation S from the 

symmetry r(S). 
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4.8.4 Code Algorithm. 

We have described the necessary properties of the code generators such that the 

encoder forms a group code. Before these can be applied we to decide on the 

exact structure of the encoder, i.e. the number of input bits b and the lengths of 

the tapped delay lines li. The best configuration of the encoder to give codes with 

a high Hamming distance is to have the lengths of the delay lines as nearly equal 

as possible. To satisfy this constraint we have in general for a state code and b 

input bits, a set of tapped delay lines with the following lengths: 

number length 

b v mod b lv/bJ 
( 4.101) 

v mod b lv/bJ + 1 

e.g. for b = 2 and v 5 we have one line with two delay elements and one line 

with three delay elements. The parameter b is selected such as to give the desired 

spectral efficiency, as given by equation (4.85). For example if we desire a spectral 

efficiency of r = 2 bits/symbol and we have L = 2, then a value of b 4 is 

needed. The parameter v is selected based on two opposing trade-offs of coding gain 

versus decoding complexity. In general the decoding complexity doubles with each 

increase in constraint length v, while coding gain has a diminishing return. Table 

4.3 shows the outline of the code search algorithm used for the generation of the 

codes presented in section 4.9. 

8.5 Code evaluation 

performance of a code on the Rayleigh fading channel is a function of several pa­

rameters. The slope of the probability of error curve is determined by the Hamming 

distance, while the product distance d~ varies the vertical positioning of the curve. 

In chapter 3 we showed that the probability of error of a code may be bounded by 

the union bound given by 

Perr(C) = (4.102) 

where p( Co -+ Cj) is the probability of confusing codeword Cj for codeword Co and 

that this equation at high SNR is dominated by the term with the lowest Hamming 
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Input :G(S), a generating group of S, 

a list of values for ISjl, 1 ~ j ~ lJ. 

: A set of code generators Sj, 1 ~ j lJ, 

begin 

A {e}; 

j 1 to lJ do 

A = A[O,j-ljA[l,jj 

i = 1 to 10g21Sjl 

choose an element a E Gj (S), a ¢ E A; 

A=A+aA 

if the distance properties of subcode A are worse than the best found goto III 

Sj = 6j + a 

end for 

end for 

end. 

Table 4.3: Trellis code search algorithm. 

distance. To compare codes we compute the minimum Hamming distance, and the 

associated weighted product distance defined by equation (3.27) of chapter If 

there is a tie we use equation (4.102) to select the better code, Equation (4,102) 

effectively makes a decision on the higher diversity i.e, on the sequences that 

have a Hamming distance greater than the minimum Hamming distance from the 

all-zero codeword. 

4.9 

In this section we present codes discovered by the application of the algorithm of the 

section 4.8.4. We have investigated codes with spectral efficiencies of 1 bit/symbol 

and 2 bits/symbol. For each case we describe the generating groups searched. The 

code tables list the properties of the best code discovered for each encoding scheme. 
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The generators corresponding to the codes listed have been placed in appendix E. 

4.9.1 transmitting 1 bit / symbol. 

We first investigate codes transmitting 1 bit/symboL These codes are of interest 

as they may be mapped onto 2 bit/symbol 16-QAM codes with distance properties 

better than that of equivalent complexity 2 bit/symbol encoders. Table 4.4 presents 

the codes over the constellation S = 1 x 4-PSK with the best distance properties, 

for v = 1 to v = 8. These codes do not have parallel transitions and are constructed 

over the generating group isomorphic to D 2 • Note that the Hamming distance of the 

codes meet the bound of equation (3.33) of chapter 3 on the maximum attainable 

Hamming distance for a given value of L and constraint length v, for up to v = 7. 

The minimum squared product distance is high and typically doubles with each 

increase in constraint length. The weighted squared product distance of the codes 

is on average less than the minimum squared product distance, except for v 1 

and v 2, and implies a degree of multiplicity. As an interesting aside, in table 

1 bit/symbol 1 x 4-PSK 

v dH d2 
p d~w ~p(C) ~T(C) plot 

1 2 8 8.00 0 4 

2 0 0 8 8 

3 0 16 16 

4 5 128 .2 0 32 32 

5 6 256 64.0 0 64 64 

6 7 512 0 128 128 

7 8 1024 0 256 256 

8 8 8192 0 512 512 

4.4: Properties of 1 x 4-PSK codes transmitting 1 bit/symboL 

4.5 we have listed the properties of codes also transmitting 1 bit/symbol but using 

the constellation S = 1 X 8-PSK, i.e. a double of size, relative to 4-PSK. Although 

we may intuitively expect that an increase in size of the underlying alphabet of the 

code allows for a greater Hamming distance for a given constraint length, this is not 
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true. The maximum Hamming distance is bounded by equation (3.33) in terms of 

v and and not M. As table 4.5 shows, all of the Hamming distances achieved 

using 8-PSK are the same as for 4-PSK, however a significant improvement in the 

minimum squared product distance of the codes is attained. It is interesting to note 

that all of the 1 x 8-PSK codes have a multiplicity of one. The decoding complexity 

does not change from 1 x 4-PSK to 1 X 8-PSK. The next set of results are also codes 

1 bit/symbol 1 x 8-PSK 

v ~H d2 
p a;w (p(C) (T(C) ((C) plot 

1 2 13.66 13.66 0 4 4 -

2 3 54.6 54.6 0 8 8 -

3 4 186.5 186.,5 0 16 16 -

4 5 637 637 I 0 32 32 

5 6 2174 2174 0 64 64 fig. 4.7, curve 5 

6 7 8696 8696 0 128 128 -

7 8 5094 5094 0 256 256 fig. 4.7, curve 7 

8 9 20380 20380 0 512 512 fig. 4.7, curve 8 

Table 4.5: Properties of 1 X 8-PSK codes transmitting 1 bit/symboL 

transmitting 1 bit/symbol but over the constellation S = 2 x 4-PSK, i.e. now we 

have L 2. With a change in L we can expect a change in the maximum attainable 

Hamming distance of the code. From table of chapter 3 we observe that for 

even values of v, the maximum attainable Hamming distance improves over L 1 

codes by one, while remaining the same for odd values of v. The codes discovered 

and listed in table 4.6 indeed reflect this fact. We observe that the 2 x 4-PSK codes 

improve over 1 x 4-PSK codes in two ways. For even values of v the codes over 

2 x 4-PSK have a Hamming distance 1 higher than codes over 1 x 4-PSK, while for 

odd v the Hamming distances are the same, but the squared product is improved 

by a factor of two. l\ote that the decoding complexities are the same for 1 x 4-

PSK as they are are for 2 x 4-PSK for the same values of constraint length v. The 

codes searches were performed over all generating groups of 2 x 4-PSK constructed 

by the algorithm of table 4.2, and also over (Z4)2 and (D2)2 individually. It was 

found that all of the best codes are over the generating group isomorphic to (D2)2. 
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Although we have not listed the codes, the case of transmitting 1 bit/symbol using 

the constellation S 2 x 8-PSK, similar to going from 1 x 4-PSK to 1 x 8-PSK 

improves the squared product distance of the codes further, but not the Hamming 

distance. 

The last set of codes are over the constellation S - 3 x 4-PSK. Again an increase 

in L changes the maximum attainable Hamming distance of the codes as listed in 

table 3.5. However unlike moving from LIto L 2, moving from L 2 to L = 3 

is not necessarily an advantage for all values of v. For v = I, the expected Hamming 

distance is three, which is better than L = 1 and L 2. For v = 2 the expected 

Hamming distance is still three, while for L 2 it is four and therefore is not an 

improvement. However for v 3, the expected Hamming distance is six which does 

improve over L 2. Table 4.7 lists the codes discovered over S = 3 x 4-PSK. We 

observe that not all of the codes over 3 x 4-PSK meet the bound of equation (3.33). 

For values of v = 1, v 

of v 3, v = 6 and v 

2, v = 4 and v 5 the bound is met, while for values 

7 the codes are one short of the bound. Consequently 

the only improvement over the codes discussed so far is for the case of v 1, 

where a Hamming distance of three is attained. Note also that the average decoding 

complexity for a given number of states is now greater than for L = 1 and L 2. 

In figure 4.7 we have plotted the upperbounds on the pairwise probability of 

error of the best codes at each constraint length. The curves have been computed 

using the union bound equation (3.25) of chapter 3 combined with the exact pairwise 

1 bit/symbol 2 x 4-PSK 

V dH rtf p ct;w ~p(C) (T(C) ((C) plot 

1 2 16 16.00 4 2 6 -

2 4 32 12.80 0 8 8 fig. 4.7, curve 2 

3 4 128 128.00 0 16 16 -

4 6 256 36.57 0 32 32 fig. 4.7, curve 4 

6 1024 512.00 0 4 64 

8 512 64.5 0 128 128 fig, 4.7, curve 6 

7 8 4096 819.2 0 256 256 

8 9 1024 334 0 256 256 -

Table 4.6: Properties of 2 x 4-PSK codes transmitting 1 bit/symbol. 
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1 bit/symbol 3 x 4-PSK 

V dH d; a;w e, (C) eT(C) e(C) plot 

1 3 16 5.33 1.33 6.66 fig. 4.7, curve 1 

2 3 64 64.00 10.67 5.33 16 -
3 5 64 9.06 0 .33 21.33 fig. 4.7, curve 3 

'" 

4 6 256 22.8 0 42.66 42.66 -

5 6 2048 2048 0 85.3 85.3 -

6 7 256 46 0 1170.7 170.7 -

7 8 1024 146 0 341.3 341.3 

8 9 2048 188 0 682.6 682.6 -

Table 4,7: Properties of 3 x 4-PSK codes transmitting 1 bit/symbol. 

probability of error term derived in chapter 2 assuming ideal interleaving and ideal 

CSt As we have shown for optimal performance, sufficient interleaving is required 

such that the fading affecting the code symbols is independent from symbol to 

symboL Ideal CSI is justified for the comparison of codes, as any non-ideal estimate 

of the channel state information leads only to a loss of a few dB in performance 

(except for differential detection, which is discussed in chapter 7). Clearly each 

increase in constraint length of the code leads to a diminishing increase in coding 

gain. The amount of coding gain is a function of the the BER considered. 

4.9.2 Codes transmitting 2 bits/symboL 

Now we examine the codes found transmitting at the most conventional rate of 2 

bits/symbol. The increase in spectral efficiency implies a lower attainable Hamming 

distance of the codes. First we examine the conventional form of trellis codes, 

transmitting one symbol per branch. Table 4.8 lists the properties of the codes 

discovered. All of codes meet the bound of equation (3.33) on the maximum 

attainable Hamming distance for L 2 and a rate of 2 bits/symbol. Similar code 

searches over 1 x 8-PSK have been performed by Schlegel Costello [62] and 

Dingman [18], which attain similar distance properties as those of table 4.8. By 

expanding the signal constellation to S = 1 x 16-PSK we may improve upon the 

squared product distance similarly to the case of transmitting 1 bit per symbol using 
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Figure 4.7: Upperbounds on geometrically uniform trellis codes transmitting 1 bit/symbol over 

the Rayleigh fading channel. 

2 bits/symbol 1 x 8-PSK 

V dH a; a;w ~p(C) ~T(C) ~(C) plot 

1 1 4 4 8 4 12 -

2 2 2 0.67 0 16 16 -

3 2 13.66 13.66 0 32 32 -

4 3 4.686 1.12 0 0 64 -

5 3 9.373 5.73 0 128 128 -

6 4 5.49 1.39 0 256 256 -

7 4 37.5 23.4 0 512 512 -

8 5 13.67 3.43 0 1024 1024 -

Table 4.8: 1 x 8-PSK codes transmitting 2 bit/symbol. 
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These codes are listed in table 4.9. Typically the improvement in product 

distance is about at least a factor of two. By transmitting more than one symbol 

2 bits/symbol 1 x 16-PSK 
-2 ! 

~W (p(C) eT(C) ((C) plot v tH dp 

1 1 4 41 8 4 12 -
2 2 I 3,41 ' 1 0 16 I 16 -I 

3 2 15.4 15,4 0 32 -

14 3 9,442 0 64 64 

5 3 61.6 61.6 0 128 128 -

6 4 16.9 6.73 0 256 

7 4 170.2 170.2 0 512 -
8 5 38,97 10.13 0 512 512 

Table 4.9: 1 x 16-PSK codes transmitting 2 bit/symbol. 

per trellis branch we can take advantage of the higher expected Hamming distance 

predicted by equation (3.33). Table 4.10 lists the code properties of codes over 

2 x 8-PSK. generating group considered is (D4)2. By using 2 x 8-PSK we have 

improved upon the diversities of codes over 1 x 8-PSK for the constraint lengths 

v = 1, and v 5. The v 1 code of table 4.10 is equivalent to the code described 

by Divsalar and Simon [23]. For all cases where the 2 x 8-PSK codes have the 

same Hamming distance as the 1 x 8-PSK codes, they improve upon the squared 

product distance. It must be noted that the decoding complexity of the 2 x 8-PSK 

codes for the same constraint length is twice (for v 2: 3) as high as for codes over 

1 x 8 or 1 x 16, unlike the case of 1 x 4 and 2 x 4 transmitting one bit per symbol 

which have equal complexity. This means that for a given decoding complexity the 

codes over 1 x 8 are in fact better than the codes over 2 x 8-PSK. Table 1 lists 

the properties of codes over 2 x 16-PSK. These codes all improve upon the squared 

product distance compared to the codes over 2 x 8-PSK, Also the code with v = 4 

now reaches the maximum possible Hamming distance for L = 2, and v 4, unlike 

the codes over 2 x 8-PSK. The decoding complexity is the same as for codes over 

2 x 8-PSK, and therefore an expansion to 16-PSK represents a good improvement. 

In figure 4.8 we have plotted the upperbounds on the probability of error of the 
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2 bits/symbol 2 x 8-PSK 

V dH d2 d;w ~p(C) ~T(C) f~ plot p 

1 2 2 I 0.28 16 2 18 -

2 2 4 1.78 32 8 40 

3 2 16 16.00 32 32 64 fig. 4.8, curve 3 

4 3 8 1.59 0 128 128 -

5 4 0.687 0.197 0 256 256 

6 4 8.00 1.43 0 512 512 -
7 4 159.2 61.7 0 1024 I 1024 

8 5 16.0 3.5 0 2048 2048 -

Table 4.10: 2 x 8-PSK codes transmitting 2 bit/symboL 

,/symh 

v dH a; d;w ~p(C) ~T(C) ~(C) plot 

1 2 2 0.39 16 2 18 fig. 4.8, curve 1 

2. 2 4 1.77 32 8 40 fig. 4.8, curve 2 

3 2 16 16.00 64 32 96 -

4 4 0.893 0.17 0 128 128 fig. 4.8, curve 4 

5 4 2 0.457 0 256 256 fig. 4.8, curve 5 

6 4 24.4 10.6 0 512 512 fig. 4.8, curve 6 

7 4 246.3 246.3 1024 1024 fig. 4.8, curve 7 

8 5 37.5 13.8 8 2048 fig. 4.8, curve 8 

Table 4.11: 2 x 16-PSK codes transmitting 2 bits/symbol. 

best codes transmitting 2 bits/symbol for each values of v. These curves have been 

computed in the same manner as for the codes transmitting 1 bit per symbol and 

assume ideal interleaving. Good coding gains are achieved. These codes improve 

upon the codes of [8] and [18]. 

4.1 Summary. 

For the additive white Gaussian noise channel, the measure determining decoding 

decisions and error performance is Euclidean distance the measure over which 
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Figure 4.8: Upperbounds on geometrically uniform trellis codes transmitting 2 bits/symbol 

over the Rayleigh fading channel. 

geometric uniformity has been defined by Forney. For other channels, such as the 

Rayleigh fading channel, the performance measure is no longer Euclidean distance, 

but rather Hamming distance and product distance. In this chapter we have gener­

alised the definition of geometric uniformity such that the signal sets considered are 

geometrically uniform relative to a set of distance measures. With such a definition, 

codes can be constructed such that they have the desirable property of uniform error 

probability on the Rayleigh fading channel. 

We have shown that to the set of distance measures Dn important for the 

Rayleigh fading channel, the symmetries of Lx .III-PSK constellations are the same 

as those for the Gaussian channel. With these symmetries we have constructed some 

good geometrically uniform codes over L x M-PSK constellations for the Rayleigh 

fading channel which improve upon codes transmitting one symbol per branch pub­

lished in the current literature [8],[52],[62],[82]. We have found that expanding the 
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signal set by more than a factor of two over the size required for uncoded modulation 

leads to codes that have significantly better fading channel distance properties. 
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G rically partitions. 

In chapter 4 we applied the theory of geometrically uniform codes to design good 

Gt:" trellis codes for the Rayleigh fading channel. The practical use of these codes 

is limited by the increase in complexity of maximum likelihood decoding with the 

increasing number of code states. One alternative is to use the combination of a 

suboptimal decoder that has less complexity than a maximum likelihood encoder, 

and a high complexity code. With a careful design it is possible to perform better 

(for the same level of complexity) with this combination than a ML decoded code. 

The technique of multi-level coding [10],[35],[44],[57],[65],[71] is such an alternative. 

In a multi-level coding scheme, the underlying signal constellation 81 is partitioned 

into an l-level hierarchy or tree of subsets. set of component codes C1 , C2 , •• , , Cl 

is defined, one on each level such that the code at level l selects a subset of points 

8 1 - 1 from the underlying constellation 81, The encoder at levell -1 selects a subset 

from 81- 1 etc. until the encoder at level one selects only a point to be transmitted. 

The overall code is not decoded as a whole, as would be done in a ML decoding 

scheme, but instead it is decoded in the same manner as it was constructed In 

a hierarchical manneL The top level decoder Dl corresponding to code Cl decides 

from which subset the received point was transmitted, outputs the corresponding 

data bits, and passes the decision information to the next decoder . The decoder 

DI- 1 does likewise, and the process is repeated until the codeword is entirely decoded. 

Effectively each decoder is concerned only with selecting which sequence of sets of 

points was transmitted by the corresponding encoder. The overall error rate of the 

system will be dominated by the worst component code in the hierarchy. 

109 
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In this chapter we lay the theoretical groundwork for the design of good multi­

level codes based on the extension of the definition of geometric uniformity. We 

extend the concept of geometric uniformity to a set of subsets of points of a constel­

lation, such that the distance properties seen from any subset are the same as seen 

from any other set. With such a defmition each level of the multi-level code has all 

of the desirable properties of a GU code and as such the search strategy and the 

evaluation of the error performance of each component code may be approached in 

the same manner as that of a GU code. Chapter 6 looks at specific multi-level codes 

based on GU partitions designed for the Rayleigh fading channel. 

5.1 Signal Set Partitions. 

Consider a constellation S, not neces:mrily GU, with the symmetry group r(S) under 

the set of distance measures V, where r(S) and V are as defined in chapter 4. 

Definition 17 A uniform partition Sp of S is a set of disjoint subsets of S written 

as Sp = {So, SI, ... ,Sn-l} such that for all i, ISil = ISol. The order of Sp is 

ISpl = ISI/ISol· 

For example, figure 5.1 shows two different partitions of an 8-PSK constellation. 

The partition of figure 5.1{a) is written as SPl = {{O, 4}, {I, 5}, {2, 6}, {3, 7}} and 

o 

2 

3 

(a) Partition SPl (b) Partition S P2 

Figure 5.1: Two four-way partitions of an 8-PSK constellation. 

the partition of figure 5.1{b) is written as SP2 = {{O, I}, {2, 3}, {4, 5}, {5, 7}}. Both 
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partitions are four-way and we have ISPII = ISP21 = 4. By inspection, the partitions 

exhibit symmetry. 

Definition 18 We define a symmetry u of Sp as a symmetry of S that maps Sp 

onto itself, i.e. u(Sp) = SP. We w1"ite the set of all symmetries of Sp as U(Sp). 

For example the set of symmetries of SPt of figure 5.1(a) are 

where ri and Vi represent rotation and reflection mappings as introduced in section 

4.3 of chapter 4, and the symmetri(~s of S P2 are 

(5.2) 

Note that the mappings such as rI, r3, etc. are not symmetries of SP2 because they 

do not map subsets onto subsets. In general, more than one symmetry may exist 

that generates the same mapping from Sp to Sp. For example the symmetries rl 

and r5 of SPI both map subsets 0 t) 1, 1 to 2, 2 to 3, and 3 to 0 and therefore they 

are equivalent. 

Definition 19 An equivalence relc,tion = on U(Sp) is 

= = {( u, u') I u(Sp) = u'(Sp)} (5.3) 

z.e. two symmetries are equivalent if they both generate the same mapping on Sp. 

From elementary group theory [60J, each symmetry u has an associated equivalence 

class [u], defined as the set of eh:ments in U (Sp) that are equivalent under the 

equivalence relation defined by equation (5.3). For example the set [rI,r5J forms an 

equivalence class of U(SPl) since rl and r5 are equivalent symmetries. The symmetry 

classes of U(Sp) form a group [60J. 

Definition 20 The symmetry gro")'p r(sp) of Sp is the group formed by the set of 

all equivalence classes ofU(Sp). 

For example the symmetry group of SPI of figure 5.1(a) is 

(5.4) 
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The operation table of r(SpJ is shown in table 5.1. By inspection r(SP1) is isomor­

phic to the dihedral group D4. The symmetry group of SP2 is 

(5.5) 

and is also isomorphic to D4 . 

• [ro, r4] h,r5] [r2' r6] [r3, r7] [VO,V4] [VI, V5] [V2l V6] [V3, V7] 

[ro, r4] [ro, r4] h,r5] [r2, r6] [r3l r7] [Va, V4] [VI, V5] [V2l V6] [V3l V7] 

h ,r5] h,r5] h ,r6] h,r7] [rOl r4] [V3' V7] [Va, V4] [VI, V5] [V2l V6] 

h,r6] h,r6] h,r7] [ro, r4] [rll r5] [V2l V6] [V3' V7] [Va, V4] [VI) V5] 

h, r 7] h ,r7] [rOl r4] h, r5] [r2l r6] [VIl V5] [V2l V6] [V3l V7] [Va, V4] 

[Va, V4] [Va, VI] [VIl V5] [V2l V6] [V3l V7] [rol r4] [rll r5] [r2l r6] [r3, r7] 

[VIl V5] [VI l V5] [V2l V6] [V3l V7] [Va, V4] [r3' r7] [rOl r4] h ,r5] [r2' r6] 

[V2l V6] [V2l V6] [V3l V7] [Val V4] [VI, V5] [r2l r6] h ,r7] [ro, r4] [rll r5] 

[V3l V7] [V3l V7] [Val V4] [VIl V5] [V2l V6] [rll r5] [r2l r6] [r3' r7] [rOl r4] 

Table 5.1: Operation table of the group formed by the equivalence classes ofthe symmetries of 

5.1.1 Distance measures to partitions. 

Section 4.1 defined a general distance measure D(X, y) between two points in Euclid­

ean space RN. We generalise this definition further. Given a set of points S in RN 

we define a distance measure from a point x to the set of points S. 

Definition 21 A distance measure D(x, S) between a point x E RN and a set of 

points S, where lSI = n, is defined by 

(5.6) 

where each Di (x, Si) is a distance measure between the point x and the point Si E S, 

and f (.) is an arbitrary function. 

For example the distance measure 

n 
f(x , S) = L e-llx-SiI12/2No (5.7) 

i=1 
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is used for the soft-decision decoding of transmitted partitions as discussed in section 

5,6.1. The distance measures Di(x, 8i) for the example of equation (5.7) are therefore 

given by 

(5.8) 

Theorem 7 Consider a distance measure D(x, S) as defined by equation (5.6). 

If the mapping U is distance invariant under the set of distance measures D 

{Dl' D2, . ,. ,Dn} then the measure D(x, S) is distance invariant under U also. 

Proof: For D(x, S) to be distance invariant under U we need to show that D(u(x), u(S)) 

D(x,8). 

D(u(x), u(8)) f(D1(u(x), u(8d), D2(U(X), u(sz))" .. ,Dn(u(x), u(sn))) 

f(Dl(x, 81), Dz(x, 82),'" ,Dn(x, Sn)) 

D(x, 8) (5.9) 

vVith this theorem if the set of distance measures 

ant under u then all distance measures composed as a function of V are invariant 

under u also. 

5.2 Geometric uniformity of partitions. 

We now define the conditions for the geometric uniformity of a partition 8p , of S. 

Definition A partition 8p of S is geometrically uniform relative to the set of 

distance measures V if, for any two sets 8i E 8 p and 8 j E 8 p J there exists a 

symmetry USi,Sj E r (8 p) that maps 8i to 8 j while leaving 8 p invariant 

USi,Sj (8i) 

USi,Sj (Sp) 

(5.10) 

(5.11) 

The two example partitions of figure 5.1 are both geometrically uniform. Note that 

the definition of geometric uniformity of signal sets as defined by Forney [41] and 

again described in section of chapter 4, is a special case of geometric uniformity 

of signal set partitions, i.e. the case where each subset Si contains only one point of 

8. The definition of geometric uniformity of partitions is therefore a generalisation 

of geometric uniformity of signal sets. 
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5.2.1 Geometric of G U partitions. 

Analogous to a point in a GU signal constellation S, a G1.: partition Sp has the 

property of looking the same when viewed from any of its elements. We expand 

the definitions by Forney [41] of the geometric properties of GU constellations to 

geometric properties of GU partitions. 

Decision regions. 

In a conventional communications system, a soft-decision decoder has associated 

with it a decoding measure D(r, s), Given a received vector r, the decoder selects the 

point s from the transmission signal constellation S, such that D(r, s) is minimised. 

The decision region Rv (s) of a point s is that region in RN such that if r falls in 

Rv(s), then s is selected as the output of the decoder. To define a decision region of 

a subset Si of a partition Sp, we define the decoding measure for Si to be D(x, Si) 

as defined by equation (5.6). The decision region RV(Si) of a subset Si E Sp is the 

region in RN such that if r falls in RV(Si), then 5\ is selected as the output of the 

decoder. Formally: 

Definition 23 The decision region} RV(Si) associated with a subset Si E Sp is the 

set of all points in RN that such that D(x, Si) is a minimum over D(x, Sj)} Sj E 

D(x, Sj)} (5.12) 

A decision region is also known as a Voronoi region for D(x, Si) = J2. 

Theorem 8 If the partition Sp of S is geometrically uniform under a set of distance 

measures V {Dl' D2 , .•• ) Dn} and the decision measure D(x, Si) is a function of 

the set V only} then all Voronoi regions RV(Si) have the ,'lame shape. 

Proof: By definition, x E RN is in RV(Si) if and only if 

If Sj oF Si is a subset in ) then by the definition of geometrical uniformity there 

exists a symmetry u such that U(Si) = Sj. If u is such a symmetry then u(x) is in 
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D(u{x), U(Si)) 

D(x, Si) 

min D(x, Sk) 
ShESp 

D(u(X),U(Sk)) 
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(5.13) 

where as Sk ranges through Sp, so does U(Sk)' The fact that the shape of every 

Voronoi region of Sp is the same implies the error performance can be computed by 

considering only one subset of the partition. 

Distance profiles. 

Given a partitioning Sp of a signal constellation S we define following distance 

profiles for a distance measure E D: 

Definition 24 The distance profile of a subset to a point s is the set of distances 

between every point in Si and s: 

(5.14) 

Definition The distance profile between two subsets Si and Sj is the set of dis-

tance profiles between Si and every point in Sj: 

(5.15) 

Theorem 9 If a symmetry u exists such that u u-1 and u maps Si onto Sj then 

DP(SiJ Sj) DP(Sj, Si). 

Proof: From definition 25: 

{DP(Sil s): S E Sj} 

{{D(Si' Sj) : Si E Si}: Sj E Sj} 

{{D(U{Si),U-1{Sj)): Si E Si}: Sj E Sj} 

{{D(SI, S") : 8
1 E Sj}: S" E Si} 

DP(Sjl Si) (5.16) 



116 CHAPTER 5. GEOMETRICALLY UNIFORM PARTITIONS. 

Definition 26 The global distance profile associated with any subset Si E Sp is the 

set of all distance profiles of Si to all subsets in Sp: 

(5.17) 

Definition 27 The minimum distance Dmin(Si, Sj) from subset Si E Sp to subset 

Sj E Sp is the minimum of the distances between any point in Si and any point in 

Sj: 

(5.18) 

Definition 28 The multiplicity N(Si' Sj) between a subset Si and s'ubset Sj is the 

maximum number of points in Sj at the minimum distance from a point in Si. 

Theorem 10 If the partitioning Sp of S is geometrically uniform under a distance 

measure D then the global distance profile DP(Si, Sp) is the same for all Si ESp. 

Proof: From the definition of the global distance profile for the distance measure D: 

{{{D(s', s) : s' E Si} : s E Sj}: Sj ESp} 

{{{D(U(S'),U(S): S' E Si}: s E Sj}: Sj ESp} 

{{{D(S",U(S)): S" E sa: u(s) E u(Sj)}: u(Sj) ESp} 

DP(SL Sp) (5.19) 

where u(s) ranges through u(Sj) as s ranges through Sj, and u(Sj) ranges through 

Spas Sj ranges through S p. 

Mappings of partitions. 

Consider a geometrically uniform partition Sp = {So, Sl,' .. ,Sn-1} with symmetry 

group r(Sp), under the set of distance measures V. 

Theorem 11 If v is a distance invariant mapping under V then S'p = vSp is a 

geometrically uniform partition with symmetry group r(S'p) vr(Sp )v-1. 
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For S~ = to be a geometrically uniform partition there must exist 

a symmetry w that maps Si to Sj for all Si E Sp and Sj E S'p and such that 

w(S'p) = sp. If we write S~ = VSi Sj = vSj then the mapping w vuv- l is 

such a symmetry provided a u exists such that U(Si) Sj. Since Sp is GU such a 

u To show w(S'p) = S~, we have 

w(S'p) 

S~ (5.20) 

Hence S~ is GU with the symmetry group vr(Sp )v-1
• The example of figure 5.2 

shows the image of a GU partition 

formation 

= {So, S1, ,Sa}, mapped through the trans-

v(x) = Avx + Tv (5.21) 

where Av (~1 ~), a pure rotation of 90 degrees clockwise, and 'Tv ~ ( : ). 

The partition S p has 

4 

~ 2~ 
~ 1\i) 

.4 
I 

5 

5.2: A au partition mapped through an isometry is a au partition. 
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{(I, 1), (I, 2)}, 

{(-I, 1), (-1,2)}, 

{(-I, -1), (-1, -2)}, 

{(I, -I), (1, -2)}, 

and four symmetries given by Ui(X) AiX where 

(5.22) 

(5.23) 

(5,24) 

(5.25) 

(5.26) 

correspond to the identity, a 180 degree rotation about the origin, a reflection about 

the horizontal and a reflection about the vertical axis respectively. From theo-

rem 11, the symmetries Wi of vSp are given by 

Wi (X) VUiV~lX 

AvAi(A;lX - Tv) + Tv 

AvAiA;lX (I - AvAil Av)Tv 

and form the symmetry group r(vSp). 

Geometric uniformity of partitions. 

Consider a geometrically uniform partition 

group r(Sp). 

(5.27) 

} with symmetry 

Theorem 12 If the subset So itself can be written as a G U part'ition 

SoP - {Sor) S02,' .. } (5.28) 

then all subsets Si E are G U partitions. 

Proof: From the definition of the geometric uniformity of the partition Sp, there 

must exist for any Si E a mapping U E r(Sp) such that u(So) Si. Theorem 

11 shows that a GU partition under a distance invariant mapping is a GU partition, 

hence all Si E Sp are GU partitions. For example for the partition SPI of figure 

5.1(a), the subset {0,4} is clearly GU, hence all subsets of SPl are GU. 
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.3 of constellations. 

The definition of geometric uniformity over signal set partitions does not require the 

underlying signal constellation to be GU. For example, in figure 5.3 we have parti­

tioned a 16-QAM constellation into four sets of four points. The set of symmetries 

of this partition are 

(5.29) 

where Til is now defined as an anti-clockwise rotation about the origin of 1fi/2 radians, 

and Vi is defined as a reflection about the line passing through the origin and meeting 

at an angle of 1fi/4 to the horizontaL The equivalence classes contain one element 

only and as such the symmetry group of 1S 

(5.30) 

\i\friting a non-GU constellation as a GU partition allows, as will be seen, the 

Figure 

1 • 
2 • 
1 • 
2 • 

o • 
3 • 
o • 
3 • 

1 • 
2 • 
1 • 
2 • 

A four-way partition of a 

o • 
3 • 

3 • 

constellation. 

construction of good multi-level codes such that each level of the code is GU. 

504 uniform constructions. 

have shown that if a partition Sp is GU then all of its distance properties can 

be completely characterised by considering only the distance properties of anyone 

subset Si ESp. Clearly this is a very strong property which vastly reduces the 
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complexity of the evaluation of the probability of error of a communications system. 

We now look at the techniques available for creating other GU constructions starting 

from a GU partition. A key tool is generating groups: 

Definition 29 Consider a GU partition Sp, with the symmetry group r(Sp). A 

generating group G(Sp) of Sp is a subgroup of r(Sp) which is minimally sufficient 

to generate starling from an arbitrary initial subset Si of Sp. A necessary and 

sufficient condition for G(Sp) to be a generating group of Sp is that: 

For all u E G(Sp), where u =I- e the identity element, 

there does not exist a subset Si E Sp such that U(Si) = Si, 

z.e. no symmetry of G can leave unchanged a subset of the partition Sp. 

For example, the generating groups of the partition of figure 5.1 (a) are 

{[ro, r4], [rIl rs], h, r6], [r3, r7]} 

{[ro l r4], h, r6], [VI, vs], [Val V7]} 

and the generating groups of the partition of figure 5.1(b) are 

{[roJ, [r2], [r4], [r6]} 

{[roJ, [r4], [V3], [V7]} 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

Notice how the operation of all the elements of either group on any subset Si E Sy 
J 

generates SPj completely and uniquely. 

5.4.1 Subgroups of generating 

Consider a generating group G(Sp) of a GU partition Sp. From group algebra, a 

normal subgroup Gn of G partitions G into Gn and its cosets. The orbits of any 

partition Si in Sp, under Gn and its cosets, are disjoint subsets of Sp whose union 

is Sp. Following a similar proof to Forney's we can show that these subsets, which 

form a partitioning of Sp, are geometrically uniform, mutually congruent, and have 

Gn as a common generating group [41]. 

Hence any normal subgroup of a generating group G can be used to construct 

a partition which is geometrically uniform. For example the non-trivial normal 
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subgroups of the generating group G2 (SpJ of the partition of figure 5.1(a) are 

GZ1 (SPI) 

G2z (Sn) 

GZ3 (SPI) 

{[TO, T4], [T2' T6]} 

{fro, r4], [Vb V5]} 

{[ro, r4], [V3J V7]} 

(5.36) 

(5.37) 

(5.38) 

which partition into the three au partitions, namely SPll {So, S2}, SPI2 = 

{So, Sl}, and SPI3 {SOl S3}' These three partitions SPlll SP12 and SPI3 of SPI are 

shown in figures 5.4(a), 5.4(b) and 5.4(c) respectively. 

2 

(a) (b) (c) 

Figure 5.4: GU partitions generated by normal subgroups of a generating of SPI' (a) Partition 

. (b) Partition . (c) Partition S PI3 • 

5.4.2 GU partition generation algorithm. 

The algorithm of table 5.2 generates au partitions Sp a GU constellation S, 

given a generating group G(S) of S and a normal subgroup Gi of G(S). If IG(S)I 
2n and IGil then the algorithm constructs 2k unique solutions, where k = 

i(2n - i - 1). The order of is ISpl IGd. For example consider constellation 

S 8-PSK with generating group G(S) {ro, TlJ T2, T3, r4, T5, T6, r7} and subgroup 

G i {ro , TZ, T4, T6}.We have n 3, i = and the number of solutions generated 

by the algorithm is 22(Z3-2_1) = 4. These are shown in figure 5.5. 

5. 3 Quotient groups, 

Consider a generating group G(Sp) of a au partition Sp and a normal subgroup 

of G. The quotient group G IGn is a set of elements such that each element is a 
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Input : G(8), a generating group of the signal constellation 8. 

Gi a normal subgroup of G. 

Output : A CU partition Sp of S. 

begin 

Set R = G - Gi , Set Si {e} 

while R =1= 0 do 

Select any r E R. 

Si = Si + r 
R = R - rOi 

end while 

Sp {gSi: 9 E Oi} 

end. 

Table An algorithm to construct GU partitions from a GU constellation S and a normal 

subgroup of a generating group G(S) of S. 

(a) (b) (c) (d) 

5 GU partitions generated by the algorithm of table 5.2. 

union of subsets of Sp. Following a similar proof to that by Forney, it may be shown 

that the quotient group 0 IOn forms a CU partition [41]. For example consider 

the partition SPl of an 8-PSK constellation shown in figure 5.1(a) and generating 

group G2 (SpJ of equation (5.33). The three normal subgroups of O2 (SpJ are listed 

in equations (5.37), (5.38), and (5.38) respectively and the corresponding quotient 
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groups are 

GdG21 

G2 /G22 

G2 /G23 

{{[ro, r4], [r2' r6]}, {[V1' V5], [V3, V7]}} 

{{[rO, ) [VI V5]}' {[r2, , [V3' V7]}} 

{{[rO, r 4], [V3, V7]}, {[r2' r6], (VI, V5]}}. 
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(5.39) 

(5.40) 

(5.41) 

Figures 5.6(a), 5.6(b), and 5.6(c) show the partitions formed by G2/G21 , GdG22 , 

and G2 / G23 respectively. 

(a) (b) (c) 

Figure 5.6: partitions generated by quotient groups. (a) Gz/GZ1 • (b) G2 /GzZ • (c) GZ /G23 • 

5 4 Cartesian products of G U partitions. 

Consider two partitions SPi and SPj which are both GU under the set of distance 

measures V. The Cartesian product of SPi and SPj is: 

where the set Si. x Sj equals: 

Si X Sj = {(Si,Sj): 8i E Si and 8j E Sj} (5.43) 

The order of Sp is ISp.! x ISPj I and each subset of Sp contains ISil x ISj I points. If 

u] E I'(SpJ, the symmetry group of SPI and U2 E I'(SP2) , the symmetry group of 

Sp2 ) then (Ul 1 U2) is a symmetry of f(Sp) only if all the distance measures Di E V 

are such that 

If equation (5.44) holds then a group of symmetries of Sp is 

r(SpJ x f(SPj) 

{(Ui,Uj) : Ui E f(SpJ and Uj E f(SpJ} (5.45) 
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Note that r(Sp) is not necessarily the complete symmetry group of Sp. The opera­

tion of a symmetry U E r(Sp) on an element S E Sp is defined by 

(5.46) 

Theorem If SPi and SPj are GU partitions under the set of distance measures 

V and every Di E V satisfies equation (5.44), then the partition Sp formed by the 

product of and SPj as defined by equation (5.42) is geometrically unifonn. 

Proof: To prove Sp is GU we need to show the following: 1) There exists a U that 

maps any subset Sl E Sp to any other Sp. 2) The mapping U is a symmetry 

of Sp. Consider any two subsets of Sp, SI Sh X Sj1 and S2 = Si2 x Sh' From 

equation (5.46), the mapping u = (Uh,i2' uh,jJ maps Sl to S2 if Ui1,i2(SiJ Si2 and 

Uj1,j2(Sj1) Siz. Such Uil,i2 and Uj1,h exist because SPi and SPj are GU, and hence 

1) is shown. Clearly the mapping ·u is a symmetry of Sp. 

From theorem 13 it follows that powers of GU partitions are GU, provided the 

set of distance measures satisfies equation (5.44). 

5.4.5 Iterative construction. 

Useful GU partitions may be constructed iteratively from a set of GU constellations 

combined with an arbitrary constellation. Consider a GU constellation S with the 

corresponding symmetry group r(S) and a constellation So. 

Theorem If S is a geometrically uniform constellation, s 'is a point in S, G(S) 

is a generating group of S, and So is an arbitrary constellation then the partition 

defined by: 

Sp = {g(So + s) : 9 E G(S)}, (5.4 7) 

is geometrically uniform, providedgi(So+s)ngj(So s) 0, gi E G,gj E G,gi gj, 

i. e. the subsets do not inter'sect. 

Proof: For Sp to be a GU partition we require that there exists an isometry w for 

any Si E Sp and Sj E Sp such that W(Si) = w(Sj) and w(Sp) Sp. If we write 

Si = gi(SO + s) and Sj gj(So s) then the mapping w g;lgj maps Si to Sj. 
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The operation of w on any element Sk gk(SO + s) of Sp is gkgi1gj(So s) and is 

an element of Sp, hence w(Sp) and is GU. 

Note that the result this construction depends on to which point S E 8 it is 

applied. For example, figure 5.7(a) shows a GU 4-PSK constellation 8 with generat­

ing group G(S) {ro, rl, r2, r3}, and figure 5.7(b) shows a non-GU constellation 80 , 

The construction {g(So s): 9 E G(S)} applied to point 0 of S results in a parti­

tioning of 16-QAM as shown in 5.7(c). Note that the application of this construction 

to point 1 of S results in the same partitioning but with a different labelling, while 

the application to points 2 and 3 causes the subsets to intersect and is therefore not 

valid. 

.2 .0 .1 .1 
• 1 0 

• • .2 .0 .3 .3 

• • 
2 3 

(a) (b) (c) 

Figure 5.7: A geometrically uniform partition constructed from the constellations S and So. 

(a) The constellation (b) The constellation So. (c) Result of the iterative construction 

applied to point 0 of S. 

Definition 30 We will denote the iterative construction of theorem 14 by the nota­

tion leO: 

Sp = (So, S) {g(So + So) : 9 E G(8)} 

{hS: hE H(S)} (5.48) 

The set H(S) contains the mappings h(x) = g(x + so), 9 E G(S) and is used to 

simplify the notation. The So is the point in S with the label O. No generality is 

lost by selecting the point So because S may be relabelled such that So corresponds 

to any point in S. 
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Definition 31 Given a partition 

constellation S, 

we use the operator A(Sp) to convert Sp to a 

(5.49) 

For example A( {{O, I}, {2, 3}}) {O, 1, 2, 3}. The construction described by theo­

rem 14 can be applied iteratively to a constellation So and a of GU constellations 

{Sl) S2,'" ,Sn} with associated generating groups {G1(Sl), G2(S2), ... ,Gn(Sn)} to 

form partitions of arbitrary complexity. We may associate with each Si, i > 0 a con­

stellation S: constructed iteratively from the constellations So, Sl, ... ,Si: 

(5.50) 

Each SI may also be written in terms of the mappings H(Si) defined above 

(5.51) 

5.5 Partition trees. 

Many signal space coding techniques are based on iteratively partitioning a signal 

constellation S into a number of smaller sets [75]. The structure of such a partition 

can be drawn as a partition tree. 

Definition 32 A partition tree of a signal constellation S is an l + 1 level part'ition 

structur'e Sp = {SPO) SPu'" ,Spzl, where each SPi is a partitioning of S. The top 

partition in the structure is the trivial partition S PI {S}. Each lower partition 

SPi is constructed from the partition above, , by partition'ing each set of SPill 

into mi+l subsets, each containing ISI/ISPHll/mi+l points. The bottom partition 

Spo is the partitioning of S into single points. We have lSI = I1~=1 mi and mi = 

IS Pi IllS Pi-II· 

For example, the multi-level partitioning of 8-PSK as shown in figure 5.8 is such 

a partition tree structure with l The partitioning structure is written as 

Sp {SPo, SPll SP2}' where SPo {{O}, {I}, {2}, {3}, {4}, {5} ,{6} ,{7}}, SPI 

{{O, I}, {2, 3}, {4, 5}, {6, 7}}, and SP2 = {{O, 1, 2, 3, 4,5,6, 7}}. The partition orders 

are ml 2 and m2 = 4. 
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(5.52) 

A set of a partition at level i is labelled by the string ala!~1 . e 'ai+l where 0 5: aj < mj 

for i < j 5: l. With this convention, a point in S is labelled alal-l •.. al. All points 

whose label starts with the string alaI-I' e 'ai belong to the partition set labelled 

ala!-l' . ,ai. For example the four sets of level 1 of the partition tree of figure 

are labelled 0, I, 2, and 3 respectively from left to right. The eight points at level 

2 of the partition tree of figure 5.8 are labelled DO, 01, 10, 11, 20, 21, 30 and 31 

respectively from left to right. 

5.5.1 Partition trees of constellations. 

Geometrically uniform constellations allow a natural partitioning tree based on the 

group structure of the underlying generating groups. Consider a constellation 

and an associated generating group G(S). A normal subgroup chain oflength l 1 

of G is written as Go < < .. 0 < Gil where Go = {e}, the subgroup containing 

only the identity element, and G l = G. Each Gi is such that it is a normal subgroup 

of Gt . From the theorems of group algebra, it can be shown that since Gi <1 Gz for 

all i, we have G i <1 for 0 5: j 5: l i, i.e. Gi is a normal subgroup of every 

group above it in the chain. The division of the group G by a normal subgroup Gi 
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partitions G into Gi and its cosets. From the definition of a generating group, there 

is a one to one mapping between G and S, namely S = G(so) and correspondingly 

G/Gi(SO) partitions S into IGI/IGil sets. 

Definition 33 Given a GU signal constellation S, a generating group G(S) of S, 

and a normal sv,bgroup chain Go <l G1 <l ... <l Gj of G, a partition tree Sp of S is 

(5.53) 

The order of the partition at level i is 

(5.54) 

With this definition, the partition branch labels ai, at level i of the partition tree 

now correspond to the coset representatives of GdGi - b that is each 9i is a coset 

representative of Gi/Gi - 1 . With such a branch labelling scheme, a partition set j 

at level i may be written as the product 

(5.55) 

i.e. the sets at level i are the cosets of Gi(So). 

Distance properties. 

Consider the GU partition Sp formed by the quotient group G/Gn ) where G is a 

generating group of a GU constellation Sand Gn is a normal subgroup of G. 

Theorem 15 Consider two subsets Si and Sj of the partition Sp. The distance 

profiles DP(Si) Sjr) and DP(Si, Sj2) are equal for any two points Sjl and Sj2 in Sj. 

Proof: The constellation S is GU and therefore there exists an isometry u such that 

U(Sjl) = U(Sj2)' Since Sjl and Sj2 are both elements of a coset of Gn ) 11, must be 

an element of Gn . Therefore from the definition of equation (5.14) for the distance 

profile 

{D(Si) Sjl) : Si E Si} 

{D(U(Si),11,(Sjl)) : Si E Si} 

{D(S~)Sj2): s~ E Si} 

DP(Si) Sj2)' (5.56) 
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This theorem implies we can compute the distance profile between any two partitions 

Si and Sj of simply by computing the distance profile from one point in Si to 

the points in Sj. 

5.5.2 Partition trees of iterative constructions, 

The iterative construction of a GU partition described in section 5.4.5 has a natural 

partition tree associated with it. For a set of GU constellations {Sl, S2l ' .. lSI} and 

corresponding sets mappings {HI) H2 ) ••• ,Hz} as described by definition 30 the 

partition tree of the iterative construction may be written as 

(5.57) 

where each partition is defined by 

(5.58) 

where SI is as defined in equation (5,50). 

5. Communication utilising partitions. 

A conventional uncoded communications system maps k input binary data bits onto 

a point of a constellation S of order 2k. This point is transmitted across the channel 

and the decoder decides on the transmitted data by selecting the point most likely to 

have been transmitted. Consider the system shown in figure as a generalisation 

of the basic uncoded communIcation system. This system, instead of mapping the 

k 

Figure An uncoded communication system based on the transmission of partitions. 

input data to point in a constellation, maps the data to a subset Si of a partition 

where ISpl . From the partition Si, one point s is randomly selected for 

transmission by the point selector. The method of selection is not known by the 

receiver, however it is assumed that each point is equiprobable. The receiver's task 

is to decide on the k transmitted data bits. 
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5.6.1 ML receiver for a partition transmitter. 

A maximum likelihood solution for the receiver is to compute the probability density 

function of the received vector conditioned on the transmitted subset Si. 'With the 

assumption that each point s E Si is equiprobable, the pdf may be written as the 

sum of the conditional pdf's of the points in the partition. Thus 

(5.59) 

The ML decision is the subset Si such that p(rISi) is a maximum.. If the subsets of 

the partition contain only one point each, then the system reduces to a conventional 

uncoded system. For the Rayleigh fading channel the pdf of the received signal r 

conditioned on the transmitted point s and on the receiver obtaining ideal channel 

state information v is given by 

1 -llr-vsI1 2 

p(r vis) = e 2NO 
, (27r No)L 

(5.60) 

where L is the length of the received vector r. This may be viewed as the case 

identical to the additive white Gaussian noise (AWGN) channel with the SNR scaled 

by the time varying Rayleigh distributed variable Iv 12. The ML decoding metric 

M(r, Si) for the Rayleigh fading channel, assuming subsets with equal number of 

points, therefore is 

M(r,v,Sd = 
sESi 

-lir-vsIlZ 

e 2No 

and the decoder selects Si E Sp such that A1(r, v, Si) is a maximum. 

5.6.2 calculation for trellis generated subsets. 

(5.61) 

The receiver of the system of figure 5.9 has to compute the metric of equation (5.59) 

for each possibly selected subset and it chooses the one with the maximum metric. If 

the size of the partitions is large (as is possible in a multi-dimensional constellation) 

then the computation can be expensive. If it is possible to represent the points 

of a subset by the paths through a trellis then the computation may be greatly 

simplified by an algorithm similar to the Viterbi algorithm (VA) [38]. Consider a 

subset So containing ISol points, where each point s can be written as an L-tuple, 

Cj = {Clj, , ... , CLj}. Given a received vector r = {fl' f2,'" ,fL}, and a channel 
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state information vector v = {VI, V2)'" ) vd, the decoding metric for the partition 

is 

ISol 
I::L 

d
2 

M(So) = e i=l 1.) (5.62) 
j=1 

where 

d;j = Iri ViCij 12 (5.63) 

the squared distance between the 'ith received symbol and the 'ith component of the 

/h point. Equation (5.62) may also be written as 

.M(So) (5.64) 

where 

(5.65) 

The general algorithm to compute the soft decision metric of equation (5.62) is shown 

in table 5.3. The number of computations of a term D = e-lrvcl2 the algorithm 

requires is 

L-1 

= I: NtBt (5.66) 
t=O 

where is the number of branches leaving each state at time t and Nt is the number 

of states at time t. The direct computation requires the number of points in the 

subset ISo I multiplied by the number of symbols per sequence. The number of points, 

corresponding to the number of paths through the trellis, is 

(5.67) 

and hence the number of computations of D terms for a direct implementation is 

L-1 

(direct = L II Bt 
t=O 

(5.68) 

Clearly the metric computation algorithm is more efficient. For example, consider 

the trellis of figure 10 used to generate a partition SPi' The trellis generates the 

16 points listed in table for convenience we write the notation 
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Definitions: 

bt (81,82) 

m(s,t) 

Input 

The set of branch symbols connecting states 81 and 82 at 

time t, where 0 ::; t < L. 

The distance metric of state 8 at time t. 

The received vector r {TIl T2, ... 1 TL}. 

The channel estimate vector v = {VI, V2,'" ,VL}. 

The Nt defining the number of states at time t. 

The bt (Sb S2) defining the trellis of the subset. 

Output The distance measure M(r, ( 0), 

1. t 0 

m(O, t) 0 

3. ttl 

4 m( t) ( t) m(s' t_l)e-lrt-wbt(s',s)12/2No 0 < s < N 0 < S' < N_ . s, m s,' ,_ t, _ t 1 

5. if t < L goto 3 

Table 5.3: An algorithm to compute the decoding measure of a subset generated by a trellis. 

o 1 

o o 

3 

2 3 4 

o o 

2 

3 

5.10: Trellis to generate a set of points. 

D . - e-lri-v;cI2/2No 
~c -

5 

o 

2 

(5.69) 
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J bljb2jb3jb4j {Clj C2j C3j C4j C5j} J b1j b2j b3j b4j {Clj C2j C3j C4j C5j} 

0 0000 00000 8 1000 12000 

1 0001 00012 9 1001 12012 

2 0010 00120 10 1010 12120 

3 0011 00132 11 1011 12132 

4 0100 01200 12 1100 13200 

5 0101 01212 13 1101 13212 

6 0110 01320 14 1110 13320 

7 0111 01332 1111 13332 
-

Table 5.4: Codewords generated by the trellis of figure 5,10, 

to mean the distance measure between the received point ri a't time i and the symbol 

C then the algorithm of table 5.3 generates the following values for the state measures 

m(s, t) for the example trellis of 5,10. 

Note the terms of m(O, 5) correspond precisely to the codewords of ISollisted in 

t m(s, t) 

° m(O,O) = ° 1 m(O,l) D10 

m(l,l) D11 

2 m(O,2) = D 10 D 20 + D11D22 

m(1,2) = DlOD21 + D11 D 32 

3 m(O,3) = DlOD20D30 + D11D22D 30 + D10D21D32 + D11D 32D32 

m(1,3) DlOD20D31 + D11D22D31 + DlOD21D33 + D11D32D33 

4 m(O,4) D10D20D30D40 + D11D22D30D40 + DlOD 21 D 32D40 + DU D 32D32D40+ 

D10D20D31D42 + Du D22D31 D42 + D1O D 21 D 33D 42 + D11D 32 D 33D 42 

m(1,4) = DlOD20D30D42 + DllD22D 30 D 42 + DI0D21D32D42+ D11D32D32D42+ 

DlOD20D31D43 + DUD22D31D43 + DlOD 21D33 D 43 + D11D 32D33D 43 

5 m(0,5) D10D20D30D40D50 + D11D22D30D 40D50 + DlOD 21 D 32D40D50+ I 

D32D32D40D50 + DlOD20D31D42D50 + DU D 22D31D42Dso+ 

DlOD21D33D42D50 + D11D32D33D42D50 + DlOD 20D30 D 42 D 52+ 

D1OD20D31D43D52 + D11D22D31D43D52 + DlOD 21 D 33 D 43 D 52+ 

D11D32D33D43D52 + D11D22D30D 42 D 52 + DIOD21 D 32D42 D 52+ 

1)11 D 321)321)42D 52 

Table 5.5: Application of metric computation algorithm to the trellis of figure 5,10. 
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table 5 

5.6.3 Variance of decision with SNR. 

For the system of figure 5.9, transmitting partitions and applying ML decoding, the 

decision regions implied by equation (5.59), are in general a function of the SNR. 

For example in figure 5.11 we have plotted the decision regions of two partitions 

as a function of SNR. Figure 5.11(a) are the decision regions at a high SNR. 

the SNR decreases the decision regions change as shown in figure 5.11(b), until at 

a very low SNR the decision regions become as in figure 5.11(c). Clearly the shape 

(a) (b) (e) 

Figure 5.11: The partition decision regions as a function of SNR. (a) High SNR (15 dB). (b) 

Low SNR (5 dB). (c) Very low SNR (0 dB). 

of the regions change significantly, especially at low SNR, however note they always 

remain congruent as guaranteed by theorem 8. 

5.6.4 regions high SNR. 

At a high SNR, equation (5.59) is dominated by the largest term p(rlci) and we 

have 

SNR ~ maxp(rls) 
SCSi 

(5.70) 

The final decision by the decoder is the Si E Sp with the maximum conditional 

density function, Le. 

(5.71) 

Clearly this is equivalent when combined with equation (5.70) to selecting the point 

s E A(Sp) such that p(rls) is a maximum and equates to selecting the point the 
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A(Sp) assuming conventional uncoded modulation. The decision region of Si for 

this case may be written simply as the union of the decision regions of the points in 

. Thus 

(5.72) 

For the Rayleigh fading channel we have 

p(rls) 

and the decoding strategy is therefore to select the point s E A(Sp) with the mini­

mum Euclidean distance to the received point r. The output of the decoder is then 

the partition corresponding to s. 

5.6,5 Suboptimal decoding partitions. 

ML decoding metric of equation (5.59) for the decoding of partitions over the 

Rayleigh fading process is computationally more complex than finding the point with 

the minimum Euclidean distance to the received point. We have shown in section 

5.6.4 that for high SNR on the Rayleigh fading channel, the NIL solution tends 

towards a minimum Euclidean distance solution. In this section we investigate the 

loss in performance due to applying a Euclidean distance metric compared to the ML 

metric. In figure 5. we have plotted the pairwise probability of errOl' of confusing 

one partition of figure 1 for the other as a function of the SNR. This result has 

been obtained by simulation. The loss in performance is negligible across the range 

of SNR depicted. Clearly there is little to be gained by the ML decoding metric 

compared to a Euclidean distance metric. 

5.6.6 Conditions 
e • 

InVarlance decision 

Although we have empirically shown that minimum Euclidean distance decoding of 

partitions transmitted across the Rayleigh fading channel performs almost as well as 

ML decoding, it is possible to design the code partitions such that the two decoding 

techniques are equivalent. This is done by selecting the partitions such that the 

decisions boundaries are not a function of SNR. If this is the case then minimum 

Euclidean distance decoding is equivalent to ML decoding. The result follows from 
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Figure 5.12: Simulation of the probability of confusing one partition of 5.11 for the other 

as a function of SNR, for the ML decoder and the minimum Euclidean distance decoder. 
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Figure Examples of three partitions with decision boundaries invariant with the SNR. 

section 5.6.4 where we have shown that at high SNR the ML decision are 

determined by the minimum Euclidean distance to the points, and if the decision 

regions are invariant to the SNR then the decision regions must be determined by the 

minimum Euclidean distance for all values of the SNR. In figure 5.13 we show three 

examples of partitions where the decision regions are not a function of the To 

ensure the decision regions of a partition Sp = {So, S2,'" ,Sn-d are invariant with 

SNR, we must have the ML decision metric .fVI(r, Si) of equation (5.61) making the 
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same decision, independently of the value of No. The decision metric M(r, 8 i ) may 

be written as a function of the set of the Euclidean distances between r and the 

points in 8i ; i.e. 

(5.74) 

Theorem Consider a partition 8p {8l , 82 ) ••• ,8n } and a decision metric 

f(d2 (x; 8i )) which is to be written as a function of the Euclidean distance between 

x and each point s E 8i . There exists a set of hyperplanes P {PI, P2 )'" ) Pk }, 

bounding the decision regions. Each hyperplane divides the Euclidean space, and 

consequently the set of partitions into two. If the reflection about every plane Pi 

maps to then the decision regions as defined by J\lJ(x, 8i ) are invar'iant to the 

SNR. 

Proof: If Pi is a high SNR decision boundary between partition sets 81 and 8 2 , and 

r lies in Pi then by definition f(~(r, 81)) = f(~(r, 82)) for the values of SKR in 

question. If 8 p reflects onto 8p through the plane Pi then 8 1 maps onto 82 and vice 

versa and clearly ~(r, 81) = ~ (r, 8 2 ) which implies f(~(r) Sr)) equals f(d2 (r, S2)) 

for all values of SNR. Since Sp maps onto Sp through every decision boundary plane 

Pi) none of the decision regions are a function of the SNR. 

For example, all partitions of figure 5.12 reflect about all the decision boundary 

lines to map onto themselves. The example of figure 5.11(a) does not exhibit this 

property, and as shown by figures 5.11(b) and 5.11 (c) the ML decision regions vary 

with the SNR. 

5.6.7 performance of uncoded transmission over par-

titions. 

Given the partition set Si has been selected for transmission, the probability of the 

decoder selecting a set Sj as the output is given by the average over the probabilitif'B 

of error of the points in Si and equals 

p(8i -+ 8j ) = 1 L p(Si -+ Sj) (5.75) 
8iE8i 

assuming each Si E Si is equiprobable. The probability P(Si -+ Sj) is the probability 

of selecting the set Sj as the output, given the point Si has been transmitted. The 
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error performance of equation (5.75) is dominated by the highest term P(Si -7 Sj) in 

the sum and corresponds to the point in the set Si with the worst distance properties 

to the points in the set Sj. For example for the partition set of figure 5.11(a) denoted 

by the crosses, the decoder is more likely to make an incorrect decision when the 

point in the lower left is transmitted compared to the point in the top right quadrant. 

This is because the point in the lower left quadrant h&s four neighbours, whilst the 

point in the top right quadrant only has one neighbour. For the Rayleigh fading 

channel we may use the high SNR union bound of equation (3.25) as a loose bound on 

the probability of selecting set Sj given signal point Si in the set Si was transmitted 

(5.76) 

where PI is a weighted multiplicity term given by 

(5.77) 

The set SI is the set of points in Sj at a Hamming distance of l away from the point 

Si, and d;(Si' Sj) is the product distance between the points Si and Sj. At a high 

SNR the probability of equation (5.76) is dominated by the term for l = lo. We will 

associate a performance measure between two partitions Si and Sj consisting of two 

parameters; a minimum Hamming distance 

(5.78) 

and a weighted multiplicity term 

(5.79) 

where l dH(Si) Sj). These two parameters combined characterise the error perfor-

mance of the pair of sets Si and Sj. 

5.7 G U partitions. 

Consider a partition Sp and an associated generating group G(Sp). A group code 

[69] 0 over G is a set of sequences, drawn from the group G, on a discrete index I 

which forms a group under component-wise group operation. The code is a subgroup 
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of and therefore, from theorem 13 forms a geometrically uniform partition. The 

properties of the code may therefore be evaluated by considering only one code 

sequence. 

5. 1 Transmission of codes over partitions. 

The code as defined above is a set of sequences, the elements of which are partitions 

of a signal constellation, where each partition contains a set of points. In analogy to 

an uncoded partition, we define our coded transmission system as depicted in figure 

5.14. an input bit stream, the partition encoder generates the code C over the 

set Sp, and passes the output code set Si to the signal point selector. The signal 

point selector randomly selects a point from Si, to transmit across the channel. 

k inpu t bits Encoder Si E Sp Point s 
over Sp Selector 

s E Si 

Figure 5.14: The encoder structure for a code over partitions. 

5.7.2 Code distance properties. 

In section 5.6.7 we developed the distance properties determining the probability of 

error of uncoded transmission of sets of points. We extend these properties to codes 

over partitions by simply viewing the code as a large uncoded system. Consider a 

group code 0 defined over a group G(Sp). Each code word may be written as a 

sequence of symbols drawn from G. From the property of geometric uniformity we 

need only consider the error performance of one codeword. We will use the 

zero" codeword co; the codeword corresponding to the identity element of 0, i.e. 

the sequence of identity elements from G. 

Co = (5.80) 
L 

where So is a partition set from Sp. The codeword Co is a sequence of L sets of 

points So and may also be written as Sfj, a set of I So I L points. Similarly every code 

sequence of 0 maps to a set of ISo II, points and the entire code 0 can be viewed 
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simply as a larger partition C(Sp) and the performance properties can be analysed 

identically to that of an uncoded system. To determine the properties of C(Sp) in 

terms of the group code C and the properties of Sp, consider another codeword Ci 

in C . 

(5.81) 

where bk are indices of the codeword. It is straight-forward to show that the Ham­

ming distance between Co and Ci is given by 

L 

dII(co, Ci) dII(So, Sbk) (5.82) 
k=l 

and the weighted squared product distance by 

L 

(5.83) 

5.7.3 Decoding of codes over partitions. 

Codes defined over partitions may be decoded using the ML decoding metric defined 

in section 5.6.1 or simply a minimum Euclidean distance metric. If the code is 

defined as a trellis code, it can be decoded using the Viterbi algorithm [38]. Since 

each branch label of the trellis code represents a set of a partition, it is necessary to 

compute the minimum distance to each set of the partition. For partitions with few 

elements this is best achieved exhaustively, while for large partitions it is better to 

apply the algorithm of section 5.6.2 for each partition set. More will be said on this 

subject chapter 6 on multi-level codes based on au partitions. 

5.8 

Conventional codes are defined over points in signal space. With a different ap­

proach, the technique of multi-level coding, a signal set written as a hierarchy of 

subsets and codes are defined over sets of points. The error performance of each 

code of the scheme is now not only determined by the distance properties of the 

code, but also by the properties of the sets of points over which it is defined. We 

have extended the definitions of geometric uniformity introduced in chapter 4, to 
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sets of points, The sets of points when viewed as units can be constructed to exhibit 

the same types of properties as au constellations. Therefore the error evaluation 

communication systems based on transmission of a point selected from a 

set of points can be calculated considering only the distance properties of one 

set of points, These definitions form the foundation for the construction of good 

multi-level codes which are discussed chapter 6. 
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Multi-level codes are a means of constructing higher complexity signal-space codes 

with good distance properties. The technique is based on partitioning a signal 

constellation into a multi-level hierarchy and defining codes over each leveL The 

advantage of this technique lies in the ability to construct a staged decoder with a 

complexity far less than a ML decoder but with a similar asymptotic probability of 

error performance. In the work on multi-level codes by Imai and Hirakawa [35] and 

Sayegh [61], the signal set is partitioned into a binary chain and binary codes are 

defined over each leveL Tanner [72] formally related the minimum Hamming dis­

tance of the component codes to the minimum Euclidean distance of the multi-level 

scheme, Pottie and Taylor (57] generalised the concept of multi-level constructions to 

include non-binary partitions of multi-dimensional signal constellations and placed 

no restrictions on the type of component codes. Indeed the component codes may 

again be multi-level codes. Calderbank's paper shows how to calculate minimum 

squared distances and path multiplicities in terms of the norms and mUltiplicities 

of the different cosets [10]. All of these works and others [44],(76],[71],[79] are 

the Gaussian channel where the code performance criteria is the minimum squared 

Euclidean distance of the code. Subsequent papers describe multi-level codes de­

signed specifically for the Rayleigh fading channel, where the Hamming distance of 

the code is the most important [64],[65L [80]. 

In this chapter we construct multi-level codes for the Rayleigh fading channel 

based on the geometrically uniform partitions developed in chapter 5. Each compo­

nent code is defined as a group code over the generating group of a GU partition 

143 
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and consequently it has all the desirable properties of a GU code, including reduced 

decoding complexity at each code level. Recently related work has been published in 

the literature [5],[58]. We begin by describing the general structure of a multi-level 

encoder. 

6.1 General multi-level code structure. 

In a generalised multi-level construction, a signal constellation SI is partitioned into a 

partition chain written as Sd SI-I! ... I So. Each SI·l is a subset of the set Si directly 

above it in the chain such that it divides Si exactly into Si-l and its cosubsets. The 

order of the partitioning at level i is mi ISiI/ISi-ll. The elements of the set 

formed by the partitioning of Si into and its cosubsets may be labelled by a set 

of labels Ai) and we write Sd Si-l -+ Ai) that is Si-l and its cosubsets map onto the 

elements of Ai. The set Ai of labels are elements of a discrete alphabet over which 

a component code Ci can be defined. If we define a code Ci over every label set Ai 

of the partition chain, then the combined hierarchy consisting of the partition chain 

SIISI-d··· ISo, the label sets A lJ A 2) ... ) AI) and the set of codes C l ) C2) ... ) Cl 

forms a multi-level code. The general structure is shown in figure 6.1. Each code 

Input bits 

Figure 6.1: General encoder structure for a multi-level code. 

Ci accepts bi input bits and outputs lSi I/ISi-ll bits. The output of the encoder 

generating code CI selects a cosubset of Sd SI-1. The next encoder Cz-l similarly 

selects a cosubset of Sl-d SI-2 etc. until finally the code C1 selects a single point 

for transmission. We may associate an overall code C with the i-level construction 
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of 6.1 written as 

(6.1) 

This code is referred to as the multi-level code associated with the partition chain 

St!SI-l/'" / So and the component codes 0 1) C2 ) •.• ,Ct. 

1.1 Decoding of multi-level codes over GU partitions. 

Multi-level codes are most easily decoded by a staged decoder as shown in figure 

6.2. Each decoder in the figure corresponds to the component code Oi. The 

staged decoder operates in a sequential manner. First the decoder Dl makes a 

decision on the code Ol and outputs the corresponding bl data bits and passes the 

coset decision information to D l - l . The decoder operates a similar manner 

and the process continues down the chain until the received sequence is completely 

decoded. Since every decoder in the staged decoder requires the decision information 

r-----.-..., 

Output Bits 

Figure General structure of a staged decoder for a mult.i-level code. 

from the previous decoder in the hierarchy, there is a decoding delay proportional 

to the number of decoding stages. If Ll(Di) is the average delay associated with 

decoder and the decoding delays are statistically independent then the average 

delay of the staged decoder D is by 

(6.2) 
i=l 

The that each decoder depends on the correctness of the decision information 

of the previous decoder can cause error propagation in the decoding process. 

niques such as an intralevel interleaver and iterative decoding may be employed to 



146 CHAPTER 6. MULTI-LEVEL CODES. 

combat these effects [65]. We will not address these issues and simply assume that 

the overall probability of error of the multi-level code is dominated by the worst 

code in the hierarchy. 

6.2 of multi-level codes. 

The design of good multi-level codes is not a straight-forward exhaustive code search 

as is typical for trellis codes where the only"parameter varied is the number of code 

states. For multi-level codes the designer has the freedom to select the underlying 

constellation, the partition chain, the number of levels in the chain, and the most 

suitable codes and code rates for 5'ach level. Clearly the number of coding parameters 

that may be varied is large and this allows for a great number of possible design 

trade-offs. Typically the main tradeoff of interest when designing multi-level codes 

is the coding gain versus the decoding complexity. For the trellis codes of chapter 
i - , ~ 

4 designed for the Rayleigh fading channel, each increase in decoder memory led to' 

a doubling in decoding complexity and provided a diminishing increa.c;e in coding 

gain. In the next sections we examine a class of multi-level codes based on the 

combination of geometrically uniform partitions and geometrically uniform trellis 

codes. This class of multi-level codes have a decoding complexity far less than that 

of similarly performing trellis codes. 

6. Multi-level codes partitions. 

We now define the structure of the multi-level codes of our study. Chapter 5 in­

troduced the concept of geometric uniformity over partitions. VVe defined a general 

partition tree in section 5.5 and showed that the partitions over each level can be 

made geometrically uniform by one of two constructions, namely a construction 

over a normal subgroup chain of a generating group of a geometrically uniform 

constellations as described section 5.5.1, and by an iterative construction over 

geometrically uniform constellations as described in section 5.5.2. In section 5.7 we 

defined the concept of uncoded transmission over partitions and extended this trans­

mission format to geometrically uniform codes over partitions. ''Ve showed that the 

distance properties controlling the error performance, namely the Hamming distance 
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and product distance, are determined by the code itself and the minimum distance 

properties between partitions. We define a multi-level code based on a 

tree as follows. 

partition 

Definition Given a GU part'ition tree as defined in section 5.5 and written 

as the chain Stl Sl-d ... / So with associated generating groups Qi such that 

s. ~ (6.3) 

then a multi-level code is constructed by defining a group code Ci over the elements 

of Qi. 

The code may be any group code, such as a linear block code, or a trellis code. In 

our code designs we have selected each Ci to be a multi-dimensional trellis code over 

Qi. The general structure of the multi-level coding scheme of our study is shown in 

figure At every time step, each encoder Ci accepts bi bits and outputs a symbol 

bl-1 

Input bits + 

Figure 6.3: General encoder structure for a multi-level code over GU partitions. 

qi from the generating group Qi of the partition. The mappings are combined by 

the summer and operate on the signal point So to produce the output signal point 

qlql-l ... ql(SO). 

6. 1 The 

Although a component code may be any group code over the label group ~, we 

have chosen to use a trellis code on each level. This selection was made to make use 

of the au trellis codes already discovered in chapter 4. In practice it may be better 

to use short block codes to reduce the overall decoding delay associated with trellis 
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codes. The trellis codes are designed in a manner similar to the au trellis codes of 

chapter In analogy to a generating group of a constellation S, the group .A 
through its isomorphic mapping corresponds to a generating group of the underlying 

partition. In general we construct code generators over the group (A)Pi, where Pi is 

an integer exponent. The general encoder structure of a trellis code Ci over (Ai)Pi 

is identical to that shown in figure 4.3 of chapter 4, except that the code generator 

elements are selected from the label group A instead of a generating group Each 

encoder accepts bi bits and outputs a sequence of length Lpi corresponding to a 

branch sequence. The rate of the code Ci in bits per two-dimensional symbol is 

given by 

bi 
ri=­

Lpi 

The ratio ~ is limited by the size of the label group A to 

(6.4) 

(6.5) 

The rate r of the multi-level code C, composed of the component codes C1 , O2 ) ••• ,Cl 

in bits per two dimensions is 

r !t bi 

L i=l Pi 
(6.6) 

The distance properties of component codes are determined by the distance prop­

erties of code Oi and the label group Ai over which it is defined. This relationship 

has been defined in section 5.7.2 of chapter 5. 

6.3.2 Decoding component codes. 

component codes of our multi-level construction are au trellis codes. We have 

shown in section 5.6.5 of chapter 5 that minimum squared Euclidean distance is a 

sufficient metric for the decoding of codes over partitions. The Vitel'bi algorithm 

(VA) [38] is an efficient algorithm for the decoding of trellis codes, however before 

the VA can be applied to a trellis code over partitions we must first compute the 

minimum distance metric to each element of the label group For example, 

consider decoding the code described by the trellis of figure 6.4. This simple code 

consists of two states, each of which is connected to every other by a pair of parallel 
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(Au, Au, Au) 

Illllf:::------.:::af 

Figure 6.4: An example trellis diagram to illustrate the decoding of partition sets. 

branches. Each branch has associated with it a sequence of three symbols from the 

label group Ai. The label group contains two elements Ao and AI, each representing 

a set of points. To extend the branch metric entering state 0 from state 0 we must 

first compute the minimum squared Euclidean distance to each of the elements Ao 

and Al at each of the three time slots. Once these distances have been computed 

and stored, we may compute the metric for each branch by summing the three 

appropriate pre-computed distance metrics and proceeding in the normal manner. 

To compute the metric to Ao (or AI) we must calculate the distance from the received 

vector r to every element in Ao, i.e. 

m(r, Ao) = min Ill' - al12 

aEAo 
(6.7) 

For a large lAo I an exhaustive comparison calculation is expensive. Since Ao is a 

linear group code, we may apply the same technique used for the reduced complexity 

decoding of the parallel group as presented in section 4.7.3, i.e. we write Ao as a 

trellis, and decode with the VA, 

6,3.3 Decoding complexity. 

To compare the performance of multi-level codes to conventional trellis codes we 

need a decoding complexity measure. In chapter 4 we modified the normalised 

branch complexity introduced by Wei and others to include parallel transitions to 

measure the decoding complexity of geometrically uniform trellis codes [77]. The 

normalised branch complexity calculates the average number of metric computations 

and comparisons required per decoded two-dimensional symbol. A component code 

Ci of the multi-level code C is defined over the label group and as such an extra 
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decoding step is required. This step is to compute the minimum distance to each 

element of the label group ~ as illustrated by example in section 6.3.2. Therefore 

the three steps in decoding a component trellis code are: 

1. Compute the distance metric of the received vector to each element of ~ and 

retain the minimum distance. The normalised complexity of this step is given 

by 

(6.8) 

where ~(Aio) is the complexity of computing the minimum distance to one 

element in Ai, and IAil is the number of elements in Ai. 

2. Compute the distance to the parallel group Pi and its cosets of the trellis. 

(6.9) 

where ~(Pi) is the complexity of computing the minimum distance to the par­

allel group Pi, and IPil is the number of cosets of Pi' 

3. Compute the trellis branch metrics. 

(6.10) 

where 2Vi is the number of states of the trellis and bci is the number of coded 

bits. 

The total normalised decoding complexity of the code component code Ci per symbol 

is the sum of the decoding complexities of the above three steps. Thus 

(6.11) 

The decoding complexity of the multi-level code C is the sum of the complexities of 

the 1 component codes 

I 

~(C) = L~(Ci)' (6.12) 
i=l 

This measure of decoding complexity is only a guide to the true complexity required 

for decoding. It does not take into account the decoder memory requirements, 

possible intra-level interleaving, or any iterative decoding. However it is useful as a 

relative indication of complexity for the comparison of code alternatives. 
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6. "-''-' .......... steps. 

The steps of the design process of multi-level codes over GU partitions can be split 

into two parts. First we need to select a partition chain of a multi-dimensional 

signal constellation. If we construct a partition chain based on the technique of 

constructing a normal subgroup chain of a generating group of L x lVI-PSI< as 

described in section 5.5.1 of chapter 4 then the following steps are necessary. 

1. Select the parameters Land M for the L x 1\1-PSI< constellation S. 

2. Select a generating group G(S) of 

3. Construct a normal subgroup chain Go <l G1 <l ... <l G l of G with desirable 

distance properties. The orders of the partitioning need to be selected. 

4. Compute the quotient groups Qi = Gi/Gi - I , and define an isomorphism map­

ping Qi to A. 

Given the set of label groups A and the associated distance properties we need to 

design the component codes 

1. For the component code Ci over Qi select an exponent Pi. 

2. Construct the group (A)Pi. 

3. Select the number of input bits bi to the component trellis encoders such that 

the sum T ± L:~=l ! gives the desired overall data rate T. 

Select the number of code states Vi for each encoder to give the design minimum 

Hamming distance. 

5. Select the code generators of the trellis code. 

With the large number of design decisions and possibilities, none of which are clearly 

easy to make, the design of multi-level codes is somewhat of an ad-hoc procedure. 

In the next section we examine in detail two case studies of multi-level code designs 

to familiarise the reader more with the material presented so far. 
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.4 c studies. 

To clarify the previous sections on the decoding of multi-level codes over geomet­

rically uniform partitions we will examine some case studies and analyse them in 

detaiL 

6.4.1 Study 1: multi-level code over 8-PSK. 

In this example we consider a simple multi-level code over the constellation 1 x 8-

PSK. The case of a three level partitioning has previously been studied by Seshadri 

and Sundberg [65] for the Rayleigh fading channel. As an alternative we consider a 

two level partitioning scheme. The code will be designed for a spectral efficiency of 2 

bits/symbol to allow for the easy comparison with the trellis codes of chapter 4 over 

8-PSK constellations. We will construct a partitioning of S = 8-PSK by selecting a 

normal subgroup chain of a generating group of 8-PSK. We consider the generating 

group 

(6.13) 

isomorphic to D4 • The normal subgroup chain Go <J G1 <J Gz, where Go {ro}, 

G1 {ro, r4} and G2 - G partitions S into the tree shown in figure 6.5. The orders 
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Figure 6,5: The partition tree of 8-PSK generated by the chain Go < G1 < G2 . 

of the partition are ml 
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over which the component codes are defined are 

Q1 Gt/Go 

Q2 = G2/G1 

{{ro}, {r4}} 

{{rO l r4}, {r2' r'6}, {Vb VS}, {Va, V7}} 
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(6.14) 

(6.15) 

The group Q1 is isomorphic to Z2 and Q2 is isomorphic to (Z2)2. We define the label 

group Al as Al = {OJ I} and associate the following mappings between Q1 and AI: 

(6.16) 

(6.17) 

We define the label group A2 as A2 = {OO, 01,10,11} and associate the mappings 

between Q2 and A2: 

{ro,r,!} ----+ 00 (6.18) 

{r2' r6} ----+ 01 (6.19) 

{VI, Vs} ----+ 10 (6.20) 

{Va;V7} ----+ 11 (6.21) 

From theorem 15 of chapter 5 the distance properties of a GU partition are char­

acterised by the distance properties between any element (say the identity element) 

and the other elements in the group. The group Al is of order two and we need 

only the distance properties between the elements 0 and L Note that the symbols 

o and 1 are labels of Al corresponding to the elements in Q1 and the corresponding 

symbols from Ql need to be used to compute the correct distance properties. We 

have for AI: 

and 

N(O,l) = N( {ro}, {r4}) = 1· 

(6.22) 

(6.23) 

(6.24) 

For the group A2 there are four elements each containing two points. We need to 

know the distance from the identity element to the other three elements: 

dH (OO,01) dH ( {ro, r4}, {r21 r6}) 

dH(OO, 10) = dH( {ro, r4}, {VI, Vs}) 

dH(OO, 11) = dH( {ro J r4}, {va, V7}) 

1 

1 

I, 

(6.25) 

(6.26) 

(6.27) 
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d;(OO,01) = d;( {ro, r4}, {r:,!J r6}) 2.0 (6.28) 

d;(OO, 10) = d;( {ro l r4}, {VI, V5}) 0.587 (6.29) 

d; (00, 11) = ~ ( { r 0, r 4}, {Va, V7} ) 0.587 (6.30) 

and 

N(OO,01) = N( {rO l r4}, {rZl T6}) 2 (6.31) 

N(OO, 10) = N( {To, r4}, {VI) V5}) 1 (6.32) 

N(OO, 11) = N( {ro, T4}, {Val vr}) 1 (6.33) 

We have summarised the partition chain distance properties in table 6.1. Note that 

Partition I of 1 x 8-PSK 

1, Gi/Gi- I rni Coset Map to Ai dH d2 
P N 

1 Zz 2 '1'4 1 0- 4.0 1 

2 (Z2? 4 Tz 01 1 2.0 2 

VI 10 1 0.587 1 

Va 11 1 0.587 1 

Table 6.1: Summary of the distance properties of the partitioning of 8-PSK corresponding to 

the chain Go <1 G1 <1 G2 . 

the distance properties of the partition of level one are better than those of level 

two. Now that the partition chain has been established we need to construct codes 

over the label groups Al and A 2 • vVe desire an overall data rate of 2 bits/symbol 

hence 

bi bz 
'1'=-+-=2 

PI P2 
(6.34) 

and from equation (6.5) we must have ~ S 10gzlAil, hence by selecting b1 - 2, 

PI 3, b2 = 4 and P2 = 3, we achieve the desired data rate. The selected encoder 

for the code C1 over Al is shown in figure 6.6. It is a rate 2/3 encoder with two 

memory elements, hence VI 2. The trellis diagram corresponding to the encoder 

of figure 6.6 is shown in figure 6.7. The code C1 over (AI)a of figure 6.7 has a 

minimum Hamming distance of 3, the path of which has been highlighted. Mapping 

Al through the isomorphism back to Q1 gives the following distance properties for 
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(1,1,0) 
Ll 

(1,1,1) 

(0,1,1) 
D, 

(0,0,1) 

Figure 6,6: Binary trellis encoder over (Al)3. 

(0,0,0), (1, 1,0), (0, 1, 1), (1,0,1) 
(0,0,0) (0,0,0) 

(1,1,1), (0,0,1), (1, 0, 0), (0, 1,0) 

(0,0, I), (I, 1, 1), (0, 1,0), (1,0,0) 

(1,1,0),(0,0,0),(1,0,1),(0,1,1) 

Figure Trellis diagram corresponding to the encoder of figure 6.6. 

dH(Od 

d;( 0 1 ) 

N(Cd 

3 

4.03 64,00 

1 

(6.35) 

(6.36) 

(6.37) 

The decoding complexity code is as follows. elements of the label group Al 

correspond to single points and no distance computation to a subset is required hence 

encoder over Al does not have parallel paths, hence (p(C1) = O. 

The trellis encoder for code C1 consists of 4 states, each with 4 transitions giving 

a trellis complexity from equation (6.10) of (T(C1 ) = 16/3. The total normalised 
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complexity of decoder C1 is therefore given by 

((C1 ) (A(C1 ) (p(C1 ) + (T(Cd 

o 0 16/3 

16/3 (6.38) 

Now we consider a code over A2. The group A2 is of order four and is isomorphic 

to (Z2)2. We have constructed an eight-state trellis code over (A2)3. The encoder 

is shown in figure 6.8. The trellis diagram corresponding to the encoder of code C2 

(11,11,11) 

(10,01,10) (10,01,01) 

(11,01,01) (11,10,01) + 
(00,11,01) 

Figure 6.8: 'Itellis encoder for code Oz over the label group (Az)3. 

of figure 6.8 is shown in figure 6.9. The encoder accepts four bits for transmission, 

three of which are encoded and one is uncoded. Therefore there are two parallel 

transitions in the trellis diagram corresponding to the uncoded bit of the system. 

The code C2 of figure 6.9 has a minimum Hamming distance of 3, corresponding to 

the parallel branches. Mapping A2 through the isomorphism back to Q2 gives the 

following distance properties for C2 : 

dH (C2 ) 

d;(C2) 

N(C2 ) 

3 

2.03 = 8.00 

23 = 8 

(6.39) 

(6.40) 

(6.41) 

The decoding complexity of code C2 is as follows. The partition group Q2 consists 

of four sets containing two point each. Hence 4 x 2 8 distance computations are 
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(00,00,00), (10,01,10),(11,01,01),(01,00,11) 
(11,10,00), (01,11, 10),(00,11,01),(10,10,11) 

(10,01,01),(00,00,11),(01,00,00),(11,01,10) 
(01,11,01), (11,10,11),(10,10,00),(00,11,10) 

(11,10,01),(01,11,11), (00,11,00),(10,10,10) 
(00,00,01),(10,01,11),(11,01,00),(01,00,10) 

(01,11,00), (11,10,10),(10, 10,01),(00,11,11) 
(10,01,00),(00,00,10),(01,00,01),(11,01,11) 

(00, 01),(10,10,11), (11,10,00), (01,11,10) 
(11,01,01),(01,00,11),(00,00,00),(10,01,10) 

(10,10,00),(00,11,10), (01,1~01),(11,10,11) 
(01,00,00),(11,01,10), (10,01,01),(00,00,11) 

(11,01,00), (01,00,10), (00,00,01),(10,01,11) 
(00,11,00),(10,10,10),(11,10,01),(01,11,11) 

(01,00,01), (11,01,11),(10,01,00),(00,00,10) 
(10,10,01),(00,11,11),(01,11,00),(11,10,10) 

p 

p= 
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(00,00,00) 
(11,11,11) 

Figure 6.9: Trellis diagram corresponding to the encoder of code of figure 6.8. 

required to compute the minimum distance to each subset and we have tA (01 ) 8. 

The encoder over A2 has two parallel paths, and there are 31 distinct cosets of the 

parallel group. Hence tp (02 ) (2 x 32) /3 >=:::;; 21.3. The trellis O2 consists of 8 states, 

each with 8 transitions and the trellis complexity is given by tT(02) (8 x 8)/3. 

The total normalised complexity of decoder O2 is therefore given by 

t(02) tA(02) + tp(02) tT(02) 

8 + 64/3 64/3 

>=:::;; 50.7 (6.42) 

The total decoding complexity of the code 0 = 0 1 * O2 is 

t(O) = t(Ot} + e(02) 

56 (6.43) 

Table 6.2 is a summary of the multi-level code construction. The error performance 

of the multi-level code 0 is dominated by the worst code in the construction. Clearly 

this is the component code O2 which has a product distance of 8 and multiplicity 8, 

compared the product distance of 64 and multiplicity 1 of code 0 1 . In figure 6.10 we 
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Code over 8 = 8-PSK, partition I 

't rni ~ Pi b· t Ti V· t dH a; N ~A(Ci) ~P(Ci) ~t(Ci) ~(Cd 

1 2 Zz 3 2 ~ 2 3 64.0 1 0 0 16/3 16/3 3 

2 4 (Zz)Z 3 4 4 3 3 8.0 8 8 64/3 64/3 50.7 "3 

bits/symbol= I 2.0 Total complexity 56 

Table 6.2: Summary of the properties of the multi-level code of case 1. 

have plotted the error curves of the two component codes C1 and C2 as well as that 

of a multi-dimensional geometrically uniform trellis code a with v 4 described in 

table 4.10 of chapter 4. The trellis encoder has 16 states and is over the constellation 

8 2 x 8-PSK. It has a Hamming distance of 3, a minimum product distance of 

a; 8, and a weighted product distance of d~w = 1.59. The code properties are 

similar to those of code C2. However the normalised complexity of the trellis code 

from table 4.10 is higher, 

~(G') 128 (6.44) 

and is about 2.5 times more complex to decode than the multi-level code. We see 

that the multi-level code operates at a similar performance to the trellis code but 

with a decoding complexity that is significantly lower. 

6.4.2 Study 2: multi-level code over 2 x 8-PSK, 

For this case we study a multi-level code over the constellation 2 x 8-PSK. This 

constellation is more interesting in that the number of design possibilities and trade­

offs are far greater. The constellation may be partitioned to give different Hamming 

distances at different levels. Therefore the code rate at the higher levels can be 

increased, while the code rate at the lower levels is decreased, making it possible 

to compensate for the reduced distance properties. In this example we partition 

the constellation 8 = 2 x 8-PSK into three levels. The partitioning is based on 

the generating group 0(8) ::::: (DS)2. We have selected the normal subgroup chain 
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C f Trellis code over 2 x 8-PSK 
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Figure 6.10: The performance of the component codes Gl and of the multi-level code 

of study 1. Plotted for comparison is a multi-dimensional trellis code G' with similar distance 

properties. 

Go - {(TO, TO)} 

G1 {(TO, TO)) (T4' TO)' (V7' T4), (Va, T4)} . Go 

G2 {(TO, TO), (T4' T4), (VSl V7), (Vi) Va)} , G1 

G3 {(TO) ToL (T4' T2)) (TO) VI)' (T4' Va)} , G2 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

This selection of the partition chain partitions 8 into three four-way partitions, the 

distance properties of which are summarised in table 6.3. Each of the three quotient 

groups Gi/Gi - 1 is isomorphic to (ZZ)2 and the isomorphic mappings to the labels 

groups.At are included in table 6,3 in terms of the coset representatives. Note that 

the partition levels one and two both have two elements with a Hamming distance of 

dH = 2. These higher Hamming distance elements can be exploited by the encoder to 
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~ Gi/Gi~I ~ Coset rep. Map to A dH ~ N 

1 (Z2)2 4 (T4,To) 01 1 4.0 1 

(V7,T4) 10 2 2.34 1 

(V3,T4) 11 2 13.7 1 

2 (Z2)2 4 (T4, T4) 01 2 0.343 1 

(V5, V7) 10 1 0.587 1 

(VI, V3) 11 2 1.17 2 

3 (Z2)2 4 (T4, T2) 01 1 2.0 2 

(TO, VI) 10 1 0.587 1 

(T4,V3) 11 1 0.587 2 

Table 6.3: Summary of the distance properties of a three level partitioning of 2 x 8-PSK. 

improve upon the minimum Hamming distance otherwise possible. We have selected 

to construct each of the component codes Oi over (A)2, i.e. Pi = 2. To choose a 

rate of each encoder, we compute the overall rate of the code in bits per symbol 

T 

(6.49) 

To achieve an overall rate of 2 bits/symbol we need b1 +b2 +b3 to equal 8, and hence 

we select b1 3, b2 = 3 and b3 = 2. Note that the lower bit rate of code 0 3 allows 

us to compensate for the worse distance properties of the underlying partition. We 

have selected the codes 0 1 and O2 to have a constraint length of 3 and the code 

0 3 to have a constraint length of 4. The encoders are summarised by the generator 

matrices 

( 

(01,10) 

(10,01) 

(00,11) 

(10, 01) 1 
(01,01) 

(01,11) 

( 

(00,11) (11,10) 1 
G(02) (10,01) (01,10) 

(01,10) (00,11) 

(6.50) 

(6.51) 
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( 
(10,01) (01,11) (11,11)) 

(01,10) (10,10) (01,10) 
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(6.52) 

These trellis generators combined with the partition properties of table 6.3 gives the 

following distance properties for each of the three component codes: 

dH(C1) = 5 d~(Cl) = 128.0 N(C1 ) = 1 

dH (C2) = 5 ~(C2) 0.235 N(Cz) = 16 

dH (C3) 6 d~(C3) = 0.471 N(C3) 136 

(6.53) 

The decoding complexity of code C1 is as follows, The partition group Ql consists 

of four sets containing one point each and ~A (C1 ) =0. The encoder C1 has no 

parallel paths, hence ~p (C1 ) = O. The trellis defining C1 has of 8 states, each with 

8 transitions and the trellis complexity is given by ~T(Cl) = (8 x 8)/4 = 16. The 

total normalised complexity of decoder C1 is therefore given by 

~(Cl) - ~A(Cl) + ~P(Cl) + ~T(Cl) 
o 0 + 16 

16 (6.54) 

The partition group consists of four sets containing four points each and as such 

(4 x 4)/2 = 8 comparisons are required to compute the minimum distance to each 

subset. Hence we have ~A( C2) 8. The encoder C2 has no parallel paths, hence 

~P(C2) = O. The trellis over of C2 has 8 states, each with 8 transitions and the trellis 

complexity is given by ~T(C2) = (8 x 8)/4 = 16, The total normalised complexity 

of decoder C2 is therefore given by 

~(C2) ~A(C2) + ~P(C2) + ~T(C2) 
8 0 + 16 

24 (6.55) 

The partition group Q3 consists of four sets of sixteen points each, The number of 

comparisons required per symbol is ~A(C3) (4 x 16)/2 = 32. There are no parallel 

paths in the code trellis of C3 and ~P(C3) = O. The encoder consists of sixteen states, 

each with four branches and the trellis complexity is given by ~T(C3) (4 x 16)/4 = 
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16. The total normalised complexity of decoder C3 is therefore given by 

~(C3) = ~A(C3) + ~P(C3) + ~T(C3) 

32 + 0 + 16 

48 

and the total complexity of the multi-level code is 

~(C) ~(C1) ~(C2) + ~(C3) 

16 24 + 48 

(6.56) 

88 (6.57) 

Table 6.4 is a summary of the multi-level code construction. This multi-level code 

Code over S 2 x 8-PSK, partition I 

i mi Ai Pi bi 1'i Vi dH eli, N ~A(Ci) ~P(Ci) ~T(Cd ~(Ci) 

1 4 (Z2)2 2 3 3 3 5 128.00 1 0 0 16 16 '4 
2 4 (Z2)2 2 3 3 3 5 0.235 16 8 0 16 24 '4 
3 4 (Z2)2 2 2 1 4 6 0.471 136 32 0 16 48 2" 

Code rate in bits/symb. 2.0 Total complexity 88 

Table 6.4: Summary of the properties of the multi-level code of case 2. 

has a decoding complexity of only 88. In comparison, from table 4.10 of chapter 4, 

for a geometrically uniform trellis code over 2 x 8-PSK transmitting 2 bits/symbol to 

achieve a diversity of 5, requires a trellis with 256 states. The normalised complexity 

of such a trellis is 24+8/2 2048 which is about 23 times more complex. Of course 

the trellis code has a much higher minimum product distance and lower multiplicity. 

Figure 6.11 shows the pairwise probability curves of each of the three codes C l , C2 

and C3 and the trellis code C' for comparison. Note that the worst component code 

in the multi-level hierarchy is code C2 - The asymptotic performance loss relative to 

the trellis code C' is about 3 dB. 

6.5 Selecting component codes. 

As we have seen from the example case studies of section 6.4 the error performance 

of the overall multi-level code is dominated by the worst component code in the 
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5 10 15 20 25 30 

Figure 6,1 The performance of the component codes G1 , of the multi-level code of 

:study 2. Plotted for comparison is the trellis code with the same Hamming distance. 

hierarchy, Each component code Ci is defined as a convolutional group code over a 

label subgroup Ail where each element of Ai corresponds to a set of points from the 

partition chain. The overall distance properties of Ci are determined by the distance 

properties of Ai and by those of the convolutional code itself, The main design 

parameter of interest for the Rayleigh fading channel is the Hamming distance of 

the code. Therefore to aid in the design of multi-level codes over geometrically uni­

form partitions we have constructed tables listing the achievable minimum Hamming 

distance in terms of the group and distance properties of Ai and in terms of the con­

straint length Vi of the convolution code Ci . This makes selection of the partition 

chain and component code rates easier, since determining the Hamming distance of 

the component code becomes a matter of table lookup. 
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5.1 Component over A f'.j 

Table 6.5 lists the Hamming distances of codes over (A)Pi, for Pi = 2 to Pi 6, 

where Ai ::::: Z2, the binary group. The label group Ai {Ao, AI} contains just two 

elements and has Hamming distance dH(Ai). The Hamming distances of C i listed in 

table 6.5 have been normalised to dH(Ai ). The first column of the table contains the 

constraint length Vi of Ci . The subsequent columns contain the normalised Hamming 

distance dH(Ci)/dH(Ai ) for a given code rate bdpil bi is the number of input 

bits. The product distance and multiplicity of each code may be computed by the 

dH of component codes over (Z2)Pi 

Vi bdpi 

1/2 1/3 2/3 2/4 3/4 3/5 4/5 5/6 

1 3 5 2 4 2 3 2 2 

2 5 8 3 5 3 4 2 2 

3 6 10 4 6 4 5 3 3 

4 7 12 5 7 4 6 4 3 

5 8 6 8 5 6 4 4 

Table 6.5: Normalised Hamming distance of rate bi/Pi component codes over (Z2)P'. 

following formulas: 

(d;(A
i
)) dH(Ci)/dH(Ai) 

(N(Ai))dH(C;l/dH(Ai) . 

(6.58) 

(6.59) 

Note that the code parameters of table 6.5 correspond simply to binary convolutional 

codes. 

6.5.2 Component 

The group Ai ::::: (Z2)2 contains four elements and a greater number of possible 

Hamming distance combinations are possible than a group isomorphic to Z2' From 

the case study 1 of section 6.4.1 we see that the level two partition label group is 

isomorphic to (Z2)2 and the Hamming distance profile can be described by the set 

D P (Ai, d H) = {1, 1, 1}. This means that every element is at a Hamming distance of 
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one from every other element. For case study 2 of section 6.4.2, the label groups for 

partition levels one and two are also isomorphic to (Z2)2 j however they both have 

a Hamming distance profile described by DP(~, dH) {2, 2, I} (see table 6.8). 

Therefore a component code over the latter distance profile will generally be better 

than a component code over the formeL Tables 6.6, 6.7, and 6.8 list the greatest 

attainable Hamming distance of component codes over (Z2)2 as a function of 

the normalised distance profiles DP(Ai , dH) {I, 1,1}, DP(Ai , dH) = {I, I, 2}, and 

DP(Ai , dH) = {1, 2, 2} respectively. The corresponding squared product distance 

~ and code multiplicity N, need to be evaluated on a case by case basis. 

dH of component codes over (Ai)Pi. 

Ai ~ (Z2)2, DP(Ai , dH) = {I,l, I} 

v bi/Pi 

1/1 1/2 2/2 3/2 3/3 4/3 5/3 

1 2 4 2 2 3 2 2 

2 3 6 4 2 3 3 2 

3 4 8 4 3 5 3 2 

4 5 10 6 3 6 4 3 I 

Table 6.6: Normalised Hamming distance of rate bi/Pi component codes over (AdPl , for Ai ::::: 

(Z2)2 with normalised Hamming distance profile DP(A,dH) = {I,l, I}. 

dH of component codes over (~)Pi. 

Ai ~ (Z2)2. DP(A, dH) = {I, 1, 2} 

v b)p· 1. ~ 

1/1 1/2 2/2 3/2 3/3 4/3 5/3 

1 3 7 4 2 4 3 

2 5 10 5 3 5 4 

3 6 12 6 4 6 4 

4 7 15 8 4 7 5 

Table 6.7: dH of rate bi/Pi component codes over (A)Vi, for 

distance profile DP(A, dH ) = {l, 1, 2}. 

2 

2 

3 

4 
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Normalised Hamming distance of component codes over (A)Pi, 

Ai:::C:: (Z2)2. DP(Ai ) dH) {1,2,2} 

v bdpi 

1/1 1/2 2/2 3/2 3/3 4/3 5/3 

1 4 8 4 3 5 4 2 

2 6 12 6 4 6 5 3 

3 7 15 8 5 8 6 4 

4 8 18 10 5 10 7 5 

Table 6.8: Normalised Hamming distance of rate bi/Pi component COdE'AS over (Ai)k, for Ai ;:::: 

(Z2)2 with normalised distance profile DP(Ai, dH) {I, 2, 2}. 

We observe, as expected, that the attainable Hamming distance of component 

over (Z2)2 increases as the distance profile of the underlying partition improves. The 

Hamming distances of the component codes over the profile DP(Ai , dH ) {I, 2, 2} 

are almost double those over DP(A, dB) {I, 1, I}. 

6.5.3 Component 

The other label group of order four occurring in partition chains is the group iso­

morphic to Z4. Generally component group codes over this group do not achieve the 

same Hamming distances as codes over (Z2)2 for the same Hamming distance profile. 

This is due to the more constrained algebraic structure of the group Z4 compared 

to (Z2)2. Tables 6.9 and 6.10 list the attainable Hamming distance of a compo­

nent code constructed over Z4 for the Hamming distance profiles dH {I, 1, I} and 

dH = {I, 2, 2} respectively. The Hamming distance of one in the latter profile cor­

responds to the element g e of Z4 such that g2 = e. The profile dH {I, I, 2} is 

not considered because it does not occur in any partition chains examined. By in­

spection of tables 6.9 and 6.10, the codes over Z4 do not achieve Hamming distances 

nearly as good as those over (Z2)2. In fact the change of Hamming distance profile 

of the codes over Z4 from DP(Ai , dH) {I, 1, I} to DP(A, dH ) = {I, 2, 2} did 

little to improve the achievable Hamming distances of the component codes. This 

is due to the Hamming distance of one corresponding to the element g E Z4, such 

that g2 = e and it is this element which with the identity element forms the only 
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dH of component codes over (A)Pi. 

Ai c:= Z4. DP(Ai , dH) {I,I,I} 

v bdpi 

1/2 2/2 3/2 3/3 4/3 5/3 

1 3 2 1 2 2 1 

2 5 3 2 3 2 2 

3 6 3 3 4 3 2 

4 7 5 3 5 4 3 

Table 6,9: Normalised Hamming distance of rate bi/Pi component codes over (Ai)Pi, for Ai ~ Z4 

wit h normalised distance profile {I, 1, I}. 

dH component codes over (~)Pi. 

Ai c:= Z4 DP(Ai1 dH ) {1,2,2} 

v kin 

1/2 2/2 3/2 3/3 4/3 5/3 

1 3 2 1 2 2 1 

2 5 3 2 3 2 2 

3 6 3 3 
,. 

3 2 ;) 

4 7 5 3 5 5 3 

Table 6.10: Normalised Hamming distance of rate bi/Pi component codes over (Ai)k, for 

Ai ~ Z4 with normalised distance profile {I, 2, 2}. 

non-trivial subgToup of Z4' In general it is therefore preferable to construct codes 

over label groups Ai isomorphic to (ZZ)2 rather than 

6.6 Codes over 1 x SK. 

The paper by Seshadri and Sundberg constructs multi-level codes for the Rayleigh 

fading channel over an 8-PSK constellation [65}. Their construction is based on 

the conventional Ungerboeck three-level partitioning of 8-PSK [75] and the same 

partitioning is also achieved by any normal subgroup chain over a generating group 

of 8-PSK. We have summarised the properties of the partition in table 6.11. The 

label group of each of the three levels is isomorphic to Z2 and a multi-level code is 
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~ Gi/Gi.-1 mi Coset Map to Ai. dH d2 
P N 

1 Z2 2 T4 1 1 4.0 1 

2 Z2 4 T2 1 1 2.0 2 

3 Z2 4 Tl 1 1 0.587 2 

Table 6.11: Summary of the distance properties of a three level partitioning of 8-PSK 

constructed by defining three linear binary codes over Seshadri and Sundberg 

used identical rate 2/3 binary convolutional codes over each level to give an overall 

data rate of 2 bits per symbol and achieved the minimum Hamming distances listed 

in the column labelled "2/3" of table 6.5 as a function of the constraint lengths of 

the convolution encoders. The error performance of this construction is dominated 

by the code with the worst distance properties. This is the code defined over the 

third level partition which has a minimum product distance of 0.587. In table 6.12 

we have listed the minimum distance properties and normalised code complexity 

of this code construction as a function of the constraint length of the component 

codes. The normalised complexity of the code increases exponentially with the 

1 2 0.34 4 10 

2 3 0.20 24 20 

3 4 0.12 32 36 

4 5 0.070 160 68 

5 6 0.041 1088 132 

6 7 0.024 2176 260 

Table 6.12: Code parameters of multilevel constructions over 1 x 8-PSK. 

increasing constraint length of the component codes. In figure 6.12 we have plotted 

the probability of error curves of the component codes of table 6. Note that each 

unit increase in the component code constraint length leads to a diminishing return 

in coding gain. The multi-level codes outperform the best trellis codes of chapter 4 

also transmitting 2 bits/symbol in terms of code complexity. For example curve 5 of 

figure 6.12, corresponding to a multi-level code with v = 5 and dH 6, is similar to 
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Figure 6.12: The error performance of multi-level codes over partition II of 1 x 8-PSK. The 

overall code rate is 2 bits/symboL 

the performance of a trellis code over 2 x 16-PSK with v 7 and dH = 4 at a BER 

of 10-9 • However the normalised complexity of the multi-level code is compared 

to 1024 of the trellis code, and represents a reduction in complexity of a factor of 

about 8. 

vVe may attempt to improve upon the minimum squared product distance of the 

partition described by the label group A3 by employing the two-level partitioning 

of the 8-PSK constellation used in case study 1 of section 6.4.1, and is illustrated 

by figure 6.5. This two-level partitioning is based on the generating group O(S) 

{TO, TIl 1'2, 1'3, va, VI, V2, V3}, isomorphic to partitioned using the partition chain 

consisting of the normal subgroups G1 = {TO, T4} and G2 = G. Of the two levels of 

the partition, one is two-way and the other is four-way and the distance properties 

are described by table 6.1 of section 6.4.1. Note that the four-way partition contains 

one element with a product distance of ~ - 2.0 which can be exploited by the 

component code to produce a better overall product distance. In table 6.13 we have 

listed the properties of 4 multi-level code designs. The component codes for 0 1 are 
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over (Ad 3 and have 2 input bits each. The component codes for C2 are over (A2 )3 

and have 4 input bits each to give an overall rate of 2 bits per symbol for each code. 

Although we have improved upon the minimum product distance (and multiplicity) 

Design GIl b1 = 2,1'1 1 G2, b2 4,1'2 = t G, r = 2.0 2 

VI dH a; N ~(GI) V2 dH a; N ~(C2) ~(C) 

1 1 2 16.0 1 4 1 2 1.172 6 44/3 18.7 

2 2 3 64.0 3 16/3 2 3 0.689 6 88/3 34.7 

3 3 4 256 2 32/3 4 4 0.402 6 264/3 98.7 

4 4 5 1024 5 64/3 5 5 0.236 18 520/3 194.7 

Table 6.13: Four multi-level code designs over partition I of 1 x 8-PSK. 

for a given Hamming distance by using a two-level partitioning, it has been at the 

cost of an increase decoding complexity. This is consistent, as effectively the 

design is "closer" to a conventional trellis code over 8-PSK, relative to a three level 

multi-level code design. In general, the more levels in the multi-level encoder, the 

lower the decoder complexity for the code distances achieved. 

6.7 Codes over 2 x 8-PSK. 

Multi-level codes over partitions of 2 x 8-PSK are more interesting because they 

allow for much more design flexibility and design trade-offs than multi-level codes 

over 1 x 8-PSK. The partition chain can be selected such that some of the levels have 

a Hamming distance of two allowing the data rates of the component codes to be 

varied to give better coding gains. The number of possible partitions of 2 x 8-PSK 

is large and we will only examine one of the more interesting ones. First we need to 

decide on the number of partition levels, from 1 to 6, as well as the orders of each 

partition. For example, in the case study 2 of section 6.4.2 we partitioned 2 x 8-PSK 

into three levels, each of order 4. Alternatively we may partition the constellation 

into six levels of order two each. Consider the six level binary partitioning of 2 x 8-

PSK based on the generating group 0(8) rv (Zs? Table 6.14 summarises the 

properties of the the partition chain we have selected. Each level is isomorphic to 

the binary group Z2' Note that the first three levels of the partition have a minimum 
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Hamming distance of two, while the remaining three levels have a Hamming distance 

of one. We may take advantage of the difference in Hamming distances of the levels 

by increasing the data rate of the top three levels and reducing the data rate of the 

lower three levels. By doing so we can make the distance properties of the component 

codes at each level similar. label group is the same and equals Ai {O, I}. By 

p 

~ Gi/Gi - 1 ffii Coset dH d2 
p N 

1 2 (r41 r4) 2 16.0 ~J 
2 Zz 2 (r2' r6) 2 4.0 2 

3 Z2 2 (rI, r3) 2 2.0 4 

4 Z2 2 (ro, r4) I 1 4.0 2 

5 Z2 2 (r4' r2) 1 2.0 4 

6 Z2 2 (r2,r3) 1 0.586 4 

Table 6,14: Summary of the distance properties of a six level binary partition of 2 x 8-PSK. 

raising each label group to the power of six, we can elect to transmit five bits per 

level for the top three levels, and three bits per level on the lower three levels. This 

choice, while making good use of the higher level distance properties, maintains an 

overall data rate of two bits per symbol: 

r 
1 6 b· 

~ 

L i=l Pi 
1555333 
2'(6 6+6+6+6+6) 
2.0 bits/symbol (6.60) 

To select the component codes we utilise table 6.5 which lists the minimum distances 

of codes over (Z2)Pi. For a minimal complexity design, we select Vi = 1 for each level, 

and conveniently this choice gives a minimum Hamming distance for every level of 

four. The properties of each component code are summarised table 6.15. The 

complexity of this code is about 40% higher than the code of table 6.12 over 1 x 8-

PSK with equal minimum Hamming distance. Clearly it is better to utilise the the 

code over 1 x 8-PSK to achieve a Hamming distance of four. However if we desire to 

design codes with a higher Hamming distance then a code over 2 x 8-PSK can have 
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Code over S = 2 x 8-PSK, partition II 

Ai Pi ni Ti Vi dH d2 
p N eA(Cd ep(Cd eT(Cd e(Ci) 

1 2 Z2 6 5 1 4 256.0 10 0 16/3 1/3 5.7 

2 2 Z2 6 5 1 4 16.0 40 2 16/3 1/3 7.7 

3 Zz 6 5 1 4 4. 4 16/3 1/3 

1 4 8 4/3 1/3 

1 4 16.0 768 8 4/3 1/3 

1 4 0.12 768 8 4/3 1/3 

Code rate = 2.0 Total complexity 

Table 6. Summary of the properties of a multi-level code design over parti tion II of 2 x 8-PSK 

Design distance dH = 4. 

less complexity. By selecting each component code to have a constraint length of 

Vi = 3 we achieve a Hamming distance of dH 6 and the properties of this design 

are summarised in table 6.16. This multi-level code has a minimum squared 

Code over S = 2 x 8-PSK, partition II 

2 m' ~ Ai Pi ni Ti Vi dH a; N eA(Ci) ep(C£) eT(Ci ) e(Ci) 

1 2 Z2 6 5 5 3 6 4096 6 I 0 5.3 5.3 10.7 12 

2 2 Zz 6 5 5 3 6 64 48 2 5.3 5.3 12.7 12 

3 2 Z2 6 5 5 3 6 8 384 4 5.3 5.3 14.7 12 

4 2 Z2 2 1 1 3 6 4096 64 8 0 4 12 4' 

5 2 Z2 2 1 1 3 6 64 4096 8 0 4 12 4' 

6 2 Z2 2 1 1 3 6 0.04 4096 8 0 4 12 4' 

r.nm:!11pyity 

Table 6.16: Summary of the properties of a multi-level code over partition II of 2 x 8-PSK 

Design distance dH = 6. 

product distance of ~ = 0.04, the same as the V 5 code over 1 x 8-PSK of table 

6.12 however the multiplicity is approximately a factor of two greater. The decoding 

complexity of the code is only 74 while for the code over 1 x 8-PSK it is 132 and 

represents a saving of 46%. By increasing the constraint lengths of the component 

codes to Vi = 5 we achieve a Hamming distance of dH 8 for a squared product 
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distance of ~ = 0.014 as shown in table 6.17. The decoding complexity for this 

Code over S = 2 x 8-PSK, partition II . 
mi Ai Pi ni r'i Vi dH a;, N ~A(Ci) ~P(Ci) ~T(Ci) ~(Ci) 

1 2 Z2 6 5 12 5 8 65536 16 0 0 85.3 85.3 
'" 

2 2 Z2 6 5 5 5 8 256 256 2 0 85.3 87.3 12 

3 2 Z2 6 5 5 5 8 16 4096 4 0 85.3 89.3 12 

4 2 Z2 2 1 ! 5 8 65536 256 8 0 16 24 4 

I 5 2 Z2 2 1 1 5 8 256 65536 8 0 16 24 '4 
6 2 Z2 2 1 1 5 8 0.014 65536 8 0 16 24 '4 

Code Total ('ml1plexity 

Table 6,17: Summary of the properties of a multi-level code over partition II of 2 x 8-PSK. 

Design distance dH 8. 

code design is 334 and is a significant increase relative to the dH = 6 code, however 

it still represents a 35% reduction in complexity relative to a multi-level code over 

1 x 8-PSK from table 6.12. In figure 6.13 we have plotted the union bound on the 

probability of error of the three multi-level code designs of tables 6.15,6.16 and 6.17. 



174 CHA.PTER 6. MULTI-LEVEL CODES. 

! ~! 1 ; ~ i 'i L 
,.,., .. '" 

1 0-
9 

:::::::::::::::::::~:::.:::::,::.:::: :;::::::::::::. ::-f: :;:::::::,'::::::::::::::::::':::::::::': 
~ ! ! ! ! ! ! ~! ~! ! ! !! ! ! !! 1 ! ! ! II ! ! 1 ! ! l !! , l ! ! ! !,! 11 : ! ! 1 ! 1 ! 1 ,11 ! i : : , H ! 1 ! 1 ! 1 ! ! 1 : : : ! ! ! 1 ! ! t! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! 1 ! 

10-
10 

................... : ........ ',., .. , ..•.... ,,.,..,',. , .......... , .. , .............. , ...... " ..... " .. 

5 1 0 15 20 25 30 

Es/No (dB) 

6.13: The error performance of multi-level codes over partition II of 2 x 8-PSK. The 

overall code rate is 2 bits/symboL 
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6.8 Codes 16=QAMo 

The constellation 16-QAM is not a GU constellation. However as shown section 

5.3 of chapter 5 it is possible to write 16-QAM as a GU partition tree. The conven­

tional four-way GU partitioning is shown figure 6.14. This partition of I6-QAM 

Figure 6. 

1 • 
2 • 

2 ., 

o • 
3 • 

1 • 
2 • 

o ., 
3 • 

The conventional 4-way partitioning of 16-QAM. 

divides the constellation into four subsets of four points each and written as 

{Spo, j SP2' Sp:J 

{{(3, 3), (-1,3), (-1, -1), (3, -I)}, 

{-3, -3), (1,3), (1, -1), -In, 

-3), (1, -3), (1,1), (-3, I)}, 

{(3, -3), (-1, -3), (-I, 1), (3, In}. 

(6.61) 

four subsets form a GU partition with a symmetry group identical to the 

metry group of a 4-PSK constellation, that is the partition has the same set of 

symmetries, The distance properties 

unit energy of constellation, are listed 

this partition, after the normalisation to 

table 6.18. The table lists the distance 

properties from the subset to each of the other three subsets, SPll and 

Note that in order to calculate the minimum distance properties between Spo and 

another subset we must consider every point and determine the point with 

the worst distance properties to the points . If the partition was based on a GU 

constellation then only one point would need to be considered as shown in section 

5.5,1 of chapter 5. Each subset of the partition is a Gl! constellation and is identical 

to 4-PSK with a shifted origin. Clearly the subsets also have a symmetry group 
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1 OA 2 

Spz 1 0.8 4 

SP3 1 OA 2 

Table 6.18: Minimum distance properties from subset SPo to each other subset. 

isomorphic to that of 4-PSK. The distance properties of the subset SPa are listed in 

table 6.19. This partitioning gives two levels with quite different distance properties. 

1 1 1.6 1 

2 1 3.2 1 

3 1 1.6 1 

Table 6.19: Minimum distance properties ofthe subset Spo' Distances from the point 0 to each 

other point are listed. 

The level with the lower squared product distances also has a higher multiplicity. 

Since a multi-level code is dominated by the worst code in the hierarchy, there is lit­

tle point in having two levels with quite different distance properties. In fact we are 

better off with the partitioning shown in figure 6.15. This method of partitioning has 

6.15: A 

1 • 
1 • 
2 • 
2 • 

1 • 
1 

'" 

o • 
o • 

3 • 

o • 
o 
'" 
3 • 

partitioning of 16-QAM more suitable for multi-level coding. 

the advantage of giving exactly the same distance properties on each level. These 
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are summarised table 6.20. To define a multi-level code over this partitioning of 

.6-QA 

~ A mi Coset Map to A dH d2 
p N 

1 (Z2)2 4 7'2 01 1 0.4 1 

VI 10 1 0.8 1 

V3 11 1 0.4 1 

2 (Z2)2 4 7'2 01 1 0.4 1 

1J} 10 1 0.8 1 

V3 11 1 0.4 1 

Table 6.20: Summary of the distance properties of an alternate partitioning of 16-QAM. 

16-QAM we may simply use two rate 1 bit/symbol au codes over 4-PSK listed in 

the code tables of chapter 4. Two 1 bit/symbol encoders in the multi-level structure 

will give a total rate of two bits/symbol. The distance properties (except for the 

Hamming distance) of this code will be different from the corresponding code over 

4-PSK due to the underlying partition properties. In table 6.21 we have listed three 

codes with Hamming distance of 4, 6 and 8 respectively, based on this construction. 

The three code designs of table 6.21 all exhibit a good Hamming distance versus 

decoder complexity trade-off. The first code has a Hamming distance of four and 

normalised decoding complexity of 24. In comparison to the multi-level code over 

1 x 8-PSK of table 6.12 with the same Hamming distance, the code over 16-QAM 

has approximately a 33% lower decoding complexity, however its product distance 

is a factor of two worse. The second multi-level code over 16-QAM has a Hamming 

distance of six, and a normalised decoding complexity of 72. Again this code im­

proves over the same Hamming distance code over 1 x 8-PSK of table in terms 

of decoding complexity by about 45%, but has a worse squared product distance 

by about a factor of five. However it does not improve on the multi-level code over 

2 x 8-PSK of table 6.16 which also has a Hamming distance six, a comparable 

decoder complexity, but a better product distance. Finally the third code of table 

6.21 has a Hamming distance of eight and decoding complexity of 264. This code 

also improves over the code with the same Hamming distance of table 6.12 in terms 

of decoding complexity by a factor of two, at the cost of a reduced squared product 
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Code lover S = 16-QAM, partition 1. 

i mi A Pi bi Ti Vi dH d2 
p N ~A(Ci) ~P(Ci) ~T(Ci) ~(Ci) 

1 4 (Z2)2 2 2 2 2 4 5.1 X 10-2 2 0 0 8 8 "2 
2 4 (Z2)2 2 2 2 2 4 5.1 X 10--2 2 8 0 8 24 '2 

Rate = I 2.0 I Total complexity I 24 

Code 2 over S = 16-QAM, partition I 

i mi A Pi bi Ti Vi dH a; N ~A(Ci) ~P(Ci) ~T(Ci) ~(Ci) 

1 4 (Z2)2 2 2 1 4 6 8.2 X 10-3 2 0 0 32 32 2 

2 4 (Z2)2 2 2 2 4 6 8.2 X 10-3 2 8 0 32 40 "2 

Rate = I 2.0 I Total complexity I 72 

Code 3 over S = 16-QAM, partition I 

i mi A Pi bi Ti Vi dH d2 
p N ~A(Ci) ~P(Ci) ~T(Ci) ~(Ci) 

1 4 (Z2)2 2 2 1 6 8 1.3 X 10-3 1 0 0 128 128 
2 

2 4 (Z2)2 2 2 2 6 8 1.3 X 10-3 1 8 0 128 136 "2 

Rate= I 2.0 I Total complexity I 264 I 

Table 6.21: Summary of the properties of three multi-level code designs over partition I of 

16-QAM. 

distance by a factor of 10. 

6.8.1 Four level partitions of 16-QAM. 

We may improve upon the distance properties of the multi-level code over 16-QAM 

of the previous section by partition each of the two partition levels into two again, 

resulting in a four level binary partition, the properties of which are listed in table 

6.22. Each level of this four-level partition is isomorphic to Z2 and we may use any 

binary code to code over the sublevels. From table 6.5, column one, we see that 

rate 1/2 binary codes achieve a Hamming distance of six and eight with an encoder 

constraint length of three and five respectively. The code properties of the multi­

level code construction over the partition of table 6.22 and the binary convolutional 

codes of table 6.5 are listed in table 6.23. The first code attains a Hamming distance 

of dH = 4 at a complexity of 40. ThiB is not as good as the dH = 4 code of table 6.2l. 

However the codes with dH = 6 and dH = 8 both improve over the codes of table 
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Partition II of 16-QAM 

~ A m· J CQE,et Map to Ai dH ~ N 

1 Z2 2 r~: 1 1 0.8 1 

2 Z2 2 Vl 1 1 0.4 2 

3 Z2 2 r~~ 1 1 0.8 1 

4 Z2 2 v' 1 1 0.4 2 

Table 6.22: Summary of the distance properties of a four-level binary partition of 16-QAM. 

Code lover S = 16-QAM, partition II 

i mi Ai Pi bi ri Vi dH a;, N ~A(Ci) ~P(Ci) ~T(Ci) ~(Ci) 

1 2 Z2 4 2 2 1 4 0.41 5 0 2 1 3 '4 

2 2 Z2 4 2 2 1 4 0.026 80 4 2 1 7 '4 

3 2 Z2 4 2 1 1 4 0.41 5 8 2 1 11 4 

4 2 Z2 4 2 2 1 4 0.026 80 16 2 1 19 '4 

Rate = I 2.0 I Total complexity I 40 

Code 2 over S = 16-QAM, partition II 

i mi Ai Pi bi ri Vi dH a;, N ~A(Ci) ~P(Ci) ~T(Ci) ~(Ci) 

1 2 Z2 2 1 1 3 6 0.26 1 0 0 8 8 '2 

2 2 Z2 2 1 ! 3 6 4.1 X 10-3 64 4 0 8 12 2 

3 2 Z2 2 1 1 3 6 4.1 X 10-3 1 8 0 8 16 '2 

4 2 Z2 2 1 1 3 6 0.0041 64 16 0 8 24 '2 

Rate = I 2.0 I Total complexity I 60 

Code 3 over S = 16-QAM, partition II 

i mi Ai Pi b· • ri Vi dH a;, N ~A(Ci) ~P(Ci) ~T(Ci) ~(Ci) 

1 2 Z2 2 1 1 5 8 0.16 1 0 0 32 32 '2 

2 2 Z2 2 1 ! 5 8 6.6 X 10-4 256 4 0 32 36 2 

3 2 Z2 2 1 1 5 8 0.16 1 8 0 32 40 '2 

4 2 Z2 2 1 1 5 8 6.6 X 10-4 256 16 0 32 48 '2 

Rate = I 2.0 I Total complexity I 156 I 
Table 6.23: Summary of the properties of three multi-level code designs over partition II of 

16-QAM. 

6.21 in terms of decoding complexity, however at the cost of the minimum squared 

product distance. In figure 6.16 we have plotted the probability of error curves of 
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the three 16-QAM multi-level codes of table 6.23. 

!~!::: ~!~! ~·~ll~:::: :::: 
:::::: ::::::::::::" .... 

1 Vi = 1, dH = 4 
2 Vi = 3, dH = 6 
3 Vi = 5, dH = 8 . . . . . . . . , . . ........ ,., 

" " • "" ". .,,"""" ':-:. .-:7 .. :-:-. ...,..,. .:-:-. :-:-. • -:-c. .:-:-.:-:-. • -:-c. .:-:-.:-:-. .-:-c. .:-:: .. :-:-. ...,.,. .:-:-• .,-,J" : : : : : : : : : : : : 
, . . . 
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...................... ,... ................. . ............ ,' 
10-10L_ ________ ~L_ ________ ~L_ ________ ~ __________ ~L_ ________ ~ 
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Figure 6.16: The performance curves of three 16-QAM multi-level code designs. 

6.9 Complexity versus coding gain. 

We have shown that the technique of multi-level coding combined with staged decod­

ing reduces the decoding complexity for a given code minimum Hamming distance. 

This reduction in complexity however is in general at the cost of the minimum 

squared product distance and code multiplicity, which in turn affects the coding 

gain. The interplay and tradeoffs between the various parameters makes it difficult 

to judge which code is best. In a practical system we are interested in achieving a 

given probability of error at the minimum possible signal power, while maintaining 

an affordable level of complexity. To better judge the efficiency of the presented 

codes, both the trellis codes of chapter 4 and the multi-level codes of this chap-
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ter, we have plotted, for a given probability of error, the required SNR versus the 

code complexity. In figure 6.17 we have plotted this relationship for some of the 

codes presented for a probability of error level of 10-9
, The closer to the origin 
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Figure 6. Comparison of SNR at a probability of error of 10-9 versus decoding complexity 

for different coding schemes, 

the code point lies, the greater the code efficiency. The TCM schemes of chapter 4 

are as expected the least efficient. Multi-level codes over 1 x 8-PSK are a signifi­

cant improvement, and multi-level codes over multi-dimensional constellation such 

as 2 x 8-PSK improve the code efficiency further. 

6.10 Summary. 

We have investigated some of the design trade-offs of multi-level codes over GU 

partitions. fact that each component code is defined over a GU partition implies 
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the error properties of that code may be completely characterised by considering only 

the all-zero codeword. In general this does not imply that the overall multi-level 

code is GU. vVe have found that multi-level codes can achieve the same probability 

of error as GU trellis codes for a lower decoding complexity. This reduction in 

decoding complexity is most pronounced for higher Hamming distance codes, for 

which the complexity of trellis codes is large. We have by no means exhausted the 

code design possibilities and we believe that multi-level codes over multi-dimensional 

constellations with L ~ 4 can achieve extremely good performance with modest 

complexity. 
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detection. 

this chapter we combine the results and techniques from chapters 2, 4, 5 and 6 into 

one system. For the code search results presented in chapters 4 and 6 we evaluated 

the code performance assuming ideal channel state information, however in practice 

a real channel state estimate is required. In section of chapter 2 we showed that 

the method of pilot tone aided detection performs at a penalty of a few dB relative 

to ideal channel state information. Pilot tone aided detection has its drawbacks, 

such as the difficulty of passing the signal through a non-linear amplifier, and as an 

alternative we examine differential detection as a means of obtaining a channel state 

estimate. In a conventional differentially detected system, the data is encoded in the 

difference between the phases of adjacent symbols and this means that an absolute 

phase reference is not required at the receIver. For the Rayleigh fading channel 

differential encoding implies that a channel state estimate for the current symbol is 

obtained from the previously received symboL However because of the time varying 

nature of the channel, the accuracy of the estimate is a function the rate of 

change of the channel state as determined by the normalised fade rate parameter 

fDT. If the channel state varies slowly with time then the estimate of it will be quite 

accurate. However, as the speed of variation increases, the accuracy of the estimate 

decreases. The inaccuracy of the channel state estimate leads to an error floor in the 

performance of conventional differential detection on the Rayleigh fading channel. 

Figure 7.1 illustrates this phenomena. Vve have plotted the probability of error, as a 

183 



184 CHAPTER 7. MULTIPLE SYMBOL DIFFERENTIAL DETECTION. 

function of SNR, of an uncoded conventional differentially encoded system operating 

on the Rayleigh fading channel. Curves for fDT 0.1, fDT = 0.03, fDT = 0.01, 

10° ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Figure 7.1: Performance curves of a conventional differentially detected 4-PSK 

on the Rayleigh fading channel. 

35 40 

operating 

fDT = 0.003 and ideal channel state information have been plotted. At fast fading 

(curve 1, fDT = 0.1) the error fioor bottoms out at a probability of error of about 

9 x 10-2 . As the rate of fading is reduced, the error fioor is lowered, until at 

very slow fading the channel looks Gaussian and differential detection performs at 

a penalty of 3 dB relative to coherent detection. Clearly conventional differential 

detection is not well suited for operation on the Rayleigh fading channeL Divsalar 

and Simon developed the technique of multiple symbol differential detection for the 

AWGN channel [2(1,[24] and extended it, as did Ho and Fung, to the Rayleigh fading 

channel [20]'[32]'[67]. MSDD improves significantly upon conventional differential 

detection [25],[33:1,[68],[78], [81]. this technique a decision is made on blocks of 
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L symbols combined with a phase reference symboL This method is very effective 

and reduces the error floor dramatically even for relatively fast fading (fDT ;:::;;: 0.1). 

The technique exploits the correlation of the fading process to estimate the channel 

state more accurately. this chapter we use MSDD and combine it with multilevel 

coding to further improve the performance of the system. 

We know from section of chapter 2 that for coding to be effective, the code 

symbols in the sequence must be independently faded. This is normally achieved by 

symbol interleaving. On the other hand, for multiple symbol differential detection 

to be effective we require the differentially encoded symbols to be highly correlated. 

This is a conflict in requirements. Our proposal to solve this problem is to interleave 

symbols in blocks of L symbols, rather than on a symbol by symbol basis. Each block 

is differentially encoded, and decoded using multiple symbol differential detection. 

We define a code over the blocks, treating the blocks as symbols from a larger 

alphabet. The interleaving/deinterleaving process ensures that the fading affecting 

each block is independent from block to block and code diversity is obtained by 

the appropriate definition of the code. The code will be a multi-level construction 

based on geometrically uniform (where geometric uniformity will be defined relative 

to MSDD) partitions of L x M-PSK constellations. First we present and analyse 

the model of this system. 

7.1 Systenl Model. 

The block diagram of the system model is shown in figure 7.2. A sequence of vectors 

code. 

Staged 
decodcr 

L-sy:mbol r" k 

dc-interleaver 
Dcmodulatorr(t) 

7,2: Block diagram of a multiple symbol differentially detected 

Fading 
channel 

z(t) 

with a multi-level 
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the multi-level encoder. The output is the code sequence C (Cl) C2)'" ,CK) where 

each symbol Ck is a block of L unit energy l\II-PSK symbols Ck = (CkI, Ck2, ... ) CkL). 

The rate of the encoder is T = f bits per two dimensional symbol. The sequence (5 

is passed through an ideal interleaver which interleaves the blocks Ck as units. The 

output of the interleaver is the sequence of blocks (5' = (Cn(l) Cn (2) ... ,Cn(K)), where 

a(k) is the inverse input/output map of the interleaveI'. Each block of L PSK 

boIs Cn(k) is encoded differentially into the block Zn(k) = (Zn(k)l, Zo:(k)2"" ,Zo:(k)L), 

where 

Zo:(k)i 
{ 

Zo:(k-I)LCo:(k)l 

Zo:(k) (i-I) Co:(k)i 

i=l 

2 ~ i ~ L 
(7.1) 

In other words each code symbol is encoded as the phase advance relative to the 

previously transmitted M-PSK symbol. The sequence Z = (Zo:(l), Zn(2), ... ) Zn(K)) 

is transmitted across the flat fading Rayleigh channel with the same assumption as 

made in chapter 2, i.e. that there is no or negligible inter-symbol interference (lSI). 

The sampled demodulator output is r' = (ro:(l), r n (2), ... ,ro:(K)). The deinterleaver 

performs the inverse process of the interleaver and its output is r (rb r2, ... ,rK)' 

The deinterleaver is such that it retains the phase reference sample TkO of the block 

rk. This is the last sample of the previously received block prior to deinterleaving, 

Le. TkO Tn(k-I)L. Each received sample Tki is related to the differentially encoded 

symbol Zki by 

(7.2) 

The nk/s are statistically independent identically distributed complex Gaussian vari­

ables with a variance 

(7.3) 

the one-sided power spectral density of the additive white Gaussian noise. The uki's 

are a sequence of correlated, zero-mean, complex Gaussian random variables and 

represent the fading process experienced by the transmitted sequence. The variance 

of the Uki'S is 

(7.4) 
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The ratio Es/No represents the average signal-to-noise ratio (SNR) of the signal. 

The amplitude IUkil, of the complex Gaussian variables Uki is Rayleigh distributed 

[51]. The autocorrelation of the Uki'S is [43] 

~E[UkiU~(i+m)] p(m) = EsJo(21fm!DT), 0 S i + m S L (7.5) 

where ! D is the maximum Doppler frequency, is the symbol period, and Jo ( .. ) 

is the zero order Bessel function. We assume a slow rate of fading (fDT < 0.1) 

such that the differential detection process is effective in producing a channel state 

estimate. The received signal sequence r, is passed to the decoder which produces 

an estimate a' of the transmitted binary sequence. 

analysis are described in the next sections. 

decoder and its performance 

The Maximum Likelihood (ML) Decoder. 

The input to the decoder is the sequence of received L-sample blocks 

(7.6) 

and the corresponding phase reference samples rkO r a(k-l)L. The ideal inter­

leaver / deinterleaver pair ensures that the effect of fading is independent from block 

to block. For the purpose of analysis we combine rk and rkO into the matrix Rk 

(7.7) 

and the entire received sequence is represented by 

(7.8) 

If the set of possible codewords of the encoding scheme is denoted by 

(7.9) 
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where each Ck (CkI, Ck2, .•• ,ckd, a sequence of Lx M-PSK symbols, then corre-

sponding to each Ck is the differentially encoded matrix 

(7.10) 

where Zki = Zk(i-l)cki, 1 ~ i ~ L, and ZkO is an arbitrary phase reference which we 

set to 1 for the purpose of code construction. With ZkO set to one, each length L 

differential sequence (Zkb Zk2, ..• , ZkL) uniquely corresponds to the code sequence 

(CkI, Ck2,' .. , CkL). complete differentially encoded sequence is represented by 

the square matrix 

Z= (7.11) 

Note that zt Z = zzt 1. A maximum likelihood decoder will select the differential 

code sequence Z for which the probability P(ZIR) is the largest, i.e. given the 

received sample sequence R, the decoder selects the code sequence most likely 

to have been transmitted. This is equivalent to choosing the sequence Z with the 

largest conditional probability density function, 

p(RIZ). (7.12) 

To determine the probability density function (pdf) ofp(RIZ), we write the received 

vector from equation (7.2) in matrix form 

R=ZU N (7.13) 

where 

U= (7.14) 



THE MAXIMUM LIKELIHOOD (ML) DECODER. 189 

and Uk = (UkO, Ukb " .. ,UkL)TJ the samples of the fading process. The additive white 

Gaussian noise is 

N (7,15) 

with Nk (nkO' nkb' .. ,nkL)T. For a fixed Z, R is the sum of two vectors of zero­

mean complex Gaussian variables, each of length K(L 1), and is Gaussian also. 

The pdf of p(R[Z) is the general form of a zero-mean complex multi-variate Gaussian 

distribution: 

where ipRR is the autocorrelation matrix of R: 

The inverse of <I> RR is 

<I>RR = Z<I>uuzt + <PNN' 

ipRk (Z<Puuzt + <PNN )-1 

Z ( <Puu No!) -1 zt 
Z\ltzt 

where W (<puu + NoI)-l) and equals 

\[1= 

det <PRR = det(Z<puuzt + <PNN) 

det Z det(wuu + NoI) det 

det(w-1
) 

(7.16) 

(7,17) 

(7.18) 

(7.19) 

(7.20) 
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and is independent of Z. The autocorrelation of the fading process U is 

<I>uu = (7.21) 

where the off-diagonal terms are zero due to the block independence introduced by 

the interleaving and deinterleaving processes. The fading process correlation across 

the kth block is 

Pk(O) Pk(1) Pk(L) 

<I>U/ilU/il = 
Pk(l) Pk(O) Pk(L - 1) 

(7.22) 

Pk(L) Pk(L 1) Pk(O) 

where the function Pk(m) is as defined in equation (7.5). Note that Pk(m) is a 

function of the Doppler frequency JD at time k and is assumed to be nearly constant 

over the block interval. The additive noise terms nki, of equation (7.2), are assumed 

to be statistically independent and identically distributed with variance No, and 

therefore 

(7.23) 

A maximum likelihood decoder selects the codeword Z that maximises equation 

(7.16). This is equivalent to minimising the measure 

M(R,Z) 

RtZwztR 
K 

I: RkZkWkZtRk 
k=l 

K 

I: Mk(Rk, Zk) 
k=l 

(7.24) 

The term from equation (7.16) containing det(<I>RR) is dropped because it is indepen­

dent of Z as shown by equation (7.20) and therefore does not affect the decision. The 

distance measure M(R, Z) is in an additive form suitable for use with the Viterbi 

algorithm (VA). Note that the choices of ZkO do not affect the value of the metric 

and are arbitrary. We may show that the decoding metric of equation (7.24) is a 

general form of the result derived by Ho and Fung [32]. 
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probability of 

We investigate the probability of the ML decoder of the previous section making an 

incorrect decision, Let the transmitted codeword be Z, The decoder will pick the 

erroneous codeword Zl if 

M(R, Z') < M(R, Z), (7.25) 

or equivalently if 

K K 
RiZ'\}[ kZ'tRk < L: RiZ\}[ kZtRk (7.26) 

k~ k~ 

where M(R, Z) is the decoding measure of equation (7.24). The probability of an 

error event can be written as 

where the decision variable D is 

D = 
K 

k=l 
K 

P(D < 0) 

L:RiFkRk 
k=l 

which is a sum of independent quadratic forms for the Hermitian matrices 

(7.27) 

(7.28) 

(7.29) 

The two sided Laplace transform characteristic function of the decision variable D 

is the product of the characteristic functions of the random variable RiFkRk: 

K 

(s) = (7.30) 
k=l 

where ¢k(S) is the result from [63, Appendix B] 

1 
(7.31) 

The pairwise event probability can be found by the appropriate integration of 

the inverse Laplace transform of <DD(S) (which gives the probability density function 

of D). However, following [13] it is simpler to calculate 

P(Z -+ Z') =- Residue [<DD(s)/slRP 
poles 

(7.32) 
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instead. The notation RPpoles refers to the right hand plane poles of (s). To 

calculate (7.32) it is useful that the 2(L + 1) poles Pki' of (7.31) are related to the 

eigenvalues )o.ki, of iJ!RkRkFk by 

-1 
Pki = 2 \ 

Aki 

and equation (7.30) can be written as 

K 2(L+1) 

iJ!D(S) = II II 
k"'li=l S Pki 

(7.33) 

(7.34) 

In the next section we examine the behaviour of the pairwise error probability as a 

function of the normalised fade rate iDT of the system. 

7.4 Pairwise error behaviour. 

The equations of section 7.3 analytically describe the pairwise probability of error of 

codewords encoded differentially and transmitted across the Rayleigh fading channel. 

Unfortunately they do not give a clear insight, by inspection, into the behaviour of 

the probability of error as a function of the parameters iDT, SNR, L, and code 

sequences and Z'. Therefore we will illustrate the behavioural trends empirically. 

First we examine the error probability as a function of the number of symbols L 

over which the differential detection is applied. In figure 7.3 we have plotted the 

pairwise probability of error as a function of the SNR of sequences of length L = 
1 (conventional differential detection), L 2, L = 3, L 5, L = 10 and for 

comparison the case of coherent detection. The sequences are of the form 

{O, 0, ... ,O} 

{1, 0, ... ,O} 

(7.35) 

(7.36) 

and have a Hamming distance of one. The code symbols are drawn from a 4-PSK 

constellation. The parameter K = 1, i.e. we are considering the behaviour of 

just one block of symbols, and the fade rate is iDT = 0.03 for all curves. The 

conventional differential detection case (L 1) quickly reaches an error floor at a 

probability of error of about 9 X 10-3
. By increasing the length of the multiple 

symbol differential detection to L = 2, the error floor drops significantly to about 

8 X 10-5 • For larger values of L the error floor is eliminated for practical values of 
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Figure 7,3: Performance curves of a multiple symbol differentially detected system operating 

on the Rayleigh fading channel with fnT = 0.03. 

SNR (there will be an error floor at sufficiently high SNR). As L is increased the 

error curves tend toward but at a loss compared to coherent detection. The loss 

is a function of the fade rate parameter fDT. Clearly multiple symbol differential 

detection eliminates the problem of the error floor) for low values of fDT. we 

examine the behaviour of the probability of error as a function of the fade rate 

In 7.4 we have plotted the probability of error of the same pairs of sequences 

as a function of the fade rate fDT at a SNR of 30 dB. We see that for each case the 

probability of error is a monotonically increasing function with fDT. At low JDT 

each curve reaches a steady state probability of errol'. The undulation of the curves 

is due to the oscillatory nature of the correlation function. 

In figure 7.5 we consider sequences of the same lengths but with Hamming dis-
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Figure 7.4: Performance curves of a multiple symbol differentially detected system operating 

on the Rayleigh fading channel with Es/No = 30 dB. 

tance two, and of the form: 

c 

-/ 
C 

{O,o, ... ,O,O} 

{1,O, ... ,O,l} 

(7.37) 

(7.38) 

i.e. sequences beginning and ending in a non-zero symbol. The behaviour of the 

curves for L > 2 is now quite different. As fDT increases, the probability of error 

actually decreases until about fDT ~ 0.03, after which it again rapidly increases. 

The reduction in error with increasing fDT is due to the diversity of the codewords 

starting to playa part. As fDT increases the correlation between the fading affecting 

the symbols in the codeword decreases (the placement of the non-zero symbols on 

the ends of the codewords minimises the correlation) and the effect of diversity 

takes place. However counteracting this phenomena is the decrease in channel state 

accuracy with increasing fDT until at sufficiently fast fading the probability of error 

increases again. Clearly communication becomes essentially impossible for fDT > 
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Figure 7.5: Performance curves of a multiple symbol differentially detected system operating 

on the Rayleigh fading dlannel with Es/ No = 30 dB and sequences with Hamming distance of two. 

0.5. 

7.4.1 performance for slow fading. 

From inspection of the curves of and it is not easy to relate the 

properties of code sequences to the probability of error of a differentially detected 

system. We can derive such a relationship however for 

the limit of JDT --t 0) equation (7.31) equals 

there are just two finite poles. The product Pk1Pk2 is 

case of slow fading. 

(7.40) 
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where Es/No is the SNR of the system, and the term 6;" is given by: 

(7.41) 
n=Om=n+l 

Combining equations (7.30) and (7.39) and assuming high SNR, the characteristic 

function, <PD(S) is approximated by 

(7.42) 

where cE.z = 
k 

probability, 

Using equation (B.7) of appendix B for high SNR, the pairwise 

(Z -} Z') is tightly bounded by 

1 (2l-1)! K 1 
(Z -} Z) :; l!(l 1)! I1 (Es/No)d;k 

Zdzi, 

(7.43) 

where l is the number of code blocks Zk and Zk different between Z and Z'. Note 

the analogy between equation (7.43) and equation (2.73) of chapter 2 describing the 

probability of error of an infinitely interleaved system with ideal CSL If fJ is the set 

of k such that Z~ then we define the differential squared product distance as 

(7.44) 

A good code design aims to maximise the Hamming distance l = IfJl and the differ­

ential product distance a;z. 

U ncoded transmission. 

Consider now the special case of uncoded transmission in a very slowly fading chan­

nel. In general the probability of error is given by equation (7.43). In an uncoded 

system the probability of error is dominated by the sequence with the smallest dif­

ferential squared product distance relative to the all-zero codeword. For A1-PSI< 

these are the sequences with one non-zero symbol, i.e. 

c 

-I 
C 

and the pairwise probability of error is 

{0,0, ... ,0} 

{1, 0, ... ,O} 

(7.45) 

(7.46) 

(7.47) 
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where the squared differential distance between c and C' is 

(7,48) 

where L is the length of the sequences, and cF is the squared Euclidean distance 

between the symbols 0 and L In comparison to coherent detection, the pairwise 

probability of error from chapter 2 is 

( 
_ _') 1 

p c--+c :::; Es/Nod2 
(7,49) 

where d2 is the squared Euclidean distance between the sequences c and ct. From 

equation (7,48) the performance of MSDD for large L tends towards coherent de-

tection. The loss relative to coherent detection is 

'Y = 10 loglo (7.50) 

and shows that as L --+ 00, MSDD performs identically to coherent detection. 

5 Geometrically uniform code designo 

We desire to design codes for the differentially detected Rayleigh fading channel with 

the property of geometric uniformity. 10 start we need to determine the relevant 

distance measures for the system and the associated isometries. 

7.5.1 Distance measures and isometries for MSDD. 

From equation (7.24) the decoding measure between the received vector R and the 

postulated codeword Z is 

K 

IVf(R, Z) 
k=l 
K 

(7.51) 
k=l 

where Mk(X, Y) = XtYWkyt X, a distance measure between X and Y (X is a vector 

and Y a diagonal matrix). Using the same argument as used for general product 

distance, the isometries of lI/I(R, Z) are the permutations of the elements Rk and 

Zk, and the mappings u(X) of the form 

(7.52) 
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where each Uk is an isometry mapping relative to Mk. Consider the mapping Uk 

AX with A such that 

(7.53) 

Le., a unitary matrix. The distance measure Mk is invariant under Uk because 

(AX)t AYWk(Ay)t AX 

XtAtAYWkytAtAX 

XtYWkytX 

Mk(X, Y) (7.54) 

Hence udX) AX is an isometry relative to the decoding distance measure M k. 

The probability of confusing codeword Z' for Z is completely described by the 

characteristic function of the decision variable D 

K 1 
<pn(s) = 

k=l det(I + 2S<PRk Rk Fk ) 
K 1 

g det(I + 2S(ZkWkl ZtZ£WkZ't - I)) 
(7.55) 

From which we may deduce a performance distance measure polynomial to be 

(7.56) 

We can show that this distance measure is invariant under the mapping Uk(X) = AX 

also 

det(I + 2s(AZkWkl(AZk)tAZ£Wk(AZ~)t - 1)) 

det(I 2sA(Zk Wk
1 ztz~ WkZ~ t - 1)At) 

det(A) det(I + 2s(ZkWkl ztz~ WkZ~ t 1)) det(At) 

det(I +2S(ZkWklZtZ~WkZ~t I)) 

Pk(Zkl Z£, s) (7.57) 

Therefore both the decoding measure and the error performance measures are 

variant under the mapping described by equation (7.52). 
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5.2 of x M-PSK relative to MSDD. 

In the previous section we have shown that the isometries of an L+ 1 symbol sequence 

Zk for differential encoding and decoding are of the form U(Zk) = AZk where A is 

a unitary matrix" Each sequence Zk length L + 1 has ZkO arbitrarily set to 1 and 

therefore each each Zk corresponds uniquely to a length L sequence Ck. Our code 

design will be over the length L sequences Zk which map to the corresponding code 

sequences Ck by 

i=l 

i~2 
(7.58) 

The symmetries of a constellation S is the set of isometries which maps S to itself 

From equation (7.53) we deduce that the symmetries of S are 

1. Rotations. 

2. Permutations. 

3" Compositions of rotations and permutations. 

Note that reflections are not symmetries under MSDD. 

7.6 Multi-level codes. 

vVe have selected multi-level codes as a method of constructing diversity between 

the sequences Z and Z', The multi-level codes are based on binary partitions of 

L x M-PSK constellations and as such all of the results of chapter 5 on geometri­

cally uniform partitions hold. The binary partitions areba,.qed on generating groups 

constructed only from rotation symmetries (not the permutation symmetries) of the 

underlying constellation. The properties of the partition are not very important 

to the code performance because the inherent diversity in the partition cannot be 

exploited, and the code is dominated by the bottom level partition. Note that the 

codes are constructed over the sequences Zk and not over Ck. The final encoder needs 

to be mapped to Ck using mapping of equation (7.58). 
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1, Gi/Gi - 1 mi Coset ~z N 

1 Z2 2 (T4l 1'4) 2.67 1 

2 2 (T2,T6) 2.67 2 

3 Z2 2 (TQ) T4) 1.33 2 

4 Z2 2 i (TI) T3) 1.06 2 

5 Z2 2 (T4) T2) 0.39 2 

6 Z2 2 (T2' T3) 0.39 4 

Table 7.1: Binary partitions of 2 )< 8-PSK. 

6.1 2 X 8-PSK ML codes. 

Table 7.1 shows a partitioning of S 2 x 8-PSK. It is a six level binary partition 

and the distance properties of ~z and multiplicity N are listed in the fifth and 

sixth columns respectively. As is typical of partition chains, the distance properties 

decrease at the lower level partitions. We investigate using identical rate 2/3 binary 

encoders over each level to improve upon the code properties. This selection ensures 

that the diversity of each level is identical, and gives an overall spectral efficiency of 2 

bits per symbol. In table we have listed the code properties of the six component 

codes for a selection of v = 3. In figure 7.6 we have plotted the union bound 

Constellation S = 2 x 8-PSK. Partition 1. 

1, mi Ai Pi ni Ti Vi dH ~z N ~A(Ci) ~p( C i ) ~T(Ci) ~(Ci) 

1 2 Z2 3 2 1 3 4 50.6 2 0 0 16 16 
3 

2 ~Z2 3 2 l 3 4 50.6 32 2 0 16 18 3 -

I 
3 2 Z2 3 2 1 3 4 3.16 32 4 0 16 20 3 

4 2 Z2 3 2 1 3 4 1.26 32 8 0 16 24 
3 

5 2 Z2 3 2 .a 3 4 0.023 32 8 0 16 24 3 

6 2 Z2 3 2 1 3 4 0.023 512 8 0 16 24 3 

lplexity 

Table Summary of the properties of a multi-level code design over partition I of 2 x 8-PSK. 

Design distance dH 4. 
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on the pairwise error probability of each of component codes of table 7.2. The 
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Figure 7.6: Performance curves of the component codes of a six level multi-level code over 

2 x 8-PSK using six rate 2/3 binary convolutional encoders each with v 3. fDT 0.01. 

overall multi-level code is dominated by the bottom level component code. The fact 

that the component codes over levels i = 1 and i = 2 perform much better than the 

component code over level i 6 means that the constraint length of the component 

codes over i 1 and i = 2 may be reduced to v = 2 while still outperforming 

the level i = 6 component code. In practice short-length linear binary block codes 

may be more desirable as a means of minimising the decoding delay associated with 

convolutional codes. 

The performance of the multi-level codes can be improved by increasing the con­

straint lengths of the component codes. In figure 7.6 we have plotted the probability 

of error of the level i 6 component code of the multi-level construction over 2 x 8-

PSI( as a function of the constraint length of the encoder, for a fade rate of 0.01. 

Each increase in encoder constraint length produces a diminishing increase in coding 
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Figure 7.7: Performance curves of the dominant component code of a six level multi-level code 

over 2 x 8-PSK as a function of the constraint length v of the encoder. fDT 0.01. 

gain. The gains over uncoded MSDD are easily over 20 dB at a PER of 10--4 and 

much larger at a PER of 10-8 • To determine the performance penalty relative to 

coherent detection we compare the differential squared product distance with the 

squared product distance ~ of the 2 x 8-PSK partitions of chapter 6. For the bottom 

level partition the squared differential product distance is ~z ~ 0.39 in comparison 

to d; = 0.587 for the same partition, a factor of ! different. From equation (7.50) 

this means the loss in dB relative to coherent detection for slow fading is 

(7.59) 

For faster fading the loss is far larger. To quantify the loss we have plotted the 

performance of the level i = 6 component code of table 7.2 as a function of JDT in 

figure 7.8. For comparison the performance with coherent detection is also plotted. 

The performance at fade rates up to JDT = 0.003 is good. Although for JDT 0.01, 

there is no error floor) the error performance is deteriorating at high SNR. ,For 
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Figure 7,8: Performance curves of the dominant error component code of a six level mnlti-level 

code over 2 x 8-PSK as a function of iDT. v 3. 

JDT = 0.1 an error floor is appearing and the error performance is poor relative 

to slower fading. vVe may improve upon the performance at higher fade rates by 

increasing the number of symbols over which MSDD detection is applied. 
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~ Gi/Gi - I mi Coset d2 
Pz N 

1 2 (T4l T4, TO) 4.00 1 

2 2 (T2l T6, T4) 4.00 2 

3 2 (TlJ T7, T6) 2.29 2 

4 2 (To, T4, To) 2.29 2 

5 2 (T2, T6, To) 2.00 2 

6 2 (T4' T2, T'i) 1.09 2 

7 2 (T2' T3, T6) 0.44 2 

8 2 (T2' T3, TO) 0.44 2 

9 2 (T4) TI, T5) 0.44 4 

Table 7.3: A binary partition of 3 x 8-PSK. 

7.6.2 3 X 8-PSK ML codes. 

vVe can improve upon to the tolerance of the system to faster fading by increas­

ing L, the number of symbols over which MSDD is applied. In table 7.3 we have 

listed a level partitioning of 3 x 8-PSK and the associated distance properties 

of the partitions. Note that the bottom level partition has a slightly higher differen­

tial squared product distance compared to 2-PSK. As mentioned only the distance 

properties of the bottom partition are of importance and if we construct a multi­

level code with nine binary rate 2/3 encoders then the performance will be only 

slightly better than 2 x 8-PSK at low fade rates because the distance properties of 

the bottom partition are almost identical and the performance curves as a function 

of v, the constraint length of the component codes will be similar to those of figure 

7.7. However at faster fade rates the multiple symbol differential detection is more 

effective over three symbols than over two and this is illustrated in figure 7.9 where 

we have plotted the error performance as a function of the fade JDT in a similar 

manner to figure 7.8 for 2 x 8-PSK codes. vVe see that the codes over 3 x 8-PSK 

easily cope with fade rates up to JDT 0.03 and only lose about dB at the very 

fast fading rate of JDT 0.1. Beyond a rate of fading of JDT = 0.1 the performance 

deteriorates quickly and error floors become apparent. For slow fading (JDT < 0.3) 
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-6 
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1 fDT 0.2 
2 fDT 0.16 

3 fDT = 0.1 
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Figure 7,9: Performance curves of the dominant component code of a six level multi-level code 

over 3 x 8-PSK as a function ofthe fade rate fDT. v = 3. 

the loss relative to coherent detection is only 

(7.60) 

7. Summary. 

We have investigated the combination of multiple symbol differential detection and 

multi-level coding as a means of attaining a rllannel state estimate in practice while 

still achieving a good error performance. MSDD very effectively eliminates the 

elTor floor associated with conventional differential detection by maldng a decision 

on a block of L symbols. The need for maintaining the symbols in blocks the 

purpose of detection means the interleaving required for coding cannot be on a 

symbol by symbol basis and instead we interleave over the blocks of L symbols. 

The construction of a multi-level code over the blocks gives the coding we 
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require to improve performance. The same flexibility in the multi-level code design 

is not available for MSDD compared to coherent detection of chapter 6 because the 

Hamming distance within the partition levels does not count toward coding gain. 

vVe have therefore only investigated multi-level codes with binary component codes 

over 2 x 8 and 3 x 8-PSK constellations for the purpose of illustrating the behaviour 

of the error performance as a function of the system parameters. 



c er 8 

• Ions future work~ 

In this chapter we discuss the main conclusions of the work presented and consider 

some future work issues. 

8.1 Conclusions. 

The first chapter introduced the aetiology of the Rayleigh fading channel modeL We 

presented the channel capacity bound derived by W.C.Y. Lee [46] on the Rayleigh 

fading channel and showed that uncoded modulation, even with ideal channel state 

information, performs very poorly relative to the capacity of the channel. This is 

due to the probability of error of uncoded modulation decreasing only linearly with 

the SNR, compared to decreasing exponentially for the case of the classical AWGN 

channeL Quantitively it means uncoded modulation performs 22 dB away from 

capacity at an error probability of only 10-4 , and about dB at the probability of 

error of 10 9 required for reliable digital communications. This observation justifies 

the need for more sophisticated signalling transmission and decoding techniques. 

The analysis of chapter 2 shows that through the technique of maximum likeli­

hood sequence estimation (MLSE)) where a decision is made on a sequence of symbols 

rather than on a symbol by symbol basis, the probability of error drops inversely to 

the SNR raised to the power of the Hamming distance of the code sequences. This 

effect is referred to as code diversity. Therefore we may control the slope of the pro b­

ability of error curve through the application of a high Hamming distance code and 

the corresponding ML decoder. Paramount to the success of such a code however is 
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the process of interleaving. It has been found that the fading affecting the symbols 

in the code sequences must be independent in order for coding to be effective. One 

method of meeting this requirement is through the process of sequence interleaving 

at the transmitter and the through applying the inverse operation of deinterleaving 

at the receiver. The consequence of the interleaving and deinterleaving process is 

the introduction of an irreducible transmission delay proportional to the minimum 

fade rate of the system and the diversity of the code. The only method of reducing 

this delay is by introducing forms of diversity, such as space or frequency diversity, 

that are not dependent on time. 

The technique we examined for the construction of codes for the Rayleigh fading 

channel was multi-dimensional trellis coding. With such a coding scheme, a multiple 

number of symbols, typically from two to four, are transmitted per trellis branch. 

At a spectral efficiency of 2 bits per symbol the resulting trellis typically has a large 

number of parallel branches, the dominant error event usually contained therein. 

The upperbound on the attainable Hamming distance of multiple-symbol-per-branch 

derived in chapter 3 shows the maximum Hamming distance as a function of the 

rate r in bits per symbol, L the number of symbols per branch and v the constraint 

length of the code. This function shows that the upperbound on Hamming distance 

does not necessarily increase with increasing L or v and that there are a number of 

tradeoffs available to the code designer. 

A class of multi-dimensional trellis codes are geometrically uniform trellis codes. 

These codes are defined over L x M-PSK constellations and have the desirable 

property of uniform error probability (UEP) which implies the code properties may 

be entirely characterised by considering only one code word. This property leads to 

reduced code search efforts and reduced complexity decoding structures. The multi­

dimensional codes discovered appear to be superior to those reported in the literature 

for the same number of code states. However when the decoding complexity is 

taken into account this is not necessarily the case. Most of the codes discovered 

meet the bound on Hamming distance of chapter 3 with equality. It was found 

that expanding the signal set by more than a factor of two relative to that required 

for uncoded modulation reaps rewards in terms of the resulting minimum squared 

product distance, and in some cases in terms of the minimum Hamming distance 

of the codes. This is in contrast to the AWGN channel, for which Ungerboeck [75] 
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showed that most of the coding gain is achieved expanding the signal set by a factor 

of two. 

The extension of the theory of the properties of geometric uniformity from points 

to partitions of signal constellations allows for less constrained structures to be 

considered. We may now define geometric uniformity of the partitions of non­

geometrically uniform constellations such as 16-QAM. The definition of geometrical 

uniformity of partitions allows for a convenient construction of multi-level codes 

such that each code over each partition has the uniform error property. The overall 

code however is not necessarily GU. The advantage of multi-level codes is the ability 

to decode them in a staged manner. Although staged decoding is not maximum 

likelihood, it does represent a significant reduction in decoding complexity. To mea­

sure the decoding complexity we d~fined a normalised decoding complexity measure 

that takes into account the need for the decoding of the partition sets,the parallel 

branches of the code and the trellis code itself. We have presented multi-level codes 

over partitions of multi-dimensional constellations, which outperform trellis codes in 

terms decoding complexity. High diversity codes are easily obtained with multi-level 

coding at a moderate complexity. 

The work on trellis codes and multi-level codes has assumed ideal channel state 

information for the purpose of code performance comparison. A real-world method of 

obtaining channel state information is through differential detection. Conventional 

differential detection is known to perform poorly on the Rayleigh fading channel due 

to the fluctuation of the channel state with time. The worles by Ho and Fung [32] and 

Divsalar and Simon introduce the method of multiple symbol differential detection 

(MSDD), a technique where a decision is made on a sequence of symbols, rather 

than on a per symbol basis. MSDD vastly improves performance over conventional 

differential detection even when decoding over just a few symbols) by exploiting 

knowledge of the correlation of the fading process. MSDD works best when the 

channel fading is highly correlated - a contradicting requirement to diversity. We 

circumvent this problem by interleaving blocks of symbols over which the MSDD is 

computed, and constructing a multi-level code over these blocks of symbols. The 

resulting multi-level codes achieve high coding gains and can perform very well in 

relatively fast fading environments, that is, values of iDT as high as 0.1. 
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8.2 Future 

There are many areas in which further work is required. Some of the areas and ideas 

we have envisaged are: 

1. The derivation of an upperbound on the pairwise probability of error of pilot 

aided detection including channel correlation. This case was not derived in 

chapter however both the cases of pilot tone aided detection assuming ideal 

interleaving, and channel correlation assuming ideal OSI have been presented. 

We imagine the amalgamation of the two should be possible. 

Further refinement of the upperbound on the obtainable Hamming distance 

of multi-dimensional trellis codes. The bound presented in chapter 3 makes 

certain assumptions on the number of symbols in the underlying constellation. 

The question is how does this number affect the validity of the bound? 

3. It was found in chapter 4 that the code search effort generally increases very 

rapidly with increasing number of states and symbols per trellis branch. An 

area of research that needs to addressed is the reduction of code search effort. 

In the code search algorithms used, the symmetries of the underlying constel­

lations were exploited to reduce the code search effort, however the symmetries 

inherent in the encoder itself were not. This is an area that can potentially 

yield a few orders of magnitude of reduction in code search effort. 

4. In chapter 5 we examined some of the decision region issues of geometrically 

uniform partitions. An open topic is to establish the conditions on partitions 

of geometrically partitions such that their decision regions are invariant to the 

SNR of the system. The invariance of the decision regions to SNR means the 

decoder does not require knowledge of the current value of SNR. 

5. For the construction of multi-level codes over L x 1\1-PSK constellations we 

needed to partition the multi-dimensional constellation into a partition chain. 

For small constellations good partitions can be discovered through a brute force 

search approach. However for values of Land M larger than about four and 

eight respectively, the search space becomes prohibitively large. It is envisaged 

that good partition chains may be constructed through the application of block 

code type constructions and further investigation is required in this area. 
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6. From chapter 6 it is clear that the reduced complexity coding technique of 

multi-level codes can easily outperform trellis codes in terms of probability 

of error for the same level of decoder complexity. We feel that other reduced 

complexity techniques, such as turbo codes, have the potential to perform even 

better and we would suggest such an investigation. 

7. Finally, the gains obtained on the Rayleigh fading channel are obtained through 

the exploitation of time diversity through coding. The penalty for this gain 

is an irreducible time delay in the transmission of the data, An alternative 

source of diversity is frequency diversity, characteristic of the wide band mobile 

channeL The exploitation of frequency diversity in the mobile radio channel 

through the techniques of coding can lead to a low delay and low error rate 

communication system. 
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ix A 

Mat inverse identity. 

A very useful identity for the inverse of a partitioned matrix 

A = (p Q) 
R 8 

(A.i) 

is; if P is non-singular, 

(A.2) 

where W (8 - RP-1Q)-1 and + P-1QW RP 1 If 8 is non-singular 

then the inverse of A is also given by 

(A.3) 

where now lV 8-1 + 8-1 RXQ8-1 and = (P - QS-l R)-l, If both and 8 

are non-singular then 

(AA) 

and 

(P _ Q8-1 R)-l p-1 + P-1QW RP-l. (A.5) 

The proofs of these identities is from the text by Noble and Daniel [50]. 
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endix 

esidue 

\Ne want to the closed form expression for Sr defined by 

for the case of 

. <I> (8) 
ReSldue[--]RP 1 8 po os 

1 
<I>(8) = (8 _ p)l 

(B.l) 

(B.2) 

where p > a ,q,nd 1 is an integer. The poles of <I>(s) in the right-half plane are 8 p 

of order L The residue r of an [th order pole p of a function f(s) is given by [45] 

1 d!-l 

r = !~ (l _! (s - p)l f (s) (B.3) 

Applying this result) equation (B.l) may written as 

1 d1- 1 1 
lim --:---.,.­
s-+p 

(BA) 

lim ~(2_l _1,--)! -'-( -_1,,-) I 
s-+p (l 1)!l!s2! 

(B.5) 

(B.6) 

For p = ! we have 

(B.7) 
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o produ calculate 

We have the equation for the characteristic function <P D (s) of the decision variable 

D. 

(C.1) 

We want to determine the product of the poles of <l?D(S). The poles Pi are related 

to the eigenvalues '\ of <:Pww F by 

From the characteristic polynomial of <:P~w F' 

det(<l?~wF' - xI) = (x Ak)(X Ak+L) 

and setting x to zero gives 

kE'T/ 

det <l?~WF' II AkAk+L 
kE'T/ 

Combining equations (G.2) and (C.4) gives the product of the poles as 

1 
PkPk+L = ------
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(Co2) 

(C.3) 

(C.4) 

(C.5) 
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D 

<» <» 

Much of the theory of geometrically uniform construction is based on group algebra. 

vVe will revise the basic gronp algebra concepts [60] to define the notation nsed in 

chapters 4 and in the context of our requirements . 

. 1 Preliminaries. 

Definition 35 If 8 is a set, then a function 

is called a binary operation on 8. 

element from S x 8 may be written as (a, b) where a E 8 and fJ E 8. The 

operation of the function * on (a, b) is *((a, b)) which using infix notation is written 

as a*fJ, an element of S. For example the function of addition, conventionally written 

as +, is a binary operation on the set R of real numbers. Other commonly known 

examples of binary operators are multiplication on R, and matrix multiplication on 

N2><2. 

Definition 36 An algebraic system (8, *) is a set 8 together with a binary operation 

* defined on it. 

For example, the real numbers R with the operation of addition is the algebraic 

system (R, +). 

219 



220 APPENDIX D. GROUP ALGEBRA REVISION. 

Definition 37 An algebra'ic system (3, *) is associative if (x * y) * z = x * (y * z) 

for all x, y, and z in S. 

Definition 38 In an algebraic system (3, *) an element e E 3 is an identity element 

if for any 8 in 3 

8 * e = e * 8 8. 

For example the number 0 is the identity element in the system (R, +). 

Definition 39 If (3, *) i8 an algebraic 8ystem with identity e, and 8 E 3, then an 

element t in 3 is said to be an inverse for 8 'if 

s * t = t * 8 e. 

The inverse for s i8 denoted by 8-1, i.e. t = 8-1 , 

For example in (R, +), the inverse of 2 is -2 since 2+ -2 -2+2 = 0, the identity. 

Definition of a group. 

Definition 40 If G is a set and * is a binary operation on G, then the system (G, *) 

'is a group if it satisfies all of the following properties: 

1. (G, *) is associative, i.e. x * (y * z) = (x * y) * z for all x, y and z in G. 

2. G has an identity element e, i. e. there is an element e E G with the p7'Operty 

e * x = x * e = x for all x in G. 

3. Every element x in G has an inverse 'in G, i. e. for every element x in G 

there is an element X-I in G with the property x * = X-I * X e. 

For example consider the system (R, +). Addition is associative so property 1 holds. 

There exists an identity element, namely 0 which has the property O+X x+O = x, 

and finally for every x there is an inverse -x such that x + -x -x + x = O. 

Therefore (R, +) is a group. 

Definition If (G, *) is a group and G has an infinite number of elements, then 

(G, *) is said to be a group of infinite order. If G has a fin'tte number of elements, 

then the order of G 'is the number of elements in G, written as IGI. 
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Definition A group (G, *) is called an abelian group if 

for all x, y E G, 

That is the group G is commutative. 

An example of a finite group important to our study is based on the symmetries 

of a 4-PSK constellation. Consider a 4-PSK constellation with the points labelled as 

shown in figure D.L A symmetry is a mapping such that the constellation maps onto 

1 

2 __ ----~------~ 0 

3 

Figu.re D,l: A 4-PSK constellation. 

itself. For example a 90 degree rotation about the origin, or a reflection about the 

horizontal axis are symmetries. By inspection there are a total of eight symmetries, 

namely four rotation symmetries and four reflection symmetries. The four rotation 

symmetries are shown in figure D.2 and are labelled ro, rl) r2, and r3 corresponding 

to anti-clockwise rotations of 0, 90, 180 and 270 degrees about the origin respectively. 

The four reflection symmetries are shown in figure D.3 and are labelled Vo, V], V2 and 

V3 corresponding to reflections about the line passing through the origin meeting the 

horizontal at 0, 45, 90, and degrees respectively. Consider the set of symmetries 

G = {raj TI, T2) T3, Vo, VI, 1)2,1)3}' A binary operation 0 is defined on G by considering 

the result when one mapping of is followed by another mapping as shown in the 

example of figure D.4. Here the original4-PSK constellation is mapped through the 

symmetry 1)0 followed by the symmetry rl. The result is the same as the mapping 

of the symmetry V3, hence we have va 0 rl = V3. The complete set of operations, 

listed in table D.l is found by considering the results of the operation of all pairs of 

elements. The system (G, 0) is a group since the operation of any two elements of 
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2 _--+ ...... _-... 0 o 

_--+--... 0 0_--+--... a_--+--... 1 

o 

Figure D.2: The four rotation symmetries of a 4-PSK constellation. 

1 

1 2 

_--+--... 1 0_--+--'" 3 

o 

Figure D.3: The four reflection symmetries of a 4-PSK constellation. 

3 o 

r 
_ n 

2_--+--_0~2_-..,--_O-3_--+--_ 

2 

Figure D.4: Example of two operations. 
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TO TO 1'1 1'2 T3 Va Vl V2 V3 
, 

1'1 Tl TZ 1'3 To V3 Vo VI V2 

T2 1'2 1'3 1'0 Tl V2 V3 Vo VI 

1'3 1'3 To 1'1 1'2 VI V2 V3 'Vo 

Vo Vo VI V2 V3 To 1'1 1'2 1'3 

VI VI Vz V3 Vo 1'3 TO 1'1 T~ 
£, 

V2 Vz V3 Vo VI T2 T3 1'0 1'1 

V3 V3 Va VI V2 1'1 T2 1'3 To 

Table D. Complete 4-PSK symmetry operation table. 

is in there exists an identity element, namely TO, each element has an inverse, 

and the system is associative. The group (G, 0) is called the dihedral group D 4• 

general, a dihedral group (Dn) 0) consists of all symmetries of a regular polygon with 

n sides. Note that D4 is not an abelian group. 

D. Subgroups. 

Definition 43 If (G, 0) is a gTOUp, and if H ~ G, then (H, 0) is called a subgroup 

of (G j 0) if (H, 0) is a group. If H is a subgroup of G, we write H < G. 

Basically, a subgroup of a group is a subset which forms a group with the same 

operation. For example the set of even integers with the operation + is a subgroup 

of the set of integers By inspection the subset {To) 1'b T2) T3} of the group D4 of 

table D.l is a group and therefore a subgroup of D4 • 

04 Cosets. 

Consider a group and a subgroup of G, H < G. 

Definition For g E G, the set Hog = {h 0 glh E H} is called the right coset of 

the subgroup H in G determined by g. 

Definition 45 For 9 E G, the set Hog {g 0 hlh E H} is called the left coset of 

the subgroup H in determined by g. 
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Note that every element g in G has a right coset Hog and a left coset go H. The 

right and left cosets need not equal if the group G is not abelian. It can be shown 

[60] that two right cosets (the same result holds for left cosets) Hog and H 0 gl 

are either disjoint or equaL There can be no overlap between two right cosets of a 

subgroup in a group unless the cosets are the same. It can also be shown that G is 

the union of all right or left cosets. For example consider the group G D4 ) and 

the subgroup H {ro, VI}' The right cosets are 

while the left cosets are 

Horo HOVI {rolvd 

Horl =Hov2={rl,v2} 

H o r2 Hov3={r2,v3} 

H o r3 Hovo {r3,vO} 

rooH 1hoH {rO,vl} 

rl 0 H = Vo 0 H = {rl' vo} 

r2 0 H = V3 0 H = {r2l V3} 

r3 0 H 1h 0 H {r3,v2} 

(D.l) 

(D.2) 

(D.3) 

(DA) 

(D.5) 

(D.6) 

(D.?) 

(D.8) 

Note that the union of the left or right cosets equals G and the left and right cosets 

do not necessarily equal. 

D.5 Normal subgroups. 

Definition 46 If G is a group and N is a s·ubgroup of G such that for every g E G! 

No g = go N, we call N a normal subgroup of G and write N <l G. 

This definition states that the left and right cosets of the subgroup N determined 

by any element of G must be equal. In the previous example we showed that the 

left and right cosets of the subgroup H {ro, Vl} do not equal and therefore H is 

not a normal subgroup of G D 4 . If instead we consider the subgroup N - {roJ r2} 
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of its right cosets are 

while the left cosets are 

No To = No Tz = {To, T2} 

N 0 rl N 0 T3 = {TlJ T3} 

Novo = N 0 V2 { Vo, V2} 

N 0 VI = N 0 V3 { VI, vd 

ro 0 N = r2 0 lV = {TO, r2} 

TloN T3 0 N={rl,r3} 

Vo 0 N = V2 0 N = {vo, V2} 

VI 0 N = V3 0 N { Vb VB} 

Clearly the left and right cosets are equal and N is a normal subgroup of G. 

D.6 Quotient groups. 

Definition If N <J G, then let GIN = the set of all cosets of N in 

225 

(D.9) 

(D.lO) 

(D.ll) 

(D.12) 

(D.13) 

(D.14) 

(D.15) 

(D.lfi) 

From the previous example N = {ro, rz}, a normal subgroup of G and GIN is 

(D.17) 

the set of cosets. In general the order GIN is IGI/INI. 

Definition 48 If G is a group and N <J G, then the system (GIN,o) wheTe 0 is 

defined by 

(D.18) 

is a group, called the quotient group. 

The proof is straightforward [50]. From the previous example we have constructed 

the operation table of the quotient group GIN, for N = {ro, T2}, as shown table 

D.5. 
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{TO; T2} {TO,T2} {Tl, T3} {Vo, V2} {VI,V3} 

{Ti, Ta} {Tl; T3} {To,T2} {VI, V3} {VO,V2} 

{Vo, V2} {VO,V2} {VI, Va} {To,T2} {Til T3} 

{Vb V3} {Vl; Va} {VO,V2} {Tb T3} {To,T2} 

D.7 Isomorphisms. 

Definition 49 Let G and H be any gToups and let a : G -+ H be a bijection (1-1 

and onto mapping) between the elements of G and the elements of H such that for 

all x, y in G 

a(x 0 y) = a(x) 0 a(y) (D.19) 

Then a is called an isomorphism ofG onto Hand G and H are said to be isomorphic. 
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This appendix lists the geometrically uniform code generators of chapter 4, 

Jsyml 

v generators 

1 V3 1 TZ 

2 Tz, Va, Tz 

3 Tz,V3,Tz,Tz 

.4 T2, V1, Va, V3) T2 

5 Vl,Va,T2,Va,T2,T2 

6 T2,Vl,V3,T2,T2,V3,Tz 

7 T2, Va, 111, Va, Tz, T2, V3, T2 

8 Tz,V3,To,Tz,T2,Vl,T2,Va,T2 

Table E,l: Generators of 1 x 4-PSK codes transmitting 1 bit/symboL 
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1 bit/symbol 1 x 8-PSK 

v generators 

1 r4,v3 

2 '4, V3, r4 

3 v3,r4,VS,r4 

4 r4,VS,Vg,r4,Vg 

5 r4,V5,Vg,V5,r4,v3 

6 v5,v3,r4,v5,v3,v5,r4 

7 V3, VlJ r4, V5) V3, r4, V5, r4 

8 ~'~,~'~,~'~,~,~,~ 

Table E.2: Generators of 1 x 8-PSK codes transmitting 1 bit/symboL 

;jsyml 

v generators 

1 (r21 r2)i (VII V3), (VlJ rz) 

2 (rzl V3), (r21 VI); (VI) VI), (Vb rz) 

3 (r2, rz), (rZl VI); (VI, V3), (VI, rz), (VI, r2) 

4 I (V31 V3), (r2, V3), (rz, VI); (VI) rz), (VI, VI)' (VI, rz) 

5 (r2,rZ), (rZ,v3), (rZ,vl); (Vl,V3), (vl,rZ), (rO,vl), (Vl,V3) 

6 (VI, rz), (rz, vd, (rZl V3), (rz, VI); (Vg, VI), (1ft, V3)' (VI, r2), (VlJ V3) 

7 (VI, va), (rZl rz), (va, 1h), (r:,!J rz); (Vg, rz), (ro, rz), (VI, r2), (ro, rz), (VI, V3) 

8 (r2' V3), (VI, ro), (r2, V3), (rZl rz), (rz, rz); (th, rz), (V3' rz), (Vb rz), (ro, rz), (VI 1 1h) 

E,3: Generators of 2 x 4-PSK codes transmitting 1 bit/symbol. 
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c/syml 

,ellentl 

1 (T21 Va, va); (VI, VI) T2); (VI, V3) VI), (VI) V3, To) 

2 (T2, T21 T2); (VI, V3, V3), (VI, T2) T2); (To l T2, vr), (To, T2, va) 

3 (T21 r2, To), (T21 T2, T2) i (V1; Va, T2), (VI, T2, V3); (Vb T2, VI)' (To, V3, VI) 

4 (va,Va,VI), (T2,T2,Va); (Vl,T2,Va), (Vt, Va, T2); (To,Va,T2), (VllVa,To), 

(VI, T2, TO) 

5 (T2,T2,Va), (T2,T2,T2); (Vl,Vl,To), (Vl,V3,T2), (Vt, T2,V3); (Vl,V3,Vl), 

(TO, T2, vd, (To l V3, V3) 

6 (T2' T2, V3), (T2' T2, T2), (T2, T2, r2); (Vb V3, VI)' (Vb V3, V3)' (VI, r2, T2); 

(TO) T2, r2), (VI, T2, vr), (To, V3, VI) 

7 (r2' V3, V3), (T2, T2, r2), (T21 T2) r2); (VI, VI, vr), (VI, V3, V3), (Vb r2, V3); 

(VI, V3, r2), (VI, V3, VI)' (To, Vb VI), (ro) V3, r2) 

8 ('03, Va, '03), (r21 T2, r2), (r2, T2, T2); (VI, T2, T2), (To, To, TO)' (VI, r2, T2), 

(VlJr2,T2); (To,Vl,T2), (VbT2,V3), (rO,r2,vt), (rO,VI, V3) 

Table E.4: Generators of 3 x 4-PSK codes transmitting 1 bit/symbol. 

2 bits/symboll x 8-PSK 

V generators 

1 T4;T4,V3 

2 VS,V7;Vl,T4 

3 T4,V3,V3,Vl,T4 

4 Vb r4, '4, V5, V3, VI 

5 V5,VS,V3;Vl,To,r4,r4 

6 . r4,T4,V7,V3;Va,VI,r4,V5 

7 ~'~,~)~;~'~,~,~,~ 

8 V5, V3, VI, VI, T 4; VI, 'U7, V5, 'Us, 'Us 

Table E.5: Generators of 1 x 8-PSK codes transmitting 2 bits/symbol. 
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>/symh 

v generators 

1 Tgi V7,T4 

2 VIS, Tg; V5, Vs 

.3 V9,Tg;'Ul,'U5,VS 

4 Tg, 'Us, 'U5; 'U5, 'Un, 'Ul3 

5 Ts) V9, Tg; 'Us, 'U5, 1)5, V7 

6 Ts, 'Us, V13, 'Un; V5, Vn, V5, Vs 

7 Tg,'U9,Vl1,TS;'U3,VS,'U3,V7,VS 

8 V13, Vll, Tg, V13, V11; V5, Vs, V7, Vs, V3 

Table Generators of 1 x 16-PSK codes transmitting 2 bits/symboL 

l/syml 

v I generators 
I 

1 (T4' T4)i (r6, T6); (rb TS); (T6) r2), (V2) VI) 

2 (T4,r4); (r6,r2); (rO,r4), (Vl,V7); (Vl,V5), (r4,rO) 

.3 (r4, r4); (V3' VI), (V3, r4); (VI) 'U7), (ro, r4); (r4) ro), (VI) V5) i 

4 (r4, r4)) (V7) V7); (V3, vs), (T4) r4); (Vb Vs), (ro, r4); (1'4, TO), (VI, vs) 

5 (T4, T4), (V7, V3); (V31 V3), (r4, T4)i (VI, VI), (VI, V5); (T4, ro), (VI, V7), (T4, To) 

6 (T4,T4), (V2,V7); (V3,V6), (r4,T4); (V1,V4), (To,T4),(V4,Vl)i (V2,Vl), (V4,V1), 

(VI, V6) 

7 (r4,vS), (T4,T4)i (To,T4), (To,r4), (V3,V3); (VlJT4)' (V3,TO), (VlJ V5); (VIJ V3)' 

(VlJ V7), (T4,rO) 

8 (T4,T4), (T4,rO)' (V7,V7); (V3,V3), (V3,V6), (T4,rO); (TO,T4), (Vl,V2), (T4,T4); (VI, VI), 

(V1,V6), (VI, VI) 

Table E.7: 2 x 8-PSK codes transmitting 2 bit/symboL 
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3/symb 

v generators 

1 (rs, rs); (rI2l r12); (ra, rI4); (VI3, VI5), (VI3, V7) 

2 (rg,rs); (r4,r4); (r2,r2), (r2,rIO); (Vl,V13), (Vl,VI5) 

3 (rs, rs); (r12, r4), (VI3l VI5); (ro l rs), (r12) r4); (Vb V7), (rO, rs) 

4 (Vg , V5), (vI5, VI3); (VI) Vl3), (V7! V5); (V5, Vg), (V3, Vl); (V3, Va), (Vb V7) 

5 (VI5) Vg), (rs) rs); (V7' VI), (V5l VI3); (V3l VS), (Vl) Vg); (V1) VI5), (V3l Vl1), (Va, Vll) 

6 (VI3, VIa), (rs, rs); (V5, rs)) (V5, Va); (ro, V5)) (VI, V7), (VI) V7); (VI, ra), (V3' 111a)) 

(Va,V5) 

7 (rSl Vg), (rSl rs); (ro, rs), (V3, rs), (V71 VI5); (V51 VI3), (ro l rs), (va) va); (ro) V5), 

(V7l Vs), (Vb Vla) 

8 (ra, VIS), (rSl rs), (rSl rs); (V5l rs), (V71 V3), (V7, VIa); (ro, rs), (Va) V7), (V3) Vg); 

(V5,Vn), (v!,Vg), (VI,V7) 

Table E.8: 2 x 16-PSK codes transmitting 2 bits/symbol. 
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