
 
 

 
 
 
 
 
 

 
Lincoln University Digital Dissertation 

 
 

Copyright Statement 

The digital copy of this dissertation is protected by the Copyright Act 1994 (New 
Zealand). 

This dissertation may be consulted by you, provided you comply with the provisions of 
the Act and the following conditions of use: 

 you will use the copy only for the purposes of research or private study  
 you will recognise the author's right to be identified as the author of the dissertation 

and due acknowledgement will be made to the author where appropriate  
 you will obtain the author's permission before publishing any material from the 

dissertation.  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lincoln University Research Archive

https://core.ac.uk/display/35465417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Optimising locomotive requirements for 
a pre-planned train schedule 

 
_____________________________________ 

 
 
 

A dissertation 

submitted in partial fulfilment 

of the requirements for the degree of 

 

Bachelor of Applied Computing with Honours 

 

at 

 

Lincoln University 

 

 

by 

 

Ray Hidayat 

 
 

_____________________________________ 
 
 

Lincoln University 
 

2005 
 



 Abstract 

 2

Abstract 
Every rail operator wishes to minimise the size of their locomotive fleet in order to reduce costs. This 

minimum fleet size problem requires a rail operator to allocate locomotives to the trains in a predefined train 

schedule so that the total number of locomotives required is minimised. The key to this is deciding how and 

when to transfer locomotives to where they can be better utilised. The rail operator for this hypothetical 

problem runs approximately 7,200 trains per week involving movements between 780 locations. An integer 

programming formulation was developed based on the work by Ahuja, Liu, Orlin, Sharma and Shughart 

(2002)1 and a solver applied this formulation to a train schedule to find the optimal solution. As the solution 

process was highly computationally intensive, the largest partial train schedule that was able to be solved by 

the integer programming solver was 21% of the size of the full train schedule, taking 2½ hours to converge 

on the optimal solution. An alternative algorithm, called the work unit levels algorithm, was developed. This 

algorithm schedules locomotives by identifying all valid ways to transfer locomotives between trains, then 

allocating the train schedule in an order dependent on the possible interconnections between trains. When 

this algorithm was applied to the largest partial train schedule that could be solved by the integer 

programming solver, it arrived at a similar solution in 6 seconds. The algorithm took 13 minutes to solve the 

full problem.  

                                                      
1 Ahuja, R. K., Liu, J., Orlin, J. B., Sharma, D. & Shughart, L. A. (2002). Solving real-life locomotive scheduling 
problems. Gainesville, FL: University of Florida. 
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1. Introduction 
With railway being such a fast method to transport large loads of passengers or freight, it is no surprise that 

rail networks have become a supporting pillar to many of the economies of the world. Rail transport has 

some major advantages over other methods of land transportation. Railway is the fastest and most energy-

efficient method of mechanised land transport, and it is also very safe (Docherty & Shaw, 2003, p. 108). The 

minimal friction of the train tracks combined with the safety of rail transport enables some trains to travel in 

excess of 200 km/h to their destination with extremely heavy loads. This makes railway the most effective 

way to connect towns and cities in dispersed regions that are found in countries such as China and in 

particular states of the USA.  

Railway is also the most space-efficient form of land transport, with a two-rail track being able to carry more 

commuters and cargo within a given time than a four-laned road (Docherty & Shaw, 2003, p. 108). This is a 

key reason as to why rail networks are used so often in densely-populated cities such as Tokyo and New 

York, where congestion found on roads has forced many commuters to make the use of subways part of their 

lifestyle.  

Being so efficient in many ways, in many countries, rail transportation has become closely integrated with 

ship transport and the use of railway has also become especially prominent in the transportation of coal. 

Even with its distinct advantages, trains are not always the most commercially viable means of transport 

however. In recent times, highways and commercial airlines have replaced much of the need for trains. Rail 

networks in many areas struggle to achieve profitability and some rely heavily on government funding to 

survive. For railway to maintain its competitive edge against other technologies, cost reductions are 

absolutely necessary. With each locomotive costing at least 1.8 million US dollars (Ahuja, Liu, Orlin, 

Sharma & Shughart, 2002), being able to utilise a rail company’s fleet of locomotives more efficiently could 

induce substantial reductions in the costs incurred by rail companies.  

Based on their experience with resource scheduling problems, Jade Software Corporation2 has constructed a 

hypothetical train scheduling problem that encapsulates the core challenges that typical rail companies face 

when deciding how to utilise their locomotive fleet to run their train schedules. The source data for this 

problem has been extracted from a real system, involving approximately 7,200 trains travelling between 780 

locations each week. The objective of this project is to develop an allocation algorithm that allocates 

locomotives to the trains for a given week. The algorithm should come as close as possible to the minimum 

number of locomotives within a reasonable amount of running time.  

                                                      
2 Jade Software Corporation, 19 Sheffield Crescent, PO Box 20 152, Christchurch 8005, New Zealand.  
Email: askjade@jadeworld.com. Web: www.jadeworld.com. 
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2. Description of the Problem 
In essence, this problem is a minimum fleet size problem (Bertossi, Carraresi & Gallo, 1987, as cited in 

Erlebach, Gantenbein, Hürlimann, Neyer, Pagourtzis, Penna, Schlude, Steinhöfel, Taylor & Widmayer, 

2001, p. 4), as the goal is to identify a way to run the same set of trains with the smallest fleet possible.  

One of the main concepts in this problem is a consist. A consist is the name given to one unit that travels 

through the rail network which is comprised of a number of locomotives and any wagons they pull. Each 

week, the rail operator has a train schedule that contains the set of trains that have been planned to be run. 

The word train refers to one planned movement of a consist, departing from a specific departure location at 

a given departure time to a specified arrival location at a given arrival time. The rail operator will have 

customers who have booked seats or space for freight on particular trains ahead of time, and so it is 

necessary that the rail operator runs all the trains it has planned to run in a particular week.  

The rail operator needs to plan which locomotive or locomotives will run each train. A locomotive can run 

multiple trains in sequence – once a locomotive has finished one train, it can move on to run the next one. 

The goal is to use the fewest number of locomotives to run the train schedule.  

The main difficulty with the problem is not deciding how to allocate the locomotives to the trains in the 

schedule, but how to transfer locomotives so that each locomotive can run more trains. If each locomotive 

runs more trains per week, the full set of trains planned for the week can be run with fewer locomotives. The 

trouble is that transferring locomotives to where they are needed is not a straightforward process.  

Since the tracks on which the locomotive must move are owned by a national company and shared with other 

rail operators, the rail operator in this problem can only move a locomotive if it has what is called a path on 

which the locomotive can be transferred. A path is a right that is acquired from the national track owner to 

be able to send one consist from a specific departure location at a given departure time to a specified arrival 

location at a given arrival time. The rail operator cannot move locomotives from one location to another if it 

does not have a path to send the locomotives on, as it does not have the right to do so. With other rail 

operators using the same set of tracks, travelling on the tracks without clearance in the form of a path from 

the national track owner is very dangerous. 

For each of the trains in the train schedule for a particular week, the rail operator will own a path on which 

the consist for that train can move on. Also in any week, the rail operator will own paths that it is not using 

for the trains in the train schedule. These paths enable locomotives to be transferred between locations and 

moved to where they are needed. There are also several other ways the rail operator can move locomotives to 

different locations if it needs to. These are explained in detail in section 2.3. 
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Transferring locomotives can allow one locomotive to take on more trains in the same week, which in turn 

means that the total set of trains in the week can be run with fewer locomotives. The heart of this problem is 

knowing when and where to transfer a locomotive. The various aspects of this problem will now be 

expressed in more detail.  

2.1. Consists 

The word consist refers to a set of locomotives, along with any wagons they pull, that travel together as a 

unit through the rail network. All consists must have a locomotive in order to be able to move, but not all 

consists have wagons. A locomotive that is travelling without any wagons is known as a light engine.  

This problem only considers locomotives; wagons are beyond the scope of this problem. The assumption is 

that once the locomotives have been arranged to run all the trains in the train schedule, the wagons can be 

organized in another stage.  

2.2. Locations 

The point of having consists is to move them to and from locations. A location is a place where a consist can 

stop and the locomotives or wagons that comprise the consist can be changed. Drivers, passengers or freight 

on the consist may also be changed when a consist has stopped at a location.  

In reality, locomotives have home depots. A home depot is a place where a locomotive should both begin 

and end its week. For this problem, home depots will not be considered. That is, there are no restrictions on 

where a locomotive must begin and end its week.  

2.3. Movements 

In this problem, multiple rail operators send consists on the same set of tracks. The tracks are owned by a 

national company, and to maintain safety between the various rail operators, the national track owner must 

verify that each individual rail operator’s plans does not clash with the plans of any other rail operator. To 

make this possible, whenever a rail operator intends to move a consist, the rail operator must have acquired 

the right to do so from the national track owner.  

Rail operators acquire rights to move consists by bidding for the ownership of paths. When the national 

track owner makes a path available to a rail operator, it will have ensured that travelling on that path is safe, 

given how the other rail operators will use the tracks. As there are other rail operators using the same set of 

tracks, it is dangerous to move a consist without a path.  
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There is one special case though. When travelling between close locations, the controllers at the locations 

involved can wait until the tracks between them are clear and then send a consist on the track without a path. 

This is called a location group movement and will be explained in more detail in section 2.3.2. 

2.3.1. Paths 

Paths are the primary type of movement that is used. The word path refers to a right that is acquired from the 

national track owner to be able send a consist from a specific departure location at a given departure time to 

a specified arrival location at a given arrival time.  

The rail operator will own paths for each train in the train schedule so that it can meet agreements it has 

made with customers to run the trains. It will also own paths that are not planned to be used for trains – these 

are called unused paths. These paths can be used to transfer locomotives to where they are needed during 

the week.  

2.3.1.1. VSTPs 

VSTP stands for very short term plan. A VSTP is a special path that a rail operator acquires the rights to use 

only days or hours before the departure time of the path.  

When allocating locomotives to the weekly schedule, the rail operator may notice that in a prior week, it 

used a path that could be useful to transfer a locomotive this week. In this situation, the rail operator may put 

in a request for a VSTP from the national track owner to acquire that same path for this week. Since the rail 

operator has not purchased the path ahead of time, there is a risk that the national track owner will not be 

able to give the rail operator the path it has requested as another rail operator may have acquired a path that 

clashes with the requested path. That is why in reality, VSTPs are added to the schedule only when they are 

needed, as they are not always a reliable option. However, this particular problem does not make a 

distinction between VSTP paths and other paths, all of the paths used in past weeks are assumed to be 

available to transfer locomotives this week.  

2.3.2. Location group movements 

When moving between close locations, a locomotive is sometimes able to move without a path. This is called 

a location group movement. For these movements, the controllers at the involved locations just make sure 

the tracks between them are clear before sending locomotives. Given enough time to wait for the tracks to 

clear, this is a reliable way to move locomotives and is used quite often.  

Location group movements do not have a departure time and arrival time – they are able to occur at any time. 

So that location group movements can be treated the same as paths, an approximation has been made for this 
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problem to make it so that location group movements do have departure times and arrival times. For each 

train in a weekly schedule, one location group movement is created from each close location to the departure 

location of the train. The location group movement is set so that its arrival time is just before the departure 

time of the train, and its running time is set to thirty minutes. This enables location group movements to be 

treated the same as paths.  

2.3.3. Dead-in-train 

To transfer a locomotive to where it is needed, a locomotive can also “hitch a ride” with another locomotive. 

In this situation, the locomotive just turns off its engine and is pulled by another locomotive on an existing 

path. This is called dead-in-train. Dead-in-train can be used to transfer extra locomotives on paths used by 

trains as well as unused paths.  

2.4. Locomotive classes 

There are different classes of locomotives that can be used to run the train schedule. In this problem, any 

locomotive of any class can be transferred on any path or location group movement – there are no 

restrictions on locomotive classes for transfers. Trains can only be pulled by locomotives of one class, but 

any class of locomotives can be transferred on a train when using dead-in-train. Trains and their restrictions 

are explained more in section 2.5.1.  

2.5. Train schedule 

The entire problem begins from a train schedule for a particular week. The train schedule is the input to the 

problem, it is predefined and unchangeable. Train schedules are made of up paths. Some of these paths will 

be used by the rail operator to run trains, and all other paths are available to be used for transferring 

locomotives. Recall from the start of section 2 that a locomotive cannot move unless there is a path on which 

it can move, and each path has a specific departure location and departure time as well as a specific arrival 

location and arrival time.  

The objective of the system is to take this train schedule and to allocate locomotives to the paths in the 

schedule in a way that will allow the rail operator to run all of its required trains with as few locomotives as 

possible. All of this should be executed in reasonable time.  

2.5.1. Trains 

A train is a commitment that the rail operator has made with a customer to move a consist carrying the 

customer’s cargo or commuters from one specific departure location at a given departure time to a specified 

arrival location at a given arrival time. In this problem, the rail operator cannot cancel trains – all trains must 
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be run. The rail operator will have acquired paths from the national track owner ahead of time so that all the 

trains it plans for can be run.  

Each train in the train schedule also has information about the number of locomotives required to run the 

train and what class the locomotives must be. If the train requires more than one locomotive to pull it, all the 

locomotives must be of the same class. Only that required class of locomotives can be used to pull the train.  

2.5.2. Transfers 

To be able to run the trains in the train schedule with fewer locomotives, sometimes the rail operator will 

transfer locomotives to locations where they are needed. Not all of the paths in the train schedule will be 

used for trains. These extra non-train paths are called unused paths. Unused paths can be used to transfer 

locomotives to where they can be used more effectively. As well as paths, there are also a few other methods 

of transferring a locomotive to where it is needed – location group movements and dead-in-train. These were 

outlined in section 2.1.  

A locomotive may sometimes perform a multi-stage transfer, which is when it travels on multiple paths in 

succession to arrive at the location where it is needed. This is opposed to a single-stage transfer where the 

locomotive only travels on one path to arrive at the location where it is needed.  

2.6. Locomotive diagrams 

Once the train schedule has been allocated, each locomotive used in the week will have a locomotive 

diagram. A locomotive diagram is the sequence of all train and transfer movements that will be run during 

the week by one locomotive. The rail operator can tell where a particular locomotive is meant to be at any 

point during the week by looking at its locomotive diagram.  

Naturally, each locomotive diagram will contain idling time for the locomotive. This is called whitespace in 

rail terminology. Although whitespace indicates that the locomotive is not being used for productive 

purposes, whitespace is important to make a schedule flexible and tolerant to situations where the week does 

not go exactly as planned.  

2.7. Logical locomotives 

Each of the locomotive diagrams that result from the allocation process do not relate to a specific actual 

locomotive. For example, one locomotive diagram may tell the rail operator that it requires one locomotive 

of class 234 to start at location A, from which it will follow a particular sequence of movements during the 

week according to the locomotive diagram. Any locomotive that is of class 234 and can be at location A at 
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the start of the week could be used to run that sequence. There is no specific actual locomotive that must be 

used.  

For this reason, when the algorithm outputs which locomotive will run which train, the locomotives that have 

been allocated are actually called logical locomotives. Logical locomotives exist for the scheduling process, 

but another process later on must map each logical locomotive to an actual locomotive.  

Using the set of logical locomotives that are output from the allocation process, rail operators can see what 

locomotives they need to run a particular week, not just whether the train schedule of a week is feasible or 

not. If there are more logical locomotives in the allocated schedule than the number of actual locomotives the 

rail operator owns, then the rail operator could conclude that the train schedule cannot be run. This gives the 

rail operator a better indication of how close to feasible or infeasible the train schedule they have planned is, 

and also gives a measure of how many spare locomotives they will have for backup purposes during the 

week.  

2.8. Problem summary 

The problem we are faced with is a minimum fleet size problem (Bertossi et al, 1987, as cited in Erlebach et 

al, 2001, p. 4). We begin with a train schedule that contains many paths. Some of the paths are planned to be 

used to run trains, and the other unused paths can be used for locomotive transfers. The rail operator must 

plan which locomotives will move on which paths so that all trains are allocated with their required class and 

quantity of locomotives.  

To save costs, the rail operator desires to run all of its trains with as few locomotives as possible, and to be 

able to do this, the rail operator will try to transfer locomotives to where they are needed. Locomotives can 

be transferred a number of ways: using dead-in-train, on the unused paths in the train schedule, through the 

use of location group movements or by using a VSTP.  

The objective of this problem is to develop an algorithm that takes a train schedule as input and produces a 

solution which describes how to use a fleet of logical locomotives to run the train schedule using the fewest 

number of locomotives possible.  
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3. Related Work 
The minimum fleet size problem is by no means a new problem, and has been heavily researched due to the 

many commercial benefits that solutions can provide. This chapter explores some of the important problems 

that have been solved and how the solutions relate our problem.  

3.1. Knowledge-based locomotive planning 

Scholz (1998) investigated locomotive scheduling for the Swedish railway system. Scholz’s problem 

involved a set of trips that had to be run by locomotives, and the objective was to run the same set of trips 

with as few locomotives as possible. Every trip had a specified start location, end location and total travel 

time required, but the trips were not given specific departure times. Instead, each trip had a departure time 

window, and the trips had to depart at some point during that time window.  

After representing how the trips fitted into the schedule in a Gantt chart format, the problem was seen to be 

similar to a bin packing problem with additional constraints. The Gantt chart in this problem was displayed 

with each logical locomotive on its vertical axis against time on its horizontal axis. Each trip forms a 

rectangle of a fixed size in the Gantt chart based on how long the trip is, and so to efficiently plan how to use 

the locomotives to run the trips in the schedule, one must rearrange the rectangles of the Gantt chart so that 

as little space as possible is taken along the vertical axis – a bin packing problem.  

The Swedish railway system makes room for transfers to occur in the form of passive transfers. The time 

taken to perform a passive transfer had to be included as part of the allocated schedule, but there was no 

restriction on when or where passive transfers could be used. Also as part of this problem, when assigning 

trips to occur at different times during the day, the system also had to consider the locomotives as they 

travelled on the tracks in the network, making sure there was enough distance between the locomotives on 

the track, as well as making sure that locomotives did not collide with each other on single-laned tracks by 

directing them in the same direction or scheduling locomotives to pause at points where other locomotives 

heading towards them could pass safely. Scholz’s solver also had to choose the route that a locomotive could 

take to get from a trip’s start location to its end location.  

Scholz devised a multi-stage approach to solving the problem. First, trips that are found to be optimally run 

together are combined and treated as single trips. This process was called the matching heuristic. Second, a 

constraint propagation algorithm defines a reduced search space in which a number of heuristics are used to 

find one good solution to the schedule. Finally, a neighbourhood search improves the solution to a local 

optimum.  
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The primary differences between this problem that Scholz investigated and our problem arise from the 

fundamental difference that Scholz’s system simultaneously solves track allocation and locomotive 

allocation, whereas our problem solely concentrates on locomotive allocation. For that reason, Scholz’s 

solver faces complexities that are not present in our problem, such as choosing routes for trips, and making 

sure that locomotives do not collide on single-laned tracks. Scholz’s problem does have similarities to our 

problem though. A train in our problem could be considered to be a special case of a trip, where the 

departure time window is reduced to just one particular point in time, and the travel time of the trip is fixed. 

However, the major incompatibility of Scholz’s problem to ours is the transfers in our problem are much 

more constrained and need special attention. 

3.2. Multiple Vehicle Depot Scheduling Problem 

Loebel (1998) researched what he called the Multiple Vehicle Depot Scheduling Problem (MVDSP). The 

MVDSP was designed in the context of bus scheduling but the problem exhibits many similar features to 

train scheduling problems. Provided with a predefined set of timetabled trips, the problem was to efficiently 

allocate vehicles to the trips. Vehicles start their route from a home depot, and must return to their home 

depot after they have completed their set of trips. To solve the problem, Loebel formulated it into a 

multicommodity flow network, which is a network of arcs and nodes on which vehicles (commodities) flow, 

with an additional constraint that there are different types of vehicles, and some arcs can only accept vehicles 

of a particular type. The flow network was then solved using Lagrangian relaxation techniques. Loebel’s 

solution was able to handle timetables with up to 49 depots and 25,000 timetabled trips.  

In the MVDSP, it is possible to transfer vehicles between trips. Arcs are added into the flow network to 

represent possible transfers. Although our problem does not involve home depots as in Loebel’s problem, the 

idea of a flow network does apply to this problem, as will be seen in section 4.  

3.3. Advanced Locomotive Scheduling System 

Ahuja et al (2002) faced a train scheduling problem where locomotives must be allocated to a predefined set 

of timetabled train movements. In their problem, Ahuja et al (2002) considered several key constraints: 

• Each train must be allocated enough locomotives to fulfil tonnage-pulling requirements.  

• Trains can be run by a range of locomotive classes.  

• The resulting schedule must be repeatable – all locomotives must end the week at the location where 

they started the week.  
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This problem was formulated into a mixed-integer programming model and solved in multiple stages. The 

stages included the use of linear relaxations, residual flow networks and a neighbourhood search algorithm.  

Applying their approach to the train schedules of CSX transportation, a total of 400 locomotives were saved 

from the existing system used by CSX transportation, which translated to savings of one hundred million 

dollars annually.  

Ahuja et al (2002) had a problem very similar to our problem, but their problem involved additional 

complexity. In our problem, each train has a specific number of required locomotives of one class, while 

Ahuja et al (2002) considered each train to have a range of different locomotive classes that could be used to 

pull the trains, and each locomotive class had a different tonnage-pulling capacity so different numbers of 

locomotives may be required to run the same train depending on which classes of locomotives were chosen. 

Also, each location in their problem had to begin the week with the same number of locomotives as it started 

with, so the schedule would be repeatable, which is different from our problem.  

The mixed-integer programming formulation Ahuja et al (2002) used was based on a flow network they 

called a space-time network. The space-time network summarised all the possible movements locomotives 

could do through space as well as through time during each week. Based on the space-time network created 

by Ahuja et al (2002), a mathematical formulation of our problem was defined. The formulation created for 

our problem is described in section 4.   
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4. Integer programming formulation 
The mathematical formulation for this problem is based on the formulation described by Ahuja et al (2002). 

However, the formulation for this problem is a lot simpler than the Ahuja et al formulation, as this problem 

does not require schedules that can be repeated week after week to be produced, and it also does not include 

several other more complicated features such as multiple locomotive classes being able to run the same 

trains.  

Using this mathematical formulation, any train schedule can be converted into a mathematical description 

and solved using an integer programming solver. As integer programming solvers can solve such a wide 

variety of problems, a large quantity of research has been done to develop and improve the algorithms that 

integer programming solvers use, and so often the solutions they produce are optimal or near-optimal 

(Fisher, 2004). Some solvers guarantee optimality, and others are able to report whether the optimum has 

been reached or not. Another reason for constructing this problem into an integer programming formulation 

is to define the problem using precise mathematical terminology. Having an accurate definition of the 

problem is essential to the process of finding an effective solution.  

4.1. Space-time network 

The expression of the locomotive scheduling problem in mathematical terms first involves the construction 

of a space-time network, which summarises all the movements that locomotives can perform through space 

as well as through time. An example space-time network is shown in Figure 4-1. The space-time network is a 

kind of multicommodity flow network (Loebel, 1998) made up of nodes and arcs, and is used in many 

resourcing problems. Each train is represented in the space-time network as a train arc, and the possible 

transfer options that are available to be used in the train schedule are represented as transfer arcs. In the 

space-time network, locomotives are created on train arcs when they are needed and the locomotives travel 

through space and time by flowing down other arcs in the network to reach the end of schedule.  

Once this space-time network is constructed, a mathematical description of the train schedule can be built 

and fed into an integer programming solver. The process of creating this space-time network will now be 

explained.  
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First, one train arc is created for each train that is scheduled to begin during the scheduled week. At the tail 

end of each train arc, a train departure node is created, and at the head end of each train arc, a train arrival 

node is created. During the construction of the network, both the train departure nodes and train arrival 

nodes are associated with the location they arrive at or depart from, and the time at which the arrival or 

departure occurs. This information will be used later on.  

Next, one transfer arc is created for each unused path, VSTP and location group movement that is available 

to transfer locomotives during the week. Remember location group movements have start times and end 

times in this problem the same way paths do (see section 2.3.2). Similar to the train arcs, at the tail end of 

each transfer arc, a transfer departure node is created, and at the head end of each transfer arc, a transfer 

arrival node is created. The nodes are associated with the location and time at which they occur.  

In the next stage, each location and its associated nodes are considered in turn. Within each set of nodes 

associated with the same location, the node with the earliest time is taken and connected to the next earliest 

node using a connection arc. Then the second earliest node is connected to the third earliest node using a 

Figure 4-1: An example space-time network. The arcs that cross the borders of the bounding box represent 
arcs that connect to nodes not displayed in this figure. 
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connection arc, the third earliest node is connected to the fourth earliest node, and so on. For the node with 

the latest time for the location, an end of schedule node is created and a connection arc created to connect 

the node with the latest time to that end of schedule node.  

The result is a space-time network that looks similar to the one illustrated in Figure 4-1. In the diagram, the 

horizontal dimension represents the space dimension and the vertical dimension represents time. The three 

vertically-aligned sets of nodes correspond to three locations in the network. Building on what has been 

described in section 2, the train schedule is made up of train arcs, and every train arc needs to have a specific 

number of locomotives of a particular class allocated to it. The transfer arcs however just represent 

possibilities for moving a locomotive from one location to another. The connection arcs represent 

locomotives idling at the same location and allow the locomotives to move from one point in time to the next 

without changing their location.  

4.2. Mathematical representation 

Once the space-time network has been constructed, it is converted into a mathematical representation – an 

objective function and a number of constraints. From there, a mathematical programming tool can be used to 

solve the space-time network.  

4.2.1. Parameters 

These parameters will serve as the input to the solver. They need to be specified to define the problem to be 

solved. At this stage, the space-time network will already have been constructed. The space-time network is 

used as a parameter to the solver, and so some of the parameters have been inferred from the space-time 

network instead of taken directly from the train schedule.  

Parameter Name Description 

K Set of all locomotive classes. Known from the train schedule. 

AllArcs Set of all arcs in the space-time network. Inferred from space-time network. 

TrainArcs 

Set of all train arcs in the space-time network. Train arcs are constructed from the 

train schedule, but this parameter is inferred from the space-time network. Train arcs 

are made up of the paths used for trains in the train schedule.  
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Parameter Name Description 

k
lr  

The number of required active locomotives of class k on a particular train arc l, where 

., TrainArcslKk ∈∈  Active locomotives are the locomotives that have their engine 

on and are actively pulling the train. Every train arc has a specific number of 

locomotives that it requires. Known from the train schedule. 

TransferArcs 

Set of all transfer arcs in the space-time network. Transfer arcs originate from the train 

schedule, but this parameter is inferred from the space-time network. A transfer arc 

indicates there is a possibility of using an unused path, VSTP or location group 

movement to move locomotives from one location to another.  

ConnectionArcs 

Set of all connection arcs in the space-time network. Connection arcs are generated 

solely for the space-time network – they do not have a direct counterpart in the train 

schedule. 

S 
Set of all connection arcs that connect to an end of schedule node. These are used to 

count the number of locomotives used in the week. Inferred from space-time network. 

AllNodes Set of all nodes in the space-time network. Inferred from space-time network. 

TrDepartureNodes 

Set of all train departure nodes in the space-time network. Train departure nodes may 

have more locomotives flowing out of them than locomotives flowing in – implying 

locomotives can be created at train departure nodes. Train departure nodes are the 

source nodes of the network. Inferred from space-time network. 

EOSNodes 

Set of all end of schedule nodes in the space-time network. End of schedule nodes 

may have many locomotives flowing into them but they always have no locomotives 

flowing out. This makes them the sinks of the network. Inferred from space-time 

network. 

BalancedNodes 

Set of all nodes that must have an equal number of locomotives flowing in as the 

number of locomotives flowing out.  

Defined as EOSNodeseNodesTrDeparturAllNodesdesBalancedNo −−= . 

Inferred from space time network. 

I[i] 
Set of all incoming arcs to node i, where AllNodesi ∈ . Inferred from space-time 

network.  

O[i] 
Set of all arcs emanating from node i, where AllNodesi ∈ . Inferred from space-time 

network. 

Table 4-1 
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4.2.2. Variables 

The variables are the output of the formulation. During the solving phase, the goal is to find values of these 

variables that will result in the optimal solution. For this allocation problem, there are two variables – the 

number of active locomotives and the number of inactive locomotives on each arc.  

Variable Description 

k
lx  This variable indicates the number of active locomotives of class k on a particular arc 

l, where ., AllArcslKk ∈∈  Active locomotives are defined as locomotives that 

have their engine on. To move a consist on either a train arc or a transfer arc, at least 

one of its locomotives must be active.  

All train arcs have a required number of active locomotives (see the parameter 
k

lr ) 

and transfer arcs must have one active locomotive if there are locomotives that have 

been allocated to move on the transfer arc. Connection arcs cannot have active 

locomotives on them, because when a locomotive is on a connection arc, it is idling at 

a location.  

k
ly  The variable is a measure of the number of inactive locomotives of class k on a 

particular arc l, where ., AllArcslKk ∈∈  Locomotives are said to be inactive when 

their engine is turned off. This could mean two things. On a train or transfer arc, a 

locomotive with its engine turned off would be pulled by another active locomotive – 

a dead-in-train movement (see section 2.3.3). On the connection arcs, an inactive 

locomotive is idling – waiting for its next train or transfer movement.   

Table 4-2 

 

4.2.3. Objective function 

Minimise:  ∑∑
∈ ∈

=
Sl Kk

k
lyn  

The objective of this minimum fleet size problem is to minimise the total number of locomotives, calculated 

by the objective function expression above. The objective function goes through each arc that connects to an 

end of schedule node and sums the total number of inactive locomotives of any class allocated to that arc. 

This counts the total number of locomotives used in the entire system for the following two reasons.  



 Integer programming formulation 

 21

Firstly, the only sink nodes in the network are the end of schedule nodes. That means when locomotives are 

created at a source node (a train departure node) they must continue flowing on arcs through the network 

until they reach an end of schedule node. So, all locomotives in the network eventually end up going across a 

connection arc to reach an end of schedule node as they cannot be lost at any other node in the system. 

Secondly, because all the arcs that connect to the end of schedule nodes are connection arcs, all locomotives 

that are allocated to those arcs must be inactive. No locomotive can be active on a connection arc. That is 

why counting all of the inactive locomotives on the arcs that connect to end of schedule nodes is the same as 

counting the total number of allocated locomotives in the entire schedule. 

4.2.4. Constraints 

Constraints: 

(a) 
k

l
k
l rx =  for all TrainArcslKk ∈∈ ,  

(b) ∑∑∑
∈∈∈

≥×
Kk

k
l

Kk

k
l

Kk

k
l yyx  for all csTransferArl ∈  

(c) 0≥k
lx  for all csTransferArlKk ∈∈ ,  

(d) 0=k
lx  for all ArcsConnectionlKk ∈∈ ,  

(e) 0≥k
ly  for all AllArcslKk ∈∈ ,  

(f) 
[ ][ ]

∑ ∑
∈ ∈

+=+
iIl iOl

k
l

k
l

k
l

k
l yxyx )()(  for all desBalancedNoiKk ∈∈ ,  

(g) 
[ ][ ]

∑ ∑
∈ −∈

+≥+
iIl TrainArcsiOl

k
l

k
l

k
l

k
l yxyx

)(

)()(  for all eNodesTrDeparturiKk ∈∈ ,  

(h) 
[ ][ ]

∑ ∑
∈ ∈

+≤+
iIl iOl

k
l

k
l

k
l

k
l yxyx )()(  for all eNodesTrDeparturiKk ∈∈ ,  

 
Constraint (a) requires that each train has the required number of active locomotives and that they are of the 

right class. Constraint (b) defines that if a transfer arc has inactive locomotives it must have at least one 

active locomotive to pull the inactive locomotives, and constraint (c) enforces that a transfer arc must have a 

non-negative number of active locomotives. Constraint (d) states that no locomotives can be active on a 

connection arc, and constraint (e) ensures that the system does not allow negative numbers of inactive 

locomotives to be allocated anywhere in the system. Constraint (f) enforces the rule that a node must have 

the same number of locomotives going in as it has going out for the relevant balanced nodes. Constraint (g) 

says that locomotives cannot be created for arcs that are not train departure arcs. Finally, constraint (h) 

defines that locomotives cannot be removed from the system at a train departure node, only created. 
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4.3. Formulation example 

 

The diagram in Figure 4-2 describes an example node network that might be generated. The next pages will 

list how a system would take the generated space-time network to define the problem in purely mathematical 

terms. 

4.3.1. Parameter Definitions 

From the space-time network, first, the parameters for the problem are generated. 

K = {A, B} 
 
TrDepartureNodes = {11, 22, 24, 26, 31} 
EOSNodes = {15, 27, 33} 
BalancedNodes = {12, 13, 14, 21, 23, 25, 32} 
AllNodes = desBalancedNoEOSNodeseNodesTrDepartur ∪∪  
 
TrainArcs = { (11, 21), (22, 12), (24, 32), (26, 14), (31, 23) } 

Figure 4-2: An example space-time network with each node and arc named for use in the mathematical 
formulation. 
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TransferArcs = { (13, 25) } 
ConnectionArcs = { (11, 12), (12, 13), (13, 14), (14, 15), (21, 22), (22, 23), (23, 24), (24, 25), (25, 26), 
(26, 27), (31, 32), (32, 33) } 
AllArcs = ArcsConnectioncsTransferArTrainArcs ∪∪  
 
S = { (14, 15), (26, 27), (32, 33) } 
 
I[11] =  O[11] = { (11, 12), (11, 21) } 
I[12] = { (11, 12), (22, 12) } O[12] = { (12, 13) } 
I[13] = { (12, 13) } O[13] = { (13, 14), (13, 25) } 
I[14] = { (13, 14), (26, 14) } O[14] = { (14, 15) } 
I[15] = { (14, 15) } O[15] =  
I[21] = { (11, 21) } O[21] = { (21, 22) } 
I[22] = { (21, 22) } O[22] = { (22,12), (22, 23) } 
I[23] = { (22, 23), (31, 23) } O[23] = { (23, 24) } 
I[24] = { (23, 24) } O[24] = { (24, 25), (24, 32) } 
I[25] = { (13, 25), (24, 25) } O[25] = { (25, 26) } 
I[26] = { (25, 26) } O[26] = { (26, 14), (26, 27) } 
I[27] = { (26, 27) } O[27] =  
I[31] =  O[31] = { (31, 23), (31, 32) } 
I[32] = { (24, 32), (31, 32) } O[32] = { (32, 33) } 
I[33] = { (32, 33) } O[33] =  
 

1)21,11( =Ar  0)21,11( =Br  

1)12,22( =Ar  0)12,22( =Br  

0)32,24( =Ar  1)32,24( =Br  

1)14,26( =Ar  0)14,26( =Br  

0)23,31( =Ar  1)23,31( =Br  

 

4.3.2. Objective Function Definition 

Minimise: ∑∑
∈ ∈

=
Sl Kk

k
lyn  

 
For this problem, expanding the summations results in this expression:  

Minimise: BABABA yyyyyyn )33,32()33,32()27,26()27,26()15,14()15,14( +++++=  
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4.3.3. Constraint Definition 

(a) Constraint: 

k
l

k
l rx =  for all TrainArcslKk ∈∈ ,  

 

Expanded: 

1)21,11()21,11( == AA rx  [k=A, l=(11,21)] 0)21,11()21,11( == BB rx  [k=B, l=(11,21)] 

1)12,22()12,22( == AA rx  [k=A, l=(22,12)] 0)12,22()12,22( == BB rx  [k=B, l=(22,12)] 

0)32,24()32,24( == AA rx  [k=A, l=(24,32)] 1)32,24()32,24( == BB rx  [k=B, l=(24,32)] 

1)14,26()14,26( == AA rx  [k=A, l=(26,14)] 0)14,26()14,26( == BB rx  [k=B, l=(26,14)] 

0)23,31()23,31( == AA rx  [k=A, l=(31,23)] 1)23,31()23,31( == BB rx  [k=B, l=(31,23)] 
 

 (b) Constraint: 

∑∑∑
∈∈∈

≥×
Kk

k
l

Kk

k
l

Kk

k
l yyx  for all csTransferArl ∈  

 

Expanded: 

)()()( )25,13()25,13()25,13()25,13()25,13()25,13(
BABABA yyyyxx +≥+×+  [l = (13,25)] 

(c) Constraint: 

0≥k
lx  for all csTransferArlKk ∈∈ ,  

 

Expanded: 

0)25,13( ≥Ax  [k = A, l = (13, 25)] 0)25,13( ≥Bx  [k = B, l = (13, 25)] 
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(d) Constraint: 

0=k
lx  for all ArcsConnectionlKk ∈∈ ,  

 

Expanded: 

0)12,11( =Ax  [k = A, l = (11, 12)] 0)12,11( =Bx  [k = B, l = (11, 12)] 

0)13,12( =Ax  [k = A, l = (12, 13)] 0)13,12( =Bx  [k = B, l = (12, 13)] 

0)14,13( =Ax  [k = A, l = (13, 14)] 0)14,13( =Bx  [k = B, l = (13, 14)] 

… 
 

(e) Constraint: 

0≥k
ly  for all AllArcslKk ∈∈ ,  

 

Expanded: 

0)12,11( ≥Ay  [k = A, l = (11, 12)] 0)12,11( ≥By  [k = B, l = (11, 12)] 

0)21,11( ≥Ay  [k = A, l = (12, 13)] 0)21,11( ≥By  [k = B, l = (12, 13)] 

0)13,12( ≥Ay  [k = A, l = (13, 14)] 0)13,11( ≥By  [k = B, l = (13, 14)] 

… 
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(f) Constraint: 

[ ][ ]
∑ ∑
∈ ∈

+=+
iIl iOl

k
l

k
l

k
l

k
l yxyx )()(  for all desBalancedNoiKk ∈∈ ,  

 

Expanded: 

)()()( )13,12()13,12()12,22()12,22()12,11()12,11(
AAAAAA yxyxyx +=+++  [k = A, i = 12] 

)()()( )13,12()13,12()12,22()12,22()12,11()12,11(
BBBBBB yxyxyx +=+++  [k = B, i = 12] 

)()()( )25,13()25,13()14,13()14,13()13,12()13,12(
AAAAAA yxyxyx +++=+  [k = A, i = 13] 

)()()( )25,13()25,13()14,13()14,13()13,12()13,12(
BBBBBB yxyxyx +++=+  [k = B, i = 13] 

)()()( )15,14()15,14()14,26()14,26()14,13()14,13(
AAAAAA yxyxyx +=+++  [k = A, i = 14] 

)()()( )15,14()15,14()14,26()14,26()14,13()14,13(
BBBBBB yxyxyx +=+++  [k = B, i = 14] 

… 

(g) Constraint: 

[ ][ ]
∑ ∑
∈ −∈

+≥+
iIl TrainArcsiOl

k
l

k
l

k
l

k
l yxyx

)(

)()(  for all eNodesTrDeparturiKk ∈∈ ,  

Expanded: 

)(0 )12,11()12,11(
AA yx +≥  [k = A, i = 11] 

)(0 )12,11()12,11(
BB yx +≥  [k = B, i = 11] 

)()( )23,22()23,22()22,21()22,21(
AAAA yxyx +≥+  [k = A, i = 22] 

)()( )23,22()23,22()22,21()22,21(
BBBB yxyx +≥+  [k = B, i = 22] 

)()( )25,24()25,24()24,23()24,23(
AAAA yxyx +≥+  [k = A, i = 24] 

)()( )25,24()25,24()24,23()24,23(
BBBB yxyx +≥+  [k = B, i = 24] 

… 
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(h) Constraint: 

[ ][ ]
∑ ∑
∈ ∈

+≤+
iIl iOl

k
l

k
l

k
l

k
l yxyx )()(  for all eNodesTrDeparturiKk ∈∈ ,  

Expanded: 

)()(0 )21,11()21,11()12,11()12,11(
AAAA yxyx +++≤  [k = A, i = 11] 

)()(0 )21,11()21,11()12,11()12,11(
BBBB yxyx +++≤  [k = B, i = 11] 

)()()( )23,22()23,22()12,22()12,22()22,21()22,21(
AAAAAA yxyxyx +++≤+  [k = A, i = 22] 

)()()( )23,22()23,22()12,22()12,22()22,21()22,21(
BBBBBB yxyxyx +++≤+  [k = B, i = 22] 

)()()( )32,24()32,24()25,24()25,24()24,23()24,23(
AAAAAA yxyxyx +++≤+  [k = A, i = 24] 

)()()( )32,24()32,24()25,24()25,24()24,23()24,23(
BBBBBB yxyxyx +++≤+  [k = B, i = 24] 

… 

 

4.4. AMPL definition of the problem 

A standard way to express a mathematical formulation such as this one is through the use of an algebraic 

modelling language. One such language is AMPL (Fourer, Gay & Kernighan, 1990; Holmes, 1995). AMPL 

stands for “a mathematical programming language” and many of the common mathematical programming 

solvers take mathematical problems as input in AMPL form. A full listing of all solvers that are capable of 

using AMPL can be found on the AMPL website3. The formulation for this problem has been converted into 

AMPL. This can be found in Appendix A.  

4.5. Tests of the formulation 

To ensure the objective function and constraints were properly defined, several test space-time networks 

were created and solved using existing integer programming solvers. The solver that was used was the 

PENNON solver, which is described in more detail in section 6.1.  

                                                      
3 AMPL website: www.ampl.com 
Listing of solvers that use AMPL: www.ampl.com/solvers.html 
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4.5.1. Transfer arc test 

 

Figure 4-3 

 
The space-time network in Figure 4-3 was used to test that the formulation correctly defined transfer arcs. 

The entire space-time network in that figure can be run with just one locomotive, but the solver has to use the 

transfer arc (22, 31) to reach that minimum.  

After inputting this space-time network in AMPL form, the PENNON solver successfully allocated one 

active locomotive to the transfer arc (22, 31) and reached the minimum of one locomotive for this space-time 

network. The appropriate intermediate connection arcs were also validly allocated with one locomotive each, 

and the final connection arc (23, 24) was correctly allocated one locomotive.  
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4.5.2. Dead-in-train test 

 

Figure 4-4 

 
Figure 4-4 depicts the network used to test whether the formulation correctly defined dead-in-train 

movements. The first and the third train both require two locomotives, but the second train requires only one. 

Using a dead-in-train movement to transfer one inactive locomotive, it is possible to run this space-time 

network with a minimum of two locomotives. The PENNON solver successfully allocated the dead-in-train 

movement and reached the minimum of two locomotives. The solver also validly allocated all the connection 

arcs with the appropriate number of locomotives.  

4.5.3. Locomotive classes test 

Finally, the space-time network which was used for the example in Figure 4-2 was tested to confirm that the 

mathematical formulation could handle multiple locomotive classes correctly. The entire space-time network 

in Figure 4-2 can be validly allocated with a minimum of two locomotives, one of class A and one of class B. 

To achieve this minimum, the class A locomotive has to run the three trains on the left side of the figure, 

utilising the transfer movement (13, 25). The class B locomotive has to run the two trains on the right side of 

the diagram. After supplying this space-time network to the PENNON solver in AMPL form, this minimum 

result was achieved correctly, using the transfer movement for the class A locomotive and also allocating the 

appropriate connection arcs in the network to fulfil all the constraints.   
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5. Description of Data 
Three approaches were taken to solve the problem, and they are outlined in sections 6, 7 and 8. The solution 

approaches were all applied to the same set of train schedules in order to compare their performance. These 

train schedules were extracted from a real system and transformed to fit the hypothetical problem.  

5.1. Size measures of the train schedule 

Table 5-1 lists several measures of train schedule size and their rounded mean values over all the train 

schedules that were tested.   

Measure Rounded 
mean value 

Total number of train arcs 7 200 

Total number of transfer arcs 39 700 

Total number of paths 10 700 

Number of paths used for trains 7 200 

Number of paths not used for trains 3 500 

Number of unique VSTPs available 13 200 

Number of location group movements created 23 000 

Maximum number of simultaneous trains at a 
particular instant of the week 

310 

Number of locations 780 

Number of locomotive classes 18 

Table 5-1 
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5.2. Train schedule class diagram 

The train schedule data is stored in an object-oriented JADE database and supplied as input to the algorithm. 

The class diagram for the train schedule data is presented in Figure 5-1.  

Transfer Arc

Locomotive 
Class

Train Arc
Number of Required Locomotives

1

0..*

1

0..*

Movement Arc
Start time
End time

Actual Movement Arc Train Schedule
10..* 10..*

Location
1

0..*
1

0..*
departs from

10..* 10..*
arrives at 0..*

1

0..*

1

 

Figure 5-1 

 
The train arc and transfer arc class both inherit from actual movement arc instead of directly from movement 

arc in anticipation of additional classes being created to inherit from movement arc. As will be seen in 

sections 7 and 8, multi-stage transfers will have a departure location and time as well as an arrival location 

and time, so it makes sense if these multi-stage transfers can be represented as a subclass of movement arc 

without interfering with any existing relationships.  
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6. Using Existing Integer Programming Solvers 
The use of integer programming solvers is a standard approach to solving minimisation problems. An integer 

programming solver approach was applied to this problem to find out whether this standard approach would 

be enough to solve the problem, or whether a new direction had to be taken.  

6.1. Solver Used 

There is a wide range of integer programming solvers available, each implementing different algorithms 

designed to solve different types of problems. To solve this problem, the NEOS server4 (Gropp & Moré, 

1997; Czyzyk, Mesnier & Moré, 1998; Dolan, 2001) was used, which is a server provided free to the public 

to solve mathematical programs by the Argonne National Laboratory5. A wide range of solvers can be used 

via the NEOS server.  

After testing a range of solvers, the solver that was chosen for this problem was the PENNON solver, as its 

algorithm was able to converge to a solution for train schedules of substantial size, while other solvers 

quickly ran out of memory or were only able to converge on a solution for train schedules of a trivial size. 

PENNON stands for penalty method for nonlinear and semi-definite programming, and is aimed to solve 

large-scale problems with a sparse data structure. PENNON uses an algorithm based around the generalized 

augmented Lagrangian method. A conference paper describing the algorithm in full has been published by 

the creators of PENNON, Kocvara and Stingl (2001). 

PENNON takes mathematical formulations via AMPL input, and so the model in Appendix A was used to 

input train schedules to PENNON. Additionally, the PENNON solver reports whether it has converged on 

the optimal solution or a suboptimal solution.  

6.2. Method for testing 

A full week’s train schedule could not be solved within the four-hour solve time limit imposed by the NEOS 

server, and so only partial train schedules were tested. A number of partial train schedules of varying sizes 

were formulated by taking slices of the same train schedule. Each partial train schedule contained the train 

and transfer arcs for a specified number of minutes from the start of the schedule. The number of minutes in 

each slice was increased in 30-minute intervals to generate progressively larger partial train schedules, 

ranging from the 30 minutes to the 2880 minutes (48 hours) of the train schedule. In total, 96 partial train 

schedules were generated and sent to the solver.  

                                                      
4 NEOS Server: www-neos.mcs.anl.gov 
5 Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439. Web: www.anl.gov 
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The 96 partial train schedules were generated using a script made in JADE. The script generated partial train 

schedules so that they had the same data structure as full train schedules (the data structure of train schedules 

was described in section 5.2). This allowed the partial train schedules to be used for not only the integer 

programming solver but also the other solution approaches without changing any code. This would be useful 

for comparing multiple solution approaches. For each of the generated partial train schedules, the system 

would then generate AMPL data files which could be sent to the PENNON solver along with the AMPL 

model file presented in section Appendix A. Commands were specified to the PENNON solver so that it 

would output the time taken to solve each train schedule, and also the number of locomotives required for 

each solution it generated. These values were collated with other measures that were output from the script to 

produce the results.  

6.3. Results 

All of the partial train schedules that were solved were able to be solved to optimality by the PENNON 

solver. The largest partial train schedule that was able to be solved included only the first 2160 minutes (36 

hours) of the full train schedule. Partial train schedules larger than this were unable to be solved and caused 

out-of-memory errors or reached the four-hour solve time limit. Partial train schedules smaller than 600 

minutes were extremely trivial and took less than one-hundredth of a second to solve, and because the solve 

times were reported to the nearest hundredth of a second, these partial train schedules were discarded from 

the result set as their time was not measured accurately enough. To present an indication of the results gained 

from the full set of partial train schedules, the results for every fifth partial train schedule between 600 and 

2100 minutes along with the largest 2160-minute partial train schedule are shown in Table 6-1. The full set 

of results is shown in Appendix B.  

Minutes of 
Schedule 

Locomotives 
Required 

Solve Time 
(seconds) 

Train 
Arcs 

Transfer 
Arcs Locations 

600 8 0.01 8 64 51 
750 10 0.26 11 124 75 
900 16 0.34 20 187 95 

1050 26 2.05 33 263 119 
1200 40 12.69 51 390 163 
1350 56 58.54 80 573 215 
1500 66 411.89 102 793 261 
1650 75 337.43 122 1044 328 
1800 90 1967.93 163 1413 408 
1950 109 5036.16 211 1835 483 
2100 134 4663.08 274 2316 536 
2160 147 8869.35 307 2503 548 

Table 6-1: The results found from using the solver PENNON to solve partial train schedules ranging in size from the 
first 600 to 2160 minutes of the full train schedule, including only the results for every 150 minutes. 
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As expected, the solve time increases rapidly as the size of the integer program increases. Figure 6-1 

illustrates how the total solve time increases as the number of train arcs increases.  
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Figure 6-1: The solve time versus the number of train arcs in the train schedule 

 
Notice that Figure 6-1 was drawn with a logarithmic scale because of the rate at which the solve time 

increases. A power law regression line is drawn on the graph as it was found to be the type of regression that 

fitted that data best. Given that the regression has a coefficient of determination of 0.9499, it is clear that the 

train schedule solve time increases at an escalating rate with the size of the train schedule when using an 

integer programming solver. The full scale train schedule could not be solved with any of the available 

integer programming solvers. This leads into the exploration of new approaches to solve this minimum fleet 

size problem.  
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7. Same-location Merge Algorithm 
The same-location merge algorithm was developed to allocate an entire train schedule in reasonable time. 

For this algorithm, the concept of the locomotive diagram is very important. Recall from section 2.6 that a 

locomotive diagram is the sequence of trains and transfers that will be run by one logical locomotive during 

a train schedule’s week. This algorithm runs in multiple phases. The first phase of this algorithm produces an 

initial solution which is good but not optimal. The next phases of the algorithm then incrementally improve 

the solution by combining locomotive diagrams. The three phases of the algorithm are summarised as 

follows: 

1. Same-location connection phase – connects each departing train with the most recent unallocated 

arriving train at the same location. No transfers are used in this phase. 

2. Different-location connection phase – finds and connects situations where the end of one 

locomotive diagram can be connected to the start of another locomotive diagram using a transfer 

movement. 

3. Different-location merge phase – attempts to reallocate the trains in each locomotive diagram into 

whitespaces (described in section 2.6) of other locomotive diagrams. 

7.1. Same-location connection phase 

Within this phase, locomotives are assigned to trains so that each train departing from a particular location 

reuses a locomotive that has previously arrived at that location, if one is available. If there is no locomotive 

available for the train to reuse, then a new logical locomotive is created to begin its week with that particular 

train. No transfers of any kind are used in this phase. Since this phase connects train arrivals to train 

departures at the same location, this phase is called the same-location connection phase.  

If the algorithm gets to a particular train that departs from a location at such a time that there are multiple 

locomotives available for it to reuse, it will take the locomotive that has most recently arrived. This last-in-

first-out method of allocation is commonly used in practice because it creates varying amounts of whitespace 

between movements in locomotive diagrams, with some locomotives having long waiting times and others 

having very short waiting times. To illustrate this, imagine one departing train. This train would take the 

most recent arrival to the departure location. Imagine a second departing train that departs directly after the 

first. This second departing train must take a locomotive that has been waiting for much longer than the 

locomotive used for the first departing train, as the locomotive for the first departing train has already been 

allocated and cannot be used for the second departing train. The second locomotive in this example will have 
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an extra long wait which could not occur if allocation was done on a first-in-first-out basis, as that would 

mean the locomotive that has been waiting the longest would be allocated first.  

Having locomotives with long waiting times is useful to the rail operator, as the rail operator will have spare 

locomotives for longer periods which can be used to cover trains of other locomotives if the schedule does 

not go to plan. So, using last-in-first-out enables the algorithm to produce a more flexible schedule. 

7.1.1. Same-location connection phase algorithm 

The pseudocode for this phase of the allocation algorithm is presented below. 

Set unconnected-trains-list := empty list; 
Set train-list := list of all trains in the train schedule sorted by their departure time; 
For each current-train in train-list do 

Set departure-location := departure location of current-train; 
Set unconnected-arriving-train-list := list of all trains in unconnected-trains-list that arrive at 

departure-location; 
If unconnected-arriving-train-list is not empty then: 

Set last-unconnected-train := the train that has the last arrival time in unconnected-arriving-train-list; 
Connect last-unconnected-train to current-train; 
Remove last-unconnected-train from unconnected-trains-list; 

End if; 
Add current-train to unconnected-trains-list; 

End for; 

Algorithm 7-1 

 

7.2. Different-location connection phase 

Once a solution has been produced by the same-location connection phase, this next phase begins to use 

transfers to combine multiple locomotive diagrams into single locomotive diagrams. This phase identifies 

situations where there is one locomotive diagram that ends earlier than another locomotive diagram starts. 

Looking at the two locomotive diagrams, the algorithm searches for a possible transfer that can be made 

from the end of the first locomotive diagram to the start of the second locomotive diagram. If a transfer is 

found, then the two locomotive diagrams are combined into one, using the transfer movement to bridge the 

gap between the first locomotive diagram and the second.  
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7.2.1. Different-location connection phase algorithm 

This algorithm connects the end of one locomotive diagram to the start of another locomotive diagram 

wherever there is a transfer movement that is available to make a connection possible.  

Set diagrams-by-start-time := list of all locomotive diagrams sorted by their first train’s start time; 
Set diagrams-by-end-time := list of all locomotive diagrams sorted by their last train’s end time; 
For each first-diagram in diagrams-by-end-time do 

Set first-end-time := end time of first-diagram;  
For each second-diagram in diagrams-by-start-time do, beginning iteration from the diagram that has a 

start time after first-end-time: 
 
Set transfer-sequence := Find a sequence of transfer movements which can be traversed to get from 

the end location and end time of first-diagram to the start location and start time of second-
diagram; // see algorithm in section 7.2.2 

 
If transfer-sequence was found then 

Add all transfer movements in transfer-sequence to second-diagram; 
Reallocate all movements in first-diagram to second-diagram; 
Discard first-diagram; // first-diagram is empty 

End if; 
End for; 

End for; 

Algorithm 7-2 
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7.2.2. Transfer sequence search algorithm 

This algorithm performs a breadth-first search for a sequence of transfer movements that can transfer a 

locomotive from one location to another location between a transfer departure time and transfer arrival time.  

Parameter target-departure-location := location at which the transfer sequence should start from; 
Parameter target-departure-time := time at which the transfer sequence should start at; 
Parameter target-arrival-location := location at which the transfer sequence should arrive at; 
Parameter target-arrival-time := time at which the transfer sequence must be completed by; 
 
Set unextended-transfer-sequences-list := empty list; 
 
Set initial-transfer-sequence := empty transfer sequence; 
Set end location of initial-transfer-sequence := target-departure-location; 
Set end time of initial-transfer-sequence := target-departure-time; 
Add intial-transfer-sequence to unextended-transfer-sequences-list; 
 
While unextended-transfer-sequences-list is not empty do 

Set transfer-sequence := retrieve and remove first transfer sequence in unextended-transfer-sequences-
list; 

 
Set movement-extensions-list := all paths or location group movements departing from the end location of 

transfer-sequence after the end time of transfer-sequence; 
For each movement-extension in movement-extensions-list do 

Set extension-end-location := end location of movement-extension; 
Set extension-end-time := end time of movement-extension; 
 
If extension-end-time is after target-arrival-time then 

Skip to next for loop iteration; // since there is no point in the locomotive continuing the transfer  
sequence when the target arrival time has already passed. 

Else if extension-end-location is the target-arrival-location then  
Set found-transfer-sequence := copy of transfer-sequence; 
Add movement-extension to found-transfer-sequence; 
Return found-transfer-sequence; 

Else if extension-end-location has not been visited or the earliest visit to extension-end-location was 
after extension-end-time then 
 
Set new-transfer-sequence := copy of transfer-sequence; 
Add movement-extension to new-transfer-sequence; 
 
Set end location of new-transfer-sequence := extension-end-location; 
Set end time of new-transfer-sequence := extension-end-time; 
Add new-transfer-sequence to unextended-transfer-sequences-list; 
 
Mark extension-end-location as visited; 
Set earliest visit time of extension-end-location := extension-end-time; 

End if; 
End for; 

End while; 

Algorithm 7-3 
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7.3. Different-location merge phase 

The previous phase of the algorithm combines locomotive diagrams that do not have a time overlap. This 

phase attempts to combine locomotive diagrams that do have a time overlap by reassigning trains to be run 

within the whitespaces of other locomotive diagrams. Recall from section 2.6 that whitespace is times in 

locomotive diagrams where locomotives are idling and could be used for more productive tasks such as 

running trains.  

To do this, each locomotive diagram is examined and attempts are made to reallocate all of its trains to other 

locomotive diagrams. If only some of the trains can be reassigned to other locomotive diagrams, the 

reallocation is cancelled for that locomotive diagram and no trains are reallocated. This is because the goal of 

the algorithm is to minimise the number of locomotives, and if only some of the trains in one locomotive 

diagram can be reassigned to other locomotive diagrams, then the first locomotive is still needed. So in this 

case, there is no gain to be made by reallocating just part of the first locomotive’s diagram as the same 

number of locomotives is still required. In fact, it is better to have the first locomotive with its original 

locomotive diagram as it balances the number of commitments each locomotive has, which means the train 

schedule has more flexibility.  

7.3.1. Different-location merge algorithm 

This algorithm attempts to reassign trains in one locomotive diagram into another locomotive diagram using 

transfer movements.  
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For each current-diagram in all locomotive diagrams do 

Set initial-allocated-train-schedule := checkpoint of the allocated train schedule that can be reverted to; 
Set is-merge-possible := true; 
 
For each current-diagram-train in all train movements in current-diagram do 

Set is-merge-of-train-possible := false; 
For each other-diagram in all locomotive diagrams do 

If other-diagram is not the current-diagram and current-diagram-train does not clash with a train 
movement in other-diagram then 
 
Set other-diagram-train-before := the latest train that ends before current-diagram-train in 

other-diagram; 
Set other-diagram-train-after := the earliest train that begins after current-diagram-train in 

other-diagram; 
 
Set transfer-sequence-before := find a sequence of transfer movements that can be used to get 

from the end of other-diagram-train-before to the start of current-diagram-train; 
If transfer-sequence-before was not found then 

Skip to next for loop iteration; 
End if; 
 
Set transfer-sequence-after := find a sequence of transfer movements that can be used to get 

from the end of current-diagram-train to start of other-diagram-train-after; 
If transfer-sequence-after was not found then 

Skip to next for loop iteration; 
End if; 
 
Set inner-transfer-movements-list := list of all transfer movements between other-diagram-

train-before and other-diagram-train-after on the other-diagram;  
Remove all transfer movements in inner-transfer-movements-list from other-diagram; 
 
Add transfer-sequence-before to other-diagram; 
Reallocate current-diagram-train to other-diagram; 
Add transfer-sequence-after to other-diagram; 
 
Set is-merge-of-train-possible := true; 
Exit for; 

End if; 
End for; 
 
If is-merge-of-train-possible is false then 

is-merge-possible := false; 
Exit for; 

End if; 
End for; 
 
If is-merge-possible is true then 

Discard current-diagram; // all trains run by current-diagram will have been reassigned. 
Else 

Rollback allocated train schedule to initial-allocated-train-schedule; 
End if; 

End for; 

Algorithm 7-4 
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7.4. Implementation 

This algorithm was implemented in JADE, the programming language created by Jade Software Corporation. 

The implementation uses the class diagram shown in Figure 7-1. 
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0..*
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1

1

 
Figure 7-1 

 
The locomotive diagram class in Figure 7-1 stores a sequence of train arcs and transfer arcs for one logical 

locomotive. Its inherited properties of start location, start time, end location and end time are taken from the 

start and end of the full sequence of train arcs and transfer arcs in the locomotive diagram. This information 

is useful when connecting multiple locomotive diagrams together. The same-location connection phase of 

the algorithm first generates an initial set of locomotive diagrams which are later combined by the different-

location connection and different-location merge phases of the algorithm.  
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7.5. Results 

The same-location merge algorithm was applied to the same train schedule that the integer programming 

solver was applied to, except the same-location merge algorithm worked on all the data. Overall, all the 

phases of the algorithm took approximately 2.5 hours, and created an allocated schedule that required 1048 

locomotives. The results after each phase are displayed below: 

Phase Cumulative Execution Time Locomotives 
Required after 

Execution 

Same-location connection phase 53 seconds 1703 

Different-location connection phase 18 minutes, 6 seconds 1058 

Different-location merge phase 2 hours, 17 minutes, 19 seconds 1048 

 

Remember the output of each phase is a fully allocated train schedule – the different-location connection 

phase and the different-location merge phase just improve the allocations from the last phase. This means 

that not all phases have to be run. For example, the rail operator might decide that it is not be worth running 

the different-location merge phase as it adds about two hours to the solve time of the algorithm but only 

saves ten locomotives.  

7.6. Drawbacks of the Same-location Merge Algorithm 

Fundamentally, solving the locomotive allocation problem really comes down to just finding the optimal way 

to connect trains to previous trains. In other words, the problem is about finding ways to use a locomotive 

that is already used for one train to pull another train.  

The first phase in the same-location merge algorithm does this by trying to use locomotives from previous 

trains that arrive at the same location the current train departs from. Transfer movements of any kind are not 

considered by the first phase in the same-location merge algorithm. Restricting the solution space to ignore 

transfer movements means that the same-location connection phase of the same-location merge algorithm 

alone can never find the optimal solution.  

The other two phases of the algorithm attempt to remedy this by taking the resulting schedule generated by 

the same-location connection phase and improving it to utilise the transfer movements that the same location 

connection phase ignores. Using those transfer movements, the other phases analyse one locomotive diagram 

and attempt to reassign the trains that it runs into the white spaces of other locomotive diagrams. But the 
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downfall of this is the algorithm only ever considers merging two locomotive diagrams at any one time – one 

source locomotive diagram with the trains that the algorithms are trying to reallocate, and another destination 

locomotive diagram which the algorithm tries to reallocate the trains to. Sometimes, swapping trains between 

only two locomotive diagrams at once is not enough.  

 

Consider the example in Figure 7-2. There are five trains in this train schedule. Optimally, this train schedule 

can be satisfied with only two locomotives by connecting trains 1-3-5 and 2-4, where the hyphen indicates a 

connection between trains which may involve a transfer movement. The same-location merge algorithm will 

begin with its first phase connecting locomotives at the same location, resulting in a three-locomotive 

solution: 1-4, 2-5 and 3. When the other phases of the same-location merge algorithm run, they cannot bring 

the number of locomotives required down to the optimal two locomotives. They would try to move train 3 

into another locomotive’s diagram. To do this, first they would test the possibility of pushing train 3 into the 

1-4 locomotive diagram to get 1-3-4. This is impossible as there is no way to connect train 3 to train 4, as 

you can see in the diagram. The algorithm would then try to push train 3 into the 2-5 locomotive diagram to 

get 2-3-5. This is also impossible as there is no way to connect train 2 to train 3. This example shows that 

there are some networks for which the same-location merge algorithm could never find the optimal solution, 

and the reason for that is, when it comes to transfer movements, the same-location merge algorithm does not 

consider all the possibilities. 
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Figure 7-2: The same-location merge algorithm can never find the optimal solution on some 
networks. 
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8. Work unit levels algorithm 
Knowing the drawbacks of the same-location merge algorithm, a new algorithm was sought to overcome the 

weaknesses of the same-location merge algorithm. The result was the work unit levels algorithm, which 

takes a completely new approach to solving the locomotive allocation problem.  

The algorithm has four phases: 

1. Work unit determination – trains in the schedule are grouped into short sequences called work 

units. Trains in a work unit are run optimally when they are run together in sequence - the system 

does not need to perform any optimisation on the trains within the work units as they are already 

optimally connected.  

2. Identification of resourcing options – the algorithm finds every possible connection that can be 

made from one work unit to all other work units.  

3. Level assignment phase – the train schedule is divided into what are called levels in this phase. 

Levels are an extension of the idea that there is an order to the work units based on how one work 

unit can resource other work units later in the schedule. Each of the levels can be solved individually 

in the next phase.   

4. Possibilities network construction and solution – the work units are added and solved level-by-

level in what is called the possibilities network for the train schedule. The result is a number of work 

unit chains, each of which represents a locomotive diagram. 

8.1. Work unit determination phase 

The first phase of the algorithm is to combine trains into short sequences called work units. Work units are 

similar to the matching heuristic used by Scholz (1998). All the trains in a work unit will be run by the same 

set of one or more locomotives in sequence. When trains are connected together to form a work unit, it 

means that they are run optimally when run by the same set of locomotives. In other words, reconnecting the 

trains in the work unit to other trains in the schedule besides the ones in the work unit will not lead to a more 

optimal solution. Because of this, work units are the atomic unit of the schedule as far as the algorithm is 

concerned, as no optimisation needs to be made to reconnect the trains within a work unit. Combining trains 

into optimal work units like this assists the next phases of the algorithm to find a better solution, as it 

removes some of the suboptimal options from the solution space.  
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Single trains that cannot be connected to other trains at the work unit determination stage become single-

train work units so that they can be treated in the same way as other work units. Once work units are 

identified, the identification of resourcing options phase and the level assignment phase perform 

preprocessing on the work units to prepare them for the possibilities network phase in which the entire 

schedule is solved.  

Since the possibilities network phase is already very good at connecting trains, the work unit determination 

phase connects trains into work units only when it is certain that it is optimal to do so.  

8.1.1. Identifying work units 

The algorithm initially looks at each train arrival node and the next train departure node at the train arrival 

node’s location. It then examines all the nodes between the train arrival node and the train departure node, 

and decides whether the train arrival node should be connected to the train departure node in a work unit.  

When deciding whether to connect a particular train arrival node to a particular train departure node, the 

algorithm tests for the negative case. In other words, it looks for reasons why the two nodes should be left 

open for the possibilities network stage to connect them. Some situations that the algorithm looks for are 

illustrated in Figure 8-1.  

 

Figure 8-1: The first and last trains in each of these configurations will match one of the 
conditions for not forming a work unit.  

(a) (b) 
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The algorithm looks at each train arrival node and examines only the nodes between the train arrival node 

and the next train departure node. The train arrival node’s train arc is called the arriving train, and the train 

departure node’s train arc is called the departing train. The algorithm then performs a number of checks to 

find reasons why the arriving train and the departing train should not be connected. If after running the 

checks the algorithm has not found a reason not to connect the two trains, then the two trains will be 

connected. The exclusion conditions that the algorithm checks for not connecting two trains into a work unit 

are described below.  

(1) If the arriving train is of a different locomotive class from the departing train, do not connect the 

trains as their locomotives are incompatible.  

(2) Do not connect the trains if the arriving train requires a different number of locomotives than the 

departing train. If these trains were connected into a work unit, then in the middle of that work unit, 

the departing train may be required to be connected to trains outside the work unit to supply 

additional locomotives, or the arriving train might be connected to trains outside the work unit to 

allow surplus locomotives to run other trains. A work unit is the atomic unit of the schedule, and so 

it is invalid to have connections to and from other trains in the middle of a work unit. Work units 

must be self-contained. 

(3) As depicted in Figure 8-1(a), the arriving train should not be connected to the departing train if the 

arriving train is not the latest train to arrive before the departing train departs, and at least one of the 

intermediate arriving trains is of the same locomotive class as the departing train. The reason for 

having this condition is, the departing train here has multiple resourcing options from which it could 

take a locomotive. It could take a locomotive from the first arriving train, or it could take a 

locomotive from one of the intermediate arriving trains. The algorithm has to choose one of the 

multiple arriving trains to connect to the departing train. As with the same-location merge algorithm, 

when there are multiple locomotives to choose from, locomotives are allocated on a last-in-first-out 

basis. See section 7.1 for an explanation of this. The first arriving train is not the “last in” for this 

case, and so no connection is made between the first arriving train and the departing train.  

(4) As depicted in Figure 8-1(b), if between the arriving train and departing train there is a transfer 

departure node followed by a transfer arrival node, leave the trains unconnected. The transfer 

departure node allows all unallocated locomotives at the location to leave the location to run other 

trains, and the following transfer arrival node allows extra locomotives to return to the location to 

resource the departing train. The arriving train and departing train are left unconnected in this case so 

that the possibilities network phase can decide whether to resource the departing train with the 

arriving train’s locomotive or with a locomotive that has been transferred from another location.  
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Figure 8-2: Configurations of train and transfer arcs that may be found in a space-time network. The two trains 
in each of these configurations all form one work unit. 

(a) (b) (c) 

Given those four negative conditions which are tested to identify when two trains are not part of a work unit, 

we can deduce configurations trains that are connected into a work unit by this algorithm.  

Each of the three panels in Figure 8-2 illustrates a configuration of trains and transfers which may appear in 

the schedule. All the trains in the figure are of the same locomotive class and require the same number of 

locomotives. The two trains in each of those panels would be run optimally when they are run by the same 

locomotive, and so they would be combined into a work unit. The reasons why the two trains in each of 

those panels should be combined into a work unit will now be explained.  

Figure 8-2(a) illustrates a simple configuration where a train departure node immediately follows the train 

arrival node. In this configuration, the arriving train should be connected to the departing train because at the 

time of the train departure node, there will be one unallocated locomotive at the location from the train 

arrival node. This locomotive is the “last in” (see section 7.1) and so it is optimal to connect the two trains.  

In Figure 8-2(b), even with the transfer departure node between the arriving train and departing train, it is 

still optimal to connect to the arriving train and departing train. This is because, no matter how many 

locomotives are transferred down the intermediate transfer arc in Figure 8-2(b), at least one locomotive must 

remain behind at the location to run the departing train as there is no other way to get a locomotive to the 

departing train. Since the locomotive for the arriving train is the “last in,” it is optimal to make it so that it is 

the arriving train’s locomotive that is left behind to run the departing train. So these two trains are connected 

into a work unit by the algorithm.  

In the train configuration depicted in Figure 8-2(c), there is a transfer arrival node between the arriving train 

and the departing train. The two trains in this configuration still should be connected into a work unit. This is 

in view of the fact that at the point in time of the train departure node, there will always be one locomotive 
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available from the train arrival node. Since it is certain that the location will have enough locomotives to run 

the departing train, there is no reason to leave the configuration open for the possibilities network to decide 

whether to use the transfer arc for the departing train. So in this case, the arriving train will be connected to 

the departing train to form a work unit.  
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8.1.2. Work unit determination algorithm 

The pseudocode for the work unit determination phase is displayed below: 

For each location in set of all locations in the train schedule do 
Set node-list := list of all train and transfer nodes at location, in ascending time order; 
 
Set current-train-arrival-node := nothing; 
Set has-seen-transfer-departure-node := false; 
 
For each node in node-list do 
 

If node is a train arrival node then  
// exclusion condition (3) is checked here.  
/* the latest train arrival node will overwrite the previous train arrival node before it gets a chance 

to connect to the train departure node. */ 
 
Set current-train-arrival-node := node; 
Set has-seen-transfer-departure-node := false; 
 

Else if node is a train departure node then 
Set current-train-departure-node := node; 
 
If current-train-arrival-node is not nothing then 

// exclusion conditions (1) and (2) 
If current-train-arrival node requires the same number of locomotives and the same locomotive 

class as current-train-departure node then  
 
Connect current-train-arrival-node to current-train-departure-node; 

End if; 
End if; 
 
Set current-train-arrival-node := nothing; 
Set current-train-departure-node := nothing; 
Set has-seen-transfer-departure-node := false; 
 

Else if node is a transfer departure node then 
If current-train-arrival-node is not nothing then 

Set has-seen-transfer-departure-node := true; 
End if; 
 

Else if node is a transfer arrival node then 
If has-seen-transfer-departure-node is true then // exclusion condition (4) matches. 

Set current-train-arrival-node := nothing; 
Set has-seen-transfer-departure-node := false; 

End if; 
End if; 

End for; 
End for; 

Algorithm 8-1 
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8.2. Identification of resourcing options phase 

Before the possibilities network can be constructed, first the system needs to identify all the possibilities to 

connect the work units. In this phase, a resourcing options schedule is generated, which indirectly specifies 

all the possible source work units that may provide their locomotives to a receiver work unit.  

The resourcing options schedule is set up as follows. For each work unit, the algorithm identifies all of the 

locations that the work unit’s locomotives are able to transfer to after the work unit has been run. Transfers 

may be multi-stage transfers. The final location of the source work unit is also included as a transferable 

location. The algorithm then finds the earliest time that the source work unit’s locomotives can arrive at each 

of the transferable locations. Other receiver work units that depart from one of these transferable locations 

after the earliest transfer arrival time at that location will have the option of reusing the locomotive of the 

source work unit. The source work unit is called a resourcing option for those receiver work units, and the 

earliest transfer arrival time at one of the transferable locations is called a resourcing option node. Each 

resourcing option node will have a sequence of transfers which will allow the source work unit’s locomotive 

to arrive at the location of the resourcing option node at the earliest transfer arrival time. These resourcing 

option nodes are added to the resourcing options schedule.  

Work units of different locomotive classes cannot connect to each other, and so there is one resourcing 

options schedule for each locomotive class in the system. Each resourcing options schedule contains a 

separate list for each location. Each of these lists contains all the resourcing option nodes for that location, 

sorted by their arrival time. Figure 8-3 is an illustration of the data contained in one resourcing options 

schedule.  
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Once the resourcing options schedule has been generated, it is possible for the algorithm to quickly identify 

all of its resourcing options for each work unit. For example, in the resourcing options schedule depicted in 

Figure 8-3, it can be seen that work unit 3 can be resourced by both work units 1 and 2. This is because both 

have resourcing option nodes at the departure location at work unit 3 that occur before the departure time of 

work unit 3. What this means is, work units 1 and 2 can be transferred to the departure location of work unit 

3 before the required departure time. In the same way, we can see that work unit 4 can be resourced by work 

unit 2, as there is a resourcing option node before the beginning of work unit 4 at its departure location.  

8.2.1. Generating the resourcing options schedule 

To generate the resourcing options schedule, the algorithm uses a breadth-first search for each work unit. 

The algorithm begins with the arrival location of the work unit, and then expands to all the locations that can 

be transferred to from that arrival location. It then expands from the second layer of locations that have just 

been found, and so on.  

The algorithm differs slightly from a breadth-first search. This is because a traditional breadth-first search is 

executed on a tree in which each node has only one parent, and in the train schedule, there may be multiple 

transfer sequences that could arrive at the same location. The algorithm handles this by remembering the 

current resourcing option node for each location. If the algorithm finds a new sequence of transfer 

Work unit 
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Resourcing 
option node 

Work unit 

Possible 
transfer 
sequence 
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Figure 8-3: A diagrammatic form of the resourcing options schedule. Like the space-time network, 
time increases in the downward direction, and space is represented by the horizontal dimension. 
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movements that can transfer a locomotive to a location earlier than the current resourcing option node for 

that location, the resourcing option node for that location is replaced with the earlier resourcing option node 

and the location is examined once again to see if there are new transfers that have spawned off this change.  

A limit may be placed on the maximum number of consecutive transfers the algorithm allows. This is useful 

for two reasons. Firstly, it reduces the time required to solve the schedule, at the cost of the solution being 

less optimal. Secondly, rail operators usually avoid having too many consecutive transfers, as it only takes 

one late locomotive to break the chain of transfers. Setting a maximum of three consecutive transfers is a 

reasonable practical restriction.  

To be efficient, the work units are processed in reverse end-time order. This is so that as locations are 

repeatedly visited to find all of the earliest possible movements from the locations, the system can cache and 

reuse the earliest transfers that are found at each location.  

8.2.2. Identification of resourcing options algorithm 

The pseudocode for the identification of resourcing options phase is below: 

Set resourcing-options-schedule := empty resourcing options schedule; 
 
Set last-start-time := latest start time of a work unit in the train schedule;  
Set work-unit-list := list of all work units in order of their end time going from latest end time to earliest end 

time;  
Remove all work units that have an end time after last-start-time from work-unit-list; 
 
For each work-unit in work-unit-list do 

Set resourcing-options-to-expand := empty list; 
Set work-unit-resourcing-option-nodes := empty list; 
 
Set initial-resourcing-option-node := New resourcing option node; 
Set arrival location of initial-resourcing-option-node := end location of work-unit; 
Set arrival time of initial-resourcing-option-node := end time of work-unit; 
Set transfer sequence of initial-resourcing-option-node := empty transfer sequence; 
 
Add initial-resourcing-option to resourcing-option-nodes-to-expand; 
 
While resourcing-option-nodes-to-expand is not empty do 

Set current-resourcing-option-node := Retrieve and remove the first resourcing option node in 
resourcing-option-nodes-to-expand; 

 
Set movement-extensions-list := Get the list of all train and transfer arcs that depart from the arrival 

location of current-resourcing-option-node after the arrival time of current-resourcing-option-
node; 

 
For each movement-extension in movement-extensions-list do 

Set new-transfer-sequence := Copy of the transfer sequence of current-resourcing-option-node; 
Append movement-extension to new-transfer-sequence; 
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Set movement-extension-location := arrival location of movement-extension; 
Set movement-extension-time := arrival time of movement-extension; 

 
Set resourcing-option-node-to-location := Find a resourcing option node in 

work-unit-resourcing-option-nodes that arrives at movement-extension-location; 
 
If resourcing-option-node-to-location was not found then 

Set resourcing-option-node-to-location := New resourcing option node; 
Set arrival location of resourcing-option-node-to-location to movement-extension-location; 
Set arrival time of resourcing-option-node-to-location to movement-extension-time; 
Set transfer sequence of resourcing-option-node-to-location to new-transfer-sequence; 
 
Add resourcing-option-node-to-location to work-unit-resourcing-option-nodes; 
Add resourcing-option-node-to-location to resourcing-option-nodes-to-expand; 

Else 
If the arrival time of resourcing-option-node-to-location is after movement-extension-time then 
 

Set arrival location of resourcing-option-node-to-location := movement-extension-location; 
Set arrival time of resourcing-optio-noden-to-location := movement-extension-time; 
Set transfer sequence of resourcing-option-node-to-location := new-transfer-sequence; 

 
Add resourcing-option-node-to-location to resourcing-option-nodes-to-expand; 

End if; 
End if; 

End for; 
End while; 
 
Add all resourcing options in work-unit-resourcing-option-nodes to resourcing-options-schedule; 

End for; 

Algorithm 8-2 

 

8.3. Level assignment phase 

The key to solving the possibilities network is to split the network into levels. A work unit in a particular 

level can only be resourced by work units in the levels that come before it. More specifically, the work units 

in the first level cannot be resourced by other work units, the work units in the second level can only be 

resourced by work units in the first level, the work units in the third level can only be resourced by work 

units in the first and second level, and so on.  

The method for splitting work units into levels is similar to an existing algorithm called the topological sort 

(Black, 2004). Imagine a directed acyclic graph, where all work units are nodes and each arc represents a 

possible connection that can be made from a source work unit to a receiver work unit. All of the nodes that 

do not have any incoming arcs are added to level one, as each of these work units cannot be resourced by 

others. Now those level one nodes and all of their connections are removed from the network, and the 

algorithm again finds all the nodes that do not have incoming arcs anymore and adds them to level two, as 

they are the work units that could only be resourced by the level one work units which have now been 
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removed from the network. Following the same pattern, all level two nodes are removed and then the 

algorithm again finds the nodes that do not have any incoming arcs. These nodes are added to level three. 

Level three nodes are removed from the network, and the process continues until all nodes have been 

removed from the network, and all work units have been assigned levels.  

8.4. Possibilities network phase 

The possibilities network is a directed acyclic graph that presents which other work units can resource a 

particular work unit. As was introduced in the previous section, one of the fundamental ideas behind the 

possibilities network is the way it is organised and solved in levels.  

The nodes in the possibilities network are work units. A work unit can be present in the possibilities network 

multiple times if it requires more than one locomotive. The number of times a work unit appears in the 

possibilities network corresponds to the number of locomotives required by the work unit. This allows the 

same work unit to be run by more than one locomotive if it is required.  

The arcs between the various work units in the possibilities network represent connection possibilities – 

situations where the locomotive of a source work unit can be transferred to be used for a receiver work unit. 

The algorithm can find out what connections can be made between the work units by using the resourcing 

options schedule introduced in section 8.2.  

To construct and solve the possibilities network, the algorithm iterates over all the levels in the train 

schedule. At each level, all of the work units for the current level are added to the network. They will be the 

receiver work units being considered for that level. The source work units will be all of the work units in 

previous levels that are available to be allocated to one of the receiver work units. The algorithm will then 

solve the level by attempting to connect the receiver work units to the source work units. The method of 

solving each level is explained in section 8.4.2.  

Note that work units are only receiver work units when their level is being solved. This means that if a 

receiver work unit cannot be connected to a source work unit when its level is being solved, there will be no 

more chances for the receiver work unit to be provided with a locomotive later on in the solution process. In 

this case, a new logical locomotive must be created for the receiver work unit.  

Once the possibilities network phase is complete, the algorithm will have many connected chains of work 

units. Each one of these connected chains is a locomotive diagram, and together locomotive diagrams form 

an allocated train schedule, which is the final output of the algorithm.  
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8.4.1. Possibilities network solution example 

An example of the overall steps taken in the possibilities network phase of the work unit levels algorithm is 

described in this section.   

 

This is the key for the diagrams in this 

section. 

 

First the work units for level one and level 

two are placed into the network and 

resourcing option arcs are added.  

 

The algorithm solves the level by 

connecting work units. Level three work 

units are added and resourcing option arcs 

for level three are placed. 

 

The algorithm connects level three work 

units to work units in previous levels. Level 

four work units are placed and resourcing 

option arcs for level four are added. 
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The process continues in the same manner 

until all the levels have been processed.  

 

8.4.2. Level solution algorithms 

At each level, the algorithm attempts to connect work units of the current level to work units of previous 

levels. An algorithm has been developed that is designed to connect as many work units as possible in each 

level. If a work unit is not connected by the algorithm, then it is not being resourced with an existing 

locomotive, and so it requires a new locomotive to be added to the train schedule. The goal is to minimise 

the total number of locomotives, and to achieve this, the algorithm has to connect as many receiver work 

units as possible in each level that is solved.  

To connect work units, the algorithm performs a number of steps, which are described as follows: 

1. The algorithm first connects the source work units that can resource only one receiver work unit in 

the current level. This step and the next step eliminate work units which the algorithm has no choice 

about connecting. 

2. Connect receiver work units that have only one resourcing option. If the algorithm is able to make a 

connection in this second step, it returns back to the first step, because some source work units may 

now have only one receiver work unit they can connect to after the second step runs.   

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 
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3. Using a heuristic, choose one of the unconnected source work units that should be connected. 

Various heuristics can be used and some are explored in section 8.4.3. The source work unit that is 

chosen is then connected to any one of the receiver work units that it can connect to. There is no 

difference between choosing one receiver work unit and another receiver work unit. This will be 

explained later in this document.  

4. Once the heuristic’s chosen source work unit has been connected to a receiver work unit, the level 

solving part of the algorithm goes back to its first step, connecting any work units that only have one 

resourcing option as a consequence of this connection. The algorithm does not go to step one if there 

are no remaining source work units available to connect. If that is the case, the level is solved and the 

algorithm moves onto solving the next level.  

For step three, there is no difference between choosing one receiver work unit over another receiver work 

unit to connect to a particular source work unit in terms of the final solution. This is because all of the 

receiver work units in the current level will become source work units in the next levels, independent of 

whether they have been connected or not. This means that, when the later levels are being allocated, the 

algorithm will still have the same choices regardless of what receiver work unit is chosen to connect to the 

source work unit. In the same way, no options are being closed off in the current level, as every receiver 

work unit will have at least one other source work unit that it can connect to. If there was a receiver work 

unit that could only connect to the source work unit chosen by the heuristic, then that connection would have 

been made in the previous steps.  

In other words, when a source work unit has many receiver work units that it can resource, all options will 

result in the same number of total locomotives required in the end, assuming all other work units are 

connected the same way. Even though all the options in this case have the same end result, some options may 

create a more flexible train schedule, such as the last-in-first-out rule seen in section 7.1, and also the 

algorithm may choose to connect the receiver work unit that departs from the same location the source work 

unit arrives at so that a locomotive does not have to be transferred between locations.  

Independent of the quality of the heuristic, the current level will always have the maximum number of 

receiver work units connected, if the connections of previous levels are taken as fixed. The choices of the 

heuristic only affect the levels downstream from the current level. This occurs because the algorithm 

constantly checks for and connects any work units that only have one resourcing option before moving onto 

the third step where source work units with multiple options are connected. Whenever the third step of the 

algorithm runs, the algorithm will never inadvertently remove all the resourcing options a receiver work unit 

has, because all the receiver work units will have at least two connection possibilities, and only one source 

work unit is being allocated each time.  
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A receiver work unit can end up unconnected due to an allocation made while the algorithm connects 

receiver work units that only have one resourcing option however. Each source work unit can only connect 

to one receiver work unit, and there may be multiple receiver work units that can only be resourced by one 

source work unit in the second step. If the work units are in a configuration that causes this situation to arise, 

then the algorithm can do nothing about this at the current level. The only way to change this would be to 

change the source work units available to the current level, and that would mean the heuristic making better 

decisions about source work units in previous levels. So overall, the algorithm is guaranteed to connect the 

maximum number of receiver work units when considering all the connection decisions of previous levels to 

be fixed. This means the heuristic is the sole factor that determines how well this algorithm performs.  

8.4.3. Heuristics 

When solving the possibilities network, the algorithm will sometimes have to choose which unconnected 

source work unit will be allocated a receiver work unit. It is important to make a good choice in this case, 

because once a source work unit has been connected to a receiver work unit, the algorithm has closed off the 

option of other receiver work units in later levels connecting to that source work unit. In the case where a 

receiver work unit can only connect to that one source work unit that is now already allocated, the receiver 

work unit would be required to use a new locomotive, increasing the number of locomotives required to run 

the train schedule. So, a good heuristic will choose to connect the source work units that will not require a 

receiver work unit in another level to use a new locomotive.  

Fortunately, it is not too difficult to construct a good heuristic for this algorithm since all the possible 

resourcing options for each work unit are already known. This allows a simple heuristic to be built to find 

source work units that are least likely to force other receiver work units downstream to use a new 

locomotive. It should be stated why this situation cannot be seen ahead of time when all the resourcing 

options for every work unit is known. Most receiver work units, especially the ones in later levels, will have 

many resourcing options distributed throughout the train schedule. At each level, some of those resourcing 

options are used up by other receiver work units. The only way to detect whether a receiver work unit will 

have one source work unit option left when its level is solved is to know how the levels before it have been 

allocated, and this cannot be known until it comes to the time to solve the level of the receiver work unit. 

This means that a heuristic must be used. Two heuristics have been devised – the most-connected heuristic 

and the least-connected heuristic. 

The most-connected heuristic chooses the source work unit that can be used to resource the most number of 

receiver work units, not only in the current level being solved, but in all the levels in the train schedule. The 

least-connected heuristic is the opposite, it chooses the source work unit that can be used to resource the least 

number of receiver work units in all levels of the train schedule.  
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Counting the number of possible receiver work units a source work unit has is relatively straightforward with 

the resourcing options schedule, as was explained in section 8.2. The only difference is, all receiver work 

units that have already been allocated a source work unit are ignored.  

Applying and comparing both heuristics, it was found that the least-connected heuristic generated allocated 

train schedules that required the least number of locomotives. This was in line with expectations, as the 

source work unit that has the least number of possible receiver work units has less of a chance of being the 

only option for a receiver work unit in another level.  
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8.5. Implementation 

An implementation of the work unit levels algorithm was created in JADE. The algorithm takes a train 

schedule as input using the class diagram described in section 5.2. This section will present the class 

diagrams used in each phase of the work unit levels algorithm. The class diagrams in this section contain 

only the relevant classes.  

8.5.1. Work unit determination phase 

The first phase of the algorithm is to determine the work units in the train schedule (see section 8.1 for a 

description of this phase). The relevant classes for this phase are illustrated in Figure 8-4.  
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Figure 8-4: Class diagram for work unit determination phase.  

 
When this phase completes, a number of work units will be created as part of the train schedule, represented 

by the one-to-many relationship between train schedules and work units. Each work unit is made up of a 

number of train arcs which are run optimally when they are run together by the same set of locomotives, and 

this corresponds to the one-to-many relationship between work units and train arcs. Work units inherit from 

the movement arc class, which means they have a departure time and location as well as an arrival time and 
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location. The departure properties are taken from the first train in the work unit, and the arrival properties are 

taken from the last train in the work unit.  

8.5.2. Identification of resourcing options phase 

In the next phase, the resourcing schedule is created, as explained in section 8.2. The classes for this phase 

are shown in Figure 8-5.  
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Figure 8-5 

 
Recall that a resourcing option node contains the earliest possible time of the week that a work unit can 

transfer to a location. The transfer arrival time property of the resourcing option node class contains this 

earliest arrival time. Other work units that depart the location of the resourcing option node after the transfer 

arrival time could reuse one of the locomotives of the work unit for that resourcing option node, as long as 

both work units use the same locomotive class. The class called Locomotive Class Location refers to a 

particular combination of a location and a locomotive class. Each resourcing option node generated in this 

phase has a reference to the Locomotive Class Location object which contains the location the resourcing 

option node transfers to, and the locomotive class of the source work unit for that resourcing option node.  

Each resourcing option node will have a collection of movements which can be followed by the work unit’s 

locomotives to arrive at the destination location of the resourcing option node at the transfer arrival time. 

This is represented by the relationship between the resourcing option node class and the actual movement arc 
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class. The transfer sequence can contain dead-in-train movements on train arcs, or active movements on 

transfer arcs, so the relationship is to the actual movement arc class and not to one of its subclasses.  Every 

work unit will have at least one resourcing option node created for the end time and location of the work 

unit, and this resourcing option node will not require any transferring of the work unit’s locomotive. This 

explains why there is a cardinality of zero on the association relationship from resourcing option node to 

actual movement arc.  

8.5.3. Level assignment phase 

Using the resourcing option nodes found in the previous phase, the level assignment phase divides the work 

units into levels. The classes involved in this phase are presented in Figure 8-6.  
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Figure 8-6 
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8.5.4. Possibilities network phase 

The implementation of the possibilities network phase uses the class diagram shown in Figure 8-7.  
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Figure 8-7 

 
To begin the possibilities network phase, work unit nodes are created. Recall from the description of the 

possibilities network phase in section 8.4 that if a work unit requires multiple locomotives, it may have 

multiple nodes in the possibilities network. The number of work unit nodes each work unit has is equal to the 

number of locomotives it requires, so that the correct number of locomotives can be allocated to each work 

unit.  

Resourcing options are represented as a class in the class diagram. Each resourcing option describes a 

connection that can be made between a source work unit node and a receiver work unit node. Each 

resourcing option also links to the resourcing option node that that stores the transfer sequence from which to 

get from the source work unit to the receiver work unit of the resourcing option.  

As was described in section 8.4, the algorithm creates chains of work unit nodes by connecting work unit 

nodes at each level to work unit nodes in later levels. The algorithm does this level-by-level, where work 

units at the current level are called receiver work units and work units are previous levels are called source 

work units. Before a receiver work unit node has been connected, it will have a collection which may contain 

multiple resourcing options. After a receiver work unit node is connected, it will be set so that it contains 
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only one resourcing option in its collection, and that will be the resourcing option that connects the receiver 

work unit to the chosen source work unit. JADE’s inverse references feature mirrors this on the other side of 

the relationship so that the collection of outgoing resourcing options from the chosen source work unit node 

is reduced to just the resourcing option that connects the source work unit node to the receiver work unit 

node. After a level has been solved, any unallocated receiver work unit nodes will have all of their incoming 

resourcing options removed to indicate that they were unable to be connected. These receiver work unit 

nodes are stored in a collection since they form the beginning of a new work unit node chain. On completion 

of this phase, the algorithm can generate full locomotive diagrams by traversing the chains of connected 

work unit nodes starting from each of the work unit nodes in this collection. Each sequence of trains arcs and 

transfers arcs in each work unit node chain will form one locomotive diagram.  

8.6. Results 

The work unit levels algorithm was applied to the same train schedule as the other solution approaches were. 

At first, multi-stage transfers of an unlimited length were permitted. The results of applying the algorithm 

under this condition are given in Table 8-1 and Table 8-2.  

Phase Cumulative Time Taken 

Work unit determination 00:00:36 

Identification of resourcing options 12:08:49 

Level assignment 20:34:05 

Possibilities network 30:36:40 

Table 8-1 

 

Measure Value 

Work units 6023 

Levels 102 

Number of locomotives required 496 

Table 8-2 

 
These results show that, the full algorithm took approximately 31 hours to complete and its final solution 

required a total of 496 locomotives. One observation that was made during the execution of the algorithm 

was that approximately 1.47 gigabytes worth of data had to be swapped out onto the hard disk, which would 
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have added an extra bottleneck to the execution of the algorithm, and so if the algorithm were run on a 

computer with a greater memory capacity, it would run substantially faster.  

Having run the full algorithm with no limit on the number of consecutive transfers allowed, the maximum 

transfer sequence length was set to 3, as this is around the maximum length of a multi-stage transfer that a 

typical rail operator would use. The results for the algorithm this time are shown below: 

Phase Cumulative Time Taken 

Work unit determination 00:00:22 

Identification of resourcing options 00:05:47 

Level assignment 00:06:31 

Possibilities network 00:13:01 

Table 8-3 

 

Measure Value 

Work units 4841 

Levels 95 

Number of locomotives required 595 

Table 8-4 

 
Imposing a maximum length for multi-stage transfers resulted in the total solve time decreasing from 31 

hours to 13 minutes, while the number of locomotives required increased to 595 from 496. Also this time, the 

system did not swap any data onto the hard disk.  

The work unit levels algorithm produces very good train allocations with very few locomotives. However the 

real test is to see how this algorithm compares with the other solution approaches.   
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9. Comparisons of Techniques 
Three quite different solution approaches were developed and tested in this project. 

Solution Method Solve Time 
Required 

Locomotives 

Integer programming solver (unable to solve full train schedule) 

Same-location merge algorithm 

(one phase only) 
0:00:53 1703 

Same-location merge algorithm 

(two phases) 
0:18:06 1058 

Same-location merge algorithm 

(three phases) 
2:17:19 1048 

Work unit levels algorithm 

(max. 3 consecutive transfers) 
0:13:01 595 

Work unit levels algorithm 

(unlimited consecutive transfers) 
30:36:40 496 

Table 9-1: Comparison of all solution approaches 

 
In Table 9-1, it is evident that the work unit levels algorithm is able to generate the solution with the fewest 

number of locomotives. Limiting the work unit levels algorithm to explore a maximum of three consecutive 

transfers allows it to generate a very good solution within reasonable time. It is also better than not limiting 

the number of consecutive transfers because it takes less time to execute, and most rail operators avoid 

scheduling more than three transfers in a row because planning too many transfer movements in a row means 

the schedule will become very sensitive to a locomotive arriving late and breaking the chain of transfer 

movements.  

Even if it was feasible to apply the integer programming solver to the full train schedule, it would be very 

difficult, if not impossible, to constrain the integer programming solver so that only a certain number of 

consecutive transfer movements are allowed. Such a constraint is very difficult to express mathematically. 

This is one other advantage that the work unit levels algorithm has over the integer programming approach.  

The work unit levels algorithm was built to overcome the primary weakness of the same-location merge 

algorithm, which was that the same-location merge algorithm has a restricted search space and does not 

consider all the possibilities. The work unit levels algorithm has succeeded, and although the first phase of 
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the same-location merge algorithm is able to produce a result in only 53 seconds, overall, the same-location 

merge algorithm has been made obsolete by the work unit levels algorithm, as the work unit levels algorithm 

can produce better solutions in less time. 

9.1. Work Unit Levels versus Integer Programming Solver 

Even though the integer programming solver was unable to solve the entire train schedule, the partial train 

schedules that it was capable of solving were also solved using the work unit levels algorithm to benchmark 

the performance of the work unit levels algorithm against the true optimum. In this case, the work unit levels 

algorithm has one restriction – only a maximum of 25 consecutive transfers have been allowed, which may 

mean the solution provided by the integer programming solver is more optimal than the work unit levels 

algorithm simply because of this additional constraint.  

The results of the two solution approaches are compared in Table 9-2. 

Minutes of 
Full 

Schedule 

Optimal 
Locomotives 

from IP Solver 
Work Unit Levels 

Locomotives 

IP Solver 
Solve Time 

(seconds) 

Work Unit Levels  
Solve Time 

(seconds) 
600 8 8 0.01 0.22 
750 10 10 0.26 0.38 
900 16 16 0.34 0.53 

1050 26 26 2.05 0.70 
1200 40 40 12.69 1.04 
1350 56 56 58.54 1.06 
1500 66 66 411.89 2.23 
1650 75 75 337.43 4.73 
1800 90 92 1967.93 4.23 
1950 109 110 5036.16 4.16 
2100 134 137 4663.08 5.42 
2160 147 150 8869.35 6.04 

Table 9-2 

 
For the smallest train schedules, the work unit levels algorithm requires fractions of a second more time than 

the integer programming solver to solve the train schedule. This is likely to be due to the amount of 

preprocessing that is performed as part of the work unit levels algorithm. The work unit levels algorithm is 

just as good as the integer programming solver for the partial train schedules that only contain the 1650 

minutes worth of data or less, which is approximately the first 16% of the train schedule. At the point where 

the integer programming solver’s limit had been reached with the 2160-minute partial train schedule, the 

work unit levels algorithm allocated only three more locomotives than the integer programming solver, but 

took only seconds to arrive at that solution. The 2160-minute partial train schedule was about 21% of the full 

train schedule.  
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This gap between the optimum and the solution produced by the work unit levels algorithm is likely to 

increase as the train schedule considered gets larger. However, the rate at which this gap increases with train 

schedule size cannot be easily determined. It is expected that the work unit levels algorithm will continue to 

allocate good solutions for larger train schedules, because the only part of the algorithm that can lead the 

solution away from the optimal is the heuristic. The least-connected heuristic that is used has all the 

information about how work units can be connected to other work units in the train schedule, and so it should 

be able to guide the algorithm to produce a near-optimal solution for much larger train schedules.  
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10. Conclusions and Future Work 
There is increasing pressure on rail operators to reduce costs as they endeavour to compete against other 

available forms of transportation. The foundation of this project was a hypothetical train scheduling problem 

constructed by Jade Software Corporation, made to encapsulate the core challenges that a typical rail 

operator faces when allocating locomotives to their preplanned train schedules. The motivation behind the 

problem was to be able to assist in reducing the total number of locomotives a rail operator requires to run its 

train schedule each week. In resource scheduling, the problem is known as a minimum fleet size problem, as 

the objective of the project was to develop an algorithm that could allow a rail operator to run a train 

schedule with as few locomotives as possible.  

A mathematical formulation was constructed to express the objective function and constraints. This precise 

mathematical definition served as a base for the three approaches that were taken to solve the problem. The 

solution approaches would be compared by applying all approaches to the same train schedule that contains 

approximately 7,200 trains and about 39,200 transfer possibilities.  

The first approach was to use an integer programming solver. Using the mathematical formulation, a train 

schedule could be transformed into a mathematical representation and solved using an integer programming 

solver. It was found that the full problem was too large to be solved using the integer programming solver, 

but sections of the train schedule were small enough to be solved. This made it necessary to explore new 

ways of solving the full train schedule.  

This lead to the development of the same-location merge algorithm. The primary characteristic of this 

algorithm was it makes trains use locomotives that are already at a location before using new locomotives, 

and attempts to improve solutions by merging locomotive diagrams. The major downfall of same-location 

merge algorithm was that if a train schedule was organised in a particular way the same-location merge 

algorithm would never be able to find the optimal solution to the train schedule as it would not consider all 

the possibilities for connecting trains.  

To overcome the weaknesses of the same-location merge algorithm, the work unit levels algorithm was 

created. This algorithm combines trains into optimal sequences called work units, finds all the ways in which 

work units can be connected to each other, sorts the work units into levels according to their interconnection 

possibilities and finally connects the work units level-by-level in a possibilities network.  

After executing the work unit levels algorithm, it was evident that it was a much better algorithm as it was 

capable of producing allocated train schedules that required fewer locomotives and also took less time to 

produce. The work unit levels algorithm was able to produce a solution to a train schedule within 13 minutes 
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that used 595 locomotives, which was a huge reduction from the 1058 produced by the same-location merge 

algorithm after an 18-minute solving process. Also when compared to the integer programming solver, the 

work unit levels algorithm demonstrated that it produced optimal solutions for train schedules up to 16% of 

the size of the full train schedule, and near-optimal solutions for the partial train schedules up to 21% of the 

full train schedule. Unfortunately, the integer programming tool was unable to solve more than 21% of the 

train schedule so the work unit levels algorithm could not be compared to see how close to optimality the 

solution it produced for the full train schedule was.  

The work unit levels algorithm that was created for this project exhibits great potential to reduce the total 

number of locomotives that a rail operator requires to run its train schedules, but there are still areas in which 

further work could be beneficial.  

The heuristic used by the work unit levels algorithm is the determinant of the quality of the solution 

produced by the algorithm, and so improvements to this heuristic would be highly beneficial to the rail 

operator. It would also be useful if the work unit levels algorithm were compared against other solutions to 

the problem or against real world train schedule allocations to benchmark the algorithm’s scheduling 

capability.  

Since this project explored a hypothetical problem which considered only the core features of the locomotive 

allocation problem, another direction for future work could be to add additional complexity to the problem, 

and investigate how the solutions used for this problem can be adapted. Some features which could be added 

to the problem could be allowing multiple locomotive classes to run the same train or to allow location group 

movements to be handled differently from paths.  

Rail operators would also benefit greatly if the algorithm provided feedback on the way trains have been 

planned in the current train schedule, and was able to suggest how to plan the trains better for future weeks.  

The success of the work unit levels algorithm in this project will be another step forward to reducing the 

costs of rail operators, and will strengthen the competitive edge railway has in the transportation market 

where other methods of transportation have become uncompromising competitors.  
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11. Appendix A: AMPL representation of space-time network 
AMPL is a standard programming language used to express mathematical problems so that they can be 

solved by mathematical programming solvers. To input a problem to a solver using AMPL, users must 

provide two source files. The AMPL model file describes the variables, objective function and constraints to 

the problem. The AMPL data file expresses the values of the parameters for the model.  Fourer, Gay, and 

Kernighan (1990) wrote a full description of the AMPL programming language, and Holmes (1995) has 

summarised the key features of AMPL in his paper.  
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11.1. AMPL model 

The AMPL model for this problem is expressed below: 

set K; 
 
set TrDepartureNodes; 
set EOSNodes; 
set BalancedNodes; 
set AllNodes := TrDepartureNodes union EOSNodes union BalancedNodes; 
 
set TrainArcs within (AllNodes cross AllNodes); 
set TransferArcs within (AllNodes cross AllNodes); 
set ConnectionArcs within (AllNodes cross AllNodes); 
set AllArcs := TrainArcs union TransferArcs union ConnectionArcs; 
 
set S within AllArcs; 
 
set I{AllNodes} within AllArcs; 
set O{AllNodes} within AllArcs; 
 
param r{k in K, (s,e) in TrainArcs} >= 0; 
 
var x{k in K, (s,e) in AllArcs} >= 0; 
var y{k in K, (s,e) in AllArcs} >= 0; 
 
minimize locomotivesUsed: sum {k in K, (s,e) in S} y[k,s,e]; 
 
subject to ActiveLocosOnTrainArcs {k in K, (s,e) in TrainArcs}:  
 x[k,s,e] = r[k,s,e]; 
 
subject to ActiveLocosOnTransferArcs {(s,e) in TransferArcs}: 
 ((sum {k in K} x[k,s,e]) * (sum {k in K} y[k,s,e])) >= (sum {k 

in K} y[k,s,e]); 
 
subject to ActiveLocosOnConnectionArcs {(s,e) in ConnectionArcs, k in 

K}: x[k,s,e] = 0; 
  
subject to BalancedNodesConstraint {i in BalancedNodes, k in K}: 
 (sum {(s,e) in I[i]} (x[k,s,e] + y[k,s,e])) = (sum {(s,e) in 

O[i]} (x[k,s,e] + y[k,s,e])); 
 
subject to NonTrainDepartureArcsConstraint {i in TrDepartureNodes, k 

in K}: 
 (sum {(s,e) in I[i]} (x[k,s,e] + y[k,s,e])) >= (sum {(s,e) in 

(O[i] diff TrainArcs)} (x[k,s,e] + y[k,s,e])); 
  
subject to TrainDepartureArcsCreationConstraint {i in 

TrDepartureNodes, k in K}: 
 (sum {(s,e) in I[i]} (x[k,s,e] + y[k,s,e])) <= (sum {(s,e) in 

O[i]} (x[k,s,e] + y[k,s,e])); 
 



 Appendix A: AMPL representation of space-time network 

 73

11.2. Example AMPL data file 

Using the AMPL model, a space-time network can be input to any integer programming solver by specifying 

the data in an AMPL data file. An example AMPL data file for the space-time network presented in Figure 

4-2 is expressed below: 

set K := A B; 
 
set TrDepartureNodes := 11 22 24 26 31; 
set EOSNodes := 15 27 33; 
set BalancedNodes := 12 13 14 21 23 25 32; 
 
set TrainArcs := (11, 21) (22, 12) (24, 32) (26, 14) (31, 23); 
set TransferArcs := (13, 25); 
set ConnectionArcs := (11, 12) (12, 13) (13, 14) (14, 15) (21, 22) 

(22, 23) (23, 24) (24, 25) (25, 26) (26, 27) (31, 32) (32, 33); 
 
set S := (14, 15) (26, 27) (32, 33); 
 
set I[11] := ; 
set I[12] := (11, 12) (22, 12); 
set I[13] := (12, 13); 
set I[14] := (13, 14) (26, 14); 
set I[15] := (14, 15); 
set I[21] := (11, 21); 
set I[22] := (21, 22); 
set I[23] := (22, 23) (31, 23); 
set I[24] := (23, 24); 
set I[25] := (13, 25) (24, 25); 
set I[26] := (25, 26); 
set I[27] := (26, 27); 
set I[31] := ; 
set I[32] := (24, 32) (31, 32); 
set I[33] := (32, 33); 
 
set O[11] := (11, 12), (11, 21); 
set O[12] := (12, 13); 
set O[13] := (13, 14), (13, 25); 
set O[14] := (14, 15); 
set O[15] := ; 
set O[21] := (21, 22); 
set O[22] := (22,12), (22, 23); 
set O[23] := (23, 24); 
set O[24] := (24, 25), (24, 32); 
set O[25] := (25, 26); 
set O[26] := (26, 14), (26, 27); 
set O[27] := ; 
set O[31] := (31, 23), (31, 32); 
set O[32] := (32, 33); 
set O[33] := ; 
 
param r := 
[A, 11, 21] 1  [B, 11, 21] 0 
[A, 22, 12] 1  [B, 22, 12] 0 
[A, 24, 32] 0  [B, 24, 32] 1 
[A, 26, 14] 1  [B, 26, 14] 0 
[A, 31, 23] 0  [B, 31, 23] 1; 
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12. Appendix B: Integer programming solver results 
These are the expanded results from section 6.3. 

Minutes 
Required 

Locomotives Solve Time 
Trains 

Arcs 
Transfers 

Arcs Locations 
600 8 0.01 8 64 51 
630 10 0.04 11 81 58 
660 10 0.05 11 86 59 
690 10 0.1 11 101 65 
720 10 0.46 11 115 72 
750 10 0.26 11 124 75 
780 10 0.25 12 134 80 
810 12 0.51 14 145 81 
840 12 0.77 15 163 87 
870 15 0.71 19 179 94 
900 16 0.34 20 187 95 
930 18 0.55 22 197 95 
960 19 1.17 25 209 100 
990 22 1.4 28 228 103 

1020 25 0.9 31 250 111 
1050 26 2.05 33 263 119 
1080 30 3.57 36 283 129 
1110 30 2.24 37 299 136 
1140 31 11.44 38 325 148 
1170 34 28.22 42 353 155 
1200 40 12.69 51 390 163 
1230 43 15.03 58 423 170 
1260 47 19.17 64 452 179 
1290 50 21.77 72 489 185 
1320 53 19.22 79 541 205 
1350 56 58.54 80 573 215 
1380 57 150.78 84 628 229 
1410 62 76.93 92 672 236 
1440 63 91.8 97 705 239 
1470 64 76.08 98 753 251 
1500 66 411.89 102 793 261 
1530 68 1019.74 108 843 271 
1560 68 425.68 109 881 287 
1590 72 1003.91 114 938 304 
1620 73 684.64 116 980 311 
1650 75 337.43 122 1044 328 
1680 76 445.46 126 1111 341 
1710 80 2033.69 135 1171 357 
1740 83 2341.83 143 1238 373 
1770 87 926.71 151 1316 393 
1800 90 1967.93 163 1413 408 
1830 92 1188.36 169 1491 423 
1860 95 9655.18 173 1547 438 
1890 100 4249.62 187 1648 454 
1920 103 4992.61 197 1747 469 
1950 109 5036.16 211 1835 483 
1980 117 2254.04 225 1921 495 
2010 119 4097.28 239 2014 508 
2040 125 1398.68 251 2129 518 
2100 134 4663.08 274 2316 536 
2130 143 3412.57 292 2409 545 
2160 147 8869.35 307 2503 548 
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