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Abstract: An accurate test for insulin resistance can delay or prevent the development of
Type 2 diabetes and its complications. The current gold standard test, CLAMP, is too labor
intensive to be used in general practice. A recently developed dynamic insulin sensitivity test,
DIST, uses a glucose-insulin-C-peptide model to calculate model-based insulin sensitivity, SI .
Preliminary results show good correlation to CLAMP. However both CLAMP and DIST ignore
saturation in insulin-mediated glucose removal. This study uses the data from 17 patients who
underwent multiple DISTs to investigate interstitial insulin action and its influence on modeled
insulin sensitivity. The critical parameters influencing interstitial insulin action are saturation
in insulin receptor binding, αG, and plasma-interstitial diffusion rate, nI . Very low values of αG

and very low values of nI produced the most intra-patient variability in SI . Repeatability in SI

is enhanced with modeled insulin receptor saturation. Future parameter study on subjects with
varying degree of insulin resistance may provide a better understanding of different contributing
factors of insulin resistance.
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1. INTRODUCTION

The prevalence of Type 2 diabetes has reached epidemic
proportions and is still on the rise (Wild et al., 2004; Hos-
sain et al., 2007; PriceWaterhouseCoopers, 2001). Type
2 diabetes is usually not diagnosed until complications
start to reveal themselves and irreversible damage has
happened (ADA, 1998; Gastaldelli et al., 2004; Kleinfield,
2006). However, insulin resistance (IR) has been found to
be decreased by 60% up to 10 years before a diagnosis is
made (Martin et al., 1992). If IR can be identified early,
the onset of Type 2 diabetes can be significantly delayed
or avoided by lifestyle and diet changes (Duncan et al.,
2003; McAuley et al., 2002; Nishida et al., 2002; O’Gorman
et al., 2006; Tuomilehto et al., 2001). As Type 2 diabetes is
a “slow disease”, early intervention and prevention would
significantly reduce the social and economic costs currently
associated with Type 2 diabetes, which mainly consist of
chronic treatments (ADA, 2006).

Unfortunately, the “gold standard” test for IR– CLAMP,
is too complex and labor intensive to be feasible in a wider
clinical setting (DeFronzo et al., 1979). Other shorter
clinical tests or surrogate indicators are often too crude
to be truly useful (ADA, 1998). A simple test, DIST,
providing a model-based insulin sensitivity marker was

developed in recent years and correlates well to CLAMP
results (Lotz, 2007).

DIST is a dynamic insulin sensitivity test using a low dose
of insulin bolus with the addition of a low dose glucose
bolus (Lotz, 2007). Measurements are taken for blood glu-
cose, plasma insulin and C-peptide. Insulin sensitivity SI ,
and other patient specific parameters are then calculated
from a physiological model of C-peptide-insulin-glucose
kinetics and dynamics. In a Monte Carlo study of DIST,
it achieves a correlation of r = 0.98 (90% CI: 0.97-0.98) in
SI to CLAMP ISI (Lotz et al., 2008). The intra-patient
variability between SI in different DISTs is reported to be
generally between 0–25%.

Due to measurements only available for blood glucose,
plasma insulin and C-peptide, model parameters in Lotz
(2007) are mostly determined a priori to limit the number
of patient specific parameters to be identified. The kinetics
of insulin and C-peptide had been extensively studied
and well understood (Duckworth et al., 1988; Duckworth
and Kitabchi, 1981; Van Cauter et al., 1992). However,
what happens in the interstitium and at the receptor level
and beyond still presents a lot of unknowns (Duckworth
et al., 1998). In particular, dysfunctions at the cellular level
are largely speculated to contribute to insulin resistance
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(Duckworth et al., 1998; Barrett et al., 2009; Black et al.,
1982; Brownlee, 2001; Bryant et al., 2002).

Saturation in insulin-mediated glucose removal has been
observed at varying levels (Natali et al., 2000; Rizza
et al., 1981; Prigeon et al., 1996; Nestler et al., 1988;
Transberg et al., 1981; Docherty et al., 2010). However,
this effect is not taken into account by CLAMP. Therefore,
underestimation in insulin sensitivity can happen when
performing a hyperinsulinaemic CLAMP, where super-
physiological levels of plasma insulin is induced beyond
regions of linear relationship between glucose disposal
and plasma insulin level (Rizza et al., 1981; Prigeon
et al., 1996). The model developed for DIST also ignores
insulin effect saturation, though efforts were made to avoid
reaching saturation levels during DIST (Lotz, 2007).

This study uses the data from the clinical pilot study of
Lotz (2007) to investigate interstitial insulin action and its
influence on modeled insulin sensitivity. It attempts to find
a modeled interstitial insulin dose-response that best links
insulin action in plasma to response in blood glucose levels.
The critical parameters influencing the modeled shape of
interstitial insulin action are saturation in insulin receptor
binding and plasma-interstitial diffusion rate.

2. GLUCOSE-INSULIN-C-PEPTIDE MODEL

This study uses the C-peptide model from Lotz et al.
(2008) and a glucose-insulin model, ICING, from Lin et al.
(2010). The ICING model is an improved model revised
from the glucose-insulin models of Lotz et al. (2008) and
Chase et al. (2007). The ICING model addresses insulin
receptor saturation, which is ignored in Lotz et al. (2008).
Therefore this model is used in this study to investigate
the level of insulin receptor saturation.

The C-peptide model has a plasma compartment and a
interstitial compartment. It is defined:

Ċ =−(k1 + k3)C(t) + k2Y (t) + uen (1)

Ẏ = k1C(t)− k2Y (t) (2)

The ICING Model has three compartments for plasma
glucose, plasma insulin and interstitial insulin. The model
is defined:

Ġ=−pGG(t)− SIG(t)
Q(t)

1 + αGQ(t)

+
P (t) + EGPb − CNS

VG
(3)

Q̇= nI(I(t)−Q(t))− nC
Q(t)

1 + αGQ(t)
(4)

İ =−nKI(t)− nLI(t)
1 + αII(t)

− nI(I(t)−Q(t))

+
uex(t)
VI

+ (1− xL)
uen

VI
(5)

Table 1 lists the nomenclature for Equations (1)–(5).

This study focuses on Equations (4), which defines the
insulin action in interstitium. Saturation parameter for
insulin receptor binding is αG. The receptor-bound insulin

Table 1. Nomenclature

G Blood glucose level [mmol/L]
Q Interstitial insulin level [mU/L]
I Plasma insulin level [mU/L]
C Plasma C-peptide concentrations [pmol/L]
Y Interstitial compartment C-peptide

concentrations
[pmol/L]

EGP Endogenous glucose production [mmol/min]
EGPb Basal endogenous glucose production [mmol/min]
CNS Central nervous system glucose up-

take
[mmol/min]

pG Insulin independent glucose removal
(excluding CNS) and the suppression
of EGP from EGPb with respect to G

[min−1]

SI Insulin mediated glucose removal and
the suppression of EGP from EGPb

with respect to G and Q

[L/mU/min]

αG Saturation parameter for insulin me-
diated glucose removal

[L/mU]

VG Plasma glucose distribution volume [L]
P (t) Glucose injection [mmol/min]
nI Plasma-interstitium insulin diffusion

rate
[min−1]

nC receptor-bound insulin degradation [min−1]
nK insulin clearance through kidneys [min−1]
nL insulin clearance through liver [min−1]
αI Saturation parameter for insulin

clearance through liver
[L/mU]

uex(t) Exogenous insulin [mU/min]
uen(t) Endogenous insulin [mU/min]
VI Insulin distribution volume [L]
xL First pass hepatic clearance

k1, k2, k3 C-peptide transport rates [min]

is Q/(1 + αGQ), coupled with SI for glucose removal to
cells. Insulin degrading enzyme then degrades the receptor
bound insulin interstitium at a rate nC (Duckworth et al.,
1998). The value of nC is linked to nI by the steady state
ratio between I and Q (Lotz, 2007).

3. METHODS

3.1 Study Cohort

Data from 17 patients were used in this study. These
patients were recruited for the pilot study of DIST Lotz
(2007). Each patient under went at least two DISTs at
different times. Three different doses of insulin DISTs are
performed for the pilot study. A low dose test involves
an intravenous glucose injection of 5g followed by a intra-
venous insulin injection of 0.5U. A median dose test uses
10g of glucose and 1U insulin. A high dose test uses 20g
glucose and 2U insulin. Table 2 summarizes the tests these
patients underwent. More details on the patient cohort and
the pilot study can be found in Lotz (2007).

Table 2. Participant Details Summary

Group Number BMI (SD) Test Dose
(M/F) (kg/m2) low medium high

NGT# 14 (5/9) 27.2 (6.7) 7 22 5
T2DM/IFG# 4 (1/3) 31.2 (4.1) 4 4 2
# NGT = normal glucose tolerance. T2DM = Type 2 diabetes

mellitus. IFG = impaired fasting glucose.



(a) Median variability from all subjects (b) Inter-quartile range of variability
amongst subjects

(c) 90% confidence interval in variability
amongst subjects

Fig. 1. Variation of modeled SI . Color bars are the level of variations. Darker regions are areas of least intra-patient SI

variability from different DIST tests.

3.2 Patient Specific Parameter Identification

Measurements in blood glucose, G(t), plasma insulin, I(t),
and C-peptide, C(t), were taken during the tests. Patient
parameter identification is performed in three stages using
these measurements.

In the first stage, endogenous insulin secretion, uen, is
calculated using the C-peptide model in Equations (1)–
(2).

In the second stage, patient specific first pass hepatic
clearance, xL, and liver insulin clearance, nL, are fitted
to plasma insulin measurements using insulin and glucose
injections, uex(t) and P (t), anduen(t) calculated in the first
stage. Equations (4) and (5) are used in this stage, and a
good fit will have modeled I(t) in good agreement with
plasma insulin measurements. An integral based fitting
method (Hann et al., 2005) is used for the identification of
xL and nL as a pair.

In the third stage, patient specific insulin sensitivity, SI is
solved by fitting Equation (3) to measurements in blood
glucose levels. The same integral fitting method is used for
the identification.

In the original model of Lotz (2007), VG is also fitted,
while nK , k1,k2 and k3 are calculated to be patient specific
using formulas from Van Cauter et al. (1992). Lotz (2007)
also used different volumes for plasma and interstitial
insulin distribution. However these values do not vary
significantly between patients, and are therefore fixed at
generic population values for this study.

3.3 Grid Analysis of αG and nI

Because αG and nI are coupled to compartment Q, linking
compartments I and G, these two parameters cannot be
uniquely identified without measurements being available
in Q. In reality, dynamic response in Q is more or less
unmeasurable. This study analyse a grid of αG and nI

values to study their influence on SI . The analysis range
for nI is [0.001, 0.065] , and for αG is [0 0.1]. These ranges
cover the physiological ranges reported in literature, where

the boundaries are super- or supra-physiological levels
(Nestler et al., 1988; Natali et al., 2000; Prigeon et al.,
1996; Transberg et al., 1981; Duckworth and Kitabchi,
1981).

Specifically, the variations in model fitted SI are examined
across the grid space. The common metric in evaluating
the accuracy of an insulin sensitivity test is its intra-
patient repeatability. An insulin sensitivity test producing
the least variation in an individual over multiple tests
is usually considered to be more accurate. The patient
data used for this analysis comprised of 44 DISTs in 17
patients. Each DIST generates a patient specific SI using
the method described in Section 3.2. The intra-patient
variability in SI is calculated as:

variability =
∑
abs(SI1..n − S̄I)∑

SI1...n

(6)

where n is the number of SI from a single patient.

4. RESULTS

The fitted SI for each subject in the parameter space of
αG = 0→ 0.1 and nI = 0.001→ 0.065 generally decrease
with increasing nI , and to a lesser degree, decreasing αG.
The variation in SI in the parameter space across the 17
subjects can be seen in Figure 1

The intra-patient variation in SI is generally low within
the parameter space studied, as shown in Figure 1(a). The
degree of variation is comparable to the modeled SI from
the original pilot study of (Lotz, 2007), which reported
variation generally between 0–25%. The darker regions in
Figure 1(b) are parameter values producing tighter inter-
quartile spread of SI variability across all subjects. The
darker areas are similar to areas of low median variability
from all patients in Figure 1(a). Figure 1(c) effectively
shows that low alphaG and low nI results in more cohort
outliers of large intra-patient variability.

The spread of SI variability across 17 patients can be
seen in Figure 2. The combination [αG, nI ] = [0, 0.049]
represents the population values from the original DIST



Fig. 2. Cumulative distribution of patient SI variability at
different αG and nI values

model Lotz et al. (2008). The modeled SI using [αG, nI ] =
[0, 0.049] in this study correlates well to the SI calculated
using the original DIST model where more parameters
are patient specific Lotz et al. (2008). The r value of
0.93 suggests that model accuracy is not compromised by
adapting population values in parameters which involved
patient specific calculation in the original DIST model.
The correlation decreases for the other two combinations
of parameter values shown in Figure 2, where r = 0.85 and
0.7 when [αG, nI ] = [0.05, 0.055] and [0.015,0.003].

Although the combination of [αG, nI ] = [0.015,0.003]
limited the variability of intra-patient SI , the resulting SI

is almost equally high for all patients, losing its diagnostic
value in insulin resistance screening. The correlation to
the original DIST SI dropped significantly to r = 0.70.
The same results are found when extreme values of αG

is used. The correlation dropped to r = 0.78 when [αG,
nI ] = [0.1,0.065]. The decrease in r value is however
not as significant as lowing nI . The combination [αG,
nI ] = [0.05, 0.055] appears to deliver good intra-patient
variability while maintaining good diagnostic accuracy.
This set of parameter values produced low median SI

variation amongst all subjects where the inter-quartile
range is also tight, as seen in Figure 1. The correlation
to the original DIST SI is r = 0.85. The identified
SI follows the same trend as the original DIST SI and
identified patients with impaired glucose tolerance with
similar accuracy.

The combinations of αG and nI producing the lowest intra-
patient SI variability for each patient can be seen in Figure
3. The best combinations from each patient are scatter
over the parameter space. This may be an indication that
these parameters have significant inter-patient variability.

A typical DIST test response from a patient is shown
in Figure 4. The model fits to plasma insulin measure-
ments using different parameter values of αG and nI are
effectively equally good across the physiological parameter
space. Therefore, patient specific αG and nI cannot be
solved simultaneously with nL and xL given that plasma
insulin levels are the only measurements available. The
effect of αG and nI on the shape of insulin at the receptor

Fig. 3. αG and nI values for the lowest SI variability in
each patient

level (i.e. the effective insulin for glucose removal) can be
seen in Figure 4. Within the physiological range, larger αG

results in a near uniform shift in the level of receptor bound
insulin, whereas smaller nI causes the shape of receptor
bound insulin to be flatter with a delay in peak time.

5. DISCUSSION

This study attempted to investigate the relationship be-
tween insulin sensitivity and the shape of time-course
receptor bound insulin. With the available plasma insulin
and C-peptide data, the kinetics of insulin is well under-
stood in the plasma compartment. However, what happens
in the interstitium and at the receptor level and beyond
still presents a lot of unknowns. In this study, the critical
parameters influencing the shape of receptor bound insulin
levels are the plasma-interstitium diffusion rate, nI , and
receptor binding saturation parameter, αG.

The level of saturation in insulin-mediated glucose removal
has been reported across a wide range. The plasma insulin
level at half maximal action of glucose removal has been
reported to be between 50–1000 mU/L. This is effectively
equivalent to an αG between 0.04 and near zero (Natali
et al., 2000; Rizza et al., 1981; Prigeon et al., 1996; Nestler
et al., 1988; Transberg et al., 1981; Docherty et al., 2010).
The saturation in insulin-mediated glucose removal may
not simply be due to the number of available receptors.
A delay in insulin transportation to the skeletal muscle,
common in insulin resistant individuals, would also been
seen as saturation in insulin-mediated glucose removal
(Barrett et al., 2009; Prigeon et al., 1996). In addition, the
dynamic response of endogenous glucose production to the
insulin injection is not accounted for in this study, due to
limited available data. The underestimation of endogenous
glucose production will cause glucose removal to appear
slower, effectively adding to the saturation effect.

The level of modeled αG has been found to have a
magnification effect in insulin sensitivity in data from
critically ill patient receiving intensive insulin therapy
Chase et al. (2004). It can be seen in Figure 4(b), varying
αG shifts the magnitude of the modeled “effective” insulin
without influencing the time of peak action. Therefore
αG does not impact on SI as much as nI . In the 17
patients evaluated in this study, including the saturation



(a) Plasma and effective insulin (b) Effective insulin

Fig. 4. Typical DIST test response. Subfigure (b) focuses on the shape of effective (receptor bound) insulin with different
αG and nI .

parameter αG definitely enhanced the repeatability of the
the modeled SI within a patient, as this eliminates the
outlying large variability seen in the low αG region in
Figure 1(c).

The level of nI has both a magnification effect as well
as phasing effect on the shape of effective insulin. When
the level of nI decreases, less insulin is able to reach
interstitium before being cleared from plasma by the liver
and kidneys. The value for nI in the original DIST model
was calculated from formulas developed using C-peptide
data (Van Cauter et al., 1992). Using these formulas, the
values of nI amongst the 17 subjects in this study range
between 0.048–0.05. Details for this calculation can be
found in Van Cauter et al. (1992) and Lotz (2007). A
population nI value of 0.055 is found to provide good intra-
patient repeatability in SI .

In the validation study of the glucose-insulin model, IC-
ING, using clinical data from critically ill patients receiv-
ing intensive insulin therapy, nI was found to be very low
at 0.003 min−1 (Lin et al., 2010). This may indicate signif-
icantly impaired trans-capillary transport for patients who
are critically ill. In particular, sepsis causes a dysfunction
in micro-circulation as well as cell metabolism, and is a
condition that is prevalent in critical care (Träger and
Radermacher, 2003).

Overall, this study presents a method that independently
examines αG and nI under the limitation in available data.
Cutting down the number of patient specific parameters
did not seem to compromise the model accuracy, as very
low fitting error in plasma insulin measurements is always
achieved. More test data from larger cohorts will enable
a more in-depth study of saturation in mediated glucose
removal and plasma-interstitium insulin diffusion, or the
action of insulin in the interstitum in general. A cohort
of patients with mixed levels of insulin resistance will also
further validate the accuracy of the modeled SI . “Cus-
tomising” patient αG and nI by finding the parameter
values providing the best repeatability in SI may reveal
further information in the underlying factors of an indi-
vidual’s insulin resistance.

6. CONCLUSIONS

The intra-patient repeatability of SI and its link to in-
terstitial insulin action is studied in 17 patients. Very
low values of insulin receptor saturation αG and very low
values of plasma-interstitial insulin diffusion nI are found
to produce the most intra-patient variability in SI . A
model accounting for insulin receptor saturation enhanced
the repeatability in SI . A larger cohort will enable a more
in-depth investigation into the relationship between inter-
stitial insulin action and insulin sensitivity. A parameter
study on subjects with varying degrees of insulin resistance
may provide a better understanding of the contributing
factors of insulin resistance.
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