
1

Authoring Constraint-based Tutors in ASPIRE: a Case Study of a Capital 
Investment Tutor

Antonija Mitrovic1, Nicholas McGuigan2, Brent Martin1,
Pramuditha Suraweera1, Nancy Milik1 and Jay Holland1

1Intelligent Computer Tutoring Group
University of Canterbury, Christchurch, New Zealand

tanja.mitrovic@canterbury.ac.nz
brent.martin@canterbury.ac.nz

2Lincoln University, Lincoln, New Zealand, mcguigan@lincoln.ac.nz

Abstract: Although intelligent tutoring systems have proven their effectiveness, they are still not 
widely spread due to the high development costs. We present ASPIRE, a complete authoring and 
deployment environment for constraint-based intelligent tutoring systems. ASPIRE consists of the 
authoring server (ASPIRE-Author), which enables domain experts (i.e. teachers) to easily develop 
new ITSs for their courses, and a tutoring server (ASPIRE-Tutor), which deploys the developed 
systems. We describe the authoring process supported by ASPIRE, and illustrate it on the example 
of an ITS that teaches Capital Investment decision making to university students. 

Introduction

Intelligent Tutoring Systems (ITSs) have proven their effectiveness not only in controlled lab studies, but also in real 
classrooms (Koedinger et al., 1997; Mitrovic & Ohlsson, 1999; Mitrovic et al., 2004, 2007; VanLehn et al., 2005). 
These systems achieve significant improvements in comparison to classroom learning, due to the knowledge about 
the instructional domain, pedagogical strategies and student modelling capabilities. However, ITSs still have not 
achieved widespread effect on education due to their high complexity and difficulty of development. Composing the 
domain knowledge required for ITSs consumes the majority of the total development time (Murray, 2003). The task 
requires a multi-faceted expertise, including knowledge engineering, AI programming and the domain itself.

The Intelligent Computer Tutoring Group (ICTG) has developed a number of successful constraint-based tutors over 
the years in various domains, such as SQL queries (Mitrovic & Ohlsson, 1999; Mitrovic, 2003), database design 
(Suraweera & Mitrovic, 2004; Zakharov et al., 2005; Weerasinghe & Mitrovic, 2006), software analysis and design 
using UML (Baghaei & Mitrovic, 2007; Baghaei et al., 2007), English/vocabulary skills (Mayo & Mitrovic, 2001; 
Martin & Mitrovic, 2003), and also for procedural skills, such as data normalization within relational database design 
(Mitrovic, 2005) and logical database design (Milik et al., 2006). Although constraint-based tutors are easier to 
develop in comparison to some other existing types of ITSs (Mitrovic et al., 2003), their development is still a 
labour-intensive process that requires expertise in Constraint-Based Modelling (Ohlsson, 1992; Ohlsson & Mitrovic, 
2007) and programming. In order to reduce the time and effort required for producing constraint-based tutors, we 
developed ASPIRE, an authoring system that can generate the domain model with the assistance of a domain expert 
and produce a fully functional system. 

We start with a brief introduction to ASPIRE, including an outline of the authoring process and the architecture of 
the system. Section 3 presents CIT, the Capital Investment Tutor, focusing on the authoring process, while the 
following section presents the results of an evaluation study. Finally, Section 5 presents conclusions and the 
directions of future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lincoln University Research Archive

https://core.ac.uk/display/35463558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

ASPIRE

ASPIRE consists of an authoring server (ASPIRE-Author) which assists the author in developing new ITSs, and a 
tutoring server (ASPIRE-Tutor) that delivers the resulting ITSs to students (see Figure 1). ASPIRE-Author makes it 
possible for the human expert (the author) to describe the instructional domain and the tasks the students will be 
performing, as well as to specify problems and their solutions. Both servers are implemented in Allegro Common 
Lisp as web servers for users to interact through a standard web browser. All required domain-dependent 
information, such as the domain model and other configuration details produced by ASPIRE-Author, are transferred 
to ASPIRE-Tutor in the XML format. We do not present details of ASPIRE in this paper; the interested reader is 
referred to (Mitrovic et al., 2006) and the ASPIRE Web page (http://aspire.canterbury.ac.nz).

Figure 1. The Architecture of ASPIRE

The authoring process in ASPIRE-Author consists of eight steps shown in Figure 2. Initially, the author creates a 
new domain and specifies its general features, such as whether the domain consists of a sub-domains focusing on 
specific areas, and whether the domain is procedural or not. In the case of procedural domains, the author is required 
to enumerate the problem-solving steps. The author then describes the domain in terms of an ontology (step 2), 
which identifies the important domain concepts, their properties and mutual relationships. In step 3 the author 
specifies the structure of problems and solutions. The author is then asked to design the student interface (step 4) and 
provide a set of problems and their solutions (step 5). Syntax constraints are generated automatically (step 6) by 
analysing relationships between concepts and properties of concepts specified in the ontology. The syntax constraint 
generation algorithm extracts the restrictions specified for relationships and properties and translates them into 
constraints. These constraints are applicable to both procedural and non-procedural domains. An extra set of 
constraints are generated for procedural domains to ensure that the student adheres to the correct problem-solving 
procedure. In step 7, ASPIRE generates a set of constraints for checking the semantics of the answer using a 
machine-learning technique: alternative (correct) solutions are compared, and, if necessary, constraints are 
specialized or generalized to be consistent across all the given solutions. Semantic constraints enable the ITS to 
model alternative correct solution approaches. Finally, the author deploys the system in step 8. As the focus of this 
paper is on CIT, a system developed in ASPIRE, we do not present the details of the constraint generation 
algorithms; the interested reader is referred to (Suraweera et al., 2005). 

Figure 2. The steps of the authoring process

1. Specifying the domain characteristics
2. Composing the domain ontology
3. Modelling the problem and solution structures
4. Designing the student interface
5. Adding problems and solutions
6. Generating syntax constraints
7. Generating semantic constraints
8. Deploying the tutoring system



3

The architecture of ASPIRE-Tutor is illustrated in Figure 3. The interface module is responsible for producing an 
interface for each deployed ITS. The interface provides features such as login/logout, select/change 
domains/problems, submit solution for evaluation etc. The session manager is responsible for maintaining the state of 
each student during their interaction. The current session state is described by information such as the selected 
domain, sub-domain and problem number. The session manager also acts as the main entry point to the system, 
invoking the relevant modules when needed. For example, when a student submits a solution to be validated, the 
session manager passes on all information to the pedagogical module, which returns the feedback to be presented to 
the student. The Pedagogical Module (PM) decides how to respond to each student request. It is responsible for 
handing all pedagogy-related requests including selecting a new problem, evaluating a student’s submission and 
viewing the student model. In the event of evaluating a student’s submission and providing feedback, the PM 
delegates the task of evaluating the solution to the diagnostic module and decides on the appropriate feedback by 
consulting the student model. The student modeler maintains a long-term model of the student’s knowledge. 

ASPIRE-Tutor serves the developed domain models as web-based tutors. In addition to running a collection of 
tutoring systems in parallel, ASPIRE-Tutor also provides the functionality for managing user accounts (for 
administrators, teachers, students and authors). It also provides functionality for teachers to tailor an ITS to his/her 
specific needs for a particular class, and allows teachers to assign ITSs to their students. 

Figure 3. The architecture of ASPIRE-Tutor

ASPIRE has been evaluated in several domains, ranging from fraction addition to thermodynamics and engineering 
mechanics. In this paper, we present the Capital Investment Decision; see (Suraweera et al., 2007) for details of the 
evaluations in other instructional domains.

CIT - The Capital Investment Tutor

Capital investment decision making plays a crucial role in the financial evaluation of non-current assets within 
contemporary organisational practice. Our teaching experience shows that capital investment evaluation techniques, 
namely the accounting rate of return, net present value and the internal rate of return, are problematic for students to 
master. Students find the principles of capital investment decision making difficult to comprehend, with a lack of 
ability to translate from theory to practice. It was envisaged that the CIT would enable students to apply theoretical 
financial decision making to ‘real-life’ simulated business environments.

It was with this in mind that the CIT was developed by the second author of this paper as one of the crucial 
evaluation stages of the ASPIRE project. In this section we describe the process of developing CIT.

Figure 4 shows a screenshot of the Domain tab of ASPIRE-Author, which corresponds to the first step of the 
authoring procedure, in which the author describes the domain and specifies problem-solving steps. The task the 
student needs to perform is a procedural one, consisting of seven steps. In the first step, the student constructs a 
timeline of project costs from the information given in the problem statement. This step will be shown to the student 
on its one, on the first page. In step two (shown on its own on the second page), the student needs to identify the 
relevant problem type, in terms of the variable which needs to be calculated. Step 3 requires the student to select the 



4

formula corresponding to the chosen variable, and then enter the parameters for the formula in step 4. In step 5 the 
student enters the known values into the selected formula, and then specifies the computed value in step 6. Based on 
the computed value, the student then makes the final decision regarding capital investment in step 7. In CIT, there is 
only a single problem set, although ASPIRE allows for multiple problem sets to be defined 

Figure 4. The steps of the Capital Investment Decision domain

The author then specifies the ontology for this instructional domain. Composing a domain ontology is, in general, a 
much easier task for authors than composing constraints manually (Suraweera et al., 2004). ASPIRE-Author 
provides an ontology workspace for visually modelling ontologies (Figure 5). The ontology describes the domain by 
identifying important concepts and relationships between them. The ontology outlines the hierarchical structure of 
the domain in terms of sub- and super-concepts; for example, the Cash Flow concept in Figure 5 is specialised into 
initial, operating and terminal cash flows. Each subconcept inherits the properties of its parent concept, but also 
might have its own properties, and may be related to other domain concepts. The specialization relationships 
between domain concepts are visually represented as arrows between concepts. The Cash Flow concept is the 
currently selected concept in Figure 5, and its properties (Amount and Period) are shown in the table below. 

In the third authoring step, the author specifies the problem/solution structures. Problems can consist of components 
(textual or graphical) and a problem statement. In our domain, each problem has a problem statement and an attached 
photograph. For each step of the procedure, the student’s solution might contain one or more components. The 
overall structure of solutions depends on whether the domain is procedural or not. The solution structure for capital 
investment decision making is outlined in Figure 6.

The student interface needs to be designed next. The final outcome of this phase is an interface in which students 
compose their solutions to problems. ASPIRE generates a default interface, which is form-based, by placing an input 
area for each component defined in the solution structure. The author can replace one or more pages with Java 
applets, which might be more suited to the task the student is performing than a textual interface. We developed two 
applets for CIT, which will be discussed later. After designing the student interface, the author entered twelve 
problems and their solutions. In this domain, there is only one correct solution per problem; in other domains, there 
might be multiple correct solutions, and in such cases the author would need to specify all valid solutions, which are 
used by the authoring system to generate semantic constraints.



5

Figure 5. Ontology for the Capital Investment domain

Once example problems and their solutions are available, ASPIRE-Author generates the domain model. In case of 
CIT, there are 34 syntax and 25 semantic constraints generated. Syntax constraints check whether the student’s 
solution follows the syntactic rules of the domain; they make sure that all the necessary solution components are 
specified, that they are of appropriate types, and are related to other solutions components as necessary. Figure 7 
illustrates one syntax constraint, which checks whether the student has specified one part of the solution (operational 
cash flows). The author cannot change the constraint itself, but can modify the feedback messages attached to it, to 
tailor them in order to be more understandable to students in comparison to the automatically generated feedback 
messages.

Problem solving step Solution components
1. Construct a timeline Cash flows (initial, operating and terminal)
2. Identify problem type One of Accounting Rate of Return, Bond, Future Value, Internal Rate of Return,

Net Present Value (NPV), Payback Period
3. Select the formula One of the pre-specified set of formulae
4. Specify the parameters for the formula n, k
5. Complete the formula All components of the NPV formula
6. Enter the NPV value NPV value
7. Make the final decision Decision

Figure 6. Solution structure for CIT



6

Figure 7. A syntax constraint from CIT

Finally, the author deploys the domain, which results in the domain information being transferred to ASPIRE-
Author. The ITS is immediately available for the author to try out. The author/teacher can also define one or more 
groups, consisting of students who will have access to the system. The teacher can tailor the behaviour of the system 
to his/her needs. For example, the teacher can specify the feedback levels to be offered, as well as the progression 
between them. ASPIRE offers the following feedback levels: Quick Check (specifying whether the answer is correct 
or not), Error Flag (identifying only the part of the solution that is erroneous), Hint (identifying the first error and 
providing information about the domain principle that is violated by the student’s solution), Detailed Hint (a more 
detailed version of the hint), All Errors (hints about all errors) and Show Solution. By default, ASPIRE starts with 
Quick Check and progresses with each consecutive submission to the same problem to Detailed Hint, unless the 
student asks for a specific type of feedback. Information about all errors and the solution are only available at 
request. However, the teacher can override this default behaviour by limiting the types of feedback, prohibiting the 
full solution from being shown, specifying the minimal number of attempts before the full solution can be seen, or by 
specifying the maximal level of feedback to be provided automatically. The teacher can also specify the problem 
selection mechanisms available to students.

Figure 8 shows the student interface with the applet for the first step in CIT. The top area of the page provides 
controls for selecting problems, obtaining help, and changing/leaving the ITS. The problem statement is shown 
together with the photo describing the situation. The problem-solving area for this step consists of an applet, 
visualizing the time line. The student needs to label the periods on this timeline, and enter the amounts corresponding 
to the various types of cash flows. In the situation illustrated in Figure 8, the student has incorrectly labelled the 
initial time as period 1 on the timeline, entered the incorrect value for the initial cash flow, and has not specified the 
rest of the timeline. The feedback shown in the right-hand panel corresponds to the All Errors level: the first hint 
discusses operating cash flows that are missing, the second one discusses the initial cash flow for which the student 
supplied the wrong value (3,5000 instead of 10,000 as specified in the problem text), while the last one discusses the 
terminal cash flow. The first and third hints come from violated syntax constraints, while the second one comes from 
a violated semantic constraint. The student can change the solution based on the feedback provided, and submit the 
solution to CIT again.

Since CIT is a procedural tutor, the student needs to complete each step correctly before being allowed to move on to 
the following step. Figure 9 shows a situation when the student has already completed the first four steps 
successfully: the student has completed the timeline, selected NPV as the appropriate evaluation mechanism to be 
used in the problem, selected the correct formula for NPV, and specified the correct values for n (the number of 
years) and k (the interest rate), which are the parameters used in the formula for NPV. The applet shows the current 
step, in which the student is to fill in the values into the formula for calculating NPV. Please note that the applet 
shows the expanded version of the summation formula, showing the four terms corresponding to the operating cash 
flows and the last term (pi) corresponding to the initial cash flow. The goal of this step is to check whether the 
student can differentiate between the initial cash flow (the term subtracted from the others) from the operating cash 
flows, and also whether the student understands the various time periods involved and corresponding cash flows. The 
student has specified the initial cash flow correctly, but has not specified any of the operating cash flows and the 



7

corresponding time periods. The feedback shown in Figure 9 is on the Hint level, and discusses the operating cash 
flows which are missing from the student’s solution.

Figure 8. Student interface showing the first step of the procedure (the timeline)

We have chosen to develop applets for these steps to make CIT visually more attractive, although the task itself can 
be executed using purely textual input. However, in other domains it might be impossible to use a textual interface. 
For example, if the student needs to develop some kind of diagram, a drawing applet would be necessary. Our 
experience shows that the time and effort needed to develop applets is higher than the requirements for the other 
development tasks in ASPIRE. Additionally, applets require software engineering experience, and for that reason we 
do not expect teachers to be able to develop applets by themselves.

Evaluation Study

We trialled CIT in May 2007 in ACCT102, Accounting and Finance for Business, an introductory business decision 
making course taught at the Lincoln university. There were 32 students who volunteered to participate in this study. 
The students have listened to lectures covering the relevant material before using the system. The students used CIT 
during scheduled tutorials of 50 minutes. During this time, the students sat a short pre-test, interacted with the 
system, and then sat a post-test and filled in a user questionnaire. The average interaction time with CIT was only 30 
minutes. The mean results on the pre-test was 25% (sd=14%), while the students achieved significantly higher results 
(p=0.07) on the post-test with the mean of 35% (sd=31%). We attribute the relatively low results on the post-test to 
the short session length. 



8

Figure 9. Student interface showing the fifth step of the problem

y = 0.2579x-0.3771

R2 = 0.9308

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8

Occasion

Er
ro

rP
ro

b

Figure 10. The learning curve from the CIT study



9

We have performed a preliminary analysis of the data collected during the study. Figure 10 shows the learning curve. 
The x-axis shows the opportunity to use a specific knowledge element (i.e. constraint) during the session. The y-axis 
shows the probability of making errors on the same knowledge elements. The data points were averaged over all 
constraints and all students who interacted with CIT. The data points have an excellent fit to the power curve, 
showing that students do learn effectively in CIT. Furthermore, the learning rate (i.e. the exponent of the power 
curve equation) is very high, showing that students acquire the necessary knowledge fast. The initial error probability 
of 0.27 dropped by more than 50% to 0.12 after only eight attempts on average, which is a significant result, 
especially taking into account that the session length was short. The students’ comments from the questionnaire show 
that the students enjoyed interacting with the system and believed that their understanding of the domain was 
improved as a consequence of using CIT. The students pointed out the usefulness of feedback in correcting their 
mistakes. We plan to repeat the evaluation study in early 2008, with longer sessions (2 hours). In the next study, we 
will compare the learning performance of students using CIT to that of students learning in a traditional way, in a 
group situation with a human tutor.

Conclusions

We provided an overview of ASPIRE, an authoring system that assists domain experts in building constraint-based 
ITSs and serves the developed tutoring systems over the web. ASPIRE follows a semi-automated process for 
generating domain models, in which the author is required to provide a description of the domain in terms of an 
ontology, specify the structure of problems and solutions, and provide examples of both. From this information, 
ASPIRE induces the domain model, and produces a fully functional web-based ITS, which can then be used by 
students. ASPIRE also provides additional support for administrators to create user accounts and maintain the 
activities in ASPIRE. It also supports teachers in tailoring ITSs to their classes. The paper presented the process of 
developing CIT, an ITS that teaches Capital Investment decision making, in ASPIRE. We discussed the phases of 
CIT’s development, as well as the result of a preliminary evaluation, which showed that the students do learn from 
interacting with CIT. We plan to conduct a longer study of CIT effectiveness. 

CIT is only one of the ITSs developed in ASPIRE. We have also been developing ITSs in ASPIRE for the areas of 
thermodynamics, engineering mechanics, chemistry and arithmetic. The authors involved in this work have various 
types of backgrounds, ranging from teachers to Computer Science postgraduate students. Our experiences show that 
although initially authors need to learn about ontologies and the development philosophy supported by ASIRE, they 
find it a flexible and powerful tool. ASPIRE is freely available on the Web, and we do hope that other teachers will 
be using it to develop ITSs for their courses. 

Acknowledgements

The ASPIRE project was supported by the eCDF grants 502 and 592 from the Tertiary Education Commission of 
New Zealand. We thank all members of ICTG for their support.

References 

Baghaei, N., Mitrovic, A. & Irwin, W. (2007) Supporting Collaborative Learning and Problem-Solving in a Constraint-based 
CSCL Environment for UML Class Diagrams. Computer-Supported Collaborative Learning, 2(2-3), 159-190.

Baghaei, N., Mitrovic, A. (2007) From Modelling Domain knowledge to Metacognitive Skills: Extending a Constraint-based 
Tutoring System to Support Collaboration. User Modeling 2007, 217-227.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A., (1997) Intelligent Tutoring goes to School in the Big City. 
Artificial Intelligence in Education, 8, 30-43.

Mayo, M. & Mitrovic, A. (2001) Optimising ITS Behaviour with Bayesian Networks and Decision Theory’. Artificial Intelligence 
in Education, 12(2), 124-153.

Martin, B. & Mitrovic, A. (2003) Domain Modeling: Art or Science? Artificial Intelligence in Education 2003, IOS Press, 183-
190.



10

Milik, N., Marshall, M., Mitrovic, A. (2006) Responding to Free-form Student Questions in ERM-Tutor. Intelligent Tutoring 
Systems 2006, 707-709.

Mitrovic, A. (2003) An Intelligent SQL Tutor on the Web. Int. J. Artificial Intelligence in Education, 13(2-4), 173-197.

Mitrovic, A. (2005) The Effect of Explaining on Learning: a Case Study with a Data Normalization Tutor. Artificial Intelligence 
in Education 2005, IOS Press, 499-506.

Mitrovic, A. & Ohlsson, S. (1999) Evaluation of a Constraint-Based Tutor for a Database Language. Artificial Intelligence in 
Education, 10(3-4), 238-256.

Mitrovic, A., Koedinger, K. & Martin, B. (2003) A Comparative Analysis of Cognitive Tutoring and Constraint-Based Modelling. 
User Modeling 2003, Springer-Verlag, pp. 313-322.

Mitrovic, A., Suraweera, P., Martin, B. & Weerasinghe, A. (2004) DB-suite: Experiences with Three Intelligent, Web-based 
Database Tutors. Journal of Interactive Learning Research, 15, 409-432.

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N. & Holland, J. (2006) Authoring Constraint-based Tutors in 
ASPIRE. Intelligent Tutoring Systems 2006, 41-50.

Mitrovic, A., Martin, B. & Suraweera, P. (2007) Intelligent Tutors for all: Constraint-based Modeling Methodology, Systems and 
Authoring. IEEE Intelligent Systems, 22(4), 38-45.

Murray, T. (2003) An Overview of Intelligent Tutoring System Authoring Tools: Updated Analysis of the State of the Art. 
Authoring tools for advanced technology learning environments. 491-545.

Ohlsson, S. (1992) Constraint-based student modeling. Artificial Intelligence and Education, 3(4), 429-447.

Ohlsson, S. & Mitrovic, A. (2007) Fidelity and Efficiency of Knowledge Representations for Intelligent Tutoring Systems. 
Technology, Instruction, Cognition and Learning, 5(2), 101-132.

Suraweera, P. & Mitrovic, A., (2004) An Intelligent Tutoring System for Entity Relationship Modelling. Artificial Intelligence in 
Education, 14, 375-417.

Suraweera, P., Mitrovic, A. & Martin, B. (2004) The Role of Domain Ontology in Knowledge Acquisition for ITSs. Intelligent 
Tutoring Systems ITS 2004, Springer-Verlag, 207-216.

Suraweera, P., Mitrovic, A. & Martin, B. (2005) A Knowledge Acquisition System for Constraint-based Intelligent Tutoring 
Systems. Artificial Intelligence in Education, IOS Press, 638-645.

Suraweera, P., Mitrovic, A., Martin, B. (2007) Constraint Authoring System: an empirical evaluation. Proc. 13th Int. Conf. 
Artificial Intelligence in Education AIED 2007, 451-458.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D., Weinstein, A. & Wintersgill, M. (2005). 
The Andes Physics Tutoring System: Lessons Learned. Artificial Intelligence in Education, 15, 147-204.

Weerasinghe, A., Mitrovic, A. (2006) Facilitating Deep Learning through Self-Explanation in an Open-ended Domain. 
Knowledge-based and Intelligent Engineering Systems, IOS Press, 10(1), 3-19.

Zakharov, K., Mitrovic, A., Ohlsson, S. (2005) Feedback Micro-engineering in EER-Tutor. Artificial Intelligence in Education 
2005, IOS Press, 718-725.


