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ABSTRACT

A reduced complexity multiple-input multiple-output (MIMO)
channel estimator known as the polynomial-predictor-based
vector generalized least mean squares (VGLMS) estimator is
developed. It is a simplification of a previously developed
polynomial-predictor-based vector generalized recursive least
squares (VGRLS) estimator, achieved by replacing the online
recursive computation of the ‘intermediate’ matrix by an of-
fline pre-computed matrix. Similar to the VGRLS estimator,
it is able to operate in Rayleigh or Rician fading environments
without reconfiguration of the state transition matrix to accom-
modate the non-random mean components. It is seen to offer a
trade-off between reduced complexity channel estimation and
good system performance.

I. INTRODUCTION

A multiple-input multiple-output (MIMO) channel estimator
employing a polynomial-predictor-based vector generalized re-
cursive least squares (VGRLS) algorithm was developed in [1].
The VGRLS estimator is capable of tracking time-varying fre-
quency selective channel responses in a Rayleigh or Rician fad-
ing environment, and its performance can be made to approach
that of an optimum estimator employing a Kalman filter [1].
It is a vector extension of the polynomial-based generalized re-
cursive least squares (GRLS) algorithm of [2]. A simplification
of the GRLS algorithm was developed in [3] where the online
recursive computation of the ‘intermediate’ matrix is replaced
by an offline pre-computed matrix. The resulting algorithm is
known as the polynomial-based generalized least mean squares
(GLMS) algorithm.

In this paper we investigate simplification of the VGRLS
algorithm following a similar approach to [3]. The result-
ing algorithm is a polynomial-predictor-based vector gener-
alized least mean squares (VGLMS) algorithm. We evalu-
ate its performance in terms of the ‘mean square deviation’
(MSD) and symbol error rate (SER) when operating with a
MIMO minimum-mean-square-error (MMSE) decision feed-
back equalizer (DFE) [4]. We demonstrate by simulation that
the VGLMS estimator is able to operate in both Rayleigh and
Rician fading environments. We also compare the relative com-
plexity of the VGRLS and VGLMS algorithms.

In the following, we describe a general signal model in sec-
tion II. In section III, we summarize the VGRLS estimator and
then develop the VGLMS estimator. In section IV we present

a complexity comparison and show the computational savings
of VGLMS estimator. Simulation results and discussions are
presented in section V, followed by conclusions in section VI.

II. SIGNAL AND CHANNEL MODELS

A. The General Model
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Figure 1: A general block diagram of a discrete-time MIMO
communication system at time k for i = 1, 2, · · · , T transmit
and j = 1, 2, · · · , R receive antennas.

We assume a discrete-time model for a (T, R) MIMO sys-
tem with T transmit and R receive antennas, as shown in Fig.
1. Linearly independent signal streams are transmitted from
each of the T antennas in a V-BLAST [5] fashion. At the re-
ceiver, each of the R antennas receives a linear combination of
the transmitted signal streams. The j-th symbol-rate sampled
complex baseband received signal at time k may be written as

y
(j)
k =

∑T
i=1

∑L−1
l=0 d

(i)
k−lh

(j,i)
k,l + n

(j)
k

; j = 1, 2, · · · , R
(1)

where d
(i)
k is the k-th transmitted complex baseband M-ary data

symbol from the i-th antenna, {h(j,i)
k,l }l=L−1

l=0 represents the fad-
ing dispersive composite channel impulse response between
the i-th transmit and j-th receive antenna at time k. We as-
sume a delay spread of L symbol periods, and note that n

(j)
k is

additive white Gaussian noise (AWGN) with variance, σ2
n.

The MIMO received signal of (1) may be expressed in
matrix-vector form [1] as

yk = dkhk + nk (2)
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by defining the vectors

yk = [y(1)
k , y

(2)
k , · · · , y

(R)
k ]t (3)

hk = [h(1,1)
k,0 · · ·h(R,1)

k,0 · · ·h(1,T )
k,0 · · ·h(R,T )

k,0 , · · · ,

h
(1,1)
k,L−1 · · ·h(R,1)

k,L−1, · · · , h
(1,T )
k,L−1, · · · , h

(R,T )
k,L−1]

t
(4)

dk = [d(1)
k · · · d(T )

k , d
(1)
k−1 · · · d(T )

k−1, · · · ,

d
(1)
k−L+1 · · · d(T )

k−L+1] ⊗ IR

(5)

nk = [n(1)
k , n

(2)
k , · · · , n

(R)
k ]t (6)

where t denotes transposition, IR is the (R x R) identity matrix
and ⊗ is the Kronecker product.

B. Channel Model

The RT MIMO sub-channels are assumed to exhibit wide sense
stationary uncorrelated scattering (WSSUS) [6]. We assume
that each of the RTL channel coefficient, h

(j,i)
k,l , evolves accord-

ing to Clarke’s fading model [7] under the same fading con-
ditions. We also assume that each consists of a non-random
(specular) component and a random (diffuse) component such
that h

(j,i)
k,l = h

(nr),(j,i)
l + h

(r),(j,i)
k,l . The power ratio between

the specular and the diffuse components is given by the Rice
K-factor,

K =

∣∣h(nr)
∣∣2

E
{∣∣h(r)

∣∣2} (7)

where a K value of 0 corresponds to Rayleigh fading and a large
K corresponds to Rician fading. In reality a specular compo-
nent can be present in all or any of the delay paths and the value
of the K-factor can be the same or different for each path. For
simplicity, we assume that all multipath components contain
specular components with the same value of K.

III. CHANNEL ESTIMATION

A. The VGRLS estimator

In [1], a state-space model of the channel state vector with un-
forced dynamics based on polynomial predictors of length, P,
and order, N, was developed as

hk+1 = Uhk (8)
where

hk =
[
ht

k, ht
k−1, · · · , ht

k−P+1

]t
(9)

is the (RTLP x 1) channel state vector at time k and the (RTLP
x RTLP) state transition matrix is given by

U =
(

U1 U2 · · · UP−1 UP

IRTL(P−1) 0RTL(P−1),RTL

)

(10)

Table 1: Polynomial Coefficients of Various Order and Length
Length P Order N Polynomial Coefficients {a1, a2, · · · , aP }

2 0 {1/2, 1/2}
2 1 {2, -1}
3 0 {1/3, 1/3, 1/3}
3 1 {4/3, 1/3, -2/3}
3 2 {3, -3, 1}

where 0m,n is the (m x n) null matrix. Each (RTL x RTL) poly-
nomial predictor matrix is given by Ur=arIRTL, where ar is
the r-th tap weight of a polynomial predictor of length P and
order N. These are independent of channel statistics and the co-
efficients for various orders and lengths are shown in Table 1
as calculated in [2].

The VGRLS algorithm is then given by [1]

ĥk/k−1 = Uĥk−1/k−1 (11)

Pk/k−1 = λ−1UPk−1/k−1UH (12)

Kk = Pk/k−1dH
k (IR + dkPk/k−1dH

k )−1 (13)

Pk/k = (IRTLP − Kkdk)Pk/k−1 (14)

ĥk/k = ĥk/k−1 + Kk(yk − dkĥk/k−1). (15)

with dk =
[

dk | 0R,RTL(P−1)

]
.

To initialize the algorithm and to ensure that P−1
k/k is non-

singular for all k, we set P1/0 = δ−1IRTLP where δ is a small

real positive constant and ĥ1/0 = 0RTLP,1.

B. The reduced complexity estimator

There are two recursions involved in the VGRLS algorithm.
One predicts the channel responses recursively as in (11) and
(15); the other computes the ‘intermediate’ matrix1, Pk/k, in
(12) and (14). In the reduced complexity case of this pa-
per, it is approximated [3] by a static replacement, P̂ =
(limk−→∞E[P−1

k/k])−1. This is the inverse of the steady-state

mean of the correlation matrix [3]. To evaluate P̂ requires only
the knowledge of the autocorrelation matrix of the data vector
Rd = E[dH

k dk], the state transition matrix U and the “forget
factor” λ. These parameters may usually be specified a pri-
ori [8]. In general a closed form expression for P̂ cannot be
obtained. Instead, we compute P̂k/k using the offline recur-
sion [3]

P̂k/k−1 = λ−1UP̂k−1/k−1UH (16)

Ψk/k−1 = (IRTLP + DP̂k/k−1D
H)−1 (17)

1Pk/k is the inverse input autocorrelation matrix in a conventional RLS
algorithm.
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Table 2: Number of real operations per iteration of the VGRLS
and VGLMS algorithms for a (2, 2) MIMO system with a delay
spread, L = 3 and a predictor length, P = 3.

Algorithm Type x + /

VGRLS 400608 387288 4
VGLMS 14400 11448 4

P̂k/k = P̂k/k−1 − P̂k/k−1D
HΨk/k−1DP̂k/k−1 (18)

where D is a (RTLP x RTLP) matrix, such that Rd = DDH ,
and P̂0/−1 = P0/−1. The steady-state approximation of the
inverse correlation matrix is then P̂ = P̂k/k for large values
of k. For the special case of N = 0 and P = 1, the static
approximation has the closed form P̂ = (1 − λ)R−1

d .
Recognizing that the Kalman gain becomes Kk = Pk/kdH

k

[9] and replacing Pk/k by P̂ in (11) - (15), we obtain the k-th
recursive update equation that describes the reduced complex-
ity estimation algorithm as

ĥk+1/k = U[ĥk/k−1 + P̂dH
k (yk − ŷk/k−1)]. (19)

This is readily implemented. We note that in the special case
where N = 0, P = 1 and Rd = IRTLP , (19) reduces to a
standard vector LMS algorithm with LMS step size, µ = 1 −
λ. The algorithm of (19) is the desired polynomial-predictor-
based vector generalized least mean square (VGLMS) channel
estimator following [3].

IV. A COMPLEXITY COMPARISON OF THE VGRLS AND

VGLMS ALGORITHMS

We compare the complexity of the VGRLS and VGLMS algo-
rithms for the following scenario: a (2,2) MIMO system with
L = 3 multipath rays in each of the sub-channels and a predic-
tor length of P = 3. Table 2 gives the number of real opera-
tions2 needed per iteration of the algorithms. It is clear from
Table 2 that substantial computational savings can be achieved
by the VGLMS algorithm. This is because the online recur-
sion of (14) for computing Pk/k requires O((RTLP )3) in the
highest term of calculations. In fact this constitutes the bulk
of the computational complexity and by getting rid of this on-
line recursion, we reduce the complexity of the algorithm to
just O((RTLP )2). The savings become more significant as
the dimension of the MIMO system increases.

V. SIMULATIONS RESULTS AND DISCUSSION

We now consider the performance of the VGLMS channel es-
timator. We follow the approach of [1] and assume an un-
coded, VBLAST-type [5], MIMO system operating in a spa-
tial multiplexing mode. We assume independent sub-channels
each modelled by Clarke’s fading model [7] and simulated as

2We assume that one complex multiplication requires 4 real multiplications
and 2 real additions; while one complex addition requires 2 real additions.

in [10]. Each sub-channel is assumed to consist of L = 3 mul-
tipath rays and to have a uniform power-delay profile with the
delay between adjacent rays symbol-spaced so that total max-
imum delay spread τmax = 3T. This represents a normalized
delay spread, τmax/T, of 3 and a reasonably dispersive fading
environment. Each of the multipath rays contains a specular
and a random component. The Rice K-factor of (7) defines the
power ratio between the specular and random components.

QPSK signal streams are transmitted from each transmit an-
tenna. A raised cosine filter with 50% roll-off factor is used
at the transmitter with its response truncated to ± 2T. An ideal
low pass filter with sufficient bandwidth to accommodate the
Doppler faded signal is employed at the receiver. Each frame
at each antenna consists of Lt = 26 training symbols and Ld =
116 data symbols, unless stated otherwise.

We evaluate the performance of the VGLMS estimator in
terms of the ‘mean square deviation’ (MSD) which is the av-
erage squared norm difference between the original and the
estimated channel responses. The estimator is operated alone
and constantly updates the estimated channel responses using
knowledge of the transmitted signals. It is assumed to oper-
ate in transient mode during training, after which it operates
in steady state mode. The MSD measures the performance of
the estimator in steady state and for this purpose, the first Lt

symbols of each frame are not included in the evaluation. At
the beginning of a frame the estimator re-initializes, and starts
acquisition again. The MSD following the α-th acquisition is
defined as

σ2
MSD(α) = 〈||hk − ĥk/k−1||2〉 (20)

where 〈||.||〉 denotes the average of the euclidean norm opera-
tor. It is accumulated and averaged for 10,000 frames for each
SNR point and the overall MSD is then averaged across all RT
sub-channels.

The SNR is defined per received antenna. Given that σ2
n

is the AWGN variance at the input of each receiver, with the
QPSK signals and the overall random components of the mul-
tipath rays normalized to unit energy, we have

SNR = 10log

(
(1 + K)

σ2
n

)
. (21)

Unless stated otherwise, we assume that the total transmitted
power is restricted to unit power and allocated equally between
the T antennas.

Fig. 2 shows the MSD behavior of the VGLMS estimator for
a (2,2) MIMO system in a Rayleigh fading environment with
a normalized fade rate of fDT = 0.002 where fD is the maxi-
mum Doppler frequency and λ = 0.95. The performance of the
VGLMS estimator with a polynomial predictor of order N = 0
is similar to that of a conventional vector LMS estimator, where
the MSD remains high regardless of the SNR. This shows that
a conventional LMS estimator is not able to track fast fading
very well. A polynomial order of N = 1 offers slightly lower
MSD. However, the MSD remains high regardless of the length
of the training sequence used, even for Lt = 200 at high SNR.
Significantly lower MSD is achieved with an estimator using
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Figure 2: MSD behavior of the VGLMS estimator for a (2,2)
MIMO system for Rayleigh fading with a normalized fade rate
fDT = 0.002 and λ = 0.95. VGLMS estimator with a polyno-
mial order of N = 0 corresponds to a conventional vector LMS
algorithm. With sufficient training sequence length, the MSD
of VGLMS estimator with a polynomial order of N = 2 can be
made sufficiently low.

a polynomial order of N = 2 and a training sequence length of
just Lt = 100. When the training sequence length is increased
to Lt = 200, the MSD can be made to approach 10−3 at high
SNR. However, this MSD performance is relatively poor when
compared to that of a VGRLS estimator which gives an MSD
of less than 10−4 at high SNR with Lt = 78. Although not
shown here, we have found that MSD behavior is in general
much better at a lower fade rate. For example at a normalized
fade rate of 0.0001, the MSD for a polynomial order of N = 1
with Lt = 200 approaches 10−3 while that for N = 2 with Lt =
200 approaches 10−4 at high SNR.

We have also evaluated the error rate performance of a re-
ceiver consisting of a VGLMS estimator and a vector DFE [4]
operating in a decision-directed mode using the immediate pre-
viously detected symbols as feedback. This means the esti-
mated channel responses from the VGLMS estimator are used
to calculate the tap coefficients of the DFE and the outputs from
the DFE are used by the VGLMS estimator to update the esti-
mated channel responses. The DFE consists of 4 forward and 2
feedback matrix-taps with a decision delay of 3 symbols. Each
frame consists of Lt = 200 training and Ld = 1160 data sym-
bols. The simulation at each SNR point is carried out until 200
symbol errors are encountered, and the symbol error rate (SER)
is averaged across the T transmitted signal streams.

The average SER performance of a (2,2) system in a
Rayleigh fading with a normalized fade rate of 0.002 is shown
in Fig. 3. We include the performance of a vector DFE using
a Kalman estimator, and a vector DFE having perfect channel
information for reference. In general the system performance
using the VGLMS estimator is worse than that when using the
optimum Kalman estimator. However, it is much better than
that using a conventional vector LMS estimator (curve for N =

5 10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

SNR per receive antenna

A
ve

ra
ge

 S
E

R

 

 

N=0
N=1
N=2
Kalman
N=2, perfect decisions
perfect channel information

Figure 3: Average SER performance of a (2,2) MIMO system
using a VGLMS estimator and a Kalman estimator, each oper-
ating with a vector DFE in a Rayleigh fading with a normal-
ized fade rate of 0.002. The VGLMS estimator has a predictor
length of P = 3 and various orders as shown. With perfect de-
cisions for N = 2, the transmitted signals instead of the outputs
from the DFE, are used by the VGLMS estimator.

0). For N = 2, the estimator’s performance is about 7 dB away
from that of the Kalman estimator at an SER of 10−3. When
perfect decisions instead of the output decisions from the DFE
are used by the estimator, the difference is reduced to about 2 -
3 dB at the same SER.

For comparison, we have plotted in Fig. 4 the error perfor-
mance curves of the VGLMS, VGRLS [1] and Kalman estima-
tor [1] operating with the above vector DFE in a (2,2) MIMO
system in Rayleigh fading with normalized fade rates of 0.002
and 0.0001. At a fade rate of 0.002, the VGLMS based system
is degraded between 6 and 7 dB at an SER of 10−3 compared to
systems using the VGRLS and Kalman estimators respectively.
The degradation is due to the simplification in the estimation
process. However, in slower fading, i.e. at a normalized fade
rate of 0.0001, the VGLMS estimator performs much better
since the channel is easier to track. The SER at 10−3 is im-
proved by about 5 dB compared to that at a fade rate of 0.002.

Fig. 5 shows the average SER of the above receivers in a
Rician fading environment. In order to compare our results
with [11] we follow their approach. We allocate unit transmit
power to each of the transmitters, so the resulting graph has a
log10(T ) = 3dB increase in the SNR per antenna. A Rician K-
factor of 10 and a normalized fade rate of 0.007 is used. We
also assume the specular components of the fading channel re-
sponses to be known when simulating the Kalman filter. This
simplifies the simulation by not requiring the state transition
matrix to be restructured [12]. However, we have used 3 in-
stead of 2 multipath rays in each sub-channel and this affects
the vector DFE’s design. We note that the resulting Kalman
filter’s curve is reasonably close to that of [11].

We note that at an SER of 10−3 the system using a VGLMS
estimator with N = 2 is 2 - 3 dB worse than the Kalman
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Figure 4: Average SER performance of a (2,2) MIMO system
using VGLMS, VGRLS and Kalman estimators operating with
a vector DFE in a Rayleigh fading with normalized fade rates of
0.002 (dashed lines) and 0.0001 (solid lines) as indicated. The
VGLMS and VGRLS estimators each has a predictor length of
P = 3.

estimator-based system. This margin is worse when compared
to the 1 dB difference between a VGRLS estimator and a
Kalman estimator [1]. However, the degradation is compen-
sated by the reduced complexity in the channel estimation pro-
cess. The results with perfect decision feedback to the estima-
tor and perfect channel information are also included. They
indicate almost a 10 dB loss with respect to perfect channel in-
formation at a SER of 10−3, but modest losses with respect to
a Kalman estimator.

VI. CONCLUSIONS

We have extended the reduced complexity GLMS estimator
of [3] to a MIMO channel estimator that is capable of track-
ing the time-varying frequency selective channel responses in
both Rayleigh and Rician fading environments. The resulting
VGLMS estimator is a simplification of the previously devel-
oped VGRLS estimator [1]. It does not require channel and
noise statistics to operate and does not require specific mod-
elling of the specular component to operate in a Rician fad-
ing channel. Its performance is degraded when compared to
the VGRLS estimator, however, it offers significant savings in
computational load per iteration of the algorithm, especially
when the MIMO dimension is large. We demonstrate that
the VGLMS estimator is able to offer sufficiently good perfor-
mance in slow Rayleigh fading or Rician fading with a strong
mean component, where the performance is only 2 to 4 dB
worse than that of a Kalman-estimator-based system.
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